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PREFACE 

See also http://www.wiley.com/coUege/kreyszig/ 

Goal of the Book. Arrangement of Material 
This new edition continues the tradition of providing instmctors and students with a 
comprehensive and up-to-date resource for teaching and learning engineering 
mathematics, that is, applied mathematics for engineers and physicists, mathematicians 
and computer scientists, as well as members of other disciplines. A course in elementary 
calculus is the sole prerequisite. 

The subject matter is arranged into seven parts A-G: 

A Ordinary Differential Equations (ODEs) (Chaps. 1-6) 
B Linear Algebra. Vector Calculus (Chaps. 7-9) 
C Fourier Analysis. Partial Differential Equations (PDEs) (Chaps. 11-12) 
D Complex Analysis (Chaps. 13-18) 
E Numeric Analysis (Chaps. 19-21) 
F Optimization, Graphs (Chaps. 22-23) 
G Probability, Statistics (Chaps. 24-25). 

This is followed by five appendices: 

App. I References (ordered by parts) 
App. 2 Answers to Odd-Numbered Problems 
App. 3 Auxiliary Material (see also inside covers) 
App. 4 Additional Proofs 
App. 5 Tables of Functions. 

This book has helped to pave the way for the present development of engineering 
mathematics. By a modern approach to those areas A-G, this new edition will prepare 
the student for the tasks of the present and of the future. The latter can be predicted to 
some extent by a judicious look at the present trend. Among other features, this trend 
shows the appearance of more complex production processes, more extreme physical 
conditions (in space travel, high-speed communication, etc.), and new tasks in robotics 
and communication systems (e.g., fiber optics and scan statistics on random graphs) and 
elsewhere. This requires the refinement of existing methods and the creation of new ones. 

It follows that students need solid knowledge of basic principles. methods, and results, 
and a clear view of what engineering mathematics is all about, and that it requires 
proficiency in all three phases of problem solving: 

• Modeling, that is, translating a physical or other problem into a mathematical form, 
into a mathematical model; this can be an algebraic equation, a differential equation, 
a graph, or some other mathemalical expression . 

• Solving the model by selecting and applying a suitable mathematical method, often 
requiring numeric work on a computer. 

• Interpreting the mathematical result in physical or other terms to see what it 
practically means and implies. 

It would make no sense to overload students with all kinds of little things that might be of 
occasional use. Instead they should recognize that mathematics rests on relatively few basic 
concepts and involves powerful unifying principles. This should give them a firm grasp on 
the illterrelations amollg theory, computing, and (physical or other) experimentation. 

v 
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General Features of the Book Include: 
• Simplicity of examples, to make the book teachable-why choose complicated 

examples when simple ones are as instructive or even better? 

• Independence of chapters, to provide flexibility in tailoring courses to special needs. 

• Self-contained presentation, except for a few clearly marked places where a proof 
would exceed the level of the book and a reference is given instead. 

• Modern standard notation, to help students with other courses, modern books, and 
mathematical and engineering journals. 

Many sections were rewritten in a more detailed fashion. to make it a simpler book. This 
also resulted in a better balance between theory and applicatio1ls. 

Use of Computers 
The presentation is adaptable to various levels of technology and use of a computer or 
graphing calculator: very little or no use, medium u~e, or intensive use of a graphing 
calculator or of an unspecified CAS (Computer Algebra System, Maple, Mathematica, 
or Matlab being popular examples). In either case texts and problem sets form an entity 
without gaps or jumps. And many problems can be solved by hand or with a computer 
or both ways. (For software, see the beginnings of Part E on Numeric Analysis and Part G 
on Probability and Statistics.) 

More specifically, this new edition on the one hand gives more prominence to tasks 
the computer cannot do, notably, modeling and interpreting results. On the other hand, it 
includes CAS projects. CAS problems. and CAS experimellts, which do require a 
computer and show its power in solving problems that are difficult or impossible to access 
otherwise. Here our goal is the combination of intelligent computer use with high-quality 
mathematics. This has resulted in a change from a formula-centered teaching and learning 
of engineering mathematics to a more quantitative, project-oriented, and visual approach. 
CAS experiments also exhibit the computer as an instrument for observations and 
experimentations that may become the beginnings of new research, for "proving" or 
disproving conjectures, or for formalizing empirical relationships that are often quite useful 
to the engineer as working guidelines. These changes will also help the student in 
discovering the experimental aspect of modern applied mathematics. 

Some routille and drill work is retained as a necessity for keeping firm contact with 
the subject matter. In some of it the computer can (but must not) give the student a hand, 
but there are plenty of problems that are more suitable for pencil-and-paper work. 

Major Changes 
1. New Problem Sets. Modem engineering mathematics is mostly teamwork. [t usually 

combines analytic work in the process of modeling and the use of computer algebra and 
numeric~ in the process of solution, followed by critical evaluation of results. Our 
problems-some straightforward. some more challenging, some "thinking problems" not 
acce~sible by a CAS, some open-ended-reflect this modem situation with its increased 
emphasis on qualitative methods and applications, and the problem sets take care of this 
novel situation by including team projects, CAS projects, and writing projects. The latter 
will also help the student in writing general reports, as they are required in engineering 
work quite frequently. 

2. Computer Experiments. using the computer as an instrument of "experimental 
mathematics" for exploration and research (see also above). These are mostly open-ended 
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experiments, demonstrating the use of computers in experimentally finding results. which 
may be provable afterward or may be valuable heuristic qualitative guidelines to the 
engineer, in particular in complicated problems. 

3. More on modeling and selecting methods, tasks that usually cannot be automated. 

4. Student Solutions Manual and Study Guide enlarged, upon explicit requests 
of the users. This Manual contains worked-out solutions to carefully selected odd-numbered 
problems (to which App. I gives only the final answers) as well as general comments 
and hints on studying the text and working further problems, including explanations on 
the significance and character of concepts and methods in the various sections of the 
book. 

Further Changes, New Features 
• Electric circuits moved entirely to Chap. 2, to avoid duplication and repetition 

• Second-order ODEs and Higher Order ODEs placed into two separate chapters 
(2 and 3) 

• In Chap. 2, applications presented before variation of parameters 

• Series solutions somewhat shortened, without changing the order of sections 

• Material on Laplace transforms brought into a better logical order: partial fractions 
used earlier in a more practical approach, unit step and Dirac's delta put into separate 
subsequent sections, differentiation and integration of transforms (not of functions!) 
moved to a later section in favor of practically more important topics 

• Second- and third-order determinants made into a separate section for reference 
throughout the book 

• Complex matrices made optional 

• Three sections on curves and their application in mechanics combined in a single section 

• First two sections on Fourier series combined to provide a better, more direct start 

• Discrete and Fast Fourier Transforms included 

• Conformal mapping presented in a separate chapter and enlarged 

• Numeric analysis updated 

• Backward Euler method included 

• Stiffness of ODEs and systems discussed 

• List of software (in Part E) updated; another list for statistics software added (in Part G) 

• References updated, now including about 75 books published or reprinted after 1990 

Suggestions for Courses: A Four-Semester Sequence 
The material, when taken in sequence, is suitable for four consecutive semester courses, 
meeting 3-4 hours a week: 

1st Semester. 
2nd Semester. 
3rd Semester. 
4th Semester. 

ODEs (Chaps. 1-5 or 6) 
Linear Algebra. Vector Analysis (Chaps. 7-10) 
Complex Analysis (Chaps. 13-18) 
Numeric Methods (Chaps. 19-21) 
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Suggestions for Independent One-Semester Courses 
The book is also suitable for various independent one-semester courses meeting 3 hours 
a week. For instance: 

Introduction to ODEs (Chaps. 1-2, Sec. 21.1) 
Laplace Transforms (Chap. 6) 
Matrices and Linear Systems (Chaps. 7-8) 
Vector Algebra and Calculus (Chaps. 9-10) 
Fourier Series and PDEs (Chaps. 11-12, Secs. 21.4-21.7) 
Introduction to Complex Analysis (Chaps. 13-17) 
Numeric Analysis (Chaps. 19, 21) 
Numeric Linear Algebra (Chap. 20) 
Optimization (Chaps. 22-23) 
Graphs and Combinatorial Optimization (Chap. 23) 
Probability and Statistics (Chaps. 24-25) 
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PA R T A 

Ordinary 
Differential 
Equations (ODEs) 

C HAP T E R 1 First-Order ODEs 

C HAP T E R 2 Second-Order Linear ODEs 

C HAP T E R 3 Higher Order Linear ODEs 

C HAP T E R 4 Systems of ODEs. Phase Plane. Qualitative Methods 

C HAP T E R 5 Series Solutions of ODEs. Special Functions 

C HAP T E R 6 Laplace Transforms 

Differential equations are of basic importance in engineering mathematics because many 
physical laws and relations appear mathematically in the form of a differential equation. 
In Part A we shall consider various physical and geometric problems that lead to 
differential equations, with emphasis on modeling, that is, the transition from the physical 
situation to a "mathematical model." In this chapter the model will be a differential 
equation, and as we proceed we shall explain the most important standard methods for 
solving such equations. 

Part A concerns ordinary differential equations (ODEs), whose unknown functions 
depend on a single variable. Partial differential equations (PDEs), involving unknown 
functions of several variables, follow in Part C. 

ODEs are very well suited for computers. Numeric methods for ODEs call be studied 
directly after Chaps. 1 or 2. See Sees. 21.1-21.3, which are independent of the other 
sections on numerics. 
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CHAPTER 1 

First-Order ODEs 

In this chapter we begin our program of studying ordinary differential equations (ODEs) 
by deriving them from physical or other problems (modeling), solving them by standard 
methods, and interpreting solutions and their graphs in terms of a given problem. Questions 
of existence and uniqueness of solutions will also be discussed (in Sec. l.7). 

We begin with the simplest ODEs, called ODEs of the first order because they invol ve 
only the first derivative of the unknown function, no higher derivatives. Our usual 
notation for the unknown function will be y(x). or yet) if the independent variable is 
time t. 

If you wish, use your computer algebra system (CAS) for checking solutions, but make 
sure that you gain a conceptual understanding of the basic terms, such as ODE, direction 
field, and initial value problem. 

COMMENT. Numerics for first-order ODEs call be studied immediately after this 
chapter. See Secs. 2l.1-2l.2, which are independent of other sections on numerics. 

Prerequisite: Integral calculus. 
Sections that may be omitted in a shorter course: l.6, 1.7. 
References and Answers to Problems: App. I Part A. and App. 2 

1.1 Basic Concepts. Modeling 
If we want to solve an engineering problem (usually of a physical nature). we first have 
to formulate the problem as a mathematical expression in terms of variables, functions, 
equations, and so forth. Such an expression is known as a mathematical model of the 
given problem. The process of setting up a model, solving it mathematically, and 
interpreting the result in physical or other terms is called mathematical model ing or, briefly, 
modeling. We shall illustrate this process by various examples and problems because 
modeling requires experience. (Your computer may help you in solving but hardly in 
setting up models.) 

Since many physical concepts, such as velocity and acceleration. are derivatives. a 
model is very often an equation containing derivatives of an unknown function. Such 
a model is called a differential equation. Of course, we then want to find a solution 
(a function that satisfies the equation), explore its properties, graph it, find values of it, 
and interpret it in physical terms so that we can understand the behavior of the physical 
system in our given problem. However, before we can tum to methods of solution we 
must first define basic concepts needed throughout this chapter. 
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Falling stone 

y" = g = canst. 
(Sec. 1.1) 

Displacement y 

Vibrating mass 
on a spring 

my"+ky= 0 
(Secs. 2.4, 2.8) 

Deformation of a beam 

EI/V = f(x) 

(Sec. 3.3) 

y 

Velocity 
v 

Parachutist 

mv'=mg-bv
2 

(Sec. 1.2) 

//i/ltl/ 
-" ,\, 

\ :\ I 
I;J 

\ 
\ \ 

1\1 
I I' 

I \. 
\ 

/ 'l.. -'./ -- ./ 

Beats of a vi brati ng 
system 

I 
I 

I 
I 

y" + liJ~y = cos rot, roo = Q) 

(Sec. 2.8) 

Pendulum 

L8"+gsinB=O 

(Sec. 4.5) 

t 

Water level h 

Outflowing water 

h'=-Il'fFt 
(Sec. 1.3) 

Current I in an 
RLC circuit 

LI" +RI' +lI=E' 
C 

(Sec. 2.9) 

Lotka-Volterra 
predator-prey model 

y;= aYI- bYIY2 

Y~ = kY1Y 2 -IY2 

(Sec. 4.5) 

Fig. 1. Some applications of differential equations 

3 
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An ordinary differential equation (ODE) is an equation that contains one or several 
derivatives of an unknown function, which we usually call y(x) (or sometimes yet) if the 
independent variable is time t). The equation may also contain y itself, known functions 
of x (or t), and constants. For example, 

(1) 

(2) 

(3) 

I 
Y = cos x, 

y" + 9)' = 0, 

are ordinary differential equations (ODEs). The term ordinary distinguishes them from 
partial differelltial equations (PDEs), which involve partial derivatives of an unknown 
function of two or more variables. For instance, a PDE with unknown function u of two 
variables x and y is 

PDEs are more complicated than ODEs; they will be considered in Chap. 12. 
An ODE is said to be of order n if the 11th derivative of the unknown function \" is the 

highest derivative of y in the equation. The concept of order gives a useful classification 
into ODEs of first order, second order, and so on. Thus, (1) is of first order, (2) of second 
order, and (3) of third order. 

In this chapter we shall consider first-order ODEs. Such equations contain only the 
first derivative y' and may contain y and any given functions of x. Hence we can write 
them as 

(4) F(x, y, y') = 0 

or often in the form 

y' = f(x. \'). 

This is called the explicit fonn. in contrast with the implicit form (4). For instance, the 
implicit ODE x-3y' - 4y2 = 0 (where x *- 0) can be written explicitly as y' = 4x3)'2. 

Concept of Solution 
A function 

y = hex) 

is called a solution of a given ODE (4) on some open interval a < x < b if h(-r) is defined 
and differentiable throughout the interval and is such that the equation becomes an identity 
if y and)' I are replaced with hand h', respectively. The curve (the graph) of h is called 
a solution curve. 

Here, open interval a < x < b means that the endpoints a and b are not regarded as 
points belonging to the interval. Also, a < x < b includes infinite intervals -00 < x < b, 
a < x < 00, -00 < x < 00 (the real line) as special cases. 
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E X AMP L E 1 Verification of Solution 

y = hex) = c/x tc an arbitrary constant, x *" 0) is a solution of Xl" = -y. To verify this. differentiate, 
y' = h' (x) = -c/x2 , and multiply by x to get xy' = -c/x = -y. Thus, xy' = -y, the given ODE. • 

E X AMP L E 2 Solution Curves 

EXAMPLE 3 

The ODE y' = dyldx = cos x can be solved directly by integration on both sides. Indeed. using calculus. we 
obtain y = f cos x dx = sin x + c, where c is an arbitrary constant. This is afamily of solutions. Each value 
of c, for instance. 2.75 or 0 or -8. gives one of these curves. Figure 2 shows some of them. for c = -3. -2, 
-1,0, 1,2.3.4. • 

y 

Fig. 2. Solutions y = sin x + c of the ODE y' = cos x 

Exponential Growth, Exponential Decay 

From calculu~ we know that y = ce3t (c any constant) has the derivative (chain rule!) 

, dv 3t 
y = dl = 3ce = 3y. 

This shows that y is a solution of y' = 3)'. Hence this ODE can model exponential growth, for instance. of 
animal populations or colonies of bacteria. It also applies to humans for small population~ in a large country 
(e.g .. the United States in early times) and is then known as Malt/illS's law. I We shall say more about this topic 
in Sec. 1.5. 

Similarly. y' = -O.2y (with a minus on the right!) has the solution y = ce-O
.
2t

. Hence this ODE models 
exponential decay, for instance. of a radioactive substance (see Example 5). Figure 3 shows solutions for some 
positive c. Can you find what the solutions look like for negative c? • 

y 
2.5 

12 14 t 

Fig. 3. Solutions of y' = -O.2y in Example 3 

INamed after the English pioneer in classic economics, THOMAS ROBERT MALTHUS (1766-1834) 
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We see that each ODE in these examples has a solution that contains an arbitrary constant 
c. Such a solution containing an arbitrary constant c is called a general solution of the 
ODE. 

(We shall see that c is sometimes not completely arbitrary but must be restricted to 
some interval to avoid complex expressions in the solution.) 

We shall develop methods that will give general solutions uniquely (perhaps except for 
notation). Hence we shall say the general solution of a given ODE (instead of a general 
solution). 

Geometrically, the general solution of an ODE is a family of infinitely many solution 
curves, one for each value of the constant c. If we choose a specific c (e.g., c = 6.45 or 
o or -2.01) we obtain what is called a particular solution of the ODE. A particular 
solution does not contain any arbitrary constants. 

In most cases, general solutions exist, and every solution not containing an arbitrary constant 
is obtained as a particular solution by assigning a suitable value to c. Exceptions to these 
rules occur but are of minor interest in applications: see Frob. 16 in Problem Set 1.1. 

Initial Value Problem 
In most cases the unique solution of a given problem, hence a particular solution, is 
obtained from a general solution by an initial condition y(xo) = Yo, with given values 
Xo and Yo, that is used to determine a value of the arbitrary constant c. Geometrically 
this condition means that the solution curve should pass through the point (xo, Yo) in 
the .C\:.v-plane. An ODE together with an initial condition is called an initial value 
problem. Thus, if the ODE is explicit, y' = f(x, y), the initial value problem is of the 
form 

(5) y' = f(x, y), Y(Xo) = Yo· 

E X AMP L E 4 Initial Value Problem 

Solve the initial value problem 

, dy 
y = dx = 3)" yeO) = 5.7. 

Solution. The general solution is y(x) = ce3x
; see Example 3. From this solution and the inttial condition 

we obtain yeO) = ceo = c = 5.7. Hence the initial value problem ha~ the solution )'(x) = 5.7e3x
. This is a 

particular solution. • 

Modeling 
The general importance of modeling to the engineer and physicist was emphasized at the 
beginning of this section. We shall now consider a basic physical problem that will show 
the typical steps of modeling in detail: Step I the transition from the physical situation 
(the physical system) to its mathematical formulation (its mathematical model); Step 2 
the solution by a mathematical method; and Step 3 the physical interpretation of the result, 
This may be the easiest way to obtain a first idea of the nature and purpose of differential 
equations and their applications. Realize at the outset that your computer (your CAS) may 
perhaps give you a hand in Step 2, but Steps 1 and 3 are basically your work. And Step 2 
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EXAMPLE 5 

requires a solid knowledge and good understanding of solution methods available to you­
you have to choose the method for your work by hand or by the computer. Keep this in 
mind, and always check computer results for enors (which may result, for instance, from 
false inputs). 

Radioactivity. Exponential Decay 

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time. 
Physical Inj"o171wtio11. Experiments show that at each instant a radioactive substance decomposes at a rate 

proportIOnal to the the amount present. 

Step 1. Setting lip a mathematical model (a differential equation) of the physical process. Denote by yet) the 
amount of substance still present at any time t. By the physical law, the time rate of change y' (t) = dyldt is 
proporhonal to yet). Denote the constant of proportionality by k. Then 

(6) 
dy 
dt = kyo 

The value of k is known from experiments for various radioactive substances (e.g .. k = -1.4· lO-llsec -1. 

approximately, for radium ssRa226
). k is negative because ylt) decreases with time. The given initial amount is 

0.5 g. Denote the corresponding time by t = O. Then the initial condition is y(O) = 0.5. This is the instant at 
which the process begins; this motivates the term initial condition (which, however, is also used more generally 
when the independent variable is not time or when you choose a t other than t = 0). Hence the model of the 
process is the initial value problem 

(7) dt = ky, yeO) = 0.5. 

Step 2. Mathematical soilltion. As in Example 3 we conclude thaI the ODE (6) models exponemial decay and 
has the general solution (with arbitrary constant c but definite given k) 

(8) 

We now use the initial condition to detelwine C. Since yeO) = c from (8), this gives .1'(0) = c = 0.5. Hence the 
particular solution governing this process is 

(9) y(t) = O.Sekt (Fig. 4). 

Always check YOllr reslllt-it may involve human or computer errors! Verify by differentiation (chain rule!) 
that your solution (9) satisfies (7) as well as yeO) = 0.5: 

dv 
--=-- = O.Skekt = k' O.Sekt = ky. 
dt 

yCO) = O.Seo = 0.5. 

Step 3. liltelpretation of reslllt. Formula (9) gives the amount of radioactive substance at tIme I. It starts from 
the correct given initial amount and decreases with time because k (the constant of proportionality, depending 
on the kind of substance) is negative. The limit of y as t -> x is zero. • 

JI~ 
o 0.5 I 1.5 2 2.5 3 

Fig. 4. Radioactivity (Exponential decay, 
y = 0.5 ekt

, with k = -1.5 as an example) 
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E X AMP L E 6 A Geometric Application 

Geometric problems may also lead to initial value problems. For instance, find the curve through the point 
(I. I) in the .l,)·-plane having at cach of its points the slope -)1x. 

Solution. The slope y' should equal -)Jx. This gives the ODE y' = -)1x. Its general solution is y = elx 
(see Example 1). This is a family of hyperbolas with the coordinate axes as asymptotes. 

Now, for the curve to pass through (1, I), we must have y = 1 when x = I. Hence the initial condition is 
y(l) = 1. From this condition and y = elx we get yO) = ell = I; that is, c = 1. This gives the particular 
solution y = lIx (drawn somewhat thicker in Fig. 5). • 

y 

Fig. 5. Solutions of y' = -y/x (hyperbolas) 

y 

Fig. 6. Particular solutions and Singular 
solution in Problem 16 

----- •• = u 

11-41 CALCULUS 
Solve the ODE by integration. 

1. y' = -sin TTX 2. y' 
3. y' = xex2/2 4. y' cosh 4x 

15-91 VERIFICATION OF SOLUTION 

State the order of the ODE. Verify that the given function 
is a solution. (a, 17, e are arbitrary constants.) 

5. y' = 1 + y2, y = tan (x + c) 

6. y" + 7T
2 y = 0, Y = a cos rrx + b sin 7TX 

7. y" + 2,,' + lOy = O. Y = 4e-x sin 3x 

8. y' + 2y = 4(x + 1)2, Y = 5e- 2x + 2.1'2 + 2T + 
9. y'" = cos x, y = -sin x + ax2 + bx + (' 

110-141 INITIAL VALUE PROBLEMS 

Verify that y is a solution of the ODE. Determine from y 
the particular solution satisfying the given initial condition. 
Sketch or graph this solution. 

10. y' 0.5y. Y = eeO.5,,:. y(2) = 2 

11. y' = I + 4y2, Y = ~ tan (2x + e), yeO) = 0 

12. y' = y - x, y = ce x + x + 1, yeO) = 3 

13. y' + 2xy = 0, y = ee-~:2. y( 1) = 1 Ie 

14. y' = y tan x, y = c sec x, yeO) = ~7T 

15. (Existence) (A) Does the ODE y'2 = -] have a (real) 
solution? 

(B) Does the ODE 1/1 + Iyl = 0 have a general 
solution? 

16. (Singular solution) An ODE may sometimes have an 
additional solution that cannot be obtained from the 
general solution and is then called a singular solution. 
The ODE /2 - XV' + Y = 0 is of the kind. Show by 
differentiation and substitution that it has the general 
solution y = ex - e2 and the singular solution y = x 2/4. 

Explain Fig. 6. 

117-221 MODELING, APPLICATIONS 

The following problems will give you a first impression of 
modeling. Many more problems on modeling follow 
throughout this chapter. 

17. (Falling body) If we drop a stone, we can assume air 
resistance ("drag") to be negligible. Experiments show 
that under that assumption the acceleration y" = d2Yldt2 

of this motion is constant (equal to the so-called 
acceleration of gravity g = 9.80 mlsec2 = 32 ftlsec2). 

State this as an ODE for yet), the distance fallen a~ a 
function of time t. Solve the ODE to get the familiar 
law of free fall, y = gt2/2. 
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18. (Falling body) If in Prob. 17 the stone starts at t = 0 
from initial position Yo with initial velocity u = uo, 

show that the solution is y = gt2/2 + uot + Yo. Hov. 
long does a fall of 100 m take if the body falls from 
rest? A fall of 200 m? (Guess first.) 

19. (Airplane takeoff) If an airplane has a run of 3 km, 
statts with a speed 6 mlsec, moves wIth constant 
acceleration, and makes the run in I min, with what 
speed does it take off? 

20. (Subsonic flight) The efficiency of the engines of 
subsonic airplanes depends on air pressure and usually 
is maximum near about 36 000 f1. Find the air pressure 
rex) at this height without calculation. Ph\'Sical 

i'!formGtioll. The ;ate of change y' (x) is propOliionai 
to the pressure, and at 18 000 ft the pressure has 
decreased to half its value )'0 at sea level. 

21. (Half-life) The half-life of a radioactive substance is 
the time in which half of the given amount disappears. 
Hence it measures the rapidity of the decay. What 

is the half-life of radium 88Ra226 (in years) in 
Example 5? 

22. (Interest rates) Show by algebra that the investment y(t) 

from a deposit Yo after t years at an imerest rate r is 

Ya(t) = yo[1 + r]t (Interest compounded annually) 

-"d(t) = .ro[l + (rl365)]365t 

(Interest compounded daily). 

Recall from calculus that 

[1 + (llll)r -7 e as 11 --+ x; 

hent:e [I + (rln)]nt --+ e't: thu~ 

(Interest compounded continuously). 

What ODE does the last function satisfy? Let the 
initial investment be $1000 and r = 6%. Compute the 
value of the investment after I year and after 5 years 
using each of the three formulas. [s there much 
difference? 

1.2 Geometric Meaning of y' 
Direction Fields 

t(x, y). 

A first-order ODE 

(1) y' = f(x, y) 

has a simple geometric interpretation. From calculus you know that the derivative y' (x) 

of y(x) is the slope of y(x). Hence a solution curve of (1) that passes through a point 

(xo, )'0) must have at that point the slope y' (xo) equal to the value of f at that point; that is, 

Read this paragraph again before you go on, and think about it. 
It follows that you can indicate directions of solution curves of (I) by drawing short 

straight-line segments (lineal elements) in the ,,=,·-plane (as in Fig. 7a) and then fitting 
(approximate) solution curves through the direction field (or slope field) thus obtained. 
This method is important for two reasons. 

1. You need not solve (I). This is essential because many ODEs have complicated 

solution formulas or none at all. 

2. The method shows, in graphical form, the whole family of solutions and their typical 
properties. The accuracy is somewhat limited, but in most cases this does not matter. 

Let us illustrate this method for the ODE 

(2) 
, 

y = .X)'. 
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Direction Fields by a CAS (Computer Algebra System). A CAS plots lineal elements 
at the points of a square grid. as in Fig. 7a for (2), into which you can fit solution curves. 
Decrease the mesh size of the grid in regions where I(x, y) varies rapidly. 

Direction Fields by Using Isoclines (the Older Method). Graph the curves 
I(x, y) = k = const, called isoclines (meaning curves of eqllal inclination). For (2) these 
are the hyperbolas I(x, y) = xy = k = const (and the coordinate axes) in Fig. 7b. By (1), 
these are the curves along which the derivative y' is constant. These are not yet solution 
curves--don't get confused. Along each isocline draw many parallel line elements of the 
corresponding slope k. This gives the direction field. into which you can now graph 
approximate solution curves. 

We mention that for the ODE (2) in Fig. 7 we would not need the method, because we 
shall see in the next section that ODEs such as (2) can easily be solved exactly. For the 
time being, let us verify by substitution that (2) has the general solution 

y(x) = ce"2/2 (c arbitrary). 

Indeed, by differentiation (chain rule!) we get y' = x(cex2/2
) = xy. Of course. knowing 

the solution, we now have the advantage of obtaining a feel for the accuracy of the 
method by comparing with the exact solution. The particular solution in Fig. 7 through 
(x, y) = (1,2) must satisfy y(l) = 2. Thus. 2 = ce1l2, c = 21Ve = 1.213, and the particular 

solution is y(x) = 1.213ex2/2
. 

A famous ODE for which we do need direction fields is 

(3) 
y 

(It is related to the van der Pol equation of electronics. which we shall discuss in Sec. 4.5.) 
The direction field in Fig. 8 shows lineal elements generated by the computer. We have 
also added the isoclines for k = - 5, - 3,~, I as well as three typical solution curves, one 
that is (almost) a circle and two spirals approaching it from inside and outside. 

y y 

\ \ 

\( \ \ \ \ \ I I I , I 
\ \ \ \ , / I / I I I J 

, 2 
/ I 

" " '" '" / 

...... 1 / / / / I I 

/ / / I 

-1 .) " x x 
I / I / / ./- " \ \ \ 

I / / / -1 \ \ 

I / / , ... \ 

I I I / / ." 

J I I / / " J I ! I / \ \ 

J J I I I \ \ \ \ 

(aj Bya CAS (b) By isoclines 

Fig. 7. Direction field of y 
, 

= xy 
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y 

-4 

k =! 
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I 

'- " \ \ 
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\ \ \ 
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4 x , 

\ \ " '" 
\ \ " '- ~ -4~~C/ 

x 
Fig. S. Direction field of y' = 0.1 (1 - x 2

) - -

Y 

On Numerics 
Direction fields gi ve "all" solutions, but with limited accuracy. If we need accurate numeric 
values of a solution (or of several solutions) for which we have no formula, we can use 
a numeric method. If you want to get an idea of how these methods work, go to Sec. 
21.1 and study the first two pages on the Euler-Cauchy method, which is typical of 
more accurate methods later in that section, notably of the classical Runge-Kutta method. 
It would make little sense to interrupt the present flow of ideas by including such methods 
here; indeed, it would be a duplication of the material in Sec. 21.1. For an excursion to 
that section you need no exn'a prerequisites; Sec. 1.1 just discussed is sufficient. 

11-101 DIRECTION FIELDS, SOLUTION CURVES 

Graph a direction field (by a CAS or by hand). In the field 
graph approximate solution curves through the given point 
or points (x, y) by hand. 

1. y' = eX - y. (0. 0), (0. I) 

2. 4yy' = -9x, (2, 2) 

3. y' = 1 + y2, (~1T, I) 

4. y' = y - 2y2. (0. 0). (0. 0.25). (0. 0.5). (0. I) 

5. y' = x 2 - IIy, (I, -2) 

6. y' = I + siny, (-1, 0), (1,4) 

7. V' = y3 + x 3 , (0, 1) 

8. y' = 2xy + I, (-I, 2), (0, 0), (1, -2) 

9. y' = y tanh x - 2, (-1, -2), (1,0), (1, 2) 

10. y' = eY/x, (I, I), (2, 2), (3, 3) 

111-151 ACCURACY 
Direction fields are very useful because you can see 
solutions (as many as you want) without solving the ODE, 
which may be difficult or impossible in terms of a formula. 
To get a feel for the accuracy of the method, graph a field, 
sketch solution curves in it, and compare them with the 
exact solutions. 

Ll.y' 
13. y' 

14 . .r' 
15. y' 

sin ~1TX 12. y' = I/x2 

-2y (SoL y = ce-2x ) 

3ylx (Sol. y = cx 3
) 

-In x 

MOTIONS 
A body moves on a straight line, with velocity as given. 
and yet) is its distance from a fixed point 0 and t time. Find 
a model of the motion (an ODE). Graph a direction field. 
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In it sketch a solution curve corresponding to the given 
initial condition. 

16. Velocity equal to the reciprocal ofthe distance, y(l) = I 

17. Product of velocity and distance equal to -t, y(3) = -3 

18. Velocity plus distance equal to the square of time, 
yeO) = 6 

19. (Skydiver) Two forces act on a parachutist, the 
attraction by the earth mg (/1/ = mass of person plus 
equipment. g = 9.8 m/sec2 the acceleration of gravity) 
and the air resistance, assumed to be proportional to 
the square of the velocity vet). Using Newton's second 
law of motion (mass X acceleration = resultant of the 
forces), set up a model (an ODE for v(t». Graph a 
direction field (choosing III and the constant of 
proportionality equal to 1). Assume that the parachute 
opens when v = 10m/sec. Graph the corresponding 
solution in the field. What is the limiting velocity? 

20. CAS PROJECT. Direction Fields. Discuss direction 
fields as follows. 

(a) Graph a direction field for the ODE y' = I - Y 
and in it the solution satisfying yeO) = 5 showing 
exponential approach. Can you see the limit of any 
solution directly from the ODE? For what initial 
condition will the solution be increasing? Constant? 
Decreasing? 

(b) What do the solution curves of y' = _X3/y3 look 
like, as concluded from a direction field. How do they 
seem to differ from circles? What are the isoclines? 
What happens to those curves when you drop the minus 
on the right? Do they look similar to familiar curves? 
First. guess. 

(c) Compare. as best as you can, the old and the 
computer methods, their advantages and disadvantages. 
Write a short report. 

1.3 Separable ODEs. Modeling 
Many practically useful ODEs can be reduced to the form 

(1) g(y)y' = f(x) 

by purely algebraic manipUlations. Then we can integrate on hoth sides with respect to x, 
obtaining 

(2) Ig(y) y' £Ix = If(x) eLr + c. 

On the left we can switch to y as the variable of integration. By calculus, y' d" = dy. so 
that 

(3) I g(y) £I)' = I f(x) £Ix + c. 

If f and g are continuous functions, the integrals in (3) exist, and by evaluating them we 
obtain a general solution of (1). This method of solving ODEs is called the method of 
separating variables, and (1) is called a separable equation, because in (3) the variables 
are now separated: x appears only on the right and y only on the left. 

E X AMP L E 1 A Separable ODE 

The ODE y' = 1 + y2 is separable because it can be written 

dv 
--·-2 = d.1:_ By inlegration, arctany = x + c 
1 + Y 

or y = tan (x + c). 
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It is very impOltallt to illtroduce the COl/stallt 0/ illtegratioll immediately whell the integratioll is perjonlled. 
If we wrote arctan ,. = x, then v = tan x. and thell introduced c. we would have obtained ,. = tan x + c, which 

is not a solution (\~hen c '* 0): Verify this. '. 

Modeling 
The importance of modeling was emphasized in Sec. 1.1, and separable equations yield 
various useful models. Let us discuss this in terms of some typical examples. 

E X AMP L E 2 Radiocarbon Dating2 

In September 11)1) I the famous Iceman (OetLi). a mummy from the Neolithic period of the Stone Age found in 
the ice of the Oetftal Alps (hence the name "Oetzi

OO

) in Southcrn Tyrolia near the Austrian-Italian border. caused 
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon 6Cl4 to carbon 6Cl2 in 
this mummy is 52.5% of that of a living organism? 

Physical/II/ormatiol!. In the atmosphere and in living organisms, the ratio of radioactive carbon 6C14 (made 
radioactive by cosmic rays) to ordinary carbon 6C12 is con~tant. When an orgamsm dies, its absorption of 6C14 
by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive carbon 
ratio in the fossil with that in the atmosphere. To do this. one needs to know the half-life of 6C14. which is 5715 
years (CRC Halldbook a/Chemistry alld Physics, R3rd ed .. Boca Raton: CRC Press. 2002, page II-52. line 9). 

Solutioll. Modelillg. Radioactive decay is governed by the ODE y' = ky hee Sec. 1.1. Example 51. By 
separation and integration (where t is time and Yo is the initial ratio of ~14 to 6C12) 

dy 

)' 
= kdt. In 13,1 = kt + c. 

Next we use the half-life H = 5715 to determine k. When t = H. half of the original ~ubstance is still present. 
Thus. 

k= 
In 0.5 

H 

0.693 

5715 
-0.0001213. 

Finally. we use the ratio 52.5% for determining the time t when OetLi died (actually, was kiUed). 

ekt = e -0 OOOl213t = 0.525, In 0.525 
r = -~---=- = 5312. 

-0.0001213 
Allswer: About 5300 years ago. 

Other methods show that mdiocarbon dating values are usually too small. According to recent research. this is 
due to a variation in that carbon ratio because of industrial pollution and other factors. such as nuclear testing. • 

E X AMP L E 3 Mixing Problem 

Mixing problems occur quite frequently in chemical industry. We explain here hov. to solve the basic model 
involving a single tank. The tank in Fig. I) contains 1000 gal of water in which initially 100 Ib of salt is dissolvcd. 
Brine runs in at a rate of 10 gal/min. and each gallon contains 51b of dissoved salt. The mixture in the tank is 
kept uniform by ~tirring. Brine ['Uns our at 10 gal/min. Find the amount of salt in the tank at any time t. 

Solution. Step 1. Settillg up a model. Let ,.( r) denote the amount of salt in the tank at time r. Its time rate 
of change is 

y' = Salt inflow rate - Salt outflow rate "Balance law". 

51b times 10 gal gives an inflow of 50 Ib of salt. Now. the outflow is IO gal of brine. This is 1011000 = 0.01 
(= 1 %) of the total brine content in the tank, hence 0.01 of the salt content yet), that is. 0.01.1'(0. Thus the model 
is the ODE 

(4) y' = 50 - O.OJy = -O.Ol(y - 5000). 

2Method by WILLARD FRANK UBBY (1908-1980), American chemist, who was awarded for this work 
the 1960 Nobel Prize in chemistry. 
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Step 2. Sollltioll of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both 
sides gives 

dy 
= -0.01 dl, 

Y - 5000 
In L\' - 50001 = -O.Ol t + c*, J' - 5000 = ce-o.Olt. 

Initially the tank contains 100 Ib of salt. Hence yeO) = 100 is the initial condition that will give the unique 
solution. Substituting), = 100 and t = 0 in the last equation give~ 100 - 5000 = ceo = c. Hence c = -4900. 
Hence the amount of salt in the tank at time t is 

(5) yet) = 5000 - 4900e -o.Olt. 

This function shows an exponential approach to the limit 5000 Ib: see Fig. 9. Can you explain physically that 
yet) should increase with time? That its limit is 5000 Ib? Can you see the limit directly from the ODE? 

The model di~cllssed becomes more realistic in problems on pollutants in lakes (sec Problem Set 1.5. Prob. 
27) or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and 
the flow rates (in and out) may be different and known only vel)' roughly. • 

Y 
5000 -----------_.-=-=--=-=--

4000 

3000 

2000 

1000 

100~ __ ~ __ -L __ ~L-__ ~ __ -L ___ 

o 100 200 300 400 500 

Tank Salt contenty(t) 

Fig. 9. Mixing problem in Example 3 

E X AMP L E 4 Heating an Office Building (Newton's Law of Cooling}) 

Suppo,e that in Winter the daytime temperature in a certain office building is maintained at 70°F, The heating 
is shUl off at 10 P.M. and tumed on again at 6 A.M. On a certain day the temperature inside the building at 
2 A.M. was found to be 65°F. The outside temperature was 50°F at 10 P.M. and had dropped to 40°F by 6 A.M. 

What was the temperature inside the building when the heat was turned on at 6 A.M.? 

Physical information. Experiments show that the time rate of change of the temperature T of a body B (which 
conducts heat well, as, for example, a copper hall does) is proportional to the difference hetween T and the 
temperature of the sUlTounding medium (Newton's law of cooling). 

SOllitioll. Step L Settillg lip a model. Let T(t) be the temperature inside the building and TA the outside 
temperature (assumed to be constant in Newton's law). Then by Newton's law, 

(6) 

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However. even if a 
model seems to fit the reality only poorly (as in the present case). it may still give valuable qualitative information. 
To see how good a model is, the engineer will collect experimental data and compare them with calculations 
from the modeL 

3Sir ISAAC NEWTON (1642-1727), great English physicist and mathematician. became a professor at 
Camblidge in 1669 and Master of the Mint in 1699. He and the German mathematician and philosopher 
GOTTFRlED WILHELM LEIBNIZ (1646--1716) invented (independently) the differential and integral calculus. 
Newton discovered many basic physical laws and created the method of investigating physical problems by 
means of calculus. His Philosophiae namralis principia mathematica (Mathematical Principle), of Natural 
Philosophy, 1687) contains the development of classical mechanic~. His work is of greatest importance to both 
mathematics and physics. 
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Step 2. General solution. We cannot solve (6) because we do not know TA , just that it varied between 50°F 

and 40°F, so we follow the Goldell Rule: If you cannot solve your problem, try to solve a simpler one. We 

solve (6) with the unknown function TA replaced with the average of the two known values, or 45°F. For physical 
reasons we may expect that this will give us a reasonable approximate value of T in the building at 6 A.M. 

For constant TA = 45 (or any other constant value) the ODE (6) is separable. Separation, integration, and 
taking exponents gives the general solution 

<IT 
T _ 45 = k dt, In IT - 451 = kt + c*, T(t) = 45 .,. cekt (c = eC

\ 

Step 3. PQlticular solutioll. We choose IO P.M. to be t = O. Then the given initial condition is T(Ol = 70 and 
yields a particular solution, call it Tp- By substitution. 

T(O) = 45 + ceo = 70, c = 70 - 45 = 25, 

Step 4. Detel7nillatioll of k. We llse T(4) = 65, where t = 4 is 2 A.M. Solving algebraically for k and inserting 

k into Tp(t) gives (Fig. 10l 

e4k = 0.8, k = ! In 0.8 = -0.056, Tp(t) = 45 + 25e -0.056t. 

Step 5. Answer alld illterpretation. 6 A.M. is t = 8 (namely, 8 hours after IO P.M.), and 

Tp(8) = 45 + 25e -0.056·8 = 6] rOF]. 

Hence the temperature in the building dropped 9°F, a result that looks reasonable. 

y 

70 

68 

66 
65 -------1' 
64 I 

I 
I 

~i -------~-------_" 
60 '-------'----'---~ ~ 

o 2 4 6 8 t 

Fig. 10. Particular solution (temperature) in Example 4 

E X AMP L E 5 Leaking Tank. Outflow of Water Through a Hole (Torricelli's Law) 

• 

This is another prototype engineering problem that leads to an ODE. It concems the outflow of water from a 
cylindrical tank with a hole at the bottom (Fig. 11). You are asked to find the height of the water in the tank at 
any time if the tank has diameter 2 m, the hole has diameter 1 cm. and the initial height of the water when the 
hole is opened is 2.25 m. When will the tank be empty? 

Physical information. Under the intluence of gravity the outflowing water has velocity 

(7) vet) = 0.600V2gh(t) (TorricelIi's law4), 

where h(t) is the height of the water above the hole at lime t, and q = 980 cm/sec2 = 32.17 ft/sec2 is the 
acceleration of gravity at the surface of the earth. 

Solutioll. Step 1. Setti1lg up the model. To get an equation, we relate the decrease in water level h(t) to the 

outflow. The volume ti V of the outflow during a short time tit is 

tiV=Av!::.t (A = Area of hole). 

4 EV ANGELIST A TORRICELLI (1608-1647), Italian physicist, pupil and successor of GALILEO GALl LEI 

(1564-1642) at Florence. The "contraction factor" 0.600 was introduced by 1. C. BORDA in 1766 because the 
stream has a smaller cross section than the area of the hole. 
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il V must equal the change il V* of the volume of the water in the tank. Now 

il.V* = -B.lh (B = Cross-sectional area of tank) 

where illz (> 0) is the decrease of the height h(t) of the water. The minus sign appears because the volume of 
the water in the tank decreases. Equating il. V and il V* gives 

-B il.il = Au ilt. 

We now express u according to Torricelli's law and then let ilt (the length of the time interval considered) 
approach O--this is a stalldard way of obtaining an ODE as a model. That is. we have 

llh A A - = - - u = - - 0.600Y2gh(t) 
ilt B B ' 

and by letting .It -+ 0 we obtain the ODE 

dh A 
- = -2656 - Yh 
dt . B ' 

where 26.56 = 0.600 Y2' 980. This is our model, a first-order ODE. 

Step 2. General solution. Our ODE is separable. AlB is constant. Separation and integration gives 

dh A 
- = -26.56 - dt 
Yh B 

and 
A 

2Yh = c* - 26.56 - t. 
B 

Dividing by 2 and squaring gives il = (c - 13.28AtIB)2. Inserting 13.28AIB = 13.28' 0.52 '/7/1002 '/7 = 0.000332 
yields the general sol ution 

h(t) = (c - 0.000332t)2. 

Step 3. Particular solution. The initial height (the initial condition) is h(O) = 225 cm. Substitution of t = 0 
and Iz = 225 gives from the general solution c2 = 225, c = 15.00 and thus the particular solution (Fig. I)) 

hp(t) = (15.00 - 0.000332t)2. 

Step 4. Tallk empty. hp(t) = 0 if t = 15.0010.000332 = 45 181 [sec] = 12.6 [hOUTS]. 
Here you see distinctly the importal/ce of the choice of ul/its-we have been working with the Cgs system, 

in which time i~ measured in seconds! We used g = 980 cmlsec2
. 

Step 5. Checking. Check the result. 

1:2.00mj 

r ~-f 
'-

2.25 m 

L 
h(t) 

~ 
• Outflowing t water 

Tank 

h 
250 

200 

" 
150 

100 

50 

0 
0 10000 30000 50000 t 

Water level h(tl in tank 

Fig. 11. Example 5. Outflow from a cylindrical tank ("leaking tank"). Torricelli's law 

Extended Method: Reduction to Separable Form 

• 

Certain nonseparable ODEs can be made separable by transformations that introduce for 
y a new unknown function. We discuss this technique for a class of ODEs of practical 
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importance, namely, for equations 

(8) 

Here, f is any (differentiable) function of y/x, such as sin (y/x), (Y/X)4, and so on. (Such 
an ODE is sometimes called a homogeneous ODE. a term we shall not use but reserve 
for a more important purpose in Sec. 1.5.) 

The form of such an ODE suggests that we set y/x = u; thus, 

(9) y = ux and by product differentiation y' = u'x + u. 

Substitution into),' = fey/x) then gives u' x + u = feu) or u' x = feu) - u. We see that 
this can be separated: 

du dx 
(10) 

feu) - u x 

E X AMP L E 6 Reduction to Separable Form 

Solve 

Solution. To gel the usual explicit form, divide the given equarion by 2n·. 

Now substitute y and y' from (9) and then simplify by subtracting 1/ on both sides. 

, 1/ 
I/X+ 1/="2 211 ' 

, 1/ 
ux=----

2 211 

You see that in the last equation you can now separate the variables, 

211 dl/ 

I + u2 

dx 

x 
By integration, In(l + 1/

2
) = -In Ixl + c* = In I ~ I + c*. 

Take exponents on both sides to get I + 1/
2 = clx or I + (y/x)2 = clx. Multiply the last equation by x2 to 

obtai n (Fig. 12) 

Thus 

This general solution represents a family of circles passing through the origin with centers on the x-axis • 

y 

-8 \-4 -.J/'j 8 

\~~ 
x 

Fig. 12. General solution (family of circles) in Example 6 
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1. (Constant of integl'3tion) An arbitrary constant of 
integration must be introduced inunediately when the 
integration is performed. Why is this important? Give 
an example of your own. 

[2-91 GENERAL SOLUTION 

Find a general solution. Show the steps of derivation. Check 
your answer by substitution. 

2. y' + (x + 2»)"2 = 0 

3. y' = 2 sec 2y 

4. y' = {y + 9X)2 (y + 9\" = v) 

5. )'y' + 36x = 0 

6. y' = (4x2 + y2)/(xy) 

7. y' sin TTX = Y cos 7TX 

8. xy' = i)"2 + Y 

9. y' e""x = )'2 + I 

L10-191 INITIAL VALUE PROBLEMS 

Find the particular solution. Show the steps of derivation, 
beginning with the general solution. (L, R, b are constants.) 

10. yy' + 4x = 0, y(O) = 3 

11. dr/dt = -2tr, r(O) = ro 

12. 2xyy' = 3)"2 + x 2
, )"(1) = 2 

13. L d/ldt + RI = 0, 1(0) = 10 

14. v' = vlx + (2x 3 /v) COS(X2), y(v.;;:t2) = v;­
IS. >xy"= 2(x + 2iy 3, yeO) = l/Vs = 0.45 

16. x.v' = y + 4x5 cos2(y/x), H2) = 0 

17. y'x Inx = y, ."(3) = In 81 

18. dr/dO = b[(dr/dO) cos 0 + r sin 0], r(i7T) 7T. 

0< b < I 

19. yy' = (x - l)e- y2
, y(O) = 1 

20. (Particulal' solution) Introduce limits of integration in 
(3) such that y obtained from (3) satisfies the initial 
condition y(xo) = )'0' Try the formula out on Prob. 19. 

= 1-36J APPLICATIONS, MODELING 

21. (Curves) Find all curves in the xy-plane whose 
tangents all pass through a given point (a, b). 

22. (Cm'ves) Show that any (nonverticaD straight line 
through the origin of the xy-plane intersects all solution 
curves of y' = g()'/x) at the same angle. 

23. (Exponential growth) If the growth rate of the amount 
of yeast at any time t is proportional to the amount 
present at that time and doubles in I week, how much 
yeast can be expected after 2 weeks? After 4 weeks? 

24. (Population model) If in a population of bacteria the 
birth rate and death rate are proportional to the number 

of individuals present, what is the popUlation as a 
function of time? Figure out the limiting situation for 
increasing time and interpret it. 

25. (Radiocal'bon dating) If a fossilized tree is claimed to 
be 4000 years old. what should be its 6C14 content 
expressed as a percent of the ratio of 6C14 to 6C12 in a 
living organism? 

26. (Gompel'tz gl'Owth in tumors) TIle Gompertz model 
is r' = -Av In \' (A > 0), where yet) is the mass of 
tu~or cells' at time t. The model agrees well with 
clinical observations. The declining growth rate with 
increasing y > 1 corresponds to the fact that cells in 
the interior of a tumor may die because of insufficient 
oxygen and nutrients. Use the ODE to discuss the 
growth and decline of solutions (tumors) and to find 
constant solutions. Then solve the ODE. 

27. (Dl-yel') If wet laundry loses half of its moisture 
during the first 5 minutes of drying in a dryer and if 
the rate of loss of moisture is proportional to the 
moisture content, when will the laundry be practically 
dry, say, when will it have lost 95% of its moisture? 
First guess. 

28. (Alibi?) Jack, arrested when leaving a bar, claims that 
he has been inside for at least half an hour (which 
would provide him with an alibi). The police check the 
water temperature of his car (parked near the entrance 
of the bar) at the instant of arrest and again 30 minutes 
later, obtaining the values 190°F and 110°F, 
respectively. Do these results give Jack an alibi? (Solve 
by inspection.) 

29. (Law of cooling) A thermometer, reading 10°C, is 
brought into a room whose temperature is 23°C, Two 
minutes later the thermometer reading is 18°C, How 
long will it take until the reading is practically 23°C, 
say, 22.8°C? First guess. 

30. (TonicelIi's law) How does the answer in Example 5 
(the time when the tank is empty) change if the 
diameter of the hole is doubled? First guess. 

31. (TolTicelli's law) Show that (7) looks reasonable 
inasmuch as V2gh(t) is the speed a body gains if it 
falls a distance h (and air resistance is neglected). 

32. (Rope) To tie a boat in a harbor. how many times must 
a rope be wound around a bollard (a vertical rough 
cylindrical post fixed on the ground) so that a man 
holding one end of the rope can resist a force exerted 
by the boat one thousand times greater than the man 
can exert? First guess. Experiments show that the 
change /1S of the force S in a small portion of the rope 
is proportional to S and to the small angle /1¢ in Fig. 
13, Take the proportionality constant 0.15, 
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Fig. 13. 

Small 
portion 
of rope 

S+l1S 

Problem 32 

33. (Mixing) A tank contains 800 gal of water in which 
200 Ib of salt is dissolved. Two gallons of fresh water 
rLms in per minute, and 2 gal of the mixture in the tank. 
kept uniform by stirring, runs out per minute. How 
much salt is left in the tank after 5 hours? 

34. WRITING PROJECT. Exponential Increase, Decay, 
Approach. Collect. order, and present all the information 
on the ODE y' = ky and its applications fi'om the text 
and the problems. Add examples of your own. 

35. CAS EXPERIMENT. Graphing Solutions. A CAS 
can usually graph solutions even if they are given by 
integrals that cannot be evaluated by the usual methods 
of calculus. Show this as follows. 

19 

(A) Graph the curves for the seven initial value 
problems y' = e-x2

/
2

, yeO) = 0, ± I, ±2, ±3, common 
axes. Are these curves congment? Why? 

(B) Experiment with approximate curves of nth partial 
sums of the Maclaurin series obtained by term wise 
integration of that of y in (A); graph them and describe 
qualitatively the accuracy for a fixed interval 
o ~ x ~ b and increasing n, and then for fixed nand 
increasing b. 

(C) Experiment with y' = cos (x2
) as in (8). 

(D) Find an initial value problem with solution 

y = e·-2 L"e-t2 dt and experiment with it as in (8). 
o 

36. TEAM PROJECT. Tonicelli's Law. Suppose that 
the tank in Example 5 is hemispherical, of radius R, 
initially full of water, and has an outlet of 5 cm2 cross­
sectional area at the bottom. (Make a sketch.) Set up 
the model for outflow. Indicate what portion of your 
work in Example 5 you can use (so that it can become 
part of the general method independent of the shape of 
the tank). Find the time t to empty the tank (a) for any 
R, (b) for R = I m. Plot t as function of R. Find the 
time when h = R/2 (a) for any R, (b) for R = 1 m. 

1.4 Exact ODEs. Integrating Factors 
We remember from calculus that if a function u(x, y) has continuous partial derivatives, 
its differential (also called its total differential) is 

au au 
du = - dx + - dv. 

ax ay' 

From this it follows that if lI(X, y) = C = conST, then du = O. 

or 

For example, if u = x + x2.\'3 = c, then 

, 
y 

dy 

dx 

an ODE that we can solve by going backward. This idea leads to a powerful solution 
method as follows. 

A first-order ODE Mex, y) + N(x, y)y' = 0, written as (use dy = y' d-,;; as in Sec. 1.3) 

(1) M(x, y) dx + N(x, y) dy = 0 
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is called an exact differential equation if the differential form M(x, y) dx + N(x, y) dy 
is exact, that is, this form is the differential 

au au 
(2) du= -dx+ -dy 

ax ay 

of some function u(x, y). Then (1) can be written 

du = o. 

By integration we immediately obtain the general solution of (I) in the form 

(3) u(x, y) = c. 

This is called an implicit solution, in contrast with a solution y = hex) as defined in Sec. 
1.1, which is also called an explicit solution, for distinction. Sometimes an implicit solution 
can be converted to explicit form. (Do this for x 2 + )'2 = 1.) If this is not possible, your 
CAS may graph a figure of the contour lines (3) of the function u(x, y) and help you in 
understanding the solution. 

Comparing (I) and (2), we see that (1) is an exact differential equation if there is some 
function u(x, y) such that 

au 
(4) (a) 

ax 
=M, (b) 

au 
ay 

=N. 

From this we can derive a formula for checking whether (1) is exact or not, as follows. 
Let M and N be continuous and have continuous first partial derivatives in a region in 

the xy-plane whose boundary is a closed curve without self-intersections. Then by partial 
differentiation of (4) (see App. 3.2 for notation), 

aM a2u 

ay ayax ' 

aN a2u 

ax ax ay 

By the assumption of continuity the two second partial derivatives are equal. Thus 

aM aN 
(5) 

ay ax 

This condition is not only necessary but also sufficient for (1) to be an exact differential 
equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books (e.g., 
Ref. [GRIll also contain a proof.) 

If (I) is exact, the function u(x, y) can be found by inspection or in the followino 
. 0 

systematic way. From (4a) we have by integration with respect to x 
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(6) u = J M dx + k(y); 

in this integration, y is to be regarded as a constant, and k(y) plays the role of a "constant" 
of integration. To detennine key), we derive aulay from (6), use (4b) to get dkldy, and 
integrate dkldy to get k. 

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b). 
Then instead of (6) we first have by integration with respect to y 

(6*) u = J N dy + lex). 

To determine lex), we derive aulax from (6*), use (4a) to get dlldx, and integrate. We 
illustrate all this by the following typical examples. 

E X AMP L ElAn Exact ODE 

Solve 

(7) cos (x + v) dx + {3y2 + 2y + cos (x + y» dy = O. 

Solution. Step 1. Test/or exactness. Our equation is of the form (1) with 

Thus 

M = cos (x + y), 

N = 3y2 + 2y + cos (x + y). 

aM 
- = -sm(x + v), 
iiy -

aN 
-.- = -sin (x + y). 
dx 

From this and (5) we see that (7) is exact. 

Step 2. Implicit general solution. From (Ii) we obtain by integration 

(8) u = f M dx + k(y) = f cos (x + y) dx + k(y) = sin (x + y) + k(y). 

To find k(y), we differentiate this fonTIula with respect to y and use fonnula (4b), obtaining 

au dk 2 
ay = cos (x + y) + dy = N = 3y + 2y + cos (x + y). 

Hence dk/dy = 3y2 + 2y. By integration. k = l + y2 + c*. Inserting this result into (8) and observing 0), 

we obtain the answer 
lI(X. y) = sin (x + y) + y3 + y2 = c. 

Step 3. Checldng all implicit solution. We can check by differentiating the implicit solution u(x, y) = c implicitly 
and see whether this leads to the given ODE (7): 

(9) 
all all 

dlt = -a dx + - dy = cos (.l. + y) dx + (cos (x + ),) + 3),2 + 21') d), = O. x ay - • 

This complete~ the check. • 
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E X AMP L E 2 An Initial Value Problem 

Solve the initial value problem 

(10) (co~ y sinh x + I) dx - sin y cosh \" d,' = O. ylll = 2. 

Solutioll. You may verify that the given ODE is exact. We find II. For a change. let us use (6*), 

II = - J siny cosh x dy + I(x) = cosy cosh x + I(x). 

From this. all/ax = cos y sinh x + dlldx = M = cos y sinh x + I. Hence dlldx = 1. By integration, 
I(x) = x + c*. This gives the general solution II(X. y) = cos y cosh x + x = c. From the initial condition. 
cos 2 cosh I + I = 0.358 = c. Hence the answer is cos y cosh x + x = 0.358. Figure 14 ~how~ the particular 
solutions for c = O. 0.358 (thicker curve). 1. 2. 3. Check that the answer satisfies the ODE. (Proceed as in 
Example I.) Also check thar the initial condition is satisfied. • 

y 

2.5 

2.0 

1.5/ 0 
1.0 I II 
0.5 t 

o 0.5 1.0 1.5 2.0 2.5 3.0 x 

Fig. 14. Particular solu.ions in Example 2 

E X AMP L E 3 WARNING! Breakdown in the Case of Nonexactness 

The equation -y dx + x dy = 0 is not exact because M = -y and N = x. so that in (5), aMIi)y = -I but 
aN/ax = I. Let us show that in such a case the present method does not work. From (6), 

1I = J M dx + key) = -xy + key), hence 
iJl/ dk 

= -x + 
ay {(I' 

Now, all/ay should equal N = x, by (4b). However, this is impossible because key) can depend only on y. Try 
(6*): it will also fail. Sohe the equation by another method that we have discussed. • 

Reduction to Exact Form. Integrating Factors 
The ODE in Example 3 is -y dt + x dy = O. It is not exact. However, if we mUltiply it 
by 1Ix2

, we get an exact equation [check exactness by (5)!], 

(II) 
-ydx + xdy y 1 (y) 

2 = - 2" dx + - dy = d - = O. 
x x x x 

Integration of (11) then gives the general solution )f.t = C = COllst. 
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This example gives the idea. All we did was multiply a given nonexact equation, say, 

(12) P(x, y) dx + Q(x, y) dy = 0, 

by a function F that, in general, will be a function of both x and y. The result was an equation 

(13) FP dx + FQ dy = 0 

that i1S exact, so we can 1Solve it a~ just discussed. Such a function F(x, y) i1S then called 
an integrating factor of (12). 

E X AMP L E 4 Integrating Factor 

The imegrating factor in (] II is F = L/x2
. Hence in this case the exact equation (13) is 

-v dx + .t d)' ( V ) 
FP dx + FQ d)' = - 2 . = d -'- = o. 

x x 
Solution 

These are straight lines y = ex through the origin. 

y 
- = c. 
x 

It is remarkable that we can readily find other mtegrating factors for the equation -y dx + x dy = O. namely, 
1/)'2, lI(xy). and lI(x2 + )'2), because 

-y,h + xdy _ (~) 
(14) 2 - d . 

y y 
-y,h+xdy (x) ----'----'- = -d In - . 

x)' y 

-ydx+xdy ( Y) 
2 2 =d arctan- . 

x + Y x • 
How to Find Integrating Factors 
In simpler cases we may find integrating factors by inspection or perhaps after some trials, 
keeping (14) in mind. In the general case, the idea is the following. 

For M dx + N dy = 0 the exactness condition (4) is aM/a)' = aN/ax. Hence for (13), 
FP dx + FQ d)' = 0, the exactness condition is 

a a 
(15) -. (FP) = -. (FQ). 

ay ax 

By the product rule, with subscripts denoting partial derivatives, this gives 

In the general case, this would be complicated and useless. So we follow the Golden Rule: 
If you cannot solve your problem, try to solve a simpler one-the result may be useful 
(and may also help you later on). Hence we look for an integrating factor depending only 
on one variable; fortunately, in many practical cases, there are such factors, as we shall 
see. Thus, let F = F(x). Then Fy = 0, and Fx = F' = dFld'(, so that (15) becomes 

FPy = F'Q + FQx. 

Dividing by FQ and reshuffling terms, we have 

(16) 
1 dF 
--=R 
F d, ' 

This proves the following theorem. 

where R = 1 (ap _ aQ ) . 
Q ay ax 
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THEOREM 1 

THEOREM 2 

CHAP. 1 First-Order ODEs 

Integrating Factor F(x) 

If (12) is sllch that the I ight side R of (16), depe1lds o1lly on x. then (12) has an 
integrating factor F = F(x), which is obtained by i1lfegrating (16) ([nd taking 
exponents on both sides, 

(17) F(x) = exp I R(x) dx. 

Similarly, if F* = F*(y), then i.nstead of (16) we get 

(18) 
1 dF* 

- -- =R* 
F* dy , 

and we have the companion 

Integrating Factor F*(y) 

where R* = ( 
~Q _ ap) 
iJx av 

I 
p 

If (12) is such that the right side R* of (I8) depends only 011 y, then (12) has an 
integrating factor F* = F*(y), which is obtained from (18) in the fonn 

(19) F*(y) = exp I R*(y) dy. 

E X AMP L E 5 Application of Theorems 1 and 2. Initial Value Problem 

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem 

(20) (ex+y + "eY) dx + (xeY - 1) dy = 0, yeO) = -1 

Solutioll. Step 1. NOllexactlless. The exactnes, check fails: 

oP 0 x+ Y X+Y Y Y - = - (e Y + ye ) = e + e + ye 
oy ay 

aQ 0 - = - (xeY - I) = eY. ax ax but 

Step 2. Integratillg factor. General solutio1l. Theorem 1 fails because R [the right side of (16)] depends on 
both x and y, 

I (oP oQ) 1 x+ R = - - - - = --- (e Y + eY + yeY - eY). 
Q iJy ax xeY - I 

Try Theorem 2. The right side of (18) b 

1 (a Q ap) I + R* - - - - - - -,----- (eY - eX Y - eY - veY) = -I. 
- P ax ay - eX+Y + yeY • 

Hence (19) give, the integrating factor F*(y) = e -Yo From this result and (20) you get the exact equation 

(eX + y) £Ix + (x - e -Y) dy = O. 

Test for exactness; you will get I on both sides of the exactne" condition. By imegration, using (4a), 

u = f (ex + y) £Ix = eX + xy + key). 
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Differentiate this with respect to), and use (4b) to get 

dk - = -e-Y 
dy , 

all dk 
- = x + - = N = x - e-Y , 
ily dy 

k = e-Y + c*. 

Hence the general solution is 

u(x. y) = eX + xy + e -Y = C. 

Step 3. Particular solution. The initial condition .1'(0) = I gives lI(O. - I) = 1 + 0 + e = 3.72. Hence the 
answer is eX + xy + e -Y = I + e = 3.72. Figure 15 shows several particular solutions obtained as level curves 
of u(x, y) = c, obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a 
solution into explicit form. Note the curve that (nearly) ~atisfies the initial condition. 

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the initial 
condition. • 

y 

Fig. 15. Particular solutions in Example 5 

===== -.•. ---.--.... - ....... -.~ ....: -....... -......... ~-- ...... ----
11-20 I EXACT ODEs. INTEGRATING FACTORS 

Test for exactness. If exact, solve. If not, use an integrating 

factor as given or find it by inspection or from the theorems 
in the text. Also, if an initial condition is given, determine 

the corresponding particular solu[ion. 

1. x 3 dx + )'3 dy = 0 2. (x - y)(dx - dy) = 0 

3. -71' sin 71'X sinh)' dx + cos 71'X cosh y dy = 0 

4. (eY - ye X
) dx + (xeY - eX) dy = 0 

5. 9x dx + 4y dy = 0 

6. eX(cos y dx - sin y dy) = 0 

7. e-28 dr - 2re-28 d() = 0 

8. (2x + 11)' - ylx2) dx + (2y + 1Ix - xly2) dy = 0 

9. (-ylx2 + 2 cos 2x) dx + (lIx - 2 sin 2y) dy = 0 

10. - 2xy sin (X
2

) dx + cos (x 2 ) dy = 0 

11. - y dx + x dy = 0 

12. (e x + y - y) dx + (xex + y + 1) dy = 0 

13. -3\" dx + 2x dy = O. F(x. y) = ylx4 

14. (x 4 + )'2) dx - xv dy = 0, ),(2) = I 

15. e 2X(2 cos y dx - sin y dy) = 0, y(O) 0 

16. -sinxy (y dx + x dy) = 0, y(l) = 'iT 

17. (cos wX + w sin wx) dx + eX dy = O. y(Q) = 1 

18. (cos xy + xly) dx + (1 + (xly) cos xy) dy = 0 

19. e-Y dx + e-X(-e-Y + 1) dy = 0, F = eX+ Y 

20. (sin y cos y + X cos2 y) dx + x dy = 0 

21. Under what conditions for the constants A, B. C, D is 
(Ax + By) dx + (ex + Dy) dy = 0 exact? Solve 
the exact equation. 



26 CHAP. 1 First-Order ODEs 

22. CAS PROJECT. Graphing Particular Solutions 
Graph paI1icuiar solutions of the following ODE. 
proceeding as explained. 

(d) [n another graph show the solution curves 
satisfying y(O) = ::':::1. ::':::2, ::':::3. ::':::4. Compare the 
quality of (c) and (d) and comment. 

(21) 
I 

Y cos x dx + - dy = 0 
y 

(e) Do the same steps for another nonexact ODE of 
your choice. 

(a) Test for exactness. If nece~sary, find an integrating 
factor. Find the general solution II(X. y) = c. 

23. WRITING PROJECT. Working Backward. Start 
from solutions u(x, v) = c of your choice. find a 
corresponding exact ODE, destroy exactness by a 
multiplication or division. This should give you a feel 
for the form of ODEs you can reach by the method of 
integrating factors. (Working backward is useful in 
other areas, too: Euler and other great masters 
frequently did it.l 

(b) Solve (21) by separating variables. Is this simpler 
than (a)? 

(c) Graph contours II(X, y) = c by your CAS. (Cf. Fig. 
16.) 

Fig. 16. Particular solutions in CAS Project 22 

24. TEAM PROJECT. Solution by Several Methods. 
Show this as indicated. Compare the amount of work. 

(A) eY(sinh x dx + cosh x dy) = 0 as an exact ODE 
and by separation. 

(B) (I + 2x) cos y dx + dy!cos y = 0 by Theorem 
2 and by separation. 

(C) (x2 + y2) eLI: - 2xy dy = 0 by Theorem I or 2 
and by separation with v = ylx. 

(D) 3x2 .v dx + 4x3 dy = 0 by Theorems I and 2 
and by separation. 

(E) Search the text and the problems for further ODEs 
that can be solved by more than one of the methods 
discussed so far. Make a list of these ODEs. Find 
further cases of your own. 

1.5 Linear ODEs. Bernoulli Equation. 
Population Dynamics 

Linear ODEs or ODEs that can be transformed to linear form are models of various 
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we 
shall see. A first-order ODE is said to be linear if it can be written 

(1) y' + p(x)y = rex). 

The defining feature of this equation is that it is linear in both the unknown function y 

and its derivative y' = dyJdJC, whereas p and r may be any given functions of x. If in an 
application the independent variable is time, we write t instead of x. 

If the first term is f(x)y' (instead ofy'), divide the equation by j(x) to get the "standard 
form" (I), with y' as the first term. which is practical. 

For instance. y' cos x + y sin x = x is a linear ODE, and its standard form is 
y' + Y tan x = x secx. 

The function rex) on the right may be a force, and the solution y(x) a displacement in 
a motion or an electrical cunent or some other physical quantity. In engineering, rex) is 
frequently called the input, and y(x) is called the output or the response to the input (and, 
if given, to the initial condition). 
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Homogeneous Linear ODE. We want to solve (1) in some interval a < x < b, call it 
J, and we begin with the simpler special case that rex) is zero for all x in J. (This is 
sometimes written rex) ~ 0.) Then the ODE (l) becomes 

(2) )"' + p(x)y = 0 

and is called homogeneous. By separating variables and integrating we then obtain 

dy 
- = -p(x) dx, 
y 

thus In 1)'1 = - f p(x) dx + c*. 

Taking exponents on both sides, we obtain the general solution of the homogeneous 
ODE (2), 

(3) .v(x) = ce-Ip(X) dx (c = ±ec* when .v ~ 0); 

here we may also choose c = 0 and obtain the trivial solution y(x) = 0 for all x in that 
interval. 

Nonhomogeneous Linear ODE. We now solve (I) in the case that rex) in (I) is not 
everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous. 
It turns out that in this case, (1) has a pleasant property; namely, it has an integrating 
factor depending only on x. We can find this factor F(x) by Theorem I in the last section. 
For this purpose we write (1) as 

(py - r) dx + dy = O. 

This is P dx + Q dy = 0, where P = py - rand Q = 1. Hence the right side of (16) in 
Sec. 1.4 is simply l(p - 0) = p, so that (16) becomes 

Separation and integration gives 

dF 
- =pd'l 
F 

1 dF 
- - = p(:r). 
F dx 

and 

Taking exponents on both sides, we obtain the desired integrating factor F(x), 

F(x) = eIP d:x'. 

We now multiply (1) on both sides by this F. Then by the product rule, 

eIp d:l'(y' + py) = (eIp d:t: y )' = eIp d:t:r . 

By integrating the second and third of these three expressions with respect to x we get 

e Ip dXy = feIP dX r dx + c. 

Dividing this equation by eIp 
dx and denoting the exponent fp dx by h, we obtain 

(4) II = fp(x) dx. 



28 CHAP. 1 First-Order ODEs 

(The constant of integration in h does not matter; see Prob. 2.) Formula (4) is the general 
solution of (l) in the form of an integral. Solving (l) is now reduced to the evaluation 
of an integral. In cases in which this cannot be done by the usual methods of calculus, 
one may have to use a numeric method for integrals (Sec. 19.5) or for the ODE itself 
(Sec. 21.1). 

The structure of (4) is interesting. The only quantity depending on a given initial 
condition is c. Accordingly, writing (4) as a sum of two terms, 

(4*) y(x) = e-h fehr dx + ce-h, 

we see the following: 

(5) Total Output = Response to the Input r + Response to the Initial Data. 

E X AMP LEI First-Order ODE, General Solution 

Solve the linear ODE 

y' _ )' = e2x 

Solutioll. Here, 

p = -1. h=fpdx=-x 

and from (4) we obtain the general solution 

From (4*) and t5) we see that the response to the input is e
2x

. 

In simpler cases, such as the present. we may not need the general formula (4). but may wish to proceed 
directly. multiplying the given equation by eh = e -x. This gives 

Integrating on both sides. we obtain the same result a, before: 

ye-X = eX + c. hence • 
E X AMP L E 2 First-Order ODE, Initial Value Problem 

Solve the initial value problem 

y' + Y tan x = sin 2x, .1'(0) = I. 

Solutioll. Here p = tan x, r = sin 2x = 2 sin x cos x, and 

fp dx = ftan x dx = In Isec xl· 

From this we see that in (4), 

eh = sec x, -h e = cos x, ehr = (sec x)(2 sin x cos x) = 2 sin x, 

and the general solutIOn of our equation is 

y(x) = cos x (2 f sin x d.1 + c) = c cos x - 2 cos2 x. 

~rom this and the initial condition, I = c . I - 2· 12; thus c = 3 and the solution of Our initial value problem 
IS y = 3 cos x - 2 cos

2 
x. Here 3 cos x is the response to the initial data, and -2 cos2 x is the response to the 

input sin 2x. • 
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E X AMP L E 3 Hormone Level 

Assume that rhe level of a certain hormone in the blood of a patient varie, with time. Suppose that rhe time rate 
of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous 
removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its 
general solution. Find the particular solution satisfying a suitable initial condition. 

Solutioll. Step 1. Setting lip a model. Let yet) be the hormone level at time t. Then the removal rate is Ky(t). 

The input rate is A + B cos (2 7ft124). where A is the average input rate. and A ~ B to make the input nonnegative. 
(The constants A. B. and K can be determined by measurements.) Hence the model is 

y' (t) = [n - Out = A + B cos (127ft) - Ky(t) or y' + Ky = A + B cos (127ft). 

The initial condition for a particular solution Ypart is Ypart(O) = Yo with t = 0 suitably chosen. e.g .. 6:00 A.M. 

Step 2. General solutio". In (4) we have p = K = COllst, h = Kt. and r = A + B cos (127ft). Hence (4) gives 
the general solution 

KtJ Kt( 7ft) Kt y(t) = e- e A + B cos 12 dt + ce-

A 
(

7ft 7ft) Kt 
K + 144K2 + ~ 144K cos 12 + 127f sin 12 + ce- . 

B 

The last term decreases to 0 as t increases, practically after a short time and regardles~ of c (that is. of the initial 
condition). The orher part of y(t) is called the stead~'-state solution because it consists of constant and periodic 
terms. The entire solution is called the transient-state solution because it models the transition from rest to rhe 
steady state. These terms are used quite generally for physical and other systems whose behavior depends on time. 

Step 3. Particular soilition. Setting r = 0 in )(t) and choosing Yo = 0, we have 

A B B 
),(0) = -K + 2 ? ·144K + c = 0, thus c= 

A 

K 
2 2 ·144K. 

144K + '" 144K + '" 

Inserting this result into y(t). we obtain the particular solution 

A B ( 7ft 7ft) 
Vpart(t) = -K + 2 2 144K cos -2 + 127f sin -2 

144K + '" I I (
A I 44KB ) -Kt - - + e 
K 144K2 + 7f2 

with the steady-state part as before. To plot Yp",~ we must specify values for the constants, say, A = B = I and 
K = 0.05. Figure 17 shows this solution. Notice that the transition period is relatively short (although K is small), 
and the curve soon looks sinusoidal; this is the response to the input A + B cos (127ft) = I + cos (f27ft). • 

y 

25 

5 

Fig. 17. Particular solution in Example 3 
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Reduction to Linear Form. Bernoulli Equation 
Numerous applications can be modeled by ODEs that are nonlinear but can be transformed 
to linear ODEs. One of the most useful ones of these is the Bernoulli equation5 

(6) y' + p(x)y = g(x)ya (a any real number). 

If a = 0 or a = I, Equation (6) is linear. Otherwise it is nonlinear. Then we set 

U(x) = [y(X)]l-a. 

We differentiate this and substitute y' from (6). obtaining 

Simplification gives 

u' = (l - al(g - pyl-a), 

where yl-a = II on the right, so that we get the linear ODE 

(7) tI' + (l - a)pu = (1 - a)g. 

For further ODEs reducible to linear from, see Ince's classic [A 111 listed in App. I. 
See also Team Project 44 in Problem Set 1.5. 

E X AMP L E 4 Logistic Equation 

Solve thc following Bemoulli equation. known as the logistic equation (or Verhulst equation6): 

(8) y' = Ay - By2 

Solutioll. Write (8) in the form (6). that is. 

to see thaI {l = 2, so that It = /-a = y -1. Ditferentiate this II and substitute y' from (8). 

The last term is _Ay-l = -All. Hence we have obtained the linear ODE 

5JAKOB BERNOULLI (1654-1705), Swiss mathematician, professor at Basel. also known for his contribution 
to elasticity theory and mathematical probability. TIle method for solving Bernoulli's equation was discovered by 
the Leibniz in 1696. Jakob Bernoulli's students included his nephew NJKLACS BERNOULLI (1687-1759). who 
contributed to probability theory and infinite series. and his youngest brother JOHANN BERNOULLI (1667-1748). 
who had profound influence on the development of calculus. became Jakob's successor at Basel. and had among 
his students GABRIEL CRAMER (see Sec. 7.7) and LEONHARD EULER (see Sec. 2.5). His son DANIEL 
BERNOULLI (I700-1782) is "nown for his basic work in fluid flow and the kinetic theory of gases. 

6PIERRE-FRAN<;:OJS VERHLLST, Belgian statistician, who introduced Eq. (8) a:, a model for human 
population growth in 1838. 
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1/' + All = B. 

The general solution is [by (4)1 

11= ce-At + BfA. 

Since II = lIy, this gives the general solution of (8). 

(9) y = -;; = ce-At + BfA 
(Fig. 18). 

Directly from (8) we see that y 0= 0 (y( t) = 0 for all t) is also a solution. • 

o Timet 

Fig. 18. Logistic population model. Curves (9) in Example 4 with A/B = 4 

Population Dynamics 
The logistic equation (8) plays an important role in population dynamics, a field that 
models the evolution of populations of plants. animals, or humans over time t. If B = 0, 
then (8) is y' = dyldt = Ay. In this case its solution (9) is y = (l/c)eAt and gives exponential 
growth, as for a small population in a large counn)' (the United States in early times!). 
This is called Malthus's law. (See also Example 3 in Sec. 1.1.) 

The term -By2 in (8) is a "braking term" that prevents the population from growing 
without bound. Indeed, if we write y' = Ay[l - (BIA)y]. we see that if y < AlB, then 
y' > O. so that an initially small population keeps growing as long as y < AlB. But if 
y > AlB. then y' < 0 and the population is decrea-;ing as long as y > AlB. The limit is 
the same in both cases, namely, AlB. See Fig. 18. 

We see that in the logistic equation (8) the independent variable t does not occur 
explicitly. An ODE y' = f(t, y) in which t does not occur explicitly is of the form 

(10) y' == f(y) 

and is called an autonomous ODE. Thus the logistic equation (8) is autonomous. 
Equation (10) has constant solutions, called equilibrium solutions or equilibrium 

points. These are determined by the zeros of fey), because fey) = 0 gives y' = 0 by (10); 
hence y = const. These zeros are known as critical points of (10). An equilibIium 
solution is called stable if solutions close to it for some t remain close to it for all further 
t. It is called unstable if solutions initially close to it do not remain close to it as t 
increases. For instance, \" = 0 in Fig. 18 is an unstable equilibrium solution, and \' = 4 
is a stable one. . 
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E X AMP L E 5 Stable and Unstable Equilibrium Solutions. "Phase Line Plot" 

The ODE y' = (y - l)(y - 2) has the stable equilibrium solution Yl = I and the unstable Y2 = 2, as the 
direction field in Fig. 19 suggests. The values )'1 and Y2 are the zeros of the parabola fey) = (y - l)ly - 2) 
in the figure. Now, since the ODE is autonomous, we can "condense" the direction field to a "phase line plot" 
giving)'1 and Y2, and the direction (upward or downward) of the arrows in the field, and thus giving information 
about the stability or instability of the equilibrium solutions. • 

y(xl 
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Fig. 19. Example 5. (A) Direction field. (B) "Phase line". (C) Parabola f(y) 

x 

A few further population models will be discussed in the problem set. For some more 
details of population dynamics, see C. W. Clark, Mathematical Bioecnnvmics, New York, 
Wiley, 1976. 

Further important applications of linear ODEs follow in the next section. 

1. (CAUTION!) Show that e-1n x = l/x (not -x) and 
e-1n(sec x) = cos x. 

2. (Integration constant) Give a reason why in (4) you 

may choose the constant of integration in fp dx to be 

zero. 

13-171 GENERAL SOLUTION. INITIAL VALUE 
PROBLEMS 

Find the general solution. If an initial condition is given, 
find also the corresponding particular solution and graph or 
sketch it. (Show the details of your work.) 

3. y' + 3.5y = 2.8 

4. y' = 4y + x 

5. )" + 1.25y = 5, yeO) 6.6 

6. x 2 y' -t- 3xy = lIx, y(l) = -1 

7. y' + ky = e 2kx 

8. y' + 2y = 4 cos 2x, y(!7T) = 2 

9. y' 6(y - 2.5) tanh 1.5x 

10. y' + 4x2 y = (4x 2 - x)e-x2
/ 2 

11. )" + 2y sin 2x = 2ecos 
2X, yeO) 0 

12. )" tan x = 2y - 8, Y(~7T) = 0 

13. y' + 4y cot 2x = 6 cos 2x, y(!7T) = 2 

14. y' + )' tan x = e- O
.
Ob cos x, 1'(0) = 0 

15. y' + Y/X2 = 2xe 1/x
, y(l) = 13.86 

16. y' cos2 x + 3y = I, y(!7T) = ~ 

17. x 3 y' + 3x2 y = 5 sinh lOx 
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118-241 NONLINEAR ODEs 

Using a method of this section or separating variables, find 
the general solution. If an initial condition is given, find 
also the particular solution and sketch or graph it. 

18. y' + Y = y2, yeO) = -I 

19. y' = 5.7y - 6.5 y 2 

20. (x 2 + I)y' = -tan y. y(O) = ~7T 

21. y' + (x + I)y = eX 'y3, y(O) = 0.5 

22. y' sin 2y + x cos 2y = 2x 

23. 2yy' + .\'2 sin x = sin x. yeO) = V2 
24. y' + x 2y = (e- X3 sinh X)/(3y2) 

125-361 FURTHER APPLICATIONS 

25. (Investment programs) Bill opens a retirement 
savings account with an initial amount Yo and then adds 
$k to the account at the beginning of every year until 
retirement at age 65. Assume that the interest is 
compounded continuously at the same rate R over the 
years. Set up a model for the balance in the account 
and find the general solution as well as the particular 
solution, letting t = 0 be the instant when the account 
is opened. How much money will Bill have in (he 
account at age 65 if he starts at 25 and invests $1000 
initially as well as annually, and the interest rate R is 
6%? How much should he invest initially and annually 
(same amounts) to obtain the same final balance as 
before if he starts at age 45? First, guess. 

26. (Mixing problem) A tank (as in Fig. 9 in Sec. 1.3) 
contains 1000 gal of water in which 200 Ib of salt is 
dissolved. 50 gal of brine. each uallon containin u 

(I + cos t) Ib of dissolved salt, run: into the tank pe~ 
minute. The mixture. kept unifonn by stirring. nms out 
at the same rate. Find the amount of salt in the tank at 
any time t (Fig. 20). 
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Fig. 20. Amount of salt y(t) in the tank in Problem 26 

27. (Lake Erie) Lake Erie has a water volume of about 
450 km3 and a flow rate (in and out) of about 175 km3 

per year. If at some instant the lake has pollution 
c~nc~ntration p = 0.04%, how long, approximately. 
wIll It take to decrease it to pl2. assuming that the 
inflow is much cleaner, say, it has pollution 

concentration p/4. and the mixture is unifonn (an 
assumption that is only very imperfectly true)? First, 
guess. 

28. (Heating and cooling of a building) Heating and 
cooling of a building can be modeled by the ODE 

T' = k1(T - Ta) + k2(T - Tw) + P, 

where T = T(t) is the temperature in the building at 
time t, Ta the outside temperature, T w the temperature 
wanted in the building. and P the rate of increase of T 
due to machines and people in the building, and kl and 
~ are (negative) constants. Solve this ODE, assuming 
P = canst, T w = canst, and To varying sinusoidally 
over 24 hours, say, Ta = A - C cos (27T/2A)t. Discuss 
the effect of each tenn of the equation on the solution. 

29. (Drug injection) Find and solve the model for drug 
injection into the bloodstream if, beginning at t = 0, a 
constant amount A g/min is injected and the drug is 
simultaneously removed at a rate proportional to the 
amount of the drug present at time t. 

30. (Epidemics) A model for the spread of contagious 
diseases is obtained by assuming that the rate of spread 
is proportional to the number of contacts between 
infected and noninfected persons, who are assumed to 
move freely among each other. Set up the model. Find 
the equilibrium solutions and indicate their stability or 
instability. Solve the ODE. Find the limit of the 
proportion of infected persons as t -+ x and explain 
what it means. 

31. (Extinction vs. unlimited growth) If in a population 
y(t) the death rate is proportional to the population, and 
the birth rate is proportional to the chance encounters 
of meeting mates for reproduction. what will the model 
be? Without solving. find out what will eventually 
happen to a small initial population. To a large one. 
Then solve the model. 

32. (Harvesting renewable resources. Fishing) Suppose 
that the population yU) of a certain kind of fish is given 
by the logistic equation (8), and fish are caught at a 
rate Hy proportional to y. Solve this so-called Schaefer 
model. Find the equilibrium solutions Yl and Y2 (> 0) 
when H < A. The expression Y = HY2 is called the 
equilibrium harvest or sustainable yield corresponding 
to H. Why? 

33. (Harvesting) In Prob. 32 find and graph the solution 
satisfying yeO) = 2 when (for simplicity) A = B = I 
and H = 0.2. What is the limit? What does it mean? 
What if there were no fishing? 

34. (Intermittent harvesting) In Prob. 32 assume that you 
fish for 3 years, then fishing is banned for the next 3 
years. Thereafter you start again. And so on. This is 
called illtermittent /Uln'estillg. Describe qualitatively 
how the population will develop if intermitting is 
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continued periodically. Find and graph the solution for 
the first 9 years, assuming that A = B = I, H = 0.2, 
and yeO) = 2. 
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8. 21. Fish population in Problem 34 

35. (Harvesting) If a population of mice (in multiples of 
1000) follows the logistic law with A = I and B = 0.25. 
and if owls catch at a time rate of 10% of the population 
present, what is the model, its equilibrium harvest for 
that catch. and its solution? 

36. (Harvesting) Do you save work in Prob. 34 if you first 
transform the ODE to a linear ODE? Do this 
transformation. Solve the resulting ODE. Does the 
resulting yet) agree with that in Prob. 34? 

- 7-40 I GENERAL PROPERTIES OF LINEAR ODEs 

These properties are of practical and theoretical importance 
because they enable us to obtain new solutions from given 
ones. Thus in modeling, whenever possible, we prefer linear 
ODEs over nonlinear ones, which have no similar 
properties. 

Show that nonhomogeneous linear ODEs (1) and 
homogeneous linear ODEs (2) have the following 
properties. Illustrate each property by a calculation for two 
or three equations of your choice. Give proofs. 

37. The sum YI + Y2 of two solutions YI and Y2 of the 
homogeneous equation (2) is a solution of (2), and so 
is a scalar mUltiple aYI for any constant a. These 
properties are not true for (1)1 

38. Y = 0 (that is, .v(x) = 0 for all x, also written y(x) "'" 0) 
is a solution of (2) [not of (I) if rex) =1= 01], called the 
trivial solution. 

39. The sum of a solution of (I) and a solution of (2) is a 
solution of (1). 

40. The difference of two solutions of (l) is a solution of (2). 

41. If Yl is a sulution of (I), what can you say about eYl? 

42. If YI and Y2 are solutions of y~ + PYI = rl and 
Y~ + PY2 = r2, respectively (with the same p!), what 
can you say about the sum.vl + Y2? 

43. CAS EXPERIMENT. (a) Solve the ODE 
y' - ylx = -x-1 cos (l/x). Find an initial condition 
for which the arbitrary constanl is zero. Graph the 
resulting particular solution, experimenting to obtain 
a good figure near x = O. 

(b) Generalizing (a) from 11 = I to arbitrary 11, solve 
the ODE y' - nylx = _xn - 2 cos (llx). Find an initial 
condition as in (a). and experiment with the graph. 

44. TEAM PROJECT. Riccati Equation, Clairaut 
Equation. A Riccati equation is of the form 

(1 I) y' + p(x)y = gp:)y 2 + hex). 

A Clairaut equation is of the form 

(12) y = xy' + g(y'). 

(a) Apply the transformation y = Y + lilt to the 
Riccati equation (1 I ), where Y is a solution of (11), and 
oblain for u the linear ODE u' + (2Yg - P)U = -g. 
Explain the effect of the transformation by writing it 
as y = Y + v, v = lilt. 

(b) Show that Y = Y = x is a solution of 
y' - (2x 3 + l)y = _x2y2 - X4 - X + 
and solve this Riccati equation. showing the details. 

(c) Solve y' + (3 - 2X2 sin x)y 
= _y2 sin x + 2x + 3x2 - X4 sin x, using (and 
Verifying) that y = x 2 is a solution. 

(d) By working "backward" from the L1-equation find 
further Riccati equations that have relatively simple 
solutions. 

(e) Solve the Clairautequationy = xy' + 1/y'.Hillt. 
Differentiate this ODE with respect to x. 

(f) Solve the Clairaut equation /2 - xy' + Y = 0 
in Prob. 16 of Problem Set 1.1. 

(g) Show that the Clairaut equation (12) has as 
solutions a family of straight lines Y = ex + gee) and 
a singular solution determined by g' (s) = -x, where 
s = y', that forms the envelope of that family. 

45. (Variation of parameter) Another method of 
obtaining (4) results from the following idea. Write 
(3) as ey*, where y* is the exponential function. 
which is a solution of the homogeneous linear ODE 
y*' + py* = O. Replace the arbitrary constant e in (3) 
with a function II to be determined so that the resulting 
function y = IIY* is a solution of the nonhomogeneous 
linear ODE y' + PY = r. 

46. TEAM PROJECT. Transformations of ODEs. We 
have transformed ODEs to separable form, to exact 
form, and to linear form. The purpose of such 
transfonnations is an extension of solution methods to 
larger classes of ODEs. Describe the key idea of each 
of these transformations and give three typical 
examples of your choice for each transformation, 
shOwing each step (not just the transformed ODE). 
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1.6 Orthogonal Trajectories. Optional 
An important type of problem in physics or geometry is to find a family of curves that 
intersect a given family of curves at right angles. The new curves are called orthogonal 
trajectories of the given curves (and conversely). Examples are curves of equal 
temperamre (isothel7lls) and curves of heat flow, curves of equal altitude (contour lines) 
on a map and curves of steepest descent on that map, curves of equal potential 
(equipotential curves, curves of equal voltage-the concentric circles in Fig. 22). and 
curves of electric force (the straight radial segments in Fig. 22). 

Fig. 22. Equipotential lines and curves of electric force (dashed) 
between two concentric (black) circles (cylinders in space) 

Here the angle of intersection between two curves is defined to be the angle between 
the tangents of the curves at the intersection point. Orthogonal is another word for 
pe rpendicular. 

In many cases orthogonal trajectories can be found by using ODEs. as follows. Let 

(1) G(x, y, c) = 0 

be a given family of curves in the xy-plane, where each curve is specified by some value 
of c. This is called a one-parameter family of curves, and c is called the parameter 
of the family. For instance, a one-parameter family of quadratic parabolas is given by 
(Fig. 23) 

or, written as in (1), G(x, y, c) = y - cx2 = o. 

Step 1. Find an ODE for which the given family is a general solution. Of course, this 
ODE must no longer contain the parameter c. In our example we solve algebraically for 
c and then differentiate and simplify; thus, 

hence 

, 2y 
y 

x 
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The last of these equations is the ODE of the given family of curves. It is of the form 

(2) y' = f(x, y). 

Step 2. Write down the ODE of the orthogonal trajectories. that is. the ODE whose general 
solution gives the orthogonal trajectOlies of the given curves. This ODE is 

(3) 
_, 1 
y =---

f(x, y) 

with the same f as in (2). Why? Well, a given curve passing through a point (xo, Yo) has 
slope f(xo, Yo) at that point, by (2). The trajectory through (xo, Yo) has slope -lIf(xo, Yo) 
by (3). The product of these slopes is -1, as we see. From calculus it is known that this 
is the condition for orthogonality (perpendicularity) of two straight lines (the tangents at 
(xo, Yo», hence of the curve and its orthogonal trajectory at (xo, Yo). 

Step 3. Solve (3). 

For our parabolas y = cx2 we have y' = 2ylx. Hence their orthogonal trajectories are 
obtained from y' = - xl2y or 2yy' + x = O. By integration, y2 + !x2 = c*. These are 
the ellipses in Fig. 23 with semi-axes Vk* and VC*. Here, c* > 0 because c* = 0 gives 
just the origin, and c * < 0 gives no real solution at all. 

y 

Fig. 23. Parabolas and orthogonal trajectories (ellipses) in the text 

11-121 ORTHOGONAL TRAJECTORIES 7. Y = cex2/2 8. x 2 - y2 = c 

10. x = cVy Sketch or graph some of the given curves. Guess what their 
orthogonal trajectories may look like. Find these 
trajectories. 

(Show the details of your work.) 
1. Y = 4x + c 

3. y = ex 

5. x 2y = C 

2. y = clx 

4. y2 = 2X2 + c 

6. y = ce-3x 

9. 4x2 + y2 = e 

11. x = ceyl4 12. x 2 + (y - c)2 = c 2 

113-15/ OTHER FORMS OF THE ODEs (2) AND (3) 

13. (y as independent variable) Show that (3) may be 
written dx/dy = -f(x, y). Use this form to find the 
orthogonal trajectories of y = 2x + ce-x. 
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14. (Family g(x,y) = c) Show that if a family is given as 
g(x, y) = c, then the orthogonal trajectories can be 
obtained from the following ODE, and use the latter to 
solve Prob. 6 written in the form g(x, y) = c. 

dy ag/ay 

dx ag/iJx 

15. (Cauchy-Riemann equations) Show that for a family 
u(x, y) = c = const the orthogonal trajectories 
vex, y) = c* = const can be obtained from the following 
Cauchy-Riemann equations (which are basic in 
complex analysis in Chap. 13) and use them to find the 
orthogonal trajectories of eX sin y = const. (Here, 
subscripts denote partial derivatives.) 

116-20 1 APPLICATIONS 

16. (Fluid flow) Suppose that the streamlines of the flow 
lpaths of the particles of the fluid) in Fig. 24 are 
'ltlx, y) = xy = COllst. Find their orthogonal trajectories 
(called equipotential lines, for reasons given in Sec. 
18.4). 

x 

Fig. 24. Flow in a channel in Problem 16 

17. (Electric field) Let the electric equipotential lines 
(curves of constant potential) between two concentric 
cylinders (Fig. 22) be given by u(x, y) = x2 + y2 = c. 
Use the method in the text to find their orthogonal 
trajectories (the curves of electric force). 

37 

18. (Electric field) The lines of electric force of two 
opposite charges of the same strength at (-1. 0) and 
(1, 0) are the circles through (-1. 0) and (l, 0). Show 
that these circles are given by x 2 + (y - c)2 = 1 -+ c2. 

Show that the equipotential lines (orthogonal 
trajectories of those circles) are the circles given by 
lx + C*)2 + )'2 = C*2 - I (dashed in Fig. 25). 

Fig. 25. Electric field in Problem 18 

19. (Temperature field) Let the isotherms (curves of 
constant temperature) in a body in the upper half-plane 
y > 0 be given by 4X2 + 9)"2 = c. Find the orthogonal 
trajectories lthe curves along which heat will flow in 
regions filled with heat-conducting material and free 
of heat sources or heat sinks). 

20. TEAM PROJECT. Conic Sections. (A) State the 
main steps of the present method of obtaining orthogonal 
trajectorics. 

(B) Find conditions under which the orthogonal 
trajectories of families of ellipses x 2/a2 + y2/b2 = C are 
again conic sections. Illustrate your result graphically 
by sketches or by using your CAS. What happens if 
a~ O?If b~ O? 

(C) Investigate families of hyperbolas 
x 2/a2 - y2/b2 = c in a similar fashion. 

(D) Can you find more complicated curves for which 
you get ODEs that you can solve? Give it a try. 

1.7 Existence and Uniqueness of Solutions 
The initial value problem 

/,1"/ + /y/ = 0, .1'(0) = 1 

has no solution because y = 0 (that is, y(x) = 0 for all x) is the only solution of the ODE. 
The initial value problem 

y' == 2x, .1'(0) = I 
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has precisely one solution, namely, y = x 2 + 1. The initial value problem 

xy' = y - I, yeO) = I 

has infinitely many solutions, namely, y = 1 + cx, where c is an arbitrary con<;tant because 
y(O) = 1 for all c. 

From these examples we see that an initial value problem 

(1) y' = f(x, y), 

may have no solution, precisely one solution, or more than one solution. This fact leads 
to the following two fundamental questions. 

Problem of Existence 

Under what conditions does an initial mlue problem ~f the form (I) have at least 
nne solutinn (hence one or several solutions)? 

Problem of Uniqueness 

Under what conditiollS dnes that problem have at 17l0H one solution (hence excluding 
the case that is has more than one solution)? 

Theorems that state such conditions are called existence theorems and uniqueness 
theorems, respectively. 

Of course, for our simple examples we need no theorems because we can solve these 
examples by inspection; however, for complicated ODEs such theorems may be of 
considerable practical importance. Even when you are sure that your physical or other 
system behaves uniquely, occasionally your model may be oversimplified and may not 
give a faithful picture of the reality. 

Existence Theorem 

Let the right side f(x, y) of the ODE ill the initial value problem 

(1) y' = f(x, y), y(xo) = Yo 

be continuous at all points (x. y) in some rectangle 

R: Ix - xol < a. IY - Yol < b (Fig. 26) 

alld bounded ill R; that is, there is a number K sllch that 

(2) If(x, y)1 ~ K for all (x, y) ill R. 

Then the initial value problem (1) has at least one solution y(x). This solution exists 
at least for all x in the subinterl'al Ix - xol < a of the illfervallx - xol < a; here, 
a is the smaller ~f the two numbers (/ and b/K. 
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THEOREM 2 

Y 

R 
Yo -----<j' 

x 

Fig. 26. Rectangle R in the existence and uniqueness theorems 

(Example of BOllndedlless. The function f(x, .1') = x 2 + y2 is bounded (with K = 2) in the 
square Ixl < I, Iyl < 1. The function f(x, y) = tan (x + y) is not bounded for Ix + yl < 7T/2. 
Explain!) 

Uniqueness Theorem 

Let f alld its partial derivative fy = rJf/rJy be collfinllOllS for aI/ (x, y) ill the 
rectallgle R (Fig. 26) alld bOllnded, say, 

(3) (a) If(x, y)1 ~ K, for all (x, y) ill R. 

Theil the illitial mille problem (1) has at most aile solutioll y(xJ. TIllis. by TIleorem 1, 
the problem has precisely aile soilltioll. This solution exists at leastfor aI/ x in that 
subinterval Ix - xol < a. 

Understanding These Theorems 
These two theorems take care of almost all practical cases. Theorem 1 says that if f(x, y) 

is continuous in some region in the xy-plane containing the point (xo, Yo). then the initial 
value problem (I) hali at least one solution. 

Theorem 2 says that if, moreover, the partial derivative aflay of f with respect to y 
exists and is continuous in that region, then (I) can have at most one solution; hence, by 
Theorem I, it has precisely one solution. 

Read again what you have just read-these are entirely new ideas in our discussion. 
Proofs of these theorems are beyond the level of this book (see Ref. [A II] in App. I); 

however, the following remarks and examples may help you to a good understanding of 
the theorems. 

Since / = f(x, y), the condition (2) implies that 1/1 ~ K; that is, the slope of any 
solution curve y(x) in R is at least - K and at most K. Hence a solution curve that passes 
through the point (xo, Yo) must lie in the colored region in Fig. 27 on the next page bounded 
by the lines 11 and 12 whose slopes are -K and K, respectively. Depending on the form 
of R, two different cases may arise. In the first case, shown in Fig. 27a, we have blK ~ 
a and therefore a = a in the existence theorem, which then asserts that the solution exists 
for all x between Xo - a and Xo + ll. In the second case, shown in Fig. 27b, we have 
blK < ll. Therefore, ll' = blK < a, and all we can conclude from the theorems is that the 
solution exists for all x between Xo - blK and Xo + blK. For larger or smaller x's the 
solution curve may leave the rectangle R, and since nothing is assumed about f outside 
R, nothing can be concluded about the solution for those larger or smaller x's: that is, for 
<;uch x's the solution mayor may not exist-we don't know. 
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y 

Yo + b 

Yo 

yo-b 

Xo x 

(a) (b) 

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case 

Let us illustrate our discussion with a simple example. We shall see that our choice of 
a rectangle R with a large base (a long x-interval) will lead to the ca<;e in Fig. 27b. 

E X AMP L E 1 Choice of a Rectangle 

Consider the initial valne problem 

"(0) = 0 

and take the rectangle R; I.\i < 5, 1)'1 < 3. Then a = 5, b = 3. and 

I ilf I -:- = 21yl ~ M = 6. 
(Iv 

b 
a = K = 0.3 < a. 

Indeed. the solntion of the problem is y = tan x (see Sec. 1.3, Example I). This solntion is discontinuous at 
± 70/2, and there is no callTilllwl/s solution valid in (he entire imerval Ixl < 5 from which we starred. • 

The conditions in the two theorems are sufficient conditions rather than necessary ones, and 
can be lessened. [n particular. by the mean value theorem of differential calculus we have 

where (x, Yl) and (x, )"2) are assumed to be in R, and:V is a suitable value between)"l and 
Y2' From this and (3b) it follows that 

(4) 

It can be shown that (3b) may be replaced by the weaker condition (4), which is known 
as a Lipschitz condition.7 However, continuity of f(x, y) is not enough to guarantee the 
uniquelless of the solution. This may be illustrated by the following example. 
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E X AMP L E 2 Nonuniqueness 

The initial value problem 

y' = ViYj, yeO) = 0 

has the two solutions 

y=o and { 

x2/4 if x ~ 0 
v* = • 2 

-x 14 if x < 0 

although f(x, ,1') = Vlyl is continuous for all y. The Lipschitz condition (4) is violated in any region that includes 
the line y = 0, because for h = 0 and positive Y2 we have 

(5) 
II(x, )'2) - I(x, Yl)1 

IY2 - hi 
(~>Ol 

I 
vy; . 

and this can be made as large as we plea,e by choosing ,1'2 sufficiently ,mall. whereas (4) requires that the 
quotient on the left side of (5) should not exceed a fixed constant M. • 

u .•. _._-.= _ ....... = _ _ .- ... -............. -- ... 
1. (Vertical strip) If the a~sumptions of Theorems I and 2 

are satisfied not merely in a rectangle but in a vertical 
infinite strip Ix - xol < a, in what interval will the 
solution of (1) exist? 

2. (Existence?) Does the initial value problem 
(x - l)y' = 2y, y(l) = I have a solution? Does your 
result contradict our present theorems? 

3. (Common points) Can two solution curves of the same 
ODE have a common point in a rectangle in which the 
assumptions of the present theorems are satisfied? 

4. (Change of initial condition) What happens in Prob. 2 
if you replace yO) = 1 with yO) = k? 

S. (Linear ODE) If p and I' in y' + p(x)y = rex) are 
continuous for all x in an interval Ix - xol ~ a, show 
that f(x, y) in this ODE satisfies the conditions of our 
present theorems, so that a cOlTesponding initial value 
problem has a unique solution. Do you actually need 
these theorems for this ODE? 

6. (Three possible cases) Find all initial conditions such 
that lx2 

- 4x)y' = (2x - 4)y has no solution, precisely 
one solution, and more than one solution. 

7. (Length of x-interval) In most cases the solution of an 
initial value problem (1) exists in an x-interval larger 
than that guaranteed by the present theorems. Show this 
fact for y' = 2y2, yO) = I by finding the best possible 
a (choosing b optimally) and comparing the result with 
the actual solution. 

8. PROJECT. Lipschitz Condition. (A) State the 
definItion of a Lipschitz condition. Explain its relation 
to the existence of a partial derivative. Explain its 
significance in our present context. Illustrate your 
statements by examples of your own. 

(B) Show that for a lillear ODE y' + p(:.:)y = rex) with 
continuous p and r in Ix - xol ~ a a Lipschitz condition 
holds. This is remarkable because it means that for a 
linear ODE the continuity of f(x, y) guarantees not only 
the existence but also the uniqueness of the solution of 
an initial value problem. (Of course, this also follows 
directly from (4) in Sec. 1.5.) 

(C) Discuss the uniqueness of solution for a few simple 
ODEs that you can solve by one of the methods 
considered, and find whether a Lipschitz condition is 
satisfied. 

9. (Maximum a) What IS the largest possible a In 

Example I in the text? 

10. CAS PROJECT. Picard Iteration. (A) Show that by 
integrating the ODE in (I) and observing the initial 
condition you obtain 

(6) y(x) = Yo + f f(t. \'(t» dt. 
Xo 

7RUDOLF LIPSCHITZ (1832-1903), Gennan mathematician. Lipschitz and similar conditions are important 
in modern theories, for instance, in partial differential equations. 
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This fonn (6) of (I) suggests Picard's iteration 
methodS, which is defined by 

(7) y,,(x) = )'0 + f' fU. y,.-IU)) dt. n = 1. 2 ..... 
Xo 

It gives approximations )'1 • .'"2. )'3' ... of the unknown 
solution), of (I). Indeed, you obtain ."1 by substituting 
y = )'0 on the right and integrating-this is the first 
step-, then Y2 by substituting y = YI on the right and 
integrating-this is the second step-. and so on. Write 
a program of the iteration that gives a printout of the 
first approximations Yo. )'1' ...• YN as well as their 
graphs on common axes. Try your program on two 
initial value problems of your own choice. 

(B) Apply the iteration to y' = x + y, yeO) = O. Also 
solve the problem exactly. 

(0 Apply the iteration to y' = 2y2. yeO) = 1. Also 
solve the problem exactly. 

(D) Find all solutions of)" = 2VY. y( I) = O. Which 
of them does Picard's iteration approximate? 

(E) Experiment with the conjecture that Picard's 
iteration converges to the solution of the problem for 
any initial choice of y in the integrand in (7) (leaving 
)'0 outside the integral as it is). Begin with a simple 
ODE and see what happens. When you are reasonably 
sure. take a slightly more complicated ODE and give 
it a try. 

. . Ew=.Q U £5 T ION SAN D PRO B L EMS 

1. Explain the tenns ordinary d~fferellfial equatiol/ (ODE). 
partial d~fferellfial equation (PDE). order. gel/eral 
solution. and particular solutioll. Give examples. Why 
are these concepts of imp0l1ance? 

2. What is an initial condition? How is this condition used 
in an initial value problem? 

3. What is a homogeneous linear ODE? A nonhomogeneous 
linear ODE? Why are these equations simpler than 
nonlinear ODEs? 

4. What do you know about direction fields and their 
practical importance? 

5. Give examples of mechanical problems that lead to ODEs. 

6. Why do electric circuits lead to ODEs? 

7. Make a list of the solution methods considered. Explain 
each method with a few short sentences and illustrate 
it by a typical example. 

S. Can certain ODEs be solved by more than one method? 
Give three examples. 

9. What are integrating factors? Explain the idea. Give 
examples. 

10. Does every first-order ODE have a solution? A general 
solution? What do you know about uniqueness of 
solutions? 

111-141 DIRECTION FIELDS 

Graph a direction field (by a CAS or by hand) and sketch 
some of the solution curves. Solve the ODE exactly and 
compare. 
11. ,.' = 1 + 4)'2 12. y' 3y - 2~ 

13. Y 
, 

14. y' 16xly 

, 15-261 GENERAL SOLUTION 

Find the general solution. Indicate which method in this 
chapter you are using. Show the details of your work. 

15. y' = x 2 (1 + .1'2) 

16. y' = x(y - x 2 + I) 

17. yy' + xy2 = x 

IS. -7T sin TTX cosh 3y dx + 3 cos TTX sinh 3y dy = 0 

19. y' + Y sin x = sin x 20. y' - y = 1Iy 

21. 3 sin 2y dx + 2x cos 2y dy = 0 

22. x/ = x tan (ylx) + Y 

23. (y cos xy - 2x) dx + lx cos x)' + 2y) dy = 0 

24. xy' = (y - 2X)2 +)' (Set.\· - 2x = z.) 

25. sin (y - x) dx + [cos (y - x) - sin (y - x)] dy = 0 

26. xy' = (ylx)3 + y 

127-321 INITIAL VALUE PROBLEMS 

Solve the following initial value problems. Indicate the 
method used. Show the details of your work. 

27. yy' + x = O. y(3) = 4 

2S.y' 3y=-12y 2. y(O)=2 

29 . .v' = I + )'2, Y(~7T) = 0 

30. y' + 7T)' = 2b cos 7TX, yeO) = 0 

31. (2xy2 - sin x) dx + (2 + 2X2)') dy = o. yeO) = I 

32. [2y + y 21x + eX(l + llx)] dx + lx + 2y) dy = 0, 
y(l) = I 

~MILE PICARD (1856-1941). French mathematician. also known for his important contributions to complex 
analysis (see Sec. 16.2 for his famous theorem). Picard u~ed his method to prove Theorems I and 2 as well as 
the convergence ofthe sequence (7) to the solution of (I). In precomputer times the iteration was oflittle practical 
value because of the integrations. 
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133-431 APPLICATIONS, MODELING 

33. ~Heat flow) If the isothelms in a region are x 2 
- )'2 = c, 

what are the curves of heat flow (assuming orthogonality)? 

34. (Law of cooling) A thennometer showing WaC is 
brought into a room whose temperature is 25°C. After 
5 minutes it shows 20°C. When will the thennometer 
practically reach the room temperature, say, 24.9°C? 

35. (Half-life) If 10o/c of a radioactive substance disintegrates 
in 4 days, what is it~ half-life? 

36. (HaIf-life) What is the half-life of a substance if after 
5 days, 0.020 g is present and after 10 days, 0.015 g? 

37. (HaIf-life) When will 99% of the substance in Prob. 35 
have disintegrated? 

38. (Air circulation) In a room containing 20000 ft3 of 
air, 600 ft3 of fresh air tlows in per minute, and the 
mixture (made practically unifonn by circulating fans) 
is exhausted at a rate of 600 cubic feet per minute 
(cfm). What is the amount of fresh air Yl1) at any time 
if yeO) = 0'1 After what time will 90% of the air be 
fresh? 

39. (Electric field) If the equipotential lines in a region of 
the x)"-plane are 4x2 + y2 = c, what are the curves of 
the electIical force? Sketch both families of curves. 
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40. 

41. 

42. 

43. 
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(Chemistry) In a bimolecular reaction A + B -? M, 
a moles per liter of a substance A and b moles per liter 
of a substance B are combined. Under constant 
temperature the rate of reaction is 

y' = k(a - y)(b - .1') (Law of mass action); 

that is, y' is proportional to the product of the 
concentrations of the substances that are reacting. where 
)'(t) is the number of moles per liter which have reacted 
after time t. Solve this ODE, assuming that a *- b. 

(Population) Find the population y(1) if the birth rate is 
proportional to y(r) and the death rate is proportional to 
the square of y( f). 

(Curves) Find all curve~ in the first quadrant of the Ay­

plane such that for every tangent. the segment between 
the coordinate axes is bisected by the point of tangency. 
(Make a sketch.) 

(Optics) Lambert's law of absorption9 states that the 
absorption of light in a thin transparent layer is 
proportional to the thickness of the layer and to the 
amount of light incident on that layer. Formulate this 
law as an ODE and solve it. 

This chapter concerns ordinary differential equations (ODEs) of first order and 
their applications. These are equations of the form 

F(x, y, /) = 0 or in explicit form y' = I(x, y) 

involving the derivative y' = dy/dx of an unknown function y, given functions of 
x, and, perhaps, y itself. If the independent variable x is time, we denote it by t. 

In Sec. 1.1 we explained the basic concepts and the process of modeling, that is, 
of expressing a physical or other problem in some mathematical form and solving 
it. Then we discussed the method of direction fields (Sec. 1.2), solution methods 

and models (Secs. 1.3-1.6), and, finally, ideas on existence and uniqueness of 
solutions (Sec. 1.7). 

9]OHANN HEINRICH LAMBERT (1728-1777), German physicist and mathematician. 
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A first-order ODE usually has a general solution, that is. a solution involving an 
arbitrary constant, which we denote by c. In applications we usually have to find a 
unique solution by determining a value of c from an initial condition y(xo) = Yo. 
Together with the ODE this is called an initial value problem 

(2) y' = f(x, y), y(xo,) = Yo (xo, Yo given numbers) 

and its solution is a particular solution of the ODE. Geometrically. a general 
solution represents a family of curves, which can be graphed by using direction 
fields (Sec. L.2). And each particular ~ulution corresponds to one of these curves. 

A separable ODE is one that we can put into the form 

(3) g(y) dy = f(x) tit (Sec. 1.3) 

by algebraic manipulations (possibly combined with transformations, such as ylx = u) 

and solve by integrating on both sides. 
An exact ODE is of the form 

(4) M(x. y) dx + N(x. y) dy = 0 (Sec. 1.4) 

where M dx + N dy is the differential 

du = Ux dx + uy dy 

of a function u(x, .v), so that from du = 0 we immediately get the implicit general 
solution u(x, y) = c. This method extends to nonexact ODEs that can be made exact 
by mUltiplying them by some function F(x, y), called an integrating factor (Sec. 1.4). 

Linear ODEs 

(5) y' + p(x)y = rex) 

are very important. Their solutions are given by the integral formula (4), Sec. 1.5. 
Certain nonlinear ODEs can be transformed to linear form in terms of new variables. 
This holds for the Bernoulli equation 

y' + p(x)y = g(x)yU (Sec. 1.5). 

Applications and modeling are discussed throughout the chapter. in particular in 
Secs. 1.1. 1.3. 1.5 (population dynamics, etc.). and 1.6 (trajectories). 

Picard's existence and uniqueness theorems are explained in Sec. 1.7 (and 
Picard's iterati()l1 in Problem Set l.7). 

Numeric methods for first-order ODEs can be studied in Secs. 21.1 and 21.2 
immediately after this chapter, as indicated in the chapter opening. 
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CHAPTER 2 

Second-Order Linear ODEs 

Ordinary differential equations (ODEs) may be divided into two large classes, linear 
ODEs and nonlinear ODEs. Whereas nonlinear ODEs of second (and higher) order 
generally are difficult to solve, linear ODEs are much simpler because various properties 
of their solutions can be characterized in a general way, and there are standard methods 
for solving many of these equations. 

Linear ODEs of the second order are the most important ones because of their 
applications in mechanical and electrical engineering (Secs. 2.4. 2.8. 2.9). And their theory 
is typical of that of all linear ODEs, but the formulas are simpler than for higher order 
equations. Also the transition to higher order (in Chap. 3) will be almost immediate. 

This chapter includes the derivation of general and particular solutions, the latter in 
connection with initial value problems. 

(Boundary value problems follow in Chap. 5, which also contains solution methods for 
Legendre's, Bessel's, and the hypergeometric equations.) 

COM M E NT. NllInerics for second-order ODEs can be studied immediately after this 
chapter. See Sec. 21.3, which is independent of other sections in Chaps. 19-21. 

Prerequisite: Chap. 1, in particular. Sec. IS 
Sections that may be omitted in a shorter course: 2.3. 2.9, 2.10. 
References and Answers to Problems: App. 1 Part A, and App. 2. 

2.1 Homogeneous Linear ODEs of Second Order 
We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and 
discuss linear ODEs of second order. These equations have important engineering 
applications, especiaUy in connection with mechanical and electrical vibrations (Secs. 2.4, 
2.8, 2.9) as well as in wave motion, heat conduction, and other parts of physics, as we 
shall see in Chap. 12. 

A second-order ODE is called linear if it can be wriuen 

(1) y" + p(x)y' + q(x)y = r(x) 

and nonlinear if it cannot be written in this form. 

The distinctive feature of this equation is that it is linear in y alld its derivatives, whereas 
the functions p, q, and r on the right may be any given functions of x. If the equation 
begins with, say, f(x)y", then divide by f(x) to have the standard form (1) with y" as 
the first term, which is practical. 

45 
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If rex) == 0 (that is, rex) = 0 for all x considered; read "r(x) is identically zero"), then 
( I) reduces to 

(2) y" + p(x)y' + q(x)y = 0 

and is called homogeneous. If rex) =/= 0, then (1) is called nonhomogeneous. This is 
similar to Sec. 1.5. 

For instance, a nonhomogeneous linear ODE is 

y" + 25y = e-x cos x, 

and a homogeneous linear ODE is 

xy" + y' + A}' = 0, in standard form 

An example of a nonlinear ODE is 

y"y + /2 = O. 

.v" + - v' + Y = O. 
x' 

The functions p and q in (l) and (2) are called the coefficients of the ODEs. 
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function 

)' = Iz(x) 

is called a solution of a (linear or nonlinear) second-order ODE on some open interval I 
if h is defined and twice differentiable throughout that interval and is such that the ODE 
becomes an identity if we replace the unknown y by 11, the derivative y' by Iz', and the 
second derivative y" by It. Examples are given below. 

Homogeneous Linear ODEs: Superposition Principle 
Sections 2.1-2.6 will be devoted to homogeneous linear ODEs (2) and the remaining 
sections of the chapter to nonhomogeneous linear ODEs. 

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone 
of this structure is the SUPCI7Jositio11 principle or lillearit), principle, which says that we 
can obtain further solutions from given ones by adding them or by multiplying them with 
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us 
first discuss an example. 

E X AMP L E 1 Homogeneous Linear ODEs: Superposition of Solutions 

The functions y = cos x and y = sin x are solutions of the homogeneous linear ODE 

y" + Y = 0 

for all x. We verify this by differentiation and ,ubstitution. We obtain (cos r)" = -cos x; hence 

y" + Y = (cos.r)" + cosx = -cos .. + cos x = O. 

Similarly for y = sin x (verify!). We can go an impollant step fUrlher. We multiply cos x by any constant. for 
instance. 4.7. and sin.\" by. say. -2. and take the sum of the results. claiming thm it is a solution. Indeed. 
differentiation and substitution gives 

(4.7 cos x - 2 sin r)" + (4.7 cos X - 2 sin x) = -4.7 cos X + 2 sin X + 4.7 cos I - 2 sinx = D. • 
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THEOREM 1 

In this example we have obtained from)'1 (= cos x) and)'2 (= sin x) a function of the fonn 

(3) (CI, C2 arbitrary constants). 

This is called a linear combination of YI and .1'2' In terms of this concept we can now 
formulate the result suggested by our example. often called the superposition principle 
or linearity principle. 

Fundamental Theorem for the Homogeneous Linear ODE (2) 

For a homogeneous linear ODE (2), an)' linear combination of two solutions on an 
open interl'Ol I is again a solution of (2) 011 I. In pm1icular, for sucb an equation. 
sums and cOllSta1l117luitipies of solutions are again solutions. 

PROOF Let YI and Y2 be solutions of (2) on I. Then by substituting Y = CI)'I + C2Y2 and its 
derivatives into (2), and using the familiar rule (Cd'i + (2)'2)' = CIY~ + C2Y~' etc., we 
get 

)''' + py' + q)' = (CIYI + C2Y2)" + P(CIYI + C2Y2)' + q(CI)'I + C2Y2) 

= CI)'~ + C2."~ + P(CIY~ + C2Y~) + q(CI)'I + C2Y2) 

= CI()'~ + py~ + q)'I) + C2()'~ + PY~ + qY2) = 0, 

since in the last line, ( ... ) = 0 because )'1 and Y2 are solutions, by assumption. This show~ 
that Y is a solution of (2) on I. • 

CAUTION! Don't forget that this highly important theorem hold~ for homogeneo/ls 
linear ODEs only but does not hold for nonhomogeneous linear or nonlinear ODEs, as 
the following t~o examples illustrate. 

E X AMP L E 2 A Nonhomogeneous Linear ODE 

Verify by substitution that the functions y ~ I + cos t and y = I + sin \. are solutions of the nonhomogeneou, 
linear ODE 

y" + Y = I. 

but their sum j, not a solution. Neither is, for instance, 2( I + cos x) Or 5(1 + sin x). • 
E X AMP L E 3 A Nonlinear ODE 

Verify by sub~titution that the runctions y = x 2 and y = I are solutions of the nonlinear ODE 

y")" - xy' = O. 

but their sum is not a solution. Neither is -x2
, so you cannot even mUltiply by -I! • 

Initial Value Problem. Basis. General Solution 
Recall from Chap. I that for a first-order ODE, an initial value problem consists of the 
ODE and one initial condition y(xo) = Yo. The initial condition is used to determine the 
arbitrary constant c in the general solution of the ODE. This results in a unique solution, 
as we need it in most applications. That solution is called a particular solution of the 
ODE. These ideas extend to second-order equations as follows. 
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For a second-order homogeneous linear ODE (2) an initial value problem consists of 
(2) and two initial conditions 

(4) 

These conditions prescribe given values Ko and Kl of the solution and its first derivative 
(the slope of its curve) at the same given x = Xo in the open interval considered. 

The conditions (4) are used to determine the two arbitrary constants CI and C2 in a 
general solution 

(5) 

of the ODE; here. )'1 and )'2 are suitable solutions of the ODE, with "suitable" to be 
explained after the next example. This results in a unique solution, passing through the 
point (xo, Ko) with KI as the tangent direction (the slope) at that point. That solution is 
called a particular solution of the ODE (2). 

E X AMP L E 4 Initial Value Problem 

Solve the initial value problem 

y" + Y = 0, ,,(0) = 3.0, y' (0) = -0.5. 

Solution. Step 1. General so/Iltioll. The Functions cos x and sin x are solutions of the ODE (by Example 
I), and we take 

y = cl cos x + c2 sinx. 

This will turn out to be a general solution as defined below. 

Step 2. ParticlI/ar SO/lItiOIi. We need the derivative y' = -cl sin x + c2 cos x. From this and the initial values 
we obtain, since cos 0 = I and sin 0 = O. 

yeO) = cl = 3.0 and y' (0) = C2 = -0.5. 

This gives as the solution of our initial value problem the particular solution 

y = 3.0 cos x - 0.5 sin x. 

Figure 28 shows that at x = 0 it ha, the value 3.0 and the slope -0.5, so that its tangent intersects the x-axis 
at x = 3.010.5 = 6.0. (The scales on the axes differ!) • 

y 

3 

~ I 2 

0 V 6'VJ' -1 

-2 

-3 

Fig. 28. Particular solution and initial tangent in Example 4 

Observation. Our choice of )'1 and )'2 was general enough to satisfy both initial 
conditions. Now let us take instead two proportional solutions )'1 = cos x and 
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Y2 = k cos x, so that y I /.\'2 = 11k = COilS/' Then we can write y = CIY! + C2Y2 in the 
form 

)' = c i cos X + c2(k cos x) = C cos x where 

Hence we are no longer able to satisfy two initial conditions with only one arbitrary 
constant C. Consequently, in defining the concept of a general solution, we must exclude 
proportionality. And we see at the same time why the concept of a general solution is of 
importance in connection with initial value problems. 

D E FIN I T ION I General Solution, Basis, Particular Solution 

DEFINITION 

A general solution of an ODE (2) on an open interval I is a solution (5) in which 
Yt and Y2 are solutions of (2) on I that are not proportional, and CI and C2 are arbitrary 
constants. These YI, Y2 are called a basis (or a fundamental system) of solutions 
of (2) on 1. 

A particular solution of (2) on I is obtained if we assign specific values to CI 

and C2 in (5). 

For the definition of an interval see Sec. 1.1. Also, C I and C2 must sometimes be restIicted 
to some interval in order to avoid complex expressions in the solution. Furthermore, as 
usual, Yl and )'2 are called proportional on I if for all x on I, 

(6) or (b) Y2 = l.vI 

where k and I are numbers, zero or not. (Note that (a) implies (b) if and only if k =1= 0). 
Actually, we can reformulate our definition of a basis by using a concept of general 

importance. Namely, two functions )'1 and Y2 are called linearly independent on an 
interval I where they are defined if 

(7) everywhere on I implies 

And Yl and Y2 are called linearly dependent on I if (7) also holds for some constants 
k I , k2 not both zero. Then if kl =t= 0 or k2 =1= 0, we can divide and see that YI and Y2 are 
proportional, 

or 

In contrast, in the case of linear independence these functions are not proportional because 
then we cannot divide in (7). This gives the following 

Basis (Reformulated) 

A basis of solutions of (2) on an open interval I is a pair of linearly independent 
solutions of (2) on I. 

If the coefficients p and q of (2) are continuous on some open interval I, then (2) has a 
general solution. It yields the unique solution of any initial value problem (2), (4). It 
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includes all solutions of (2) on J; hence (2) has no singular solutions (solutions not 
obtainable from of a general solution; see also Problem Set 1.1). All this will be shown 
in Sec. 2.6. 

E X AMP L E 5 Basis, General Solution, Particular Solution 

COS \" and sin x in Example 4 form a basis of solutions of the ODE)"" + )" = 0 for all \" because their quotient 
is cot x "* COllst (or tan x "* COllSt). Hence y = Cl cos x + c2 sin x is a general solution. The solution 
)" = 3.0 cos x - 0.5 sin x of the initial value problem is a particular solution. • 

E X AMP L E 6 Basis, General Solution, Particular Solution 

Verify by substitution that)"1 = eX and)"2 = e -x are solutions of the ODE ,," - y = O. Then solve the initial 
value problem 

y" - y = 0, y(O) = 6, y'(O) = -2. 

Solution. (ex)" - eX = 0 and (e-x )" - e-x = 0 shows that eX and e-x are solutions. They are not 
proportional. eXle-x = e2x "* COllst. Hence eX, e-x form a basis for aUx. We now write down the corresponding 
general solution and its derivative and equate their values at 0 to the given initial conditions, 

\'(0) = cl + c2 = 6. 

By addition and subtraction. cl = 2. c2 = 4, so that the allswer is y = 2ex + 4e -.<. This is the particular solution 
satisfying thc two initial conditions. • 

Find a Basis if One Solution Is Known. 
Reduction of Order 
It happens quite often that one solution can be found by inspection or in some other way. 
Then a second linearly independent solution can be obtained by solving a first-order ODE. 
This is called the method of reduction of order. l We first show this method for an example 
and then in general. 

E X AMP - 7 Reduction of Order if a Solution Is Known. Basis 

Find a basis of solutions of the ODE 

(x2 - X)y" - xy' + Y = O. 

Solution. Inspection shows that Yt = x is a solution because )'~ = 1 and yr = O. so that the first term 
vanbhes identically and the second and third terms cancel. The idea of the method is to substitute 

y = ll)"l = llX, y' = U'( + Lt. ,," = tt"X + 2,,' 

into the ODE. This gives 

(x2 
- x)(u"x + 2/1') - r(u'x + ll) + U.1: = O. 

ux and -XII cancel and we are left with the following ODE. which we divide by x. order. and simplify, 

{X
2 

- xlu" + (x - 2)11' = O. 

ICredited to the great mathematician JOSEPH LOUIS LAGRANGE (1736-1813). who was born in Turin. 
of French extraction. got his first professorship when he was 19 (al the Military Academy of Turin). became 
director of the mathematical section of the Berlin Academy in 1766. and moved to Paris in 1787. His important 
major work was in the calculus of variations. celestial mechanics, general mechanics (Mecallique a/Ja/ytique, 

Paris, 1788), differential equations, approximation theory, algebra, and number theory. 
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This ODE is of first order in v = u', namely, (x 2 
- x) v' + (x - 2) v = O. Separation of variables and integration 

gives 

dv x - 2 
= - -2-- dx = 

v x - x ( 1 2) ---~ dx 
x-I x ' 

Ix - 11 
In Ivl = In Ix - II - 2 In Ixl = In -~2 ~ 

x 

We need no con,tant of integration because we want to obtain a particular solution: similarly in the next 
integration. Taking exponents and integrating again, we obtain 

x-I 
v = --2- = ~ - ""2. 

x x x 
u = Iv dx = In Ixl + ~ . 

x 
hence .1'2 = lIX = x In Ixl + I. 

Since Y1 = x and Y2 = x In Ixl + 1 are linearly independent (their quotient is not constant), we have obtained 
a basis of solutions. valid for all positive x. • 

In this example we applied reduction of order to a homogeneous linear ODE [see (2)] 

y" + p(x)y' + q(x)y = O. 

Note that we now take the ODE in standard form, with y", not f(x)y"-this is essential 
in applying our subsequent formulas. We assume a solution .VI of (2) on an open interval 
I to be known and want to find a basis. For this we need a second linearly independent 
solution .\"2 of (2) on 1. To get Y2, we substitute 

y = Y2 = UY1, y' = y~ = U'YI + uy~, 

into (2). This gives 

(8) 

Collecting terms in u", u', and u, we have 

Now comes the main point. Since )'1 is a solution of (2), the expression in the last 
parentheses is zero. Hence u is gone, and we are left with an ODE in u' and u". We divide 
this remaining ODE by )'1 and set u' = U, u" = V', 

2y~ + PYI 
U" + u' = 0, 

Y1 
thus , (2V~ ) V + -'- + p V = O. 

Y1 

This is the desired first-order ODE, the reduced ODE. Separation of variables and 
integration gives 

dV (2)'; ) 
-=~ -+p dx 
V v . 1 

and In Ivi 

By taking exponents we finally obtain 

(9) 
1 

V = - -fpdx 
2 e . 

Yl 
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Here U = u', so that u = IV dx. Hence the desired second solution is 

Y2 = Yl 11 = Yl J V dx. 

The quotient )'21Yl = u = IV dx cannot be constant (since v> 0), so that Yl and Y2 fonn 
a basis of solutions . 

.•. - . _... -. ........ -........ ,--.... ..,. 

11-61 GENERAL SOLUTION. INITIAL VALUE 
PROBLEM 

(More in the next problem set.) Verify by substitution that 
the given functions fonn a basis. Solve the given initial 
value problem. (Show the details of your work.) 

1. y" - 16y = 0, e4x, e-4x yeO) = 3, /(0) = 8 

2. y" + 25y = O. cos 5x. sin 5x. yeO) = 0.8, 
),'(0) = -6.5 

3. y" + 2),' + 2y = 0, e-x cos x, e-x sin x, 
yeO) = I. /(0) = -1 

4. y" - 6y' + 9y = 0, e3x
, xe 3x

, -,,(0) = -1.4, 
y' (0) = 4.6 

5. x 2y" + .n-' - 4v = 0, x 2, x-2, v(l) = II, 
y'(1)=-=-6 . . 

6. x\" - 7rr' + 15)' = 0, x3
, x5 , y(l) = O.~. 

/(1) = 1.0 

[7-141 LINEAR INDEPENDENCE AND DEPENDENCE 
Are the following functions linearly independent on the 
given interval? 

7. x, x In x (0 < r < 10) 

8. 3x2
, 2x n (0 < X < I) 

9. eax, e-ax (any interval) 

10. cos2 x, sin2 
\. (any interval) 

11. In x, In x 2 (x > 0) 

12. x - 2, x + 2 (-2 < x < 2) 

13. 5 sin x co~ x. 3 sin 2x (x > 0) 

14. 0, sinh TTX (x > 0) 

REDUCTION OF ORDER is important because it gives a 
simpler ODE. A second-order ODE F(x, y, y', y") = 0, linear 
or not, can be reduced to first order if y does not occur 
explicitly (Prob. 15) or if x does not occur explicitly (Prob. 
16) or if the ODE is homogeneoll~ linear and we know a 
solution (see the text). 

15. (Reduction) Show that F(x, y' , y") = 0 can be reduced 
to first order in ;: = y' \ from which y follows by 
integration). Give two examples of your own. 

16. (Reduction) Show that F(y, y'. y") = 0 can be reduced 
to a first-order ODE with y as the independent variable 
and y" = (d;:idr):. where z = y'; derive this by the 
chain rule. Give two examples. 

[17-221 Reduce to first order and solve (showing each 
step in detail). 

17. y" = ky' 

18. /' = I + /2 
19. -"y" = 4y'2 

20. xy" + 2y' + xy = 0, YI = X-I cos x 

21. -,," + /3 siny = 0 

22. (I - x 2 )y" - 2xy' + 2.\' = 0, )'1 = X 

23. (Motion) A small body moves on a straight line. Its 
velocity equals twice the reciprocal of its acceleration. 
If at t = 0 the body has distance I m from the origin 
and velocity 2 m/sec, what are its distance and velocity 
after 3 sec? 

24. (Hanging cable) It can be shown that the curve y(x) 
of an inextensible flexible homogeneous cable 
hanging between two fixed points is obtained by 

solving y" = k~, where thc constant k depends 

on the weight. This curve is called a catellary (from 
Latin catella = the chain). Find and graph y(x). 
assuming k = I and those fixed points are (-1,0) and 
(1, 0) in a vertical .l}'-plane. 

25. (Curves) Find and sketch or graph the curves passing 
through the origin with slope I for which the second 
derivative is proportional to the first. 

26. WRITING PROJECT. General Properties of 
Solutions of Linear ODEs. Write a short essay (with 
proofs and simple examples of your own) that includes 
the following. 

(a) The superposition principle. 

(b) y;: 0 is a solmion of the homogeneous equarion 
(2) (called the trivial solution). 

(cl The sum y = YI + )'2 of a solution )'1 of (1) and 
Y2 of (2) is a solmion of (1). 

(d) Explore possibilities of making further general 
statements on solutions of (1) and (2) (sums. 
differences, multiples). 

27. CAS PROJECT. Linear Independence. Write a 
program for testing linear independence and 
dependence. Try it out on some of the problems in this 
problem set and on examples of your own. 
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We shall now consider second-order homogeneous linear ODEs whose coefficients a and 
b are constant, 

(1) y" + ay' + by = O. 

These equations have imp0l1ant applications, especially in connection with mechanical 
and electrical vibrations, as we shall see in Secs. 2.4, 2.8, and 2.9. 

How to solve (I)? We remember from Sec. 1.5 that the solution of the first-order linear 
ODE with a constant coefficient k 

y'+ky=O 

is an exponential function y = ce-kx
• This gives us the idea to try as a solution of (1) the 

function 

(2) 

Substituting (2) and its derivatives 

and 

into our equation (1), we obtain 

(A2 + aA + b)eAX = o. 

Hence if A is a solution of the important characteristic equation (or auxiliary equation) 

(3) A2 + aA + b = 0 

then the exponential function (2) is a solution of the ODE (1). Now from elementary 
algebra we recall that the roots of this quadratic equation (3) are 

(4) A = I(-a + Va2 - 4b) 
1 2 ' 

(3) and (4) will be basic because our derivation shows that the functions 

(5) and 

are solutions of (1). Verify this by substituting (5) into (1). 

From algebra we f1l11her know that the quadratic equation (3) may have three kinds of 
roots, depending on the sign of the discriminant a 2 

- 4b, namely, 

(Case I) Two real roots if a2 
- 4b > 0, 

(Case II) A real double roOT if a 2 
- 4b = 0, 

(Case III) Complex conjugate roots if a 2 
- 4b < O. 
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Case I. Two Distinct Real Roots "-1 and "-2 
In this case, a basis of solutions of (I) on any interval is 

and 

because )'1 and )'2 are defined (and real) for all x and their quotient is not constant. The 
corresponding general solution is 

(6) 

E X AMP L E 1 General Solution in the Case of Distinct Real Roots 

We can now solve -,," - y = 0 in Example 6 of Sec. 2.1 systematically. The characteristic equation is 
A 2 - 1 = O. Its roob are A 1 = I and A2 = - I. Hence a basis of solutions is e'" and e -x and gi ves the same 
general solution as before, 

• 
E X AMP L E 2 Initial Value Problem in the Case of Distinct Real Roots 

Sol ve the initial value problem 

/' + y' - 2)' = 0, )'(0) = 4, y'(O) = -5. 

Solution. Step 1. Gel1eral SOlllliol1. The characteristic equation is 

A2 + A - 2 = O. 

Its roots are 

and "-2 =l(-I - V9) =-2 

so that we obtain the general solution 

Slep 2. Particlilar SOllllioll. Since /(x) = clex - 2c2e-2x. we obtain from the general solution and the initial 
conditions 

y(O) = Cj + c2 = 4, 

y' (0) = cl 2C2 = -5. 

Hence c 1 = I and c2 = 3. This gives the lI11SII'e1' Y = eX + 3e -2x. Figure 29 shows that the curve begins ar 
y = 4 with a negative slope (-5, but note that the axes have different scales!), in agreement with the initial 
conditions, • 

y 
8 

:~ 
2 

°O~~O~,~5---7---1~.~5---=2---x 

Fig. 29. Solution in Example 2 
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Case II. Real Double Root A = - 0/2 
If the discriminant a2 

- 4b is zero, we see directly from (4) that we get only one root, 
A = Al = 11.2 = -al2. hence only one solution. 

To obtain a second independent solution )'2 (needed for a basis), we use the method of 
reduction of order discussed in the last section, setting Y2 = UY1' Substituting this and its 
derivatives y~ = U')'l + uy~ and Y~ into (1), we first have 

(/1'\1 + 2u' Y~ + uy~) + a(u' Y1 + It:r~) + bUYl = o. 

Collecting terms in u", u', and u, as in the last section, we obtain 

The expression in the last parentheses is zero, since .\'1 is a solution of (1). The expression 
in the first parentheses is zero. too. since 

We are thus left with U"Y1 = O. Hence u" = O. By two integrations, u = C1X + C2 . To 
get a second independent solution Y2 = UY1, we can simply choose C1 = 1, C2 = 0 and 
take u = x. Then Y2 = .lYl' Since these solutions are not proportional, they form a basis. 
Hence in the case of a double root of (3) a basis of solutions of (l) on any interval is 

The corresponding general solution is 

Warning. If A is a simple root of (4), then (C1 + c2x)eAcC with C2 * 0 is not a solution 
of (l). 

E X AMP L E 1 General Solution in the Case of a Double Root 

The characteristic equalion of the ODE yo" + 6y' + 9y = 0 is A2 + 6A + 9 = (A + 3)2 = O. It has the double 
root A = -3. Hence a basis is e-3", and xe-3x. The conesponding general solution is y = (cl + c2x)e-3x .• 

E X AMP L E 4 Initial Value Problem in the Case of a Double Root 

Solve the initial value problem 

/' + y' + 0.25y = 0, yeo) = 3.0, y' (0) = - 3.5. 

Solution. The characteristic equation is A2 + A + 0.25 = (A + 0.5)2 = O. It has the double root A = -0.5. 
This gives the general solution 

We need its derivative 
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From this and the initial condition~ we obtain 

yeO) = Cl = 3.0. /(0) = C2 - 0.5cl = -3.5: hence 

The particular solution of the initial value problem is " = (3 - 2x)e -O.5x. See Fig. 30. 

y 
3 

2 

\ 
o 1--"-;:-:zL ____ --

4
.L_ -~-L--.L8-=="----'----'L.--

-1 

Fig. 30. Solution in Example 4 

C2 = -2. 

• 

Case III. Complex Roots -10 + iwand -10 - iw 
This case occurs if the discriminant a2 

- 4b of the characteristic equation (3) is negative. 
In this case, the roots of (3) and thus the solutions of the ODE (I) come at first out 
complex. However, we show that from them we can obtain a basis of real solutions 

(8) Yl = e-ax/2 cos wx. Y2 = e-ax/2 sin wx (w> 0) 

where ~ = b - !a2
. It can be verified by substitution that these are solutions in the 

present case. We shall derive them systematically after the two examples by using the 
complex exponential function. They form a basis on any interval since their quotient 
cot wx is not constant. Hence a real general solution in Case II] is 

(9) y = e-ax/ 2 (A cos wx + B sin wx) (A, B arbitrary). 

E X AMP L E 5 Complex Roots. Initial Value Problem 

Solve the initial value problem 

y" + DAy' + 9.04y = D. yeO) = o. y' (0) = 3. 

Solution. Step 1. General SOllltioli. The characteristic equation is }..2 + 0.4}" + 9.04 = O. It has the roots 
-0.2 ± 3i. Hence w = 3. and a general solution (9) is 

)' = e-o.2x(A co~ 3x + B sin 3x). 

Step 2. Pm1iclIiar soilltioll. The first initial condition gives y(O) = A = O. The remaining expression is 
)' = Be-O

.
2x sin 3x. We need the derivative (chain rule!) 

y' = B(-O.2e-O.2 1: sin 3x + 3e-O.2x cos 3x). 

From this and the second imtial condition we obtain y' (0) = 3B = 3. Hence B = I. OUf solution is 

y = e -O.2x sin 3x. 

Figure 31 shows \' and the curves of e-
O

.
2x and _e-O

.
2x (dashed), between which the curve of)' oscillates. 

Such "damped vibrations" (with x = t being time) have important mechanical and electrical applications. as we 
shall soon see (in Sec. 2.4). • 
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Fig. 31. Solution in Example 5 

E X AMP L E 6 Complex Roots 

A general solution of the ODE 

(lU constant, not zero) 

is 

y = A cos ld, + B sin lUX. 

With lU = 1 this confirms Example 4 in Sec. 2.1. • 
Summary of Cases I-III 

[ Case Roots of (2) Basis of (1) General Solution of (1) 

I 
I 

Distinct real 
eA1X, eA2X y = CIe'''l~' + C2C"'2X 

A10 A2 
L 

I 
Real double root 

e-a;</2, xe-a~'/2 y = (Cl + c2x )e-ax/2 II 
A = -~a 

-

i Complex conjugate 

[ 

III Al = -~a + iw, 
e -a~'/2 cos wx 

y = e-a
:l
i2(A cos wx + B sin wx) 

A2 = -~a - iw 
e-ax/2 sin wx 

It is very interesting that in applications to mechanical systems or electrical circuits, 
these three cases correspond to three different forms of motion or flows of current, 
respectively. We shall discuss this basic relation between theory and practice in detail in 
Sec. 2.4 (and again in Sec. 2.8). 

Derivation in Case III. Complex Exponential Function 
If verification of the solutions in (8) satisfies you, skip the systematic derivation of these 
real solutions from the complex solutions by means of the complex exponential function 
e2 of a complex variable z = r + it. We write r + it, not x + iy because x and y occur 
in the ODE. The definition of eZ in terms of the real functions eT

, cos t, and sin t is 

(10) 
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This is motivated as follows. For real z = r, hence t = 0, cos 0 = I. sin 0 = 0, we get 
the real exponential function eT

• It can be shown that eZ
, +Z2 = eZ1eZ2

, just as in real. (Proof 
in Sec. 13.5.) Finally, if we use the Maclaurin series of eZ with z = it as well as ;2 = -1, 
;3 = -;, i4 = 1, etc., and reorder the terms as shown (this is permissible, as can he proved), 
we obtain the series 

(it)2 (it)3 (it)4 (it)5 
+ it + -- + -- + -- + -- + ... 

2! 3! 4! 5! 

= I - ;~ + :~ - + ... + i (t - ~~ + ~~ - + ... ) 

= cos t + i sin t. 

(Look up these real series in your calculus book if necessary.) We see that we have obtained 
the fonnula 

(11) eit = cos t + i sin t, 

called the Euler fonnula. Multiplication by eT gives (10). 

For later use we note that e-it = cos (-t) + i sin (-t) = cos t - i sin t. so that by 
addition and subtraction of this and (II), 

(12) 
1. . 

cos t = "2 (e,t + e-'t), 
1. . 

sin t = - (e't - e-tt ), 
2i 

After these comments on the definition (10), let us now turn to Ca~e Ill. 
In Case III the radicand {/2 - 4b in (4) is negative. Hence 4b - {/2 is positive and, 

using -v=T = i, we obtain in (4) 

with w defined as in (8), Hence in (4), 

A} = ~a + iw and. similarly, A2 = ~a - iw. 

Using (10) with r = -~ax and t = wx, we thus obtain 

e~'X = e-CaI2)x+iwx = e-taI2h(cos wx + i sin wx) 

We now add these two lines and multiply the result by ~. This gives .\', as in (8). Then 
we subtract the second line from the first and multiply the result by I1(2i). This gives .\'2 
as in (8). These results obtained by addition and multiplication by constants are again 
solutions, as follows from the superposition principle in Sec. 2.1. This concludes the 
derivation of these real solutions in Case 111. 
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- .... - =----
I_l~ GENERAL SOLUTION 
Find a general solution. Check your answer by substitution. 

1. y" - 6 .. ' - 7)' = 0 

2. lOy" - 7/ + 1.2y = 0 

3. 4y" - 20y' + 2Sy = 0 

4. y" + 417y' + 4172 y = 0 

5. 100y" + 20y' - 99," = 0 

6. y" + 2),' + S)' = 0 

7. y" - y' + 2.Sy = 0 

8. y" + 2.6/ + 1.69)' = 0 

9. y" - 2y' - S.2S}' = 0 

10. y" - 2.1' = 0 

11. y" + 9172 y = 0 

13. y" - 144y = 0 

['5-201 FIND ODE 

12. y" + 2.4y' + 4.0)' = 0 

14. y" + y' - 0.96y = 0 

Find an ODE)''' + ay' + hy = 0 for the given basis. 
15. e 2x, eX 16. e O.5x , e- 3 .5x 

17. eXv3, xex v'3 18. 1, e-3x 

19. e 4", e-4 ." 20. e<-l+i)X, e-(1+i)x 

1_ 1-321 INITIAL VALUE PROBLEMS 
Solve the initial value problem. Check that your answer 
satisfies the ODE as well as the initial conditions. (Show 
the details of your work.) 

21. y" - 2y' - 3y = 0, yeO) = 2, /(0) = 14 

22. y" + 2y' + Y = 0, yeO) = 4, /(0) = -6 

23. y" + 4/ + S)" = 0, yeO) = 2, /(0) = -S 

24. lOy" - SOy' + 6Sy = 0, yeO) = l.S, y' (0) = l.S 

25. y" + 17y' = 0, yeO) = 3, y'(o) = -17 

26. lOy" + l8y' + S.6)' = 0, y(O) = 4, / (0) = - 3.8 
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27. lOy" + s/ + 0.62S)' = 0, yeO) = 2, y' (0) = -4.S 

28. y" - 9y = 0, yeO) = -2, /(0) = -12 

29. 20y" + 4y' + Y = 0, yeO) = 3.2, y' (0) = 0 

30. y" + 2ky' + (k 2 + w2 )y = 0, yeO) = 1, 
y'(O) = -k 

31. y" 2Sy = O. y(O) = O. y' (0) = 40 

32. y" - 2y' - 24y = 0, yeO) = 0, y' (0) = 20 

33. (Instability) Solve y" - y = 0 for the initial conditions 
y(O) = 1, y' (0) = -1. Then change the initial conditions 
to yeO) = 1.001, y' (0) = -0.999 and explain why this 
small change of 0.001 at x = 0 causes a large change 
later, e.g., 22 at x = 10. 

34. TEAM PROJECT. General Properties of Solutions 

(A) Coefficient fonnulas. Show how a and b in (I) 

can be expressed in tenns of Al and A2' Explain how 
these formulas can be used in constructing equations 
for given bases. 

(B) Root zero. Solve y" + 4y' = 0 (i) by the present 
method, and (ii) by reduction to first order. Can you 
explain why the result must be the same in both cases? 
Can you do the same for a general ODE y" + aJ' = O? 

(C) Double root. Verify directly that xeAX with 
A = -a/2 is a solution of (1) in the case of a double 
root. Verify and explain why y = e-2x is a solution of 
y" - v' - 6y = 0 but xe-2x is not. 

(D) Limits. Double roots should be limiting cases of 
distinct roots AI, A2 as, say, A2 ~ AI' Experiment with 
this idea. (Remember I'H6pital's rule from calculus.) 
Can you aITive at xeA1X? Give it a try. 

35. (Verification) Show by substitution that.h in (8) is a 
solution of (1 ). 

2.3 Differential Operators. Optional 
This short section can be omitted without interrupting the flow of ideas; it will not be 
used in the sequel (except for the notations D.\', D2y, etc., for y', y", etc.). 

Operational calculus means the technique and application of operators. Here, an 
operator is a transformation that transforms a function into another function. Hence 
differential calculus involves an operator, the differential operator D, which transforms 
a (differentiable) function into its derivative. In operator notation we write 

(1) Dy = y' 
dy 

dx 
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Similarly, for the higher derivatives we write D2y = D(Dy) = /', and so on. For example, 
D sin = cos, D2 sin = -sin, etc. 

For a homogeneous linear ODE y" + ay' + by = 0 with constant coefficients we can 
now introduce the second-order differential operator 

L = P(D) = D2 + aD + bl. 

where I is the identity operator defined by Iy = y. Then we can write that ODE as 

(2) Ly = PW)y = (D2 + aD + b/)y = O. 

P suggests "polynomial." L is a linear operator. By definition this means that if Ly and 
Lw exist (this is the case if y and ware twice differentiable), then L(e)' + kw) exists for 
any constants e and k, and 

L(e}' + kw) = eLy + kLw. 

Let us show that from (2) we reach agreement with the results in Sec. 2.2. Since 
(DeA)(.x) = AeAx and (D2eA)(x) = )-..2eA"', we obtain 

(3) 
LeA(x) = PW)eA(x) = (D2 + aD + bf)eA(x) 

= (11.2 + all. + b)eA"C = P(A)eA"C = O. 

This confirms our result of Sec. 2.2 that eAX is a solution of the ODE (2) if and only ~f A 
is a solution of the characteristic equation peA) = O. 

peA) is a polynomial in the usual sense of algebra. If we replace A by the operator D, 
we obtain the "operator polynomial"' P(D). The point of this operatiollal calculus is that 
P(D) call be treated just like all algebraic quantity. In particular. we can factor it. 

E X AMP L E 1 Factorization, Solution of an ODE 

Factor P(Dl = if - 3D - 401 and solve P{D»)" = O. 

Solutioll. D2 - 3D - 401 = (D - 8l)(D + 51) because P = I. Now (D - 8l)y = y' - 8y = 0 has the 
solution)'1 = e8x. Similarly. the solution of (D + 5I)y = 0 is)'2 = e -5x. This is a basis of P(D)y = 0 on any 
interval. From the factorization we obtain the ODE, as expected. 

(D - 8[)(D + 5l)y = (D - 8[)(y' + 5y) = D(y' + 5y) - 8(/ + 5.\') 

= y" + 5/ - 8/ - 40,· = y" - 3y' - 40y = O. 

Verify that this agrees with the result ot our method in Sec. 2.2. This is not unexpected because we factored 
P(D) in the same way as the characteristic polynomial PIA) = A2 - 3A - 40. • 

It was essential that L in (2) has constant coefficients. Extension of operator methods to 
variable-coefficient ODEs is more difficult and will not be considered here. 

If operational methods were limited to the simple situations illustrated in this 
section, it would perhaps not be worth mentioning. Actually, the power of the operator 
approach appears in more complicated engineering problems, as we shall see in 
Chap. 6. 
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-.... -.-- ... _... ----. -_ .... -............ -- -~~ 
- ~ APPLICATION OF DIFFERENTIAL 

OPERATORS 

Apply the given operator to the given functions. (Show all 
steps in detail.) 

1. (D - 1)2~ eX.. xe x .. sin x 

2. 8D2 + 2D - I; cosh ix, sinh ix, ex
/

2 

3. D - 0.41; 2x 3 - I, eO.4 ."", xeO.4x 

4. (D + 5/)(D -]); e-5x sin x. e5x• x 2 

5. (D - 4I)(D + 3l); x 3 - x 2, sin 4x, e-3x 

[ ~ GENERAL SOLUTION 
Factor as in the text and ~olve. (Show the details.) 

6. (D2 - 5.5D + 6.66l)y = 0 

7. (D + 2l)2y = 0 8. (D2 - 0.49])y = 0 

9. (D2 + 6D + 131))' = 0 

10. (lOD2 + 2D + 1.7/))' = 0 

11. (D2 + 4.1D + 3.II)y = 0 

12. (4D2 + 47TD + 7T2l)y = 0 

13. (D2 + 17.64w2l)y = 0 

14. (Double root) If D2 + aD + hI has distinct roots 
JL and A, show that a particular solution is 
y = (elL" - eAX)/{JL - A). Obtain from this a solution 
xeAx by letting JL ~ A and applying I"H6pital's rule. 

15. (Linear operator) Illustrate the linearity of L in (2) by 
taking e = 4, k = -6, y = e2X

, and 11' = cos 2x. 
Prove that L is linear. 

16. (Definition of linearity) Show that the definitIOn of 
linearity in the text is equivalent to the following. If 
Lly] and L[w] exist. then L[y + w] exists and L[e)'J 
and L[kw] exist for all constants e and k, and 
Ll\" + w] = Lb'] + L[w] as well as L[ey] = eLl\"l and 
L[kw] = kL[w]. 

2.4 Modeling: Free Oscillations 
(Mass-Spring System) 

Linear ODEs with constant coefficients have important applications in mechanics, as we 
show now (and in Sec. 2.8), and in electric circuits (to be shown in Sec. 2.9). In this section 
we consider a basic mechanical system, a mass on an elastic spring ("mass-spring system," 
Fig. 32). which moves up and down. Its model will be a homogeneous linear ODE. 

Setting Up the Model 
We take an ordinary spring that resists compression as well extension and suspend it 
vertically from a fixed support, as shown in Fig. 32. At the lower end of the spring we 

--1----1 I U nstretched -

spring ~--- - -(Y=O)l---~ 

(a) 

System In Y 
static ----

equilibrium 

(b) 

System in 
motion 

(c) 

Fig. 32. Mechanical mass-spring system 
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attach a body of mass 111. We assume /11 to be so large that we can neglect the mass of the 
spring. If we pull the body down a certain distance and then release it, it starts moving. 
We assume that it moves strictly vertically. 

How can we obtain the motion of the body, say, the displacement y(t) as function of 
time t? Now this motion is detelmined by Newton's second law 

(1) Mass X Acceleration = nH''' = Force 

where y" = d 2y/dr2 and "Force" is the resultant of all the forces acting on the body. 
(For systems of units and conversion factors, see the inside of the front cover.) 
We choose the dowllward directioll as the positive direction, thus regarding downward 

forces as positive and upward forces as negative. 
Consider Fig. 32. The spring is first unstretched. We now attach the body. This stretches 

the spring by an amount So shown in the figure. It causes an upward force Fo in the spring. 
Experiments show that Fo is proportional to the stretch So' say, 

(2) (Hooke's law2). 

k (> 0) is called the spring constant (or spring modulus). The minus sign indicates that 
Fo points upward, in our negative direction. Stiff springs have large k. (Explain!) 

The extension So is such that Fo in the spring balances the weight W = mg of the 
body (where g = 980 cm/sec2 = 32.17 ftlsec2 is the gravitational constant). Hence 
F 0 + W = - kso + 17lg = O. These forces will not affect the motion. Spring and body are 
again at rest. This is called the static eqUilibrium of the system (Fig. 32b). We measure 
the displacement yet) of the body from this 'equilibrium point' as the origin y = 0, 
downward positive and upward negative. 

From the position y = 0 we pull the body downward. This further stretches the spring 
by some amount y > 0 (the distance we pull it down). By Hooke's law this causes an 
(additional) upward force FI in the spring, 

FI = -kyo 

F 1 is a restoring force. It has the tendency to restore the system, that is, to pull the body 
back to y = O. 

Undamped System: ODE and Solution 
Every system has damping--otherwise it would keep moving forever. But practically, the 
effect of damping may often be negligible, for example, for the motion of an iron ball on 
a spring during a few minutes. Then F 1 is the only force in (I) causing the motion. Hence 
(1) gives the model 111Y" = -kyor 

(3) my" + ky = O. 

2ROBERT HOOKE (1635-1703), English physicist, a forerunner of Newton with respect to the law of 
gravitation. 
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By the method in Sec. 2.2 (see Example 6) we obtain as a general solution 

(4) y(t) = A cos Wot + B sin wof. 

The corresponding motion is called a harmonic oscillation. 
Since the trigonometric functions in (4) have the period 27T/WO' the body executes wo!27T 

cycles per second. This is the frequency of the oscillation, which is also called the natural 
frequency of the system. It is measured in cycles per second. Another name for cycles/sec 
is hertz (Hz).3 

The sum in (4) can be combined into a phase-shifted cosine with amplitude C = VA2 + B2 
and phase angle 8 = arctan (B/A), 

(4*) y(t) = C cos (wof - 8). 

To verify this, apply the addition formula for the cosine [(6) in App. 3.1] to (4*) and then 
compare with (4). Equation (4) is simpler in connection with initial value problems, 
whereas (4*) is physically more informative because it exhibits the amplitude and phase 
of the oscillation. 

Figure 33 shows typical forms of (4) and (4*), all corresponding to some positive initial 
displacement .\'(0) [which determines A = y(O) in (4)] and different initial velocities.r' (0) 
[which determine B = y' (O)/wol 
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Fig. 33. Harmonic oscillations 

E X AMP L E 1 Undamped Motion. Harmonic Oscillation 

If an iron ball of weight W = 98 nt (about 22 Ib) stretches a spring 1.09 m (about 43 in.), how many cycles per 
minme will this mass-spring system execute? What will its motion be if we pull down the weight an additional 
16 cm (abom 6 in.) and let it start with zero initial velocity? 

Solutio1l. Hooke's law (2) with W a~ the force and 1.09 meter as the stretch gives W = 1.09k: thus 
k = WII.09 = 98/1.09 = 90 [kg/sec2j = 90 [nt/meter]. The mass h III = WIg = 98/9.8 = 10 [kg]. This gives 
the frequency wo/(27i) = v klml(27T) = 3/(27T) = 0.48 [Hz] = 29 [cycles/min]. 

3HEINRlCH HERTZ (1857-1894). German physicist. who discovered electromagnetic waves. as the basis 
of wireless communication developed by GUGLIELMO MARCONI (1874-1937), Italian physicist (Nobel prize 
in 1909). 
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From (4) and the initial conditions, y(O) = A = 0.16 [meter] and y' (0) = woB = O. Hence the motion is 

y(t) = 0.16 cos 31 [meter] or 0.52 cos 31 [ft] (Fig. 34). 

If you have a chance of experimenting with a mass-spring system. don't miss it. You will be surprised about 
the good agreement between theory and experiment. usuall) within a fraction of one percent if you measure 
carefully. • 

y 
0.2 

0.1 
0~--,-L-~~L-~--L-4-~L--r--~---

-0.1 
-0.2 

Fig. 34. Harmonic oscillation in Example 1 

Damped System: ODE and Solutions 
We now add a damping force 

F2 = -cy' 

to our model my" = -ky, so that we have my" = -ky - cy' or 

(5) my" + cy' + Ie)' = O. 

Physically this can be done by connecting the body to a dashpot; see Fig. 35. We assume 
this new force to be proportional to the velocity y' = dyldt, as shown. This is generally 
a good approximation, at least for small velocities. 

c is called the damping constant. We show that c is positive. If at some instant, y' is 
positive. the body is moving downward (which is the positive direction). Hence the 
damping force F2 = -cy'. always acting against the direction of motion. must be an 
upward force. which means that it must be negative, F2 = -cy' < 0, so that -c < 0 and 
c > O. For an upward motion, y' < 0 and we have a downward F2 = -cy > 0; hence 
-c < 0 and c > 0, as before. 

The ODE (5) is homogeneous linear and has constant coefficients. Hence we can solve 
it by the method in Sec. 2.2. The characteristic equation is (divide (5) by m) 

c k 
A2 + -- A + = O. 

m 111 

Fig. 35. Damped system 
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y 

\ 

By the usual fonnula for the roots of a quadratic equation we obtain, as in Sec. 2.2, 

(6) 
C 

A2 = -a - {3, where a = -
2m 

and {3 = _1_ V c2 - 4mk. 
2m 

It is now most interesting that depending on the amount of damping (much, medium, or linle) 
there will be three types of motion cOlTesponding to the three Cases I, II, n in Sec. 2.2: 

Case [. 

Case II. 

Case [II. 

c2 > 411lk. Distinct real roots AI, A2 . 

c 2 = 4mk. A real double root. 

c2 < 4mk. Complex conjugate roots. 

Discussion of the Three Cases 
Case I. Overdamping 

(Overdamping) 

(Critical damping) 

(Underdamping) 

If the damping constant c is so large that c2 > 4mk, then Al and A2 are distinct real roots. 
In this case the cOlTesponding general solution of (5) is 

(7) 

We see that in this case, damping takes out energy so quickly that the body does not 
oscillate. For t > 0 both exponents in (7) are negative because a > 0, {3 > 0, and 
132 = if - kim < if. Hence both terms in (7) approach zero as t ~ 00. Practically 
speaking, after a sufficiently long time the mass will be at rest at the static equilibrium 
position (y = 0). Figure 36 shows (7) for some typical initial conditions. 

Case II. Critical Damping 
Critical damping is the border case between nonoscillatory motions (Case I) and oscillations 
(Case III). It occurs if the characteristic equation has a double root, that is, if c2 = 4mk, 

(aJ 

y 

CD Positive } 
® Zero Initial velocity 
@Negative 

Fig. 36. Typical motions (7) in the overdamped case 
(a) Positive initial displacement 
(b) Negative initial displacement 

(b) 
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so that {3 = 0, Al = A2 = -a. Then the corresponding general solution of (5) i" 

(8) 

This solution can pass through the equilibrium position y = 0 at most once because e-at 

is never zero and Cl + C2t can have at most one positive zero. If both Cl and C2 are positive 
(or both negative), it has no positive zero, so that y does not pass through 0 at all. Figure 
37 shows typical forms of (8). Note that they look almost like those in the previous figure. 

Case III. Underdamping 
This is the most interesting case. It occurs if the damping constant C is so small that 
c2 < 4mk. Then {3 in (6) is no longer real but pure imaginary, say, 

(9) {3 = iw* where w* = _1- V 4111k - c2 = 
2m 

k 

171 
(> 0). 

(We write w* to reserve w for driving and electromotive forces in Secs. 2.8 and 2.9.) The 
roots of the characteristic equation are now complex conjugate. 

Al = -a + iw*, A2 = -a - iw* 

with a = C/(2m), as given in (6). Hence the corresponding general solution is 

(10) J(t) = e-at(A cos w*t + B sin w*t) = Ce-at cos (w*t - 8) 

where C2 = A2 + B2 and tan 8 = B/A, as in (4*). 
This represents damped oscillations. Their curve lies between the dashed curves 

y = Ce-at and y = -Ce-al in Fig. 38, touching them when w*t - 8 is an integer multiple 
of 7T because these are the points at which cos (w*t - 8) equals lor-I. 

The frequency is W*/(27T) Hz (hertz, cycles/sec). From (9) we see that the smaller c (> 0) 
is, the larger is w* and the more rapid the oscillations become. If c approaches 0, then w* 
approaches Wo = ~. giving the harmonic oscillation (4), whose frequency WO/(27T) is 
the natural frequency of the system. 

y 

y 

CD Positive } 
® Zero I nitial velocity 

@Negative 

ig. 37. Critical damping [see (8)] 

, 
\ .......................... ce-at 

/'''"------::-------

/ --..,..-- -at 
...-"';"- -Ce 

Fig. 38. Damped oscillation in 
Case /1/ [see (10)] 
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E X AMP L E 2 The Three Cases of Damped Motion 

How doe~ the motion in Example 1 change if we change the damping constant c to one of the following three 
values. with y(O) = 0.16 and /(0) = 0 as before? 

(1) c = 100 kg/sec. (Ill c = 60 kg/sec. (III) c = 10 kg/sec. 

Soilltioll. It is interesting to see how the behavior of the system changes due to the effect of the damping, 
which takes energy from the syslem. so that the oscillations decrease in amplitude (Case III) or even disappear 
(Cases II and I). 

(I) With m = 10 and k = 90, as in Example I, the model is the initial value problem 

lOy" + 100y' + 90y = O. yeO) = 0.16 [meter]. /(0) ~ O. 

The characteristic equation is IOA2 + 100A + 90 = IO{A + 9)(A + 1) ~ O. It has the roots -9 and -1. This 
gives the general solution 

We also need 

The initial conditions give cl + c2 = 0.16, -9'"1 - c2 = o. The solution is cl = -0.02, c2 = O.IS. Hence in 
the overdamped case the solution is 

y = -0.02e-9t + O.ISe-t . 

11 approaches 0 as t -4 x. The approach is rapid: after a few seconds the solution is practically 0, that is. the 
iron ball is at res\. 

(III The model is as before. with c = 60 instead of 100. The characteristic equation now has the form 
IOA2 + 60A + 90 = IO(A + 3)2 = O. It has the double root -3. Hence the corresponding general solution is 

We also need 

The initial conditions give y(Ol ~ cl = 0.16. / (0) = '"2 - 3,"[ = O. C2 = 0.4S. Hence in the critical case the 
solution is 

y = (0.16 + OASt)e-3t. 

It is always positive and decrea~es 10 0 in a monotone fashion. 
(III) The model now is lOy" + lOy' + 90)' = o. Since c = 10 is smaller than the critical c, we shall get 

oscillations. The characteristic equation is IOA2 + lOA + 90 = IO[(A + ~)2 + 9 - ~] = o. It has the complex 
roots [see (4) in Sec. 2.2 with 1I = 1 and b ~ 9] 

A ~ -0.5 ::': YO.52 - 9 = -0.5 ::': 2.96i. 

This gives the general solution 

}' = e -o.5t(A cos 2.96t + 8 sin 2.96t). 

Thus ."(0) = A = 0.16. We also need the derivative 

y' = e -O.5t( -0.5A cos 2.Y6t - 0.58 sin 2.Y6t - 2.YM sin 2.96t + 2.968 cos 2.Y6tl. 

Hence /(0) = -0.5A + 2.968 ~ O. 8 = 0.5A/2.96 = 0.027. This gives the solution 

y = e -o.5t(O.16 cos 2. libt + 0.027 sin 2.961) = o. 162e -O.5t cos (2.96t - 0.17). 

We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by 
about lo/c (since 2.96 is smaller than 3.00 by abom 1 o/c I. Their amplitude goes 10 zero. See Fig. 39. • 

y 
0.15 

0.1 

0.05 

--0.05 

--0.1 

Fig. 39. The three solutions in Example 2 
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This section concerned free motions of mass-spring systems. Their models are 
homogeneous linear ODEs. Nonhomogeneous linear ODEs will arise as models of forced 
motions, that is, motions under the influence of a "driving force". We shall study them 
in Sec. 2.8, after we have learned how to solve those ODEs. 

" "::=» -B"£EM_5:U-F::.4:: 

11-81 MOTION WITHOUT DAMPING 
(HARMONIC OSCILLATIONS) 

1. (Initial value problem) Find the harmonic motion (4) 
that starts from Yo with initial velocity vo. Graph or 
sketch the solutions for Wo = 71", Yo = I, and various 
Vo of your choice on common axes. At what t-values 
do all these curves intersect? Why? 

2. (Spring combinations) Find the frequency of vibration 
of a ball of mass 111 = 3 kg on a spring of modulus 
(i) kl = 27 nt/m, (ii) k2 = 75 nt/m, (iii) on these springs 
in parallel (see Fig. 40), (iv) in series, that is, the ball hangs 
on one spling, which in tum hangs on the other spring. 

3. (Pendulum) Find the frequency of oscillation of a 
pendulum of length L Wig. 41), neglecting air 
resistance and the weight of the rod, and assuming e 
to be so small that sin e practically equals e. 

4. (Frequency) What is the frequency of a harmonic 
oscillation if the static equilibrium position of the ball 
is 10 cm lower than the lower end of the spring before 
the ball is attached? 

5. (Initial velocity) Could you make a hannonic oscillation 
move faster by gi\'ing the body a greater initial push? 

6. (Archimedian principle) This principle states that the 
buoyancy force equals the weight of the water 
displaced by the body (partly or totally submerged). 
The cylindrical buoy of diameter 60 cm in Fig. 42 is 
floating in water with its axis vertical. Wben depressed 
downward in the water and released, it vibrates with 
period 2 sec. Wbat is its weight? 

F·li!. 40. Parallel 
springs (Problem 2) 

Body of 
massm 

Fig. 41. Pendulum 
(Problem 3) 

Water 
level 

Fig. 42. Buoy (Problem 6) 

7. (Frequency) How does the frequency of a hannonic 
motion change if we take (i) a spring of three times the 
modulus, (ii) a heavier ball? 

8. TEAM PROJECT. Harmonic Motions in Different 
Physical Systems. Different physical or other systems 
may have the same or similar models, thus showing the 
ullifyillg power of mathematical methods. Illustrate 
this for the systems in Figs. 43-45. 

(a) Flat spring (Fig. 43). The spring is horizontally 
clamped at one end, and a body of weight 25 nt (about 
5.6Ib) is attached at the other end. Find the motion of 
the system, assuming that its static equilibrium is 2 cm 
below the horizontal line, we let the system start from 
this position with initial velocity 15 cm/sec, and 
damping is negligible. 

(b) Torsional vibrations (Fig. 44). Undamped 
torsional vibrations (rotations back and forth) of a wheel 
attached to an elastic thin rod are modeled bv the ODE " . loe + Ke = 0, where e is the angle measured from the 
state of equilibrium, 10 is the polar moment of inertia of 
the wheel about its center, and K is the torsional stiffness 
of the rod. Solve this ODE for Kilo = 17.64 sec-2

, initial 
angle 45°, and initial angular velocity 15° sec-I. 

(c) Water in a tube (Fig. 45). What is the frequency 
of vibration of 5 liters of water (about 1.3 gal) in a 
U-shaped tube of diameter 4 cm, neglecting friction? 

~ _____ n 

-r~- t 
Fig. 43. Flat spring (Project 8a) 

(y=o) 

Fig. 44. Torsional 
vibrations (Project 8b) 

Fig. 45. Tube (Project Be) 

19-171 DAMPED MOTION 

9. (Frequency) Find an approximation formula for w* in 
terms of Wo by applying the binomial theorem in (9) 
and retaining only the first two terms. How good is the 
approximation in Example 2, III? 
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10. (Extrema) Find the location of the maxima and 
minima of)' = e-2t cos ( obtained approximately from 
a graph of .1' and compare it with the exact values 
obtained by calculation. 

11. (Maxima) Show that the maxima of an underdamped 
motion occur at equidistant (-values and find the 
distance. 

12. (Logarithmic decrement) Show that the ratio of two 
consecutive maximum amplitndes of a damped oscillation 
( 10) is constant, and the natnral logarithm of this ratio, 
called the logarithmic decrel1lellt. equals j. = 27Texlw*. 
Find .1 for the solutions of .1''' + 2y' + 5)' = O. 

13. (Shock absorber) What is the smallest value of the 
damping constant of a shock absorber in the suspension 
of a wheel of a car (consisting of a spring and an absorber) 
that will provide (theoretically) an oscillation-free ride 
if the mass of the car is 2000 kg and the spring constant 
equals 4500 kg/sec2? 

14. (Damping constant) Consider an underdamped 
motion of a body of mass III = 2 kg. If the time 
between two consecutive maxima is 2 sec and the 
maximum amplitude decreases to ! of its initial value 
after 15 cycles. what is the damping constant of the 
system? 

15. (Initial value problem) Find the critical motion (8) 
that starts from Yo with initial velocity vo. Graph 
solution curves for ex = 1, Yo = I and several Vo such 
that (i) the curve does not intersect the t-axis, (ii) it 
intersects it at ( = L, 2, ... ,5. respectively. 

16. (Initial value problem) Find the overdamped motion 
(7) that starts from Yo with initial velocity Vo. 

17. (Overdamping) Show that in the overdamped case, the 
body can pass through y = 0 at most once. 

18. CAS PROJECT. Transition Between Cases I. II, Ill. 
Study this transition in terms of graphs of typical 
solutions. (Cf. Fig. 46.) 

69 

(a) Avoiding ullllecessary generality is part of good 
modeli1lg. Decide that the initial value problems (A) 
and (B), 

(A) y" + cy' + Y = 0, yeO) = 1, y'(O) = 0 

(B) the same with different c and y' (0) = -2 (instead 
of 0), will give practically as much information as a 
problem with other m, k, yeO), y' (0). 

(b) COllsider (A). Choose suitable values of c, perhaps 
better ones than in Fig. 46 for the transition from Case 
III to II and I. Guess c for the curves in the figure. 

(c) Time to go to rest. Theoretically, this time is 
infinite (why?). Practically, the system is at rest when 
its motion has become very small, say, less than 0.1 % 
of the initial displacement (this choice being up to us), 
that is in our case. 

(1 I) ly(t)1 < 0.001 for all ( greater than some tl' 

In engineering constructions, damping can often be varied 
without too much trouble. Experimenting with your 
graphs. frnd empirically a relation between tl and c. 

(d) Solve (A) a1lalytically. Give a rea~on why the 
solution c of Y«(2) = -0.001, with t2 the solution of 
y' (t) = O. will give you the best possible c satisfying (11). 

(e) Consider (B) empirically as in (a) and (b). What 
is the main difference between (B) and (A)? 

10 

Fig. 46. CAS Project 18 

2.5 Euler-Cauchy Equations 
Euler-Cauchy equations4 are ODEs of the form 

(1) x 2
}''' + ax}" + by = 0 

4LEONHARD EULER (1707-1783) was an enormously creative Swiss mathematician. He made fundamental 
contributions to almost all branches of mathematics and its application to physics. His important books on algebra 
and calculus contain numerous basic results of his own research. The great French mathematician AUGUSTIN 
LOUIS CAUCHY (1789-1857) is the father of modem analysis. He is the creator of complex analysis and had 
great influence on ODEs, PDEs, infinite series, elasticity theory, and optics. 
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with given constants a and b and unknown -"(Jo). We substitute 

(2) "= xfn 

and its derivatives y' = 111Xm
-

l and -,," = /11(111 - 1)x",-2 into (1). This gives 

We now see that (2) was a rather natural choice because we have obtained a common 
factor xm. Dropping it, we have the auxiliary equation 11l(m - I) + am + b = 0 or 

(3) 111
2 + (a - 1)11l + b = O. tNote: a - I, not a.) 

Hence y = xnt is a solution of (1) if and only if I1l is a root of (3). The roots of (3) are 

(4) 1112 = !(l - a) - V~(l - a)2 - b. 

Case I. If the roots 1111 and 1112 are real and different. then solutions are 

and 

They are linearly independent since their quotient is not constant. Hence they constitute 
a basis of solutions of (I) for all x for which they are real. The corresponding general 
solution for all these x is 

(5) (Cl, C2 arbitrary). 

E X AMP L E 1 General Solution in the Case of Different Real Roots 

The Euler-Cauchy equation 

x2y" + 1.5xy' - 0.5.1' = 0 

has the auxiliary equlltion 

1112 + 0.5111 - 0.5 = O. (Note: 0.5. not 1.5!) 

The roots are 0.5 and -\. Hence a basis of solutions for all positive x is Yl = xO.5 and Y2 = IIx and gives the 
general solution 

(x> 0). • 
Case II. Equation (4) shows that the auxiliary equation (3) has a double root 
1111 =!O - a) if and only if (I - a)2 - 4b = O. The Euler-Cauchy equation (I) then 
has the form 

(6) 

A solution is h = xO - a )f2. To obtain a second linearly independent solution, we apply 
the method of reduction of order from Sec. 2.1 as follows. Starting from )'2 = uy!, we 
obtain for u the expression (9), Sec. 2.1, namely, 

u=JUdx where U = ~ exp (-Jp dX) . 
)'1 
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Here it is crucial that p is taken from the ODE written in standard form. in our case. 

(6*) " y 
a , 

+ - y + x . 

71 

This shows that p = alx (not ax). Hence its integral is a in x = In (xa), the exponential 
function in U is Ih:a

, and division by YI 2 = x1
-

a gives U = l/x, and u = In x by integration. 
Thus, in this "critical case," a basis of solutions for positive x is Yl = xm and 

Y2 = X 1n In x, where 111 =!O - a). Linear independence follows from the fact that the 
quotient of these solutions is not constant. Hence, for all x for which )'1 and Yz are defined 
and real, a general solution is 

(7) y = (e1 + c21nx)xm, 111 = ~(l - a). 

E X AMP L E 2 General Solution in the Case of a Double Root 

The Euler-Cauchy equation x2v" - 5xy' + 9y = 0 has the auxiliary equation nz2 - 6m + 9 = O. It has the 
double root III = 3, so that a general solution for all positive x is 

• 
Case III. The case of complex roots is of minor practical importance, and it suffices to 
present an example that explains the derivation of real solutions from complex ones. 

E X AMP L E 3 Real General Solution in the Case of Complex Roots 

The Euler-Cauchy equation 

hm; the auxiliary equation /11
2 

- 0.4111 + 16.04 = O. The root" are complex conjugate. /Ill = 0.2 + 4i and 
nz2 = 0.2 - 4i, where i = v'=T. (We know from algebra that if a polynomial with real coefficients has complex 
roots. these are always conjugate.) Now use the trick of writing x = eln 

,. and obtain 

xm1 = xO.2+4i = xO.2(eln X)4i = xO.2/4In Xli, 

xm2 = xO.2-4i = xO.2(eln X)-4i = xO.2e -(4 In xl i. 

Next apply Euler's formula (11) in Sec. 2.2 with I = 4 In x to these two formulas. This gives 

x m1 = xO.
2 [cos (4 In x) + i sin (4 In x)], 

X"'2 = xO.2 rcos (4 In x) - ; sin (4 In x)]. 

Add these two formulas. so that the sine drops uut. and divide the result by 2. Then subtract the second formula 
from the first, so that the cosine drops out, and divide the result by 2i. This yields 

XO.2 cos (4 In x) and XO.2 sin (4 In x) 

respectively. By the superposition principle in Sec. 2.2 these are solutions of the Euler-Cauchy equation (I). 
Since their quotient cot (4 In x) is not constant, they are linearly independent. Hence they form a basis of solutions, 
and the corresponding real gencral solution for all positive x is 

(8) y = xo.
2 [A cos (4 In x) + B sin (4Inx)l. 

Figure 47 shows typical solution curves in the three cases discussed, in particular the basis functions in 
Examples I and 3. • 
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Y, xl.5 Y xlnx 
Y 

3.0 
1.5 xO.5lnx~ 1.5 

x O.2 sin (4Inx) xl 1.0 1.0 

()\'\ 2.0 
0.5 0.5 \I xO.5 x-1.5 lnx \ 

1.0 0 2 x 0 O.ll 1 1.4, 2 x 
-0.5 -0.5 

VV '\ 

-1.0 -1.0 
'\ 

"-

0 2 x -1.5 -1.5 x O.2 cos (4 In x) 

Case I: Real roots Case II: Double root Case III: Complex roots 

Fig. 47. Euler-Cauchy equations 

E X AMP L E 4 Boundary Value Problem. Electric Potential Field Between Two Concentric Spheres 

Find the electrostatic potential v = vCr) between two concentric spheres of radii rl = 5 cm and r2 = 10 cm 
kept at potentials VI = 110 Y and v2 = 0, respectively. 

Physicallnjorlll{[tion. vCr) is a solution of the Euler-Cauchy equation rv" + 2v' = O. where v' = dvldr. 

Solution. The auxiliary equation is 1112 + III = O. It has the roots 0 and - 1. This gives the general solution 
vCr) = Cl + c2fr. From the "boundary conditions" (the potentials on the spheres) we obtain 

C2 
v(5) = cl + 5" = 110. 

C2 
v(i 0) = Cl + 10 = O. 

By subtraction. c2flO = 110. C2 = llOO. From the second equation. Cl = -c2f10 = -llO. Allswer: 

vCr) = -llO + llOOIr Y. Figure 48 shows that the potential is not a straight line. as it would be for a potential 
between two parallel plates. For example, on the sphere ofradius 7.5 cm it is not 11012 = 55 Y, but considerably 
less. (Whm is it?) • 

v 

100 , 

"' 80 

60 

40 

20 

0
5 6 7 8 9 10 r 

Fig. 48. Potential v(r) in Example 4 

11-101 GENERAL SOLUTION 111-151 INITIAL VALUE PROBLEM 

Find a real general solution, showing the details of your 
work. 

2. 4x2y" + 4xy' - y = 0 

3. x 2y" - 7xy' + 16y = 0 

4. x 2y" + 3x-,,' + y = 0 5. x 2)''' - xy' + 2y = 0 

6. 2x2
)"" + 4x)" + 5y = 0 

7. (lOx 2D2 - 20xD + 22.4l)y = 0 

8. (4x 2D2 + l)y = 0 9. (100x 2D2 + 9l)y = 0 

10. (I Ox2D2 + 6xD + 0.5/)y = 0 

Solve and graph the solution, showing the details of your 
work. 

11. x 2y" - 4xy' + 6)' = 0, y(l) = I, y'(l) = 0 

12. x 2
.\''' + 3xy' + y = 0, y(\) = 4, y' (1) = -2 

13. (x 2D2 + 2xD + 100.251)y = 0, y(1) = 2. 
y'(1) = -11 

14. (x 2 D2 - 2xD + 2.251)y = 0, y(l) = 2.2, 
y' (1) = 2.5 

15. (xD2 + 4D)y = 0, y(l) = 12, y' (1) = -6 
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16. TEAM PROJECT. Double Root (C) Verify by substitution thatxm In x, 111 = (1 - a)/2, 
is a solution in the critical case. (A) Derive a second linearly independent solution of 

(I) by reduction of order; but instead of using (9), Sec. 
2.1, perform all steps directly for the present ODE (I). 
(B) Obtain x In In xby considering the solutionsxm and 
xm + s of a suitable Euler-Cauchy equation and letting 
s~O. 

(D) TransfoI1n the Euler-Cauchy equation (1) into an 
ODE with constant coefficients by setting x = et (x > 0). 

(E) Obtain a second linearly independent solution of 
the Euler-Cauchy equation in the "critical case" from 
that of a constant-coefficient ODE. 

2.6 Existence and Uniqueness of Solutions. 
Wronskian 

THEOREM 1 

In this section we shall discuss the general theory of homogeneous linear ODEs 

(1) y" + p(x)y' + q(x)y = 0 

with continuous, but otherwise arbitrary variable coefficients p and q. This will concern 
the existence and form of a general solution of (1) as well as the uniqueness of the solution 
of initial value problems consisting of such an ODE and two initial conditions 

(2) 

with given xo, Ko, and K1 . 

The two main results will be Theorem 1, stating that such an initial value problem 
always has a solution which is unique, and Theorem 4, stating that a general solution 

(3) (Cl, Cz arbitrary) 

includes all solutions. Hence linear ODEs with continuous coefficients have no "singular 
solutions" (solutions not obtainable from a general solution). 

Clearly, no such theory was needed for constant-coefficient or Euler-Cauchy equations 
because everything resulted explicitly from our calculations. 

Central to our present discussion is the following theorem. 

Existence and Uniqueness Theorem for Initial Value Problems 

If p(x) and q(x) are continuous functions on some open interval J (see Sec. 1.1) and 
Xo is in J, then the initial value problem consisting of (1) and (2) has a unique 
solution y(x) on the interval 1. 

The proof of existence uses the same prerequisites as the existence proof in Sec. 1.7 
and will not be presented here; it can be found in Ref. [All] listed in App. 1. Uniqueness 
proofs are usually simpler than existence proofs. But for Theorem 1, even the uniqueness 
proof is long, and we give it as an additional proof in App. 4. 
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THEOREM 2 

CHAP. 2 Second-Order Linear ODEs 

Linear Independence of Solutions 
Remember from Sec. 2.1 that a general solution on an open interval 1 is made up from a 
basis ."1> Y2 on I, that is, from a pair of linearly independent solutions on I. Here we call 
)'t, )'2 linearly independent on 1 if the equation 

(4) implies k) = 0, k2 = O. 

We call y) • ."2 linearly dependent on 1 if this equation also holds for constants kh k2 

not both O. In this case, and only in this case. YI and Y2 are proportional on I. that is (see 
Sec. 2.1), 

(5) (a) YI = /...)'2 or (b) )'2 = [YI for all x on I. 

For our discussion the following criterion of linear independence and dependence of 
solutions will be helpful. 

Linear Dependence and Independence of Solutions 

LeT the ODE (I) Izave cOllfinuous coefficients p(x) and q(x) all an open interval I. 
Then two solutions YI and .1'2 of (1) on T are linearly dependent on I if and only if 
their "Wronskian" 

(6) 

is 0 lit some Xo in 1. FlIrthermore, if W = 0 at an x = Xo in I. then W == 0 on I: hence 
if there is all Xl ill 1 at wlzich W is IIOt 0, thell ."1. Y2 are linearly independent on I. 

PROOF (a) Let."1 and Y2 be linearly dependent on I. Then (5a) or (5b) holds on I. If (5a) holds, then 

W(YI, .1'2) = YI.\'~ - Y2Y~ = k)'2Y~ - Y2k.1'~ = O. 

Similarly if (5b) holds. 
(b) Conversely, we let W()'I' )'2) = 0 for some x = Xo and show thar this implies linear 

dependence of YI and .\'2 on T. We consider the linear system of equations in the unknowns 
kI , k2 

(7) 
kIYI(XO) + k2 Y2(XO) = 0 

kl.)'~(xo) + k2)'~(XO) = O. 

To eliminate k2 • multiply the first equation by Y~ and the second by -Y2 and add the 
resulting equations. This gives 

Similarly, to eliminate kI' multiply the first equation by -Y~ and the second by YI and 
add the resulting equations. This gives 
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If W were not 0 at xo, we could divide by Wand conclude that kl = k2 = O. Since W is 
0, division is not possible, and the system has a solution for which kl and k2 are not both 
O. Using these numbers k1> k2 , we introduce the function 

y(X) = k 1Yl(X) + k2Y2(X), 

Since (1) is homogeneous linear, Fundamental Theorem I in Sec. 2.1 (the superposition 
principle) implies that this function is a solution of (I) on I. From (7) we see that it satisfies 
the initial conditions )"(xo) = 0, y' (xo) = O. Now another solution of (I) satisfying the 
same initial conditions is y* == O. Since the coefficients p and q of (I) are continuous. 
Theorem I applies and gives uniqueness, that is, y == y*, written out 

on 1. 

Now since kl and k2 are not both zero, this means linear dependence of )'1> )"2 on l. 
(e) We prove the last statement of the theorem. If W(xo) = 0 at an Xo in I, we have 

linear dependence of .h, Y2 on I by part (b), hence W == 0 by part (a) of this proof. Hence 
in the case of linear dependence it cannot happen that W(xl ) =f. 0 at an XI in 1. If it does 
happen, it thus implies linear independence as claimed. • 

Remark. Determinants. Students familiar with second-order determinants may have 
noticed that 

Y~I 
Y2 

I I 

= YIY2 - Y2Yl' 

This determinant is called the Wronski deTennina1lt5 or, briefly, the Wronskian, of two 
solutions)"1 and)"2 of U), a<; has already been mentioned in (6). Note that its four entries 
occupy the same positions as in the linear system 0). 

E X AMP L E 1 Illustration of Theorem 2 

The functions)"1 = cos wx and )"2 = sin wx are solutions of)"" + w2y = O. Their Wronskian is 

I 
cos.wx 

W(cos wx. sin wx) = 
-WSlfl wX 

sin wx I 
= YIY~ - Y2Y~ = w cos2 

lUX + w sin2 wx = w. 
wcO~ wX 

Theorem 2 shows that the,e solutions are linearly independent if and only if w '* O. Of course, we can see 
this directly from the quotient \'2IYl = tan wx. For w = 0 we have .\"2 == 0, which implies linear dependence 
(why?). • 

E X AMP L E 2 Illustration of Theorem 2 for a Double Root 

A general solution of y" - 2y' + Y = 0 on any interval is y = lCI + C2X)ex. (VeIify!). The corresponding 
Wronskian is not O. which shows linear independence of eX and xi'" on any interval. Namely. 

• 
5Introduced by WRONSKI (JOSEF MARIA HONE. 1776-1853). Polish mathematician. 
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A General Solution of (1) Includes All Solutions 
This will be our second main result, as announced at the beginning. Let us start with existence. 

THEOREM 3 Existence of a General Solution 

/fp(x) and q(x) are continuous on an open interval I, then (1) has a general solution 
on T. 

PROOF By Theorem 1, the ODE (1) has a solution heX) on T satisfying the initial conditions 

THEOREM 4 

and a solution Y2(X) on T satisfying the initial conditions 

The Wronskian of these two solutions has at x = Xo the value 

Hence, by Theorem 2. these solutions are linearly independent on l. They fonn a basis of 
solutions of (1) on T, and y = ("1)'1 + C2Y2 with arbitrary c1- C2 is a general solution of (1) 
on T, whose existence we wanted to prove. • 

We finally show that a general solution is as general as it can possibly be. 

A General Solution Includes All Solutions 

/f the ODE (1) has cnntinuuus cnefficients p(x) and q(x) on some open interval I, 
then every solution Y = Y(x) of (1) on 1 is of the form 

(8) 

where Yv Y2 is any basis of solutions of (l) on 1 and Cv C2 are suitable constants. 
Hence (1) does not have singular solutions (that is, solutions not obtainablefrom 

a general solution). 

PROOF Let y = Y(x) be any solution of (1) on I. Now, by Theorem 3 the ODE (I) has a general 
solution 

(9) 

on 1. We have to find suitable values of C1> C2 such that y(x) = Y(x) on I. We choose any 
Xo in 1 and show first that we can find values of Cl' C2 such that we reach agreement at 
xo, that is, y(xo) = Y(xo) and y' (xo) = Y' (xo). Written out in terms of (9), this becomes 

(10) 
(a) Clh(Xo) + C2.'"2(XO) = Y(xo) 

(b) CIY~(XO) + C2Y~(XO) = Y' (xo). 
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We detennine the unknowns Cl and C2' To eliminate C2, we multiply (lOa) by J~(xo) and 
(lOb) by -Y2(XO) and add the resulting equations. This gives an equation for Cl' Then we 
multiply (lOa) by -J~(xo) and (lOb) by Yl(XO) and add the resulting equations. This gives 
an equation for C2' These new equations are as follows, where we take the values of Jb 

y~. )'2' Y~' Y. y' at Xo, 

Cl()'IY~ - yzY~) = Cl W(y!> .\'2) = yy~ - Y2 Y ' 

C2(YIJ~ - J2Y~) = C2 W(Yb )'2) = h Y' - Yy~. 

Since)'b Yz is a basis, the Wronskian W in these equations is not 0, and we can solve for 
Cl and C2' We call the (unique) solution Cl = Cb C2 = C2 . By substituting it into (9) we 
obtain from (9) the particular solution 

Now since Cb C2 is a solution of (10), we see from (10) that 

From the uniqueness stated in Theorem 
everywhere on /, and the proof is complete. 

this implies that y* and Y must be equal 

• 
Looking back at he content of this section, we see that homogeneous linear ODEs with 
continuous variable coefficients have a conceptually and structurally rather transparent 
existence and uniqueness theory of solutions. Important in itself, this theory will also 
provide the foundation of an investigation of nonhomogeneous linear ODEs, whose theory 
and engineering applicatiuns we shall study in the remaining four sections of this chapter. 

.-i. __ ._.__ ..... ..-. -_ .. _-.. ~ .. -- ~--....... 
11-171 BASES OF SOLUTIONS. 

CORRESPONDING ODEs. WRONSKIANS 

Find an ODE (1) for which the given functions are 
solutions. Show linear independence (a) by considering 
quotients, (b) by Theorem 2. 

1. eO. 5x , e-O.5x 

3. ekx
, xekx 

5. XO. 25 , xO. 25 In x 

7. cos (2 In X), sin (2 In X) 

8. e-2x, xe- 2x 

10. x- 3 • x- 3 In x 

12. e-2x cos wx, e-2x sin wx 

2. cos 7rX, sin 7rX 

4. x3 , x- 2 

6. e3 .4x, e- 2 .5X 

11. cosh 2.5x, sinh 2.5x 

13. e- x cos 0.8x, e- X sin 0.8x 

14. X-I cos (In x), X-I sin (In x) 

15. e- 2
.
5x cos 0.3x. e- 2 .5x sin 0.3x 

16. e-kx cos 7rX, e-kx sin 7rX 

17. e- 3 .8 "ITx, xe- 3 .8 "ITx 

18. TEAM PROJECT. Consequences of the Present 
Theory. This concems some noteworthy general 
properties of solutions. Assume that the coefficients p 
and q of the ODE (l) are continuous on some open 
interval T. to which the subsequent statements refer. 
(A) Solve y" - Y = 0 (a) by exponential functions, 
(b) by hyperbolic functions. How are the constants in 
the corresponding general solutions related? 
(8) Prove that the solutions of a basis cannot be 0 at 
the same point. 
(C) Prove that the solutions of a basis cannot have a 
maximum or minimum at the same point. 

(D) Express (Y2/Yl) , by a fOimula involving the 
Wronskian W. Why is it likely that such a formula 
should exist? Use it to find Win Prob. 10. 

(E) Sketch YI(X) = x3 if X ~ 0 and 0 if x < 0, 
Y2(X) = 0 if x ~ 0 and x

3 if x < O. Show linear 
independence on - I < x < 1. What is their 
Wronskian? What Euler-Cauchy equation do Y10 Y2 
satisfy? Is there a contradiction to Theorem 2? 
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(F) Prove Abel's formula6 

W(.vrlX), Y2lx)) = c exp [- fXp(t) dt] 
Xo 

where c = W(Yl (xo), Y2(xo». Apply it to Prob. 12. Him: 
Write (1) for Y1 and for )'2' Eliminate q algebraically 
from these two ODEs. obtaining a first-order linear 
ODE. Solve it. 

2.7 Nonhomogeneous ODEs 

DEFINITION 

THEOREM 1 

Method of Undetermined Coefficients 
In this section we proceed from homogeneous to nonhomogeneous linear ODEs 

(1) y" + p(x)y' + q(x)y = rex) 

where rex) =t= O. We shall see that a "general solution" of (1) is the sum of a general 
solution of the corresponding homogeneous ODE 

(2) y" + p(x)y' + q(x)y = 0 

and a "particular solution" of 0). These two new terms "general solution of (\)" and 
"particular solution of 0)" are defined as follows. 

General Solution, Particular Solution 

A general solution of the nonhomogeneous ODE (I) on an open interval I is a 
solution of the form 

(3) 

here. Yh = ClYl + C2Y2 is a general solution of the homogeneous ODE (2) on I and 
Yp is any solution of ( 1) on I containing no arbitrary constants. 

A particular solution of (I) on I is a solution obtained from (3) by assigning 
specific values to the arbitrary constants Cl and C2 in .rh' 

Our task is now twofold, first to justify these definitions and then to develop a method 
for finding a solution yp of (I). 

Accordingly, we first show that a general solution as just defined satisfies (I) and that 
the solutions of 0) and (2) are related in a very simple way. 

Relations of Solutions of (1) to Those of (2) 

(a) The sum of a solution y of (I) 0/1 some open inten>al I alld a solution yof 
(2) on I is a solution of (1) 0/1 l. In particular. (3) is a solution of (1) on l. 

(b) The differellce oftH'o solutions of (1) on I is a solution of(2) on I 

6NIELS HENRIK ABEL (1802-1829). Norwegian mathematician. 
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PROOF (a) Let L[y] denote the left side of (1). Then for any solutions y of (1) and yof (2) on I, 

THEOREM 2 

L[y + y] = L[y] + L[y] = r + 0 = r. 

(b) For any solutions \" and y';' of (I) on I we have L[y - y*] = L[ \"] - L[y*] = r - r = O . 

• Now for homogeneous ODEs (2) we know that general solutions include all solutions. 
We show that the same is true for nonhomogeneous ODEs (1). 

A General Solution of a Nonhomogeneous ODE Includes All Solutions 

If the coefficients p(x), q(x), and the function r(x) in (1) are continuous on some 
open interval I, then ever), solution of (I) on T is obtained by assigning suitable 
values to the arbitrary constants CI and C2 in a general solution (3) of (I) on I. 

PROOF Let y* be any solution of (\) on T and Xo any x in I. Let (3) be any general solution of (1) 
on T. This solution exists. Indeed, Yh = CIYI + C2Y2 exists by Theorem 3 in Sec. 2.6 
because of the continuity assumption, and Yp exists according to a construction to be shown 
in Sec. 2.10. Now, by Theorem I (b) just proved, the difference Y = y* - Yp is a solution 
of (2) on I. At Xo we have 

Theorem I in Sec. 2.6 implies that for these conditions, as for any other initial conditions 
in I, there exists a unique particular solution of (2) obtained by assigning suitable values 
to cl , C2 in Yh. From this and y* = Y + YP the statement follows. • 

Method of Undetermined Coefficients 
Our discussion suggests the following. To solve the nonhomogeneous ODE (I) or an initial 
value problel1lfor (1), we have to solve the homogeneolls ODE (2) and find any solution 
yp of (1), so that we obtain a general solution (3) of (1). 

How can we fmd a solution Yp of (1)? One method is the so-called method of 
undetermined coefficients. It is much simpler than another, more general method (to be 
discussed in Sec. 2.10). Since it applies to models of vibrational systems and electric 
circuits to be shown in the next two sections, it is frequently used in engineering. 

More precisely, the method of undetermined coefficients is suitable for linear ODEs 
with constant coefficients a and b 

(4) y" + aJ' + by = rex) 

when rex) is an exponential function, a power of x, a cosine or sine, or sums or products 
of such functions. These functions have derivatives similar to rex) itself. This gives the 
idea. We choose a form for Yp similar to rex). but with unknown coefficients to be 
determined by substituting that yp and its derivatives into the ODE. Table 2.1 on p. 80 
shows the choice of Yp for practically important fonns of rex). Corresponding ruIes are 
as follows. 
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Choice Rules for the Method of Undetermined Coefficients 

(a) Basic Rule. If rex) in (4) is one of the fUllctions in the first colU111n in 
Table 2.1. choose )'p ill the same line and determine its undetermined 
coefficients hy suhstituting .\"p and its deril'atil'es i1lfo (4). 

(b) Modification Rule. rl a tenn in your chnice for .\"p happens to be a 
solution of the homogeneous ODE corresponding to (4). lIlultiply your 
choice of.\'1' by x (or by x 2 !l this solution c()rre~pollds to a double root of 
the characteristic equation of the h01l1ogeneous ODE). 

(C) Sum Rule. rl rex) is a sum of functiolls ill the first column of Table 2.1. 
choose for .\"p the sum of the functions ill the corresponding lines of the 
second COllllll1l. 

The Basic Rule applies when rex) is a single tenn. The Modification Rule helps in the 
indicated case, and to recognize such a case. we have to solve the homogeneous ODE 
first. The Sum Rule follows by noting that the sum of two solutions of (I) with r = rl 

and r = r2 (and the same left side!) is a solution of (1) with r = 1"1 + r2' (Verify!) 
The method is self-correcting. A false choice for .\"p or one with too few tenns will lead 

to a contradiction. A choice with too many terms will give a correct result. with superfluous 
coefficients coming out zero. 

Let us illustrate Rules (a)-( c) by the typical Examples 1-3. 

Table 2.1 Method of Undetermined Coefficients 

Term in rex") Choice for .\'p(.t) 

key:r Cey:r 

kt" (n = O. L· .. ) Knxn + Kn_1xn- 1 + + K1x + Ko 
kcos wx 

} K cos wx + M sin wx 
k sin wx 

ke"'" cos wx 
} e"X(K cos wx + M sin wx) 

ke,,:r sin wx 

E X AMP L E 1 Application of the Basic Rule (a) 

Sol"e the initial value problem 

(5) .1'(0) = O. y' (0) = 1.5 . 

Solutioll. Step 1. Gelleral solutioll of the homogelleolls ODE. The ODEy" + Y = a has the general solution 

y" = A cos ~ + B sin X. 

Step 2. SoluRon yp Of the nonhomogelleous ODE. We first try .1'1' = Kx2
. Then v; = 2K. By substitution. 

2K + K\-2 = 0.00Ix2. For this to hold for all X. the coefficient of each power of x (x2 and ,0) must be the same 
on both sides; thus K = 0.001 amI 2K = O. a contradiction. 

The second line in Table 2.1 suggests (he choice 

Then 

Equating the coefficients of x2. X, .\ 
0 on both sides. we have K2 = 0.001. K] = 0, 2K2 + Ko = O. Hence 

Ko = -2K2 = -0.002. Tills givesyp = 0.001x2 
- 0.002, and 

y = -,"/z + -'"1' = A cos x + B sin x + O.OOh 2 - 0.002. 
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Step 3. Solutioll of the il/itial value problem. Setting x = 0 and using the first initial condition gives 
yeO) = A - 0.002 = O. hence A = 0.002. By differentiation and from the second initial condition, 

.1" = y;, + Y~ = -A sin x + B cos x + 0.002x and /(0) = B = 1.5. 

This gives the answer (Fig. 49) 

y = 0.002 cos x + 1.5 sinx + 0.001x2 - 0.002. 

Figure 49 shows y as well as the quadratic parabola)')) about which y is oscillating, practically like a sine curve 
since the cosine term is smaller by a factor of about 111000. • 

x 

Fig. 49. Solution in Example 1 

E X AMP L E 2 Application of the Modification Rule (b) 

Solve the initial value problem 

(6) y" + 3/ + 2.25y = -10 e-1.5x, yW) = I, y'(O) = O. 

Solution. Step 1. Gel/eral solutioll of the homogelleous ODE. The characteristic equation of the 
homogeneous ODE is A2 + 3A + 2.25 = (A + 1.5)2 = O. Hence the homogeneou~ ODE has the general 
solution 

Step 2. Solutio" Yp of the "ollhomogelleous ODE. The function e-1.5x on the light would normally require 

the choice Ce-1.5x. But we see from .I'h that this function is a solution of the homogeneous ODE. which 
corresponds to a double root of the characteristic equation. Hence, according to the Modification Rule we have 
to multIply our choice function by x 2

. That is, we choo~ 

Then 

We substitute these expressions into the given ODE and omit the factor e-1.
5x. This yields 

C(2 - 6x + 2.25x2
) + 3C(2x - 1.5x2

) + 2.25Cx2 = -10. 

Comparing the coefficients of x 2
• x. xU gives 0 = 0.0 = O. 2C = -10. hence C = -5. This gives the solution 

Yp = _5x2e-1.
5x. Hence the given ODE has the general solution 

Step 3. Solutioll of the initial value problem. Setting x = 0 in y and using the first initial condition. we obtain 
.1'(0) = CI = I. Differentiation of y gives 

From this and the second initial condition we have y' (0) = c2 - 1.5cl = O. Hence c2 = 1.5cl = 1.5. This 
gives the answer (Fig. 50) 

The curve begins with a horizontal tangent. crosses the x-axis at x = 0.6217 (where 1 + 1.5x - 5x2 = 0) and 
approaches the axis ti'om below as x increases. • 



82 CHAP. 2 Second-Order Linear ODEs 

y 
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-D.5 ~ 

-1.0 

Fig. 50. Solution in Example 2 

E X AMP L E 3 Application of the Sum Rule (c) 

Solve the initial value problem 

(7) y" + 2y' + 5)" = (,0.5" T 40 cos lOx - 190 sin lOx. yeo) = 0.16. y' (0) = 40.08. 

Solution. Step 1. General solutioll of the homogeneous ODE. The characteristic equation 

A2 + 2A + 5 = (A + 1 + 2i){A + 1 - 20 = 0 

shows that a real general solution of the homogeneous ODE is 

J'h = e -x (A cos 2, + B sin 2x). 

Step 2. Solution of the Ilonhomogeneous ODE. We write Yp = )"1'1 + .1"1'2, where J'pl corresponds to the 
exponential term and .\1'2 to the sum of the other twO terms. We set 

Then and 

Substitution into the given ODE and omission of the exponemial factor gives (0.25 + 2,0.5 + 5)C = 1, hence 
C = 116.25 = 0.16. and )"1'1 = 0.16eo.5". 

We now set )"1'2 = K cos lOx + M sin lOx. as in Table 2.1. and obtain 

)'~2 = -10K sin lOx + 10M cos lOx. \";2 = -lOOK cos lOx - 100M sin lOx. 

Substitution into the given ODE gives for the cosine terms and for the sine tenTIS 

- lOOK + 2· 10M + 5K = 40, -100M - 2' 10K + 5M = -190 

or, by simplification. 

-95K + 20M = 40, -10K - 95M = -190. 

The solution is K = O. M = 2. Hence .1'1'2 = 2 ,in lOx. Together, 

Y = Yh + Ypl + .1'1'2 = e-x (A co~ 2x + B SIl1 2<) + 0.16,,0.5x + 2 sin lOx. 

Step 3. Sollllion of the initial value problem. From y and the first initial condition. y{O) = A + 0.16 = 0.16, 
hence A = O. Differentiation gives 

y' = e -xC -A cos 2x - B sin 2, - 2A sin 2x + 2B cos 2,) + 0.08eO.5 :< + 20 cos lOx. 

From this and the second initial condition we have /(0) = -A + 2B + 0.08 + 20 = 40.08, hence B = 10. 
This gives the solution (Fig. 51) 

Y = lOe-x sin 2x + 0.16,,°·5.< + 2 sin lOx. 

The firsllerrn goes to 0 relatively fas!. When x = 4. it is practically O. as the dashed curves::': lOe -x + 0.16eo.5r 

show. From then on, the last term, 2 sin lOx, gives an oscillation about 0.16eo.5,", the monotone increasing 
dashed curve. • 
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Fig. 51. Solution in Example 3 

Stability. The following is important. If (and only if) all the roots of the characteristic 

equation of the homogeneous ODE y" + ay' + by = 0 in (4) are negative, or have a negative 

real part, then a general solution.Vl, of this ODE goes to 0 as x ~ (Xl, so that the "transient 

solution" Y = Yh + yp of (4) approaches the "steady-state solution" yp' [n this case the 
nonhomogeneous ODE and the physical or other system modeled by the ODE are called 

stable; otherwise they are called unstable. For instance, the ODE in Example 1 is unstable. 
Basic applications follow in the next two sections. 

[1-141 GENERAL SOLUTIONS OF 
NONHOMOGENEOUS ODEs 

Find a (real) general solution. Which rule are you using? 
(Show each step of your calculation.) 

1. -,," + 3/ + 2y = 30e2x 

2. y" + 4/ + 3.75y = 109 cos 5x 

3. y" - 16y = 19.2e4 ,' + 60e x 

4. y" + 9y = cos x + 4 cos 3x 

5. )''' + y' - 6)' = 6x3 - 3x2 + 12x 

6. y" + 4y' + 4)' = e-2x sin 2x 

7. y" + 6/ + 73y = 80e x cos 4x 

8. y" + lOy' + 25y = 100 sinh 5x 

9. y" - 0.16y = 32 cosh O.4x 

10. y" + 4/ + 6.25y = 3.125(x + 1)2 

11. y" + 1.44y = 24 cos 1.2x 

12. y" + 9y = 18x + 36 sin 3x 

13. y" + 4v' + 5)' = 25x2 + 13 sin 2x 

14. y" + 2y' + Y = 2x sin x 

115-201 INITIAL VALUE PROBLEMS FOR 
NONHOMOGENEOUS ODEs 

Solve the initial value problem. State which mles you are 
using. Show each step of your calculation in detail. 

15. y" + 4y = 16 cos 2x, y(O) = 0, y' (0) = 0 

16. y" - 3)" + 2.25)' = 27(x2 
- x). 

yeO) = 20, y' (0) = 30 

17. y" + 0.2y' + 0.26)' = 1.22eo.5x
, 

y(O) = 3.5. y' (0) = 0.35 

18. y" - 2/ = 12e2x - 8e-2x, 

yeO) = -2, /(0) = 12 

19. y" - v' - 12\" = 144x3 + 12.5, 
~·(O) ~ 5, . y' (0) = -0.5 

20. y" + 2y' + lOy = 17 sin x - 37 sin 3x, 
y(O) = 6.6, y' (0) = -2.2 

21. WRITING PROJECT. Initial Value Problem. Write 
out all [he details of Example 3 in your own words. 
Discuss Fig. 51 in more detail. Why is it that some of 
the "half-waves" do not reach the dashed curves. 
whereas others preceding them (and, of course, all later 
ones) excede the dashed curves? 

22. TEAM PROJECT. Extensions of the Method of 
Undetermined Coefficients. (a) Extend the method 
to products of the function in Table 2.1. (b) Extend 
the method to Euler-Cauchy equations. Comment on 
the practical significance of such extensions. 

23. CAS PROJECT. Structure of Solutions of Initial 
Value Problems. Using the present method. fmd, graph, 
and discuss the solutions y of initial value problems of 
your own choice. Explore effects on solutions caused by 
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changes of initial conditions. Graph yp' y, .I' - Yp 
separately, to see the separate effects. Find a problem in 
which (a) the pan of y resulting from Yh decreases to zero, 
(b) increases. (c) is not present in the answer y. Study a 

problem with .1'(0) = 0, y' (0) = O. Consider a problem 
in which you need the Modification Rule (a) for a simple 
root, (b) for a double root. Make sure that your problems 
cover all three Cases I. II. III (see Sec. 2.2). 

2.8 Modeling: Forced Oscillations. Resonance 
In Sec. 2.4 we considered vertical motions of a mass-spring system (vibration of a mass 
111 on an elastic spring, as in Figs. 32 and 52) and modeled it by the homogeneolls linear 
ODE 

(1) my" + cy' + ky = O. 

Here yet) as a function of time t is the displacement of the body of mass 111 from rest. 
These were free motions, that is, motions in the absence of extemalforces (outside forces) 
caused solely by internal forces. forces within the system. These are the force of inertia 
my", the damping force c/ (if c > 0). and the spring force ky acting as a restoring force. 

We now extend our model by including an external force, call it ret), on the right. Then 
we have 

(2*) my" + cy' + ky = ret). 

Mechanically this means that at each instant t the resultant of the internal forces is in 
equilibrium with r(t). The resulting motion is called a forced motion with forcing 
function ret), which is also known as input or driving force, and the solution yet) to be 
obtained is called the output or the response of the system to the driving force. 

Of special interest are periodic external forces. and we shall consider a driving force 
of the form 

ret) = Fo cos wt (Fo > 0, w > 0). 

Then we have the nonhomogeneous ODE 

(2) my" + cy' + ky = Fo cos wt. 

Its solution will familiarize us with further interesting facts fundamental in engineering 
mathematics, in particular with resonance. 

c Dashpot 

Fig. 52. Mass on a spring 
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Solving the Nonhomogeneous ODE (2) 
From Sec. 2.7 we know that a general solution of (2) is the sum of a general solution Yh 
of the homogeneous ODE (1) plus any solution yp of (2). To find yp' we use the method 
of undetermined coefficients (Sec. 2.7), starting from 

(3) yp(t) = a cos wI + b sin wI. 

By differentiating this function (chain rule!) we obtain 

, . b 
Yp = -wa Sill wt + w cos wt. 

y; = -w2a cos wt - w2b sin wt. 

Substituting Yp' y~, and y; into (2) and collecting the cosine and the sine terms, we get 

[(k - 11lw2)a + web] cos wt + [ -wca + (k - 11lw2)b] sin wt = Fo cos wt. 

The cosine terms on both sides must be equaL and the coefficient of the sine term on the 
left must be zero since there is no sine term on the right. This gives the two equations 

web = Fo 
(4) 

-well 

for determining the unknown coefficients a and b. This is a linear system. We can solve 
it by elimination. To eliminate b, multiply the first equation by k - 11lW

2 and the second 
by - we and add the results, obtaining 

Similarly. to eliminate a. multiply the first equation by we and the second by k - 11lW
2 

and add to get 

If the factor (k - 11lW2)2 + w2e2 is not zero, we can divide by this factor and solve for a 

and b, 

If we set ~ = Wo (> 0) as in Sec. 2.4, then k = III Wo 
2 and we obtain 

(5) 

We thus obtain the general solution of the nonhomogeneous ODE (2) in the fonn 

(6) yet) = y,,(1) + Yp(t). 
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Here Yh is a general solution of the homogeneous ODE (1) and Yp is given by (3) with 
coefficients (5). 

We shall now discuss the behavior of the mechanical system, distinguishing between 
the two cases c = 0 (no damping) and c > 0 (damping). These cases will correspond to 
two basically different types of output. 

Case 1. Undamped Forced Oscillations. Resonance 
If the damping of the physical system is so small that its effect can be neglected over the 
time interval considered, we can set c = O. Then (5) reduces to a = Fo/[m(wo2 

- w2
)] 

and b = O. Hence (3) becomes (use wo2 = kim) 

(7) 

Here we must assume that w2 *" wo
2; physically, the frequency wl(27T) [cycles/sec] of the 

driving force is different from the natural frequency wo/(27T) of the system, which is the 
frequency of the free undamped motion [see (4) in Sec. 2.4]. From (7) and from (4*) in 
Sec. 2.4 we have the general solution of the "undamped system" 

(8) 

We see that this output is a superpositioll of two harmollic oscillations of the frequencies 
just mentioned. 

Resonance. We discuss (7). We see that the maximum amplitude of Yp is (put 
cos wt = I) 

I 
(9) where p= ------::-

I - (wlwO)2 

ao depends on w and woo If w ~ wo, then p and ao tend to infinity. This excitation of 
large oscillations by matching input and natural frequencies (w = wo) is called 
resonance. p is called the resonance factor (Fig. 53), and from (9) we see that plk = aolFo 
is the ratio of the amplitudes of the particular solution Yp and of the input Fo cos wt. 
We shall see later in this section that resonance is of basic importance in the study of 
vibrating systems. 

In the case of resonance the nonhomogeneous ODE (2) becomes 

(10) 

Then (7) is no longer valid. and from the Modification Rule in Sec. 2.7 we conclude that 
a particular solution of (10) is of the form 

Yp(t) = tea cos wot + b sin Wol). 



SEC. 2.8 Modeling: Forced Oscillations. Resonance 

p 

co 

Fig. 53. Resonance factor p(co) 

By substituting this into (10) we find a = 0 and b = Fo/(2I1lwo). Hence (Fig. 54) 

(11) 
Fo . 

yp(t) = --- t sm wot. 
2mwo 

87 

We see that because of the factor t the amplitude of the vibration becomes larger and 
larger. Practically speaking, systems with very little damping may undergo large vibrations 
that can destroy the system. We shall return to this practical aspect of resonance later in 
this section. 

Fig. 54. Particular solution in the case of resonance 

Beats. Another interesting and highly important type of oscillation is obtained if w is 
close to woo Take, for example, the particular solution [see (8)] 

(12) 
Fo 

yet) = 2 2 (cos wt - cos wot) 
m(wo - w) 

Using (12) in App. 3.1, we may write this as 

2Fo . (wo + w) ( Wo - w ) yet) = 2 2 sm t sin 2 t. 
lIl(wo - W ) 2 

Since w is close to wo, the difference Wo - w is small. Hence the period of the last sine 
function is large, and we obtain an oscillation of the type shown in Fig. 55, the dashed 
curve resulting from the first sine factor. This is what musicians are listening to when 
they tune their instruments. 
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y 

Fig. 55. Forced undamped oscillation when the difference 
of the input and natural frequencies is small ("beats") 

Case 2. Damped Forced Oscillations 
If the damping of the mass-spring system is not negligibly small, we have e > 0 and a 
damping term cy' in (1) and (2). Then the general solution y" of the homogeneous ODE 
(I) approaches zero as t goes to infinity, as we know from Sec. 2.4. Practically, it is zero 
after a sufficiently long time. Hence the "transient solution" (6) of (2), given by 
Y = Yh + Yp' approaches the "steady-state solution" yp' This proves the following. 

Steady-State Solution 

After a sufficiently long time the output of a damped vibrating system under a purely 
sinusoidal dril'ing force [see (2)1 will practically be a harmonic oscillation whose 
.!i"eqllency is that of the input. 

Amplitude of the Steady-State Solution. Practical Resonance 
Whereas in the undamped case the amplitude of yp approaches infinity as w approaches 
woo this will not happen in the damped case. In this case the amplitude will always be finite. 
But it may have a maximum for some w depending on the damping constant c. This may 
be called practical resonance. It is of great importance because if c is not too large, then 
some input may excite oscillations large enough to damage or even destroy the system. 
Such cases happened. in particular in earlier times when less was known about resonance. 
Machines, cars, ships, airplanes, bridges, and high-rising buildings are vibrating mechanical 
systems. and it is sometimes rather difficult to find constructions that are completely free 
of undesired resonance effects, caused, for instance, by an engine or by strong winds. 

To study the amplitude of yp as a function of w, we write (3) in the form 

(13) yp(t) = C* cos (wt - 1]). 

C* is called the amplitude of yp and 1] the phase angIe or phase lag because it measures 
the lag of the output behind the input. According to (5). these quantities are 

(14) 
b we 

tan 1](w) = 
a 
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Let us see whether C*(w) has a maximum and, if so. find its location and then its size. 
We denote the radicand in the second root in C* by R. Equating the derivative of C* to 
zero, we obtain 

The expression in the brackets [ ... J is zero if 

(15) 

By reshuffling terms we have 

The right side of this equation becomes negative if c 2 > 2mk, so that then (15) has no 
real solution and C* decreases monotone as w increases, as the lowest curve in Fig. 56 
on p. 90 shows. If c is smaller, c2 < 2mk, then (15) has a real solution w = Wmax, where 

(15*) 

From (15*) we see that this solution increases as c decreases and approaches Wo 

as c approaches zero. See also Fig. 56. 
The size of C*(wrnax) is obtained from (14), with w2 

= w~ax given by (15*). For this 
w2 we obtain in the second radicand in (14) from (15*) 

and ( 2) 2 C 2 
Wo - --2 c. 

2m 

The sum of the right sides of these two formulas is 

Substitution into (14) gives 

(16) 

We see that C*(wrnax) is always finite when c > O. Furthermore, since the expression 

in the denominator of (16) decreases monotone to zero as c 2 « 2mk) goes to zero, the 
maximum amplitude (16) increases monotone to infinity, in agreement with our result in 
Case 1. Figure 56 shows the amplification C*IFo (ratio of the amplitudes of output and 
input) as a function of W for m = 1, k = I, hence Wo = 1, and various values of the 
damping constant c. 
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Figure 57 shows the phase angle (the lag of the outpllt behind the input), which is less 

than 7r/2 when w < wo, and greater than 7r/2 for w > woo 

C' 

Po 
4 

3 

2 

c= 2 
OO---~--~--~--~--
o 

'1 
TC ,----c=o 

2 

c = 112 
c=l 

c=2 

w 

Fir- 56. Amplification C*/Fo as a function 
of w for m = 1, k = 1, and various values 

of the damping constant c 

Fig. 57. Phase lag 1) as a function of w for 
m = 1, k = I, thus Wo = 1, and various 

values of the damping constant c 

11-81 STEADY-STATE SOLUTIONS 

Find the steady-state oscillation of the mass-spring system 
modeled by the given ODE. Show the details of your 
calculations. 

1. /' + 6/ + 8)" = 130 cos 3t 

2.4.'"" + 8y' + 13." = 8 sin 1.5t 

3. y" + y' + 4.25y = 221 cos 4.5t 

4. y" + 4/ + 5y = cos t - sin t 

5. (D2 + 2D + I)y = -sin 2t 

6. (D 2 + 4D + 31)y = cos r + l cos 3r 

7. (D 2 + 6D + 181»), = cos 3t - 3 sin 3t 

8. (D 2 + 2D + lOl)y = -25 sin 4t 

19-141 TRANSIENT SOLUTIONS 
Find the transient motion of the mass-spring system 
modeled by the given ODE. (Show the details of your 
work.) 

9. y" + 2y' + 0.75.'" = 13 sin t 

10. y" + 4/ + 4)' = cos 4t 

11. 4)''' + 12)"' + 9.,' = 75 sin 3t 

12. (D2 + 5D + 41)), = sin 2t 

13. (D2 + 3D + 3.251))' = 13 - 39 cos 2t 

14. (D2 + 2D + 5l)y = I + sin t 

115-201 INITIAL VALUE PROBLEMS 

Find the motion of the mass-spring system modeled by 
the ODE and initial conditions. Sketch or graph the 
sol urian curve. In addition, sketch or graph the curve of 

y - Yp to see when the system practically reaches the 
steady state. 

15. y" -t 2.'" + 26y = 13 cos 3t. 
),(0) = 1. y' (0) = 0.4 

16. y" + 64y = cos t. y(O) = O. /(0) = 1 

y(Q) = 0.7, 17. y" + 6y' + 8." = 4 sin 2t. 
y' (0) = - 11.8 

18. (D2 + 2D + I)y = 75(sin t - ~ sin 21 + l sin 3t), 
y(O) = O. y'(O) = I 

19. (4D2 + 12D + 13l)r = 12 cos t - 6 sin t, 
yeO) = 1. y' (0) = -] 

20. y" + 25.\' = 99 cos 4.9t, .1'(0) = 2, y' (0) = 0 

21. (Beats) Derive the formula after (12) from (12). Can 
there be beats if the system has damping? 

22. (Beats) How does the graph ofthe solution in Prob. 20 
change if you change (a) yeO). (b) the frequency of the 
driving force? 

23. WRITING PROJECT. Free and Forced Vibrations. 
Write a condensed report of 2-3 pages on the most 
important facts about free and forced vibrations. 

24. CAS EXPERIMENT. Undamped Vibrations. 
(a) Solve the initial value problem y" + Y = cos wt, 

w2 *- I, yeO) = o. y' (0) = O. Show that the solution 
can be written 

(17) 

2 [ 1 ] y(t) = ---2 sin - (1 + w)t X 
I-w 2 

sin [~(l -W)t]. 
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(b) Experiment with (17) by changing w to see the 
change of the curves from those for small w (> 0) to 
beats, to resonance and to large values of w (see Fig. 58). 

25. TEAM PROJECT. Practical Resonance. (a) Give 
a detailed derivation of the crucial formula (16). 

(b) By considering dC*/dc show that C*( wmax) 

increases as c (~ V2111k) decreases. 

m=0.2 

20n 

-10 

m= 0.9 

I 

~11~l 0.04 

I~ I~ 
'IOn 

I 
-0.04 

m=6 

(c) lIIustrate practical resonance with an ODE of your 
own in which you vary c. and sketch or graph 
corresponding curves as in Fig. 56. 

(d) Take your ODE with c fixed and an input of two 
terms, one with frequency close to the practical 
resonance frequency and the other not. Discuss and 
sketch or graph the output. 

(e) Give other applications (not in the book) in which 
resonance is important. 

26. (Gun barrel) Solve 

{

I 
" y + Y = 

ifO~t~7T 

o ift>7T, 

.1'(0) = y' (0) = O. 

This models an undamped system on which a force F 
acts during some interval of time (see Fig. 59), for 
instance, the force on a gun banel when a shell is fired, 
the barrel being braked by heavy springs (and then 
damped by a dashpot, which we disregard for 
simplicity). Hint. At 7T both y and yf must be continuous. 

m=1 k=1 
F 
~ ~ 

n 

Fig. 58. Typical solution curves in CAS Experiment 24 Fig. 59. Problem 26 

2.9 Modeling: Electric Circuits 
Designing good models is a task the computer cannot do. Hence setting up models has 
become an important task in modern applied mathematics. The best way to gain experience 
is to consider models from various fields. Accordingly, modeling electric circuits to be 
discussed will be profitable for all students, not just for electrical engineers and computer 
scientists. 

We have just seen that linear ODEs have important applications in mechanics (see also 
Sec. 2.4). Similarly, they are models of electric circuits, as they occur as portions of large 
networks in computers and elsewhere. The circuits we shall consider here are basic 
building blocks of such networks. They contain three kinds of components, namely, 
resistors, inductors, and capacitors. Figure 60 on p. 92 shows such an RLC-circuit, as 
they are called. In it a resistor of resistance R n (ohms), an inductor of inductance L H 
(henrys), and a capacitor of capacitance C F (farads) are wired in series as shown, and 
connected to an electromotive force E(t) V (volts) (a generator, for instance), sinusoidal 
as in Fig. 60, or of some other kind. R, L, C, and E are given and we want to find the 
current I(t) A (amperes) in the circuit. 
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Fig. 60. RLC-circuit 

An ODE for the cunent I(t) in the RLC-circuit in Fig. 60 is obtained from the following 
law (which is the analog of Newton's second law, as we shall see later). 

Kirchhoff's Voltage Law (KVL).7 The l'oltage (the electromotive force) impressed all 

a closed loop is equal to the Slllll of the voltage drops across the other elements of tlze 
loop. 

In Fig. 60 the circuit is a closed loop. and the impressed voltage E(t) equals the sum 
of the voltage drops across the three elements R, L, C of the loop. 

Voltage Drops. Experiments show that a current 1 flowing through a resistor. inductor 
or capacitor causes a voltage drop (voltage difference, measured in volts) at the two ends; 
these drops are 

RI (Ohm's law) Voltage drop for a resistor of resistance R ohms (D), 

dI 
LJ' = L - Voltage drop for an inductor of inductance L henrys (H), 

dt 

Q 

C 
Voltage drop for a capacitor of capacitance C farads (F). 

Here Q coulombs is the charge on the capacitor, related to the current by 

dQ 
I(t) = dt ' equivalently, Q(t) = fI(t) dr. 

This is summarized in Fig. 61. 
According to KVL we thus have in Fig. 60 for an RLC-circuit with electromotive force 

E(t) = Eo sin wt (Eo constant) as a model the "integro-differential equation" 

0') , I f LJ + RI + C I lit = E(t) = Eo sin wt. 

7GUSTAV ROBERT KIRCHHOFF (1824--1887). German physicist. Later we shall also need Kirchholrs 
current law (KCL): 

At allY poillf of a circlIit, the Slim of the illf/owillg currents is equal to the slim of the outflowil1g currents. 

The units of measurement of electrical quantities are named after ANDRE MARIE AMPERE (\ 775-1836), 
French physicist. CHARLES AUGUSTIN DE COULOMB (1736-1806), French physicist and engineer, 
MICHAEL FARADAY (1791-1867), Engli~h physicist, JOSEPH HENRY (I 797-1 878}, American physicist. 
GEORG SIMON OHM (1789-1854), Gemmn physicist, and ALESSANDRO VOLTA (1745-1827), Italian 
physicist. 
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-
Name Symbol Notation Unit Voltage Drop 

Ohm's resistor ---ANVV- R Ohm's resistance ohmsC!l) RI 

Inductor ...ro0OO"L L Inductance henrys (H) L dl 
dt 

Capacitor ---11- C Capacitance farads CF) Q/C 

Fig. 61. Elements in an RLC-circuit 

To get rid of the integral, we differentiate (1') with respect to t, obtaining 

(1) LI" + RI' + ~ I = E' (t) = Eow cos wt. 
C 

This shows that the current in an RLC-circuit is obtained as the solution of this 
nonhomogeneous second-order ODE (1) with constant coefficients. 

From (l '), using I = Q', hence l' = Q", we also have directly 

(1") " , I LQ + RQ + - Q = Eo sin wt. 
C 

But in most practical problems the current I(t) is more important than the charge Q(t), 
and for this reason we shall concentrate on (1) rather than on (1"). 

Solving the ODE (1) for the Current. 
Discussion of Solution 
A general solution of (l) is the sum I = Ih + Ip, where Ih is a general solution of the 
homogeneous ODE corresponding to (1) and lp is a particular solution of (1). We first 
determine Ip by the method of undetermined coefficients. proceeding as in the previous 
section. We substitute 

(2) I p = a cos wt + b sin wt 

I~ = w( -a sin wt + b cos wt) 

I; = w2
( -a cos wt - b sin wt) 

into (I). Then we collect the cosine terms and equate them to Eow cos wt on the right. 
and we equate the sine terms to zero because there is no sine term on the right. 

Lw2( -a) + Rwb + alC = Eow 

LW2(-b) + Rw(-a) + blC = 0 

(Cosine tenus) 

(Sine terms). 

To solve this system for a and b, we first introduce a combination of Land C, called the 
reactance 

(3) s = wL -
1 

wC 
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Dividing the previous two equations by w, ordering them, and substituting S gives 

-Sa + Rb = Eo 

-Ra - Sb = O. 

We now eliminate b by multiplying the first equation by S and the second by R, and 
adding. Then we eliminate a by mUltiplying the first equation by R and the second by 
-So and adding. This gives 

In any practical case the resistance R is different from zero. so that we can solve for a 
and b, 

(4) 

Equation (2) with coefficients a and b given by (4) is the desired pm1icular solution Ip of 
the nonhomogeneous ODE (I) governing the current I in an RLC-circuit with sinusoidal 
electromotive force. 

Using (4). we can write Ip in terms of "physically visible" quantities. namely. amplitude 
10 and phase lag () of the cun'ent behind the electromotive force, that is. 

(5) 

where [see (4) in App. A3.1] 

tan () = 
a 

b 

S 

R 

The quantity V R2 + 52 is called the impedance. Our formula shows that the impedance 
equals the ratio Eollo. This is somewhat analogous to Ell = R (Ohm's law). 

A general solution of the homogeneous equation con'esponding to (I) is 

where Al and A2 are the roots of the characteristic equation 

R 1 
A2 + - A + - = O. 

L LC 

We can write these roots in the form Al = -a + {3 and A2 = -a - {3, where 

a= 
R 

2L ' 

Now in an actual circuit, R is never zero (hence R > 0). From this it follows that Ih 
approaches zero, theoretically as t ~ x, but practically after a relatively short time. (This 
is as for the motion in the previous section.) Hence the transient current 1= Ih + Ip tends 



SEC. 2.9 Modeling: Electric Circuits 95 

to the steady-state current [p, and after some time the output will practically be a harmonic 
oscillation, which is given by (5) and whose frequency is that of the input (of the 
electromotive force). 

E X AMP L E 1 RLC-Circuit 

Find the cunent l(f) in an RLC-circuit with R = II n (ohms), L = 0.1 H (henry), C = 1O-2F (farad), which 

is connected to a source of voltage E(f) = 100 sin 400f (hence 63~ HL = 63~ cycles/sec, because 
400 = 63~' 21T). A,sume that cunent and charge are zero when f = O. 

Solution. Step I. General solution of the homogeneous ODE. Substituting R, L, C, and the derivative E' (f) 
into (I), we obtain 

0.11" + Ill' + JOOI = 100' 400 cos 400f. 

Hence the homogeneous ODE is 0.11" + III' + 1001 = O. Its characteristic equation is 

0.1,1.2 + 11,1. + 100 = O. 

The roob are ,1.1 = ·10 and ,1.2 = -100. The corresponding general solution of the homogeneous ODE is 

Step 2. Particular solution Ip of (1). We calculate the reactance S = 40 - 114 = 39.75 and the steady-state 
current 

11'(1) = a cos 400f ~ /J sin 4001 

with coefficients obtained from (4) 

-100· 39.75 100·11 
[[= ]]2 + 39.752 = -2.3368, b= 2 2 = 0.6467. 

II + 39.75 

Hence in our present case, a general solution of the nonhomogeneous ODE (1) is 

(6) 1(1) = C1e-lOt + C2e-lOOt - 2.3368 cos 400f + 0.6467 sin 4(Xlf. 

Step 3. Particular solution satisfying the initial conditions. How to use Q(O) = O? We finally detennine C1 

and C2 from the initial conditions 1(0) = 0 and Q(O) = O. From the first condition and (6) we have 

(7) 1(0) = ("1 + c2 - 2.3368 = 0, hence 

Furthermore, using (1 ') with f = 0 and noting that the integral equals QU) (see the formula before (1'», we 
obtain 

I 
L1'(0) + R'O + C'O = 0, hence 1'(0) = o. 

Differentiating (6) and setting f = 0, we thus obtain 

l' (0) = - IOc1 - 100c2 + 0 + 0.6467' 4(Xl = 0, hence - Hlc1 = HXJ(2.3368 - C1) - 258.68. 

The solution of this and (7) is c1 = -0.2776, C2 = 2.6144. Hence the answer is 

/(t) = -0.:!.776e- lOt + 2.61..J4e- lOOt 
- 2.3368 cos 400f + 0.6467 sin 400f. 

Figure 62 on p. 96 shows I(t) as well as 11'(1), which practically coincide, except for a very short time near 
f = 0 because the exponential terms go to zero very rapidly. Thus after a velY short time the current will 
practically execute harmonic oscillations of the input frequency 63~ Hz = 63~ cycles/sec. Its maximum amplitude 
and phase lag can be ,een from (5), which here takes the form 

11'(1) = 2.4246 sin (400f - 1.3(08). • 
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Fig. 62. Transient and steady-state currents in Example 1 

Analogy of Electrical and Mechanical Quantities 
Entirely different physical or other systems may have the same mathematical model. 
For instance, we have seen this from the various applications of the ODE y' = Icy in 
Chap. I. Another impressive demonstration of this unifyi1lg power of mathematics is 
given by the ODE (I) for an electric RLC-circuit and the ODE (2) in the last section for 
a mass-spring system. Both equations 

I 
L/" + RI' + I E C = OW cos wt and my" + cy' + ky = Fo cos wt 

are of the same form. Table 2.2 shows the analogy between the various quantities involved. 
The inductance L corresponds to the mass 111 and, indeed, an inductor opposes a change 
in current, having an "inertia effect" similar to that of a mass. The resistance R corresponds 
to the damping constant c, and a resistor causes loss of energy, just as a damping dashpot 
does. And so on. 

This analogy is strictly quantitative in the sense that to a given mechanical system we 
can construct an electric circuit whose current will give the exact values of the displacement 
in the mechanical system when suitable scale factors are introduced. 

The practical impOltallce of this analogy is almost obvious. The analogy may be used 
for constructing an "'electrical moder· of a given mechanical model, resulting in substantial 
savings of time and money because electric circuits are easy to assemble, and electric 
quantities can be measured much more quickly and accurately than mechanical ones. 

Table 2.2 Analogy of Electrical and Mechanical Quantities 

Electncal System 

Inductance L 
Resistance R 

Reciprocal lIC of capacitance 

Derivative Eow cos wt of } 
electromotive force 

Current I(t) 

Mechanical System 

Mass 111 

Damping constant c 

Spring modulus k 

Driving force Fo cos wt 

Displacement yet) 



SEC. 2.9 Modeling: Electric Circuits 

. -
1. (RL-circuit) Model the RL-circuit in Fig. 63. Find the 

general solution when R. L. E are any constants. Graph 
or sketch solutions when L = 0.1 H. R = 5 D. 
E = 12V. 

2. (RL-circuit) Solve Pmb. 1 when E = Eo sin wt and R, 
L, Eo, ware arbitrary. Sketch a typical solution. 

3. (RC-circuit) Model the RC-circuit in Fig. 66. Find the 
current due to a constant E. 

4. (RC-circuit) Find the current in the RC-circuit in 
Fig. 66 with E = Eo sin wt and arbitrary R. C. Eo> and w. 

L 

Fig. 63. RL-circuit 

Current Btl 
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Fig. 64. Currents in Problem 1 

121t 

Fig. 65. Typical current I = e-o.lt + sin (t - ~7T) 

in Problem 2 

R 

c 
Fig. 66. RC-circuit 
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Current l(t) 

c 

Fig. 67. Current 1 in Problem 3 

5. (LC-circuit) This is an RLC-circuit with negligibly 
small R (analog of an undamped mass-spring system). 
Find the current when L = 0.2 H. C = 0.05 F, and 
E = sin r V, assuming zero initial current and charge. 

6. (LC-circuit) Find the current when L = 0.5 H. 
C = 8 . 10-4 F, E = [2 V and initial current and charge 
zero. 

17-91 RLC-CIRCUITS (FIG. 60, P. 92) 

7. (Tuning) In runing a stereo system to a radio station, 
we adjust the tuning control (tum a knob) that changes 
C (or perhaps L) in an RLC-circuit so that the amplitude 
of the steady-state current (5) becomes maximum. For 
what C will this happen? 

8. (Transient current) Prove the claim in the text that if 
R * 0 (hence R > 0). then the tr~msient cun'ent 
appmaches Ip as r -'; x. 

9. (Cases of damping) What are the conditions for an 
RLC-circuit to be (I) overdamped. (Il) critically 
damped. (III) underdamped? What is the critical 
resistance Rcrit (the analog of the critical damping 

constant 2v;;;i)? 

110-121 Find the steady-state current in the RLC-circuit 
in Fig. 60 on p. 92 for the given data. (Show the details of 
your work.) 

lO. R = 8 D, L = 0.5 H. C = 0.1 F. E = 100 sin 2t V 

11. R = 1 D, L = 0.25 H, C = 5' 10-5 F, E = 1I0 V 

12. R = 2 D, L = I H, C = 0.05 F, E = 1~7 sin 3r V 

@-g; I Find the transient current (a general solution) 
in the RLC-circuit in Fig. 60 for the given data. (Show the 
details of your work.) 

13. R = 6 D, L = 0.2 H. C = 0.025 F. E = 110 sin lOr V 

14. R = 0.2 D, L = 0.1 H, C = 2 F. E = 754 sin 0.51 V 

15. R = 1110 D, L = 112 H. C = 100113 F, 
E = e-4t(1.932 cos ~r + 0.246 sin ~r) V 

I ~~ Solve the initial l'alue problem for the 
RLC-circuit in Fig. 60 with the given data. assuming zero 
initial curren! and charge. Graph or sketch the solution. 
(Sho\\ the details of your worL) 
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16. R = 4 fl, L = 0.1 H, C = 0.025 F, E = 10 sin lOt V (b) The complex impedance Z is defined by 

17. R = 6 fl, L = 1 H. C = 0.04 F. 
E = 600 (cos t + 4 sin t) V 

18. R = 3.6 n. L = 0.2 H, C = 0.0625 F, 
E = 164 cos lOt V 

19. WRITING PROJECT. Analogy of RLe-Circuits and 
Damped Mass-Spring Systems. (a) Write an essay of 
2-3 pages based on Table 2.2. Describe the analogy in 
more detail and indicate its practical significance. 

(b) What RLC-circuit with L = I H is the analog of 
the mass-spring system with mass 5 kg, damping 
constant 10 kg/sec, spring constant 60 kglsec2

, and 
driving force 220 cos lOt? 
(c) Illustrate the analogy with another example of your 
own choice. 

20. TEAM PROJECT. Complex Method for Particular 
Solutions. (a) Find a particular solution of the complex 
ODE 

(8) 

by substituting Ip = Ke'wt (K unknown) and its 
derivatives into (8), and then take the real part Ip of Ip. 
showing that Ip agrees with (2), (4). Hint. Use the Euler 
formula eiwt = cos wt + ; sin wt [(11) in Sec. 2.2 with 
wt instead of tl Note that Eow cos wt in (1) is the real 
part of Eowe'wt in (8). Use ;2 = -1. 

Z = R + is = R + ;(WL - ~c). 

Show that K obtained in (a) can be written as 

Eo 
K= 

iZ 

Note that the real part of Z is R. the imaginary part is 
the reactance S, and the absolute value is the impedance 

Izi = V R2 + S2 as defined before. See Fig. 68. 

(c) Find the steady-state solutLm of the ODE 
[" + 2/' + 31 = 20 cos t, first by the real method and 
then by the complex method, and compare. (Show the 
details of your work.) 

(d) Apply the complex method to an RLC-circuit of 
your choice. 

R Real axis 

Fig. 68. Complex impedance Z 

2.10 Solution by Variation of Parameters 
We continue our discussion of nonhomogeneous linear ODEs 

(1) y" + p(x»),' + q(x)y = rex). 

In Sec. 2.6 we have seen that a general solution of (1) is the sum of a general solution )'1, 
of the corresponding homogeneous ODE and any particular solution yp of (1). To obtain),p 
when r(x) is not too complicated, we can often use the method of 1I1ldetenllined coefficie11fs. 
as we have shown in Sec. 2.7 and applied to basic engineering models in Secs. 2.8 and 2.9. 

However, since this method is restricted to functions r(x) whose derivatives are of a form 

similar to r(x) itself (powers. exponential functions. etc.). it is desirable to have a method valid 
for more general ODEs (I)' which we shall now develop. It is called the method of variation 

of parameters and is credited to Lagrange (Sec. 2.1). Here p, q. r in (1) may be v31iable 
(given functions of x). but we assume that they are continuous on some open interval I. 

Lagrange's method gives a particular solution Yp of (1) on I in the form 

(2) 
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where )'1> .\'2 form a basis of solutions of the corresponding homogeneous ODE 

(3) .\''' + p(x)y' + q(x)y = 0 

on I. and W is the Wronskian of YI • .\'2. 

(4) (see Sec. 2.6). 

CAUTION! The solution formula (2) is obtained under the assumption that the ODE 
is written in standard form. with y" as the flfst term as shown in 0). If it starts with f(x)y". 
divide first by f(x). 

The integration in (2) may often cause difficulties, and so may the determination of YI . 
.\'2 if (I) has variable coefficients. If you have a choice. use the previous method. It is 
simpler. Before deriving (2) let us work an example for which you do need the new 
method. (Try otherwise.) 

E X AMP L E 1 Method of Variation of Parameters 

Solve the nonhomogeneous ODE 

V" + v = sec x = 
cos x 

Solulion. A basis of solutions of the homogeneous ODE on any interval is .1'1 = cos x. 1'2 = sin x. This 
gives the Wronskian 

lIl(YI' .1'2) = cos x cos T - sin x (-sin x) = I. 

From (2). choosing zero constants of integration. we get the particular solution of the given ODE 

Yp = -cos xfSin x sec x dx + sin xfcos x sec x dr 

= cos x In Icos xl + x sin x 
(Fig. 69). 

Figure 69 shows Yp and its first term, which is small, so that x sin x essentially determines the shape of the curve 
of )'p. (Recall from Sec. 2.8 that we have seen x sin x in connection with resonance. except for notation.) From 
yp and the general solution Yh = eIYI + C2.1'2 of the homogeneous ODE we obtain the answer 

.I' = Yh + Yp = (el + In Icosxl) cosx + (e2 + x) sinx. 

Had we included integration constants -Cl' c2 in (2), then (2) would have given the additional 
ci cos x + e2 sin x = eLYI + e2Y2, that is, a general solution of the given ODE directly from (2). This will 
always be the case. • 

y 

10 

5 D I 0 

V 10 12 x 2 8 

-5 

\J -10 

Fig. 69. Particular solution yp and its first term in Example 1 
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Idea of the Method. Derivation of (2) 
What idea did Lagrange have? What gave the method the name? Where do we use the 
continuity assumptions? 

The idea is to start from a general solution 

of the homogeneous ODE (3) on an open interval I and to replace the constants ("the 
parameters") Cl and C2 by functions u(x) and vex): this suggests the name of the method. 
We shall determine u and v so that the resulting function 

(5) 

is a particular solution of the nonhomogeneous ODE (1). Note that Yh exists by Theorem 
3 in Sec. 2.6 because of the continuity of p and q on l. (The continuity of T will be used 
later.) 

We determine u and v by substituting (5) and its derivatives into (1). Differentiating 
(5). we obtain 

v' = u'v + uv' + v\ + vv'. _p .J .1 .2 .2 

Now yp must satisfy (I). This is one condition for lYvo functions u and v. It seems plausible 
that we may impose a second condition. Indeed, our calculation will show that we can 
detelmine u and v such that Yp satisfies (1) and u and v satisfy as a second condition the 
equation 

(6) 

This reduces the first derivative Y; to the simpler form 

(7) 
, , , 

Yp = UYI + VY2' 

Differentiating (7), we obtain 

(8) " " I, " " 
Yp = u YJ + UYI + V Y2 + VY2' 

We now substitute yp and its derivatives according to (5), (7), (8) into (1). Collecting 
terms in u and terms in v, we obtain 

Since Yl and )'2 are solutions of the homogeneous ODE (3), thIs reduces to 

(9a) u'y{ + v'y~ = T. 

Equation (6) is 

(9b) 
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This is a linear system of two algebraic equations for the unknown functions u' and v' 
We can solve it by elimination as follows (or by Cramer's rule in Sec. 7.6). To eliminate 
v', we multiply (9a) by -Y2 and (9b) by y~ and add, obtaining 

thus 

Here, W is the Wronskian (4) of Yl' Y2' To eliminate u' we multiply (9a) by Yl' and (9b) 
by -)'~ and add. obtaining 

thus 

Since h, )'2 form a basis, we have W,* 0 (by Theorem 2 in Sec. 2.6) and can divide by W, 

(10) 

By integration, 

, 
u v' 

I yr 
u = - .~ dx, I "Ir 

v = Wdx. 

These integrals exist because rex) is continuous. Inserting them into (5) gives (2) and 
completes the derivation. • 

- .. -- .. lA __ .... 

11-171 GENERAL SOLUTION 

. •• 

Solve the given nonhomogeneous ODE by variation of 
parameters or undetennined coefficients. Give a geneml 
solution. (Show the details of your work.) 

1. Y" + Y = csc x 

2. y" - 4y' + 4)' = x 2 e x 

3. x 2
)''' - 2x),' + 2y = x 3 cos x 

4. ,," - 2y' + Y = eX sin x 

5. y" + Y = tan x 

6. x 2)''' - xy' + Y = x In Ixl 
7. yo" + Y = cos x + sec x 

8. y" - 4/ + 4-," = 12e2xlx4 

9. (D2 - 2D + l)y = x 2 + x-2ex 

10. (D2 
- l)y = I1cosh x 

11. (D2 + 4l)y = cosh 2x 

12. (x 2D2 + xD - al)y = 3x- 1 + 3x 

13. (x 2D2 - 2xD + 2l)y = x3 sin x 

14. (x 2D2 + xD - 4l)y = 11.>:2 

15. (D2 + l)y = sec x - 10 sin 5x 

16. (x 2D2 + xD + (x 2 - a)l)y = X
3/2 cos x. 

Hint. To find)'1> )'2 set Y = UX-
1I2

. 

17. (x 2D2 + xD + (x 2 - !)l)y = x3/2 sin x. 
Him: As in Prob. 16. 

18. TEAM PROJECT. Comparison of Methods. The 
undetermined-coefficient method should be used 
whenever possible because it is simpler. Compare it 
with the present method as follows. 

(a) Solve y" + 2/ - 15)' = 17 sin 5x by both 
methods, showing all details, and compare. 

(h) Solve y" + 9)" = r1 + /2, rl = sec 3x, 
r2 = sin 3x by applying each method to a suitable 
function on the right. 

(e) Invent an undetermined-coefficient method for 
nonhomogeneous Euler-Cauchy equations by 
experimenting. 
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:a.' • II-$. TIONS AND PROBLEMS 

1. What general properties make linear ODEs particularly 126--341 APPLICATIONS 
attractive? 

2. What is a general solution of a linear ODE? A basis of 
solutions? 

3. How would you obtain a general solution of a 
nonhomogeneous linear ODE if you knew a general 
solution of the corresponding homogeneous ODE? 

4. What does an initial value problem for a second-order 
ODE look like? 

5. What is a paI1icuiar solution and why is it more common 
than a general solution as the answer to practical 
problems? 

6. Why are second-order ODEs more important in 
modeling than ODEs of higher order? 

7. Describe the applications of ODEs in mechanical 
vibrating systems. What are the elecuical analogs of 
those systems? 

8. If a construction, such as a bridge, shows undesirable 
resonance. what could you do? 

19-181 GENERAL SOLUTION 

Find a general solution. Indicate the method you are using 
and sho" the details of your calculation. 

9. y" 2/ Sy = 52 cos 6x 

10. y" + 6/ + 9y = e-3x - 27x2 

11. y" + S/ + 25y = 26 sin 3x 

12. yy" = 2/2 

13. (x2D2 + 2xD - 121)y = Jfx 3 

14. (x2D2 + 61:D + 6/).,· = x 2 

15. (D2 - 2D + I)y = x-3 e x 

16. (D2 - 4D + 5l)y = e 2x csc x 

17. (D2 - 2D + 21)y = e 7 esc x 

18. (4x 2D2 - 24xD + 49/)y = 36x5 

119-251 INITIAL VALUE PROBLEMS 

Solve the following initial value problems. Sketch or graph 
the solution. (Show the details of your wOIk) 

19. y" + 5y' 14y = 0, yeO) = 6, y' (0) = -·6 

20. y" + 6y' + ISy = 0, yeO) = 5. /(0) = -21 

21. x 2y" - xy' - 24y = 0, y(l) = 15, y'(1) = 0 

22. x 2 y" + 15x/ + .J.9\" = o. yO) = 2. y'(1) = -II 

23. y" + 5/ + 6y = IOSx2
, yeO) = IS, y' (0) = -26 

24. -,," + y' + 2.5y = 13 cos x, yeO) = S.O, 
y' (0) = 4.5 

25. (x2D2 + xD - 4l)y = x 3
, yO) = -4/5, 

y' (I) = 93/5 

26. Find the steady-state, solution of the system in Fig. 70 
when 111 = 4. c = 4. k = 17 and the driving force is 
102 cos 3f. 

27. Find the motion of the system in Fig. 70 with mass 
0.25 kg. no damping. spring constant I kg/sec2

, and 
driving force 15 cos O.5f - 7 sin l.5f nt. assuming zero 
initial displacement and velocity. For what frequency 
of the driving force would you get resonance? 

28. In Prob. 26 find the solution corresponding to initial 
displacement 10 and initial velocity O. 

29. Show that the system in Fig. 70 with 111 = 4, c = O. 
k = 36, and driving force 61 cos 3.1 T exhibits beats. 
Him: Choose zero initial conditions. 

30. In Fig. 70 let 111 = 2. c = 6, k = 27, and 
r(t) = 10 cos wf. For what w will you obtain the steady­
state vibration of maximum possible amplitude? 
Determine this amplitude. Then use this wand the 
undetelmined-coefficient method to see whether you 
obtain the same amplitude. 

31. Find an electrical analog of the mass-spring system in 
Fig. 70 with mass 0.5 kg, spling constant 40 kg/sec2

, 

damping constant 9 kg/sec. and driving force 
102 cos 6f nL Solve the analog. assuming Lew initial 
current and charge. 

32. Find the current in the RLC-circuit in Fig. 71 
when L = 0.1 H. R = 20 n, C = 2· 10-4 F. and 
E(t) = 11 0 sin 415t V ( 66 cycles/sec). 

33. Find the current in the RLC-circuit when L = 0.4 H, 
R = 40 n. C = 10-4 F, and E(t) = 220 sin 314t V 
(50 cycles/sec). 

34. Find a pat1icular solution in Prob. 33 by the complex 
method. (See Team Project 20 in Sec. 2.9.) 

Fig. 70. Mass-spring 
system 

E(t) 

Fig. 71. RLC-circuit 
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Second-Order Linear ODEs 

Second-order linear ODEs are particularly important in applications. for instance. 
in mechanics (Sees. 2A. 2.8) and electrical engineering (Sec. 2.9). A second-order 
ODE is called linear if it can be written 

(1) y" + p(x)y' + q(x)y = rex) (Sec. 2.1). 

(If the first term is, say. f(x)y", divide by f(x) to get the "standard form" (1) with 
-,," as the first term.) Equation (1) is called homogeneous if r(x) is zero for all x 
considered, usually in some open interval; this is written rex) "" O. Then 

(2) .v" + p(x»)" + q(x)y = O. 

Equation (I) is called nonhomogeneous if rex) =1= 0 (meaning rex) is not zero for 
some x considered). 

For the homogeneous ODE (2) we have the imp0l1ant superposition principle 
(Sec. 2.1) that a linear combination y = kY1 + 1)'2 of two solutions .'"1, Y2 is again 
a solution. 

Two linearly independent solutions ."1,)'2 of (2) on an open interval I form a basis 
(or fundamental system) of solutions on I. and y = C1Y1 + C2Y2 with arbitrary 
constants (\, C2 is a general solution of (2) on I. From it we obtain a particular 
solution if we specify numeric values (numbers) for C1 and C2. usually by prescribing 
two initial conditions 

(3) (xo. Ko. K1 given numbers; Sec. 2.1). 

(2) and (3) together fonn an initial value problem. Similarly for (I) and (3). 
For a nonhomogeneous ODE (1) a general solution is of the form 

(4) v = v +" . • h . p (Sec. 2.7). 

Here Yh is a general ~olution of (2) and Yp is a particular solution of (I). Such a yp 

can be determined by a general method (variation of parameters, Sec. 2.10) or in 
many practical cases by the method of undetermined coefficients. The latter applies 
when (I) has constant coefficients p and q, and r{x) is a power of x. sine, cosine, 
etc. (Sec. 2.7). Then we write (1) as 

(5) y" + a/ + by = rex) (Sec. 2.7). 

The corresponding homogeneous ODE y' + ay' + by = 0 has solutions y = eAX
• 

where ,\. is a root of 

(6) ,\.2 + a'\' + b = O. 
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Hence there are three cases (Sec. 2.2): 

Case Type ot Roots General Solution 
- - -- --

I Distinct real A b A2 Y = cleA1X + C2
eA2X 

11 1 Double -"2a Y = (Cl + c2x)e-ax
/
2 

III Complex -~(/ ± iw* y = e-ux/2(A eos w*x + B sin w*x) 

Important applications of (5) in mechanical and electIical engineering in connection 
with vibrations and resonance are discussed in Secs. 2.4. 2.7. and 2.8. 

Another large class of ODEs solvable "algebraically" consists of the 
Euler-Cauchy equations 

(7) (Sec. 2.5). 

These have solutions of the form y = x1n, where 111 is a solution of the auxiliary 
equation 

(~) 1112 + (a - l)m + b = O. 

Existence and uniqueness of solutions of (1) and (2) is discussed in Sees. 2.6 
and 2.7, and reduction of order in Sec. 2.1. 
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CHAPTER 3 

Higher Order Linear ODEs 

In this chapter we extend the concepts and methods of Chap. 2 for linear ODEs from order 
n = 2 to arbitrary order n. This will be straightforward and needs no new ideas. However, 
the formulas become more involved, the variety of roots of the characteristic equation (in 
Sec. 3.2) becomes much larger with increasing n, and the Wronskian plays a more 
prominent role. 

Prerequisite: Secs. 2.1, 2.2. 2.6. 2.7, 2.10. 
References Gnd Answers to Problems: App. I Pm1 A. and App. 2. 

3.1 Homogeneous Linear ODEs 
Recall from Sec. 1.1 that an ODE is of Ilth order if the nth derivative yen> = dnyldx rt of 
the unknown function y(x) is the highest occurring delivative. Thus the ODE is of the form 

F(x, y, y', ... . /n» = 0 

where lower order derivatives and y itself mayor may not occur. Such an ODE is called 
linear if it can be written 

(1) In> + Pn_l(X)y<n-D + ... + Pl(X)y' + Po(x)y = rex). 

(For n = 2 this is 0) in Sec. 2.1 with 17] = P and Po = q). The coefficients Po, ... , Pn-l 
and the function r on the right are any given functions of x, and y is unknown./n > has 
coefficient I. This is practical. We call this the standard form. (If you have Pn(x)/n>, 

divide by Pn(x) to get this form.) An nth-order ODE that cannot be written in the form 
(1) is called nonlinear. 

If r(x) is identically zero, r(x) == 0 (zero for all x considered. usually in some open 
interval I). then (1) becomes 

(2) In) + Pn_l(X)y<n-D + ... + Pl(X)y' + Po(x)y = 0 

and is called homogeneous. If rex) is not identically zero. then the ODE is called 
nonhomogeneous. This is as in Sec. 2.1. 

A solution of an nth-order (linear or nonlinear) ODE on some open interval/is a 
function), = hex) that is defined and 11 times differentiable on I and is such that the ODE 
becomes an identity if we replace the unknown function y and its derivatives by h and its 
corresponding derivatives. 

105 
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THEOREM 1 

DEFINITION 

DEFINITION 

CHAP_ 3 Higher Order Linear ODEs 

Homogeneous Linear ODE: Superposition Principle, 
General Solution 
Sections 3_1-3_2 will be devoted to homogeneous linear ODEs and Sec. 3.3 to 
nonhomogeneous linear ODEs_ The basic superposition or linearity principle in Sec_ 2_1 
extends to nth order homogeneous linear ODEs as follows_ 

Fundamental Theorem for the Homogeneous Linear ODE (2) 

For a homogeneous linear ODE (2), sums and constant multiples of solutions on 
some open i1lferval 1 are again solutions 011 l. (This does not hold for a 
nonhomogeneous or nonlinear ODE!) 

The proof is a simple generalization of that in Sec. 2_1 and we leave it to the student_ 
Our further discussion parallels and extends that for second-order ODEs in Sec. 2_1_ 

So we define next a general solution of (2), which will require an extension of linear 
independence from 2 to n functions_ 

General Solution, Basis, Particular Solution 

A general solution of (2) on an open intervall is a solution of (2) on 1 of the form 

(3) (CI, - - - , Cn arbitrary) 

where Y1- - - - , Yn is a basis (or fundamental system) of solutions of (2) on l: that 
is, these solutions are linearly independent on l, as defined below_ 

A particular solution of (2) on 1 is obtained if we assign specific values to the 
n constants CI' - - - , cn in (3)_ 

Linear Independence and Dependence 

11 functions YI(X), - - - • Yn(x) are called linearly independent on some interval 1 
where they are defined if the equation 

(4) on 1 

implies that all kI , - - - , kn are zero_ These functions are called linearly dependent 
on I if this equation also holds on I for some kb - - - , kn not all zero_ 

(As in Secs_ 1.1 and 2_1, the arbitrary constants CI, ••• , Cn must sometimes be restricted 
to some interval.) 

If and only if .\'1, - - - , Yn are linearly dependent on I, we can express (at least) one of 
these functions on I as a "linear combination" of the other n - I functions. that is, as 
a sum of those functions. each multiplied by a constant (zero or not)_ This motivates the 
term "linearly dependent." For instance, if (4) holds with k1 -=1= 0, we can divide by ki and 
express YI as the linear combination 
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Note that when n = 2, these concepts reduce to those defined in Sec. 2.1. 

E X AMP L E 1 Linear Dependence 

Show that the functions .1'1 = x 2
, Y2 = 5x, .1'3 = 2x are linearly dependent on any interval. 

Solution. Y2 = 0.1'1 + 2.5)'3· This proves linear dependence on any interval. • 
E X AMP L E 2 Linear Independence 

Show that.\"1 = X, .1'2 = .. 2'.\"3 = x3 are linearly independent on any interval. for instance, on -I ::'" x ::'" 2. 

Solution. Equation (4) is k 1x + k2X2 + k3X3 = O. Taking (aL~ = -1. (b) x = I. (c) x = 2. we get 

k2 = 0 from (a) + (b). Then k3 = 0 from (c) -2(b). Then kl = 0 from (b). This proves linear independence. 
A better method for testing linear independence of solutions of ODEs will soon be explained. • 

E X AMP L E 3 General Solution. Basis 

THEOREM 2 

Solve the fourth-order ODE 

/v - 5y" + 4.'" = 0 

Solution. As in Sec. 2.2 we try and substitute .I' = eAx. Omitting the common factor eA.'", we obtain the 
characteristic equation 

This is a quadratic equation in J.L ~ A2, namely, 

The roots are J.L = 1 and 4. Hence A = -2. -I. I. 2. This give, four ,olutions. A general solution on any 
interval is 

provided those four solutions are linearly independent. This is true but will be shown later. • 
Initial Value Problem. Existence and Uniqueness 
An initial value problem for the ODE (2) consists of (2) and 11 initial conditions 

(5) 

with given Xo in the open interval I considered. and given Ko, ... , KIl - 1. 
In extension ofthe existence and uniqueness theorem in Sec. 2.6 we now have the following. 

Existence and Uniqueness Theorem for Initial Value Problems 

If the coefficients Po(x), ... , Pn-l(x) of (2) are continuous on some open interred I 
and Xo is in I. then the initial value problem (2), (5) has a unique solution y(x) on 1. 

Existence is proved in Ref. [All] in App. l. Uniqueness can be proved by a slight 
generalization of the uniqueness proof at the beginning of App. 4. 
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E X AMP L E 4 Initial Value Problem for a Third-Order Euler-Cauchy Equation 

THEOREM 3 

Solve the following initial value problem on any open intervall on the positive x-axis containing .T = 1. 

y(1) = 2, /(1)= I, /'(1) = -4. 

Solution. Step 1. General solution. As in Sec. 2.5 we try y = x"'. By differentiation and 'Llb,titution. 

/11(111 - 1)(111 - 2)~m - 3111(111 - Ihm + 611n7n 
- 6xm = O. 

Dropping xm and ordering gives 1113 
- 6n? + 11m - 6 = O. If we can guess the root III = I. we can divide 

by III - I and find the other roots 2 and 3, thus obtaining the solutions x. x2
, x 3

. which are linearly independent 
on 1 (see Example 2). [Tn general one shall need a root-finding method, such as Newton's (Sec. 19.2), also 
available in a CAS (Computer Algebra System).] Hence a general solution is 

valid on any interval I. even when it includes x = 0 where the coefficients of the ODE divided by x3 (to have 
the standard form) are not continuous. 

Step 2. Pwticular solution. The derivatives are.v' = Cl + 2c2x + 3C3X2 and ,," = 2C2 + 6C3X, From this and 
y and the initial conditions we get by setting X = I 

(a) yO) = c 1 + C2 + C3 = 2 

(b) l(1) = cl + 2("2 + 3("3 = 

(c) /'(1) = 2C2 + 6c3 = -4. 

This is solved by Cramer's rule (Sec. 7.6), or by elimination. which is simple, as follows. (b) - (a) gives 
(d) C2 + 2C3 = -I. Then (e) - 2(d) gives C3 = -l. Then (e) gives C2 = I. Finally Cl = 2 from (a). 
Answer: y = 2, + x 2 

- x 3
. • 

Linear Independence of Solutions. Wronskian 
Linear independence of solutions is crucial for obtaining general solutions. Although it 
can often be seen by inspection. it would be good to have a criterion for it. Now Theorem 
2 in Sec. 2.6 extends from order n = 2 to any n. This extended criterion uses the Wronskian 
W of n solutions )'1, ..• , Yn defined as the nth order determinant 

Note that W depends on x since )'1, ... , )'n does. The criteIion states that these solutions 
form a basis if and only if W is not zero: more precisely: 

Linear Dependence and Independence of Solutions 

Let the ODE (2) have continuous coefficients Po(x) . .. '. Pn-l(x) all all open 
interval l. Then n solutions Yb ... , Yn of (2) on 1 are linearly depelldent on 1 if 
and ollly if their Wronskian is zero for some x = Xo in T. Furtlzenl1ore, if W is zero jar 
x = Xo, thell W is identically zero Oil I. Hence if there is an Xl in 1 at which W is 
Ilot ::,ero. thell Y1> ... , Yn are linearly indepel1dellf all I. so that they f01111 a basis 
of solutions of (2) all T. 
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PROOF (a) Let.\"1 ..... Yn be linearly dependent solutions of (2) on I. Then. by definition. there 
are constants kI , ... , kn not all zero, such that for all x in I. 

(7) 

By n - I differentiations of (7) we obtain for all x in I 

=0 

(8) 

(7). (8) is a homogeneous linear system of algebraic equations with a nontlivial solution 
kb ... , kn . Hence its coefficient determinant must be zero for every x on I, by Cramer's 
theorem (Sec. 7.7). But that determinant is the Wronskian W, as we see from (6). Hence 
W is zero for every x on I. 

(b) Conversely, if W is zero at an Xo in I, then the system (7), (8) with x = Xo has a solution 
kI *, ... , kn *, not all zero, by the same theorem. With these constants we define the 
solution y* = kI*YI + .,. + kn*Yn of (2) on I. By (7), (8) this solution satisfies the 
initial conditions y*(xo) = 0, ... , y*(n-l>(xo) = O. But another solution satisfying the 
same conditions is y == O. Hence y* ==)' by Theorem 2, which applies since the coefficients 
of (2) are continuous. Together, y* = kI*YI + ... + k n *)'n == 0 on I. This means linear 
dependence of YI' .... )In on I. 

(c) If W is zero at an Xo in T, we have linear dependence by (b) and then W == 0 by (a). 
Hence if W is not zero at an Xl in I, the solutions YI, ... , Yn must be linearly independent 
001. • 

E X AMP L E 5 Basis, Wronskian 

THEOREM 4 

We can now prove that in Example 3 we do have a basis. In evaluating W. pull out the exponential functions 
columnwise. In the result. subtract Column I from Columns 2. 3. 4 lwithout changing Column I). Then 

expand by Row 1. In the resulting third-order determinant. subtract Column I from Column 2 and expand 
the result by Row 2: 

e-2 .-.:: e-x eX e2x 

3 4 
-2e -2x -x eX 2e2x -2 -I 2 -e 

W= -3 -3 0 = 72. • 4e -2x e-x x 4e2x 4 4 e· 
7 9 16 

-8e -2x -e-x eX 8e2x -8 -I 8 

A General Solution of (2) Includes All Solutions 
Let us first show that general solutions always exist. Indeed. Theorem 3 in Sec. 2.6 extends 
as follows. 

Existence of a General Solution 

If the coefficients Po(x), .. '. Pn-I(x) 0/(2) are continuous on some opell interval 
I, then (2) lzas a general solution Oil I. 
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PROOF We choose any fixed Xo in I. By Theorem 2 the ODE (2) has n solutions )"1' •••• y", 
where)J satisfies initial conditions (5) with Kj - 1 = 1 and all other K"s equal to zero. Their 
Wronskian at Xo equals 1. For instance, when 11 = 3, then Yl(XO) = 1, y~(xo) = 1, 
y~(xo) = I, and the other initial values are zero. Thus, as claimed, 

)'1(XO) Y2(XO) ."3(XO) 0 0 

W(."ICtO)' .\'2(XO), Y3(XO») = Y~(xo) y~(xo) .\'~(xo) 0 0 1. 

y~(xo) Y~Cto) y~(xo) 0 0 

Hence for any n those solutions YI- .... Yn are linearly independent on I, by Theorem 3. 
They form a basis on I. and y = CIY! + ... + CnY" is a general solution of (2) on I. • 

We can now prove the basic prope11y that from a general solution of (2) every solution 
of (2) can be obtained by choosing suitable values of the arbitrary constants. Hence an 
nth order linear ODE has no singular solutions, that is, solutions that cannot be obtained 
from a general solution. 

THEOREM 5 General Solution Includes All Solutions 

If the ODE (2) has continuolls coefficients Po(x). ... , P,,-1 (x) on some open interval 

T, then e\'ery solution." = Y(x) of (2) 011 T is of the foml 

(9) 

where ."1' ... , y" is a basis of solutions of (2) on T al/d C1, ... , Cn are suitable 

cOl/sta1/ts. 

PROOF Let Y be a given solution and y = ('1)'1 + ... + c"."n a general solution of (2) on I. We 
choose any fixed Xo in I and show that we can find constants CI> •• '. Cn for which y and 
its first 1/ - 1 derivatives agree with Y and its corresponding derivatives at xo. That is, 
we should have at x = .\'0 

+ 

+ 
(10) 

, 
cn)' n 

=Y 

= y' 

But this is a linear system of equations in the unknowns Cl, cn . Its coefficient 
determinant is the Wronskian W of Yl, ... , Yn at xo. Since .\'1 •... , y" form a basis. they 
are linearly independent, so that W is not zero by Theorem 3. Hence (10) has a unique 
solution ('1 = CI> ... , Cn = Cn (by Cramer's theorem in Sec. 7.7). With these values 
we obtain the particular solution 

on I. Equation (10) shows that y* and its first n - I derivatives agree at xo with Yand 
its corresponding derivatives. That is, y* and Y satisfy at xo the same initial conditions. 
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The uniqueness theorem (Theorem 2) now implies that y* 
theorem. 

- Y on T. This proves the 

• 
This completes our theory of the homogeneous linear ODE (2). Note that for 11 = 2 it is 
identical with that in Sec. 2.6. This had to be expected. 

- .•. -.... -. - .. -.. --... --
l ]~ TYPICAL EXAMPLES OF BASES 

To get a feel for higher order ODEs. show that the given 
functions are solutions and form a basis on any interval. 
Use Wronskians. (In Prob. 2. x> 0.) 

l. I, x, x 2
, x 3

, .1'iv = 0 

2. 1, x 2
, X4, x2ylll - 3x.1''' + 3.1" = 0 

3. eX, xex. x 2ex. ylll - 3.1''' + 3y' - .1' = 0 

4. e2x cos x. e2x sin x, e-2x cos x, e-2x sin x, 
yiv - 6y" + 25y = O. 

5. I, x, cos 3x, S111 3x, yiv + 9y" = 0 

6. TEAM PROJECT. General Properties of Solutions 
of Linear ODEs. These properties are important in 
obtaining new solutions ii'om given ones. Therefore 
extend Team Project 34 in Sec. 2.2 to 11th-order ODEs. 
Explore statements on sums and multiples of solutions 
of (1) and (2) systematically and with proofs. 
Recognize clearly that no new ideas are needed in this 
extension from 11 = 2 to general 11. 

7-191 LINEAR INDEPENDENCE 
AND DEPENDENCE 

Are the given functions linearly independent or dependent 
on the positive x-axis? (Give a reason.) 

7. I, eX, e-x 8. x + I. x + 2. x 

9. In x, In x 2 • (In X)2 10. e", e- x , sinh 2x 

11. x 2
• xlxl. x 

13. sin 2x. sin x. cos x 

15. tan x. cot x. I 

17. sin x, sin ~x 

19. cos2 x, sin2 x. 27T 

12. x. I/x. 0 

14. cos2 x, sin2 x, cos 2x 

16. (x - 1)2. (x + 1)2. x 

18. cosh x, sinh x, cosh2 x 

20. TEAM PROJECT. Linear Independence and 
Dependence. (a) Investigate the given question about 
a set 5 of functions on an intervall. Give an example. 
Prove your answer. 

(I) If 5 contains the zero function, can 5 be linearly 
independent? 

(2) If 5 is linearly independent on a subinterval J of I. 
is it linearly independent on l? 

(3) If 5 is linearly dependent on a subinterval J of I. 
is it linearly dependent on n 
(4) If 5 is linearly independent on I, is it linearly 
independent on a subinterval J? 

(5) If 5 is linearly dependent on 1. is it linearly 
independent on a subinterval J? 

(6) If 5 is linearly dependent on I, and if T contains 5, 
is T linearly dependent on l? 

(b) In what cases can you use the Wronskian for 
testing linear independence? By what other means can 
you perform such a tcst'? 

3.2 Homogeneous Linear ODEs with Constant 
Coefficients 

In this section we consider nth-order homogeneous linear ODEs with constant coefficients, 
which we write in the form 

(1) 

where lnJ d'\/dr: n
• etc. We shall see that this extends the case 11 = 2 discussed in 

Sec. 2.2. Substituting y = eAX (as in Sec. 2.2), we obtain the characteIistic equation 

(2) 
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of (1). If A is a root of (2), then y = eAX is a solution of (1). To find these roots, you may 
need a numeric method, such as Newton's in Sec. 19.2, also available on the usual CASso 
For general 11 there are more cases than for 11 = 2. We shall discuss all of them and 
illustrate them with typical examples. 

Distinct Real Roots 
If all the 11 roots AI' .... An of (2) are real and different, then the 11 solutions 

(3) AnX 
Yn = e 

constitute a basis for all x. The corresponding general sulution of (1) is 

(4) 

Indeed, the solutions in (3) are linearly independent, as we shall see after the example. 

E X AMP L E 1 Distinct Real Roots 

Solve the ODE y'" - 2y" - y' + 2y = O. 

Soluti01l. The characteristic equation is A 3 
- 2A 2 

- A + 2 = O. II has the roots - I, I, 2; if you find one 
of them by inspection. you can obtain the other two roots by solving a quadratic equation (explain!). The 
corresponding general solution (4) is y = Cle -.< + C2ex + C3e2x. • 

Linear Independence of (3). Students familiar with 11th-order determinants may verify 
that by pulling out all exponential functions from the columns and denoting their product 
by E, thus E = exp [(AI + ... + An)x], the Wronskian of the solutions in (3) becomes 

eA1X eA2X eAnX 

AleA1X 
A 2 e

A2X 
An

eAnX 

W= AI2eAIX A2
2

e
A2X An2eAnx 

AI'-leA1X A2:-leA2X A;:-leAnX 

(5) 
1 

Al A2 An 

=E AI2 A22 A,,2 

A;"-1 A2:-1 An- I 
n 

The exponential function E is never zero. Hence W = 0 if and only if the determinant on 
the right is zero. This is a so-called Vandermonde or Cauchy determinantl It can be 
shown that it equals 

'ALEXANDRE THEOPHILE VANDERMONDE (1735-1796). French mathematician, who worked on 
solution of equations by determinants. For CAUCHY see footnote 4, in Sec. 2.5. 
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THEOREM 1 

THEOREM 2 

(6) 

where V is the product of all factors Aj - Ak withj < k (~ n); for instance, when II = 3 
we get - V = -(AI - A2)(A1 - A3)(A2 - A3). This shows that the Wronskian is not zero 
if and only if all the n roots of (2) are different and thus gives the following. 

Basis 

Solutiolls YI = e AIX, ••• , )"n = /nx 
of (1) ("with allY real or complex A/ s) f0l711 a 

basis of solutiollS of (I) on any opell interml if and only if all /l roots of (2) are 
different. 

Actually, Theorem I is an important special case of our more general result obtained 
from (5) and (6): 

Linear Independence 

Ally !lumber of solutions of (1) of the f0I711 eAX are linearly independent on an open 
interl'ill I if and only if the correspondillg A are all differe11l. 

Simple Complex Roots 
If complex roots occur, they must occur in conjugate pairs since the c~efficients of (1) 
are real. Thus, if A = 'Y + iw is a simple root of (2), so is the conjugate A = 'Y - iw, and 
two corresponding linearly independent solutions are (as in Sec. 2.2, except for notation) 

YI = e1'X cos wx, Y2 = e1'X sin wx. 

E X AMP L E 2 Simple Complex Roots. Initial Value Problem 

Solve the initial value problem 

,"," - y" + 100,", - 100y = 0, yeo) = 4, y' (0) = 11, .1'''(0) = -299. 

Solutioll. The characteristic equation is A3 - A2 + 100A - 100 = O. It has the root 1, as can perhaps be 
seen by in~peclion. Then division by A-I ~hows that the other roots are:+: lOi. Hence a general solution and 
its derivatives (obtained by differentiation) are 

Y = cle
x + A cos lOx + B sin lOx. 

y' = ('leX - lOA sin lOx + lOB cos lOx. 

y" = C1ex - 100A cos IOle - 100B sin lOx. 

From this and the initial conditions we obtain by setting x = 0 

(a) C1 + A = 4. (b) c] + lOB = 11, (c) c1 - 100A = -299. 

We solve this system for the unknowns A. B. ('1' Equation (a) minus Equation (c) gives lOlA = 303, A = 3. 
Then ('1 = I [mm (a) and B = I from lb). The solution is (Fig. 72) 

y = eX + 3 cos lOx + sin lOx. 

This gi\e~ the ~olution curve. which o_cillate, ahout eX (dashed in Fig. 72 on p. ll-l). • 
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y 

20 

10 

4 

°0~--~----~2----~3--X 

Fig. 72. Solution in Example 2 

Multiple Real Roots 
If a real double root occurs, say, Al = A2 , then)'1 = )'2 in (3), and we take)'1 and .\)'1 as 
corresponding linearly independent solutions. This is as in Sec. 2.2. 

More generally, if A is a real root of order 111, then 111 corresponding linearly independent 
solutions are 

(7) 

We derive these solutions after the next example and indicate how to prove their linear 
independence. 

E X AMP L E 3 Real Double and Triple Roots 

Solve the ODE yV - 3iv + 3y'" - /' = O. 

Solution. The characteristic equation ,,5 - 3A4 + 3A3 
- A2 = 0 has the roots Al = A2 = 0 and 

"3 = 4 = "5 = I, and the answer is 

(8) • 
Derivation of (7). We write the left side of (\) as 

L[yJ = y<n) + an _ 1y<n-D + ... + aoy. 

Let y = eA
'. Then by performing the differentiations we have 

Now let Al be a root of mth order of the polynomial on the right, where In ~ 11. For 
111 < 11 let A""+1> ... , An be the other roots, all different from AI' Writing the polynomial 
in product form. we then have 

with h(A) = I if 111 = 11, and h(A) = (A - A71<+I) ..• (A - An) if III < II. Now comes the 
key idea: We differentiate on both sides with respect to A. 

(9) 
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The differentiations with respect to x and A are independent and the occurring derivatives 
are continuous, so that we can interchange their order on the left: 

(10) 

The right side of (9) is zero for A = Al because of the factors A - A} (and m ~ 2 since 

we have a multiple root!). Hence L[x/'X] = 0 by (9) and (10). This proves that X/IX is 
a solution of (I). 

We can repeat this step and produce x2/"'X, ... , X"'-I/IX by another 111 - 2 such 
differentiations with respect to A. Going one step further would no longer give zero on 
the right because the lowest power of A - Al would then be (A - A})o, multiplied by 
m!h(A) and heAl) * 0 because h(lI.) has no factors A - AI; so we get precisely the solutions 
in (7). 

We finally show that the solutions (7) are linearly independent. For a specific n 
this can be seen by calculating their Wronskian, which turns out to be nonzero. For 
arbitrary 111 we can pull out the exponential functions from the Wronskian. This gives 
(eAx)m = eAmx times a determinant which by "row operations" can be reduced to the 
Wronskian of 1. x . ... , X",-l. The latter is constant and different from zero (equal to 
1 !2! ... (111 - I)!). These functions are solutions of the ODE /mJ = 0, so that linear 
independence follows from Theroem 3 in Sec. 3.1. • 

Multiple Complex Roots 
In this case, real solutions are obtained as for complex simple-.!oots above. Consequently, 
if A = 'Y + iw is a complex double root, so is the conjugate A = 'Y - iw. Corresponding 
linearly independent solutions are 

(11) e-yX cos wx, eYX sin wx, xeYX cos wx, xeYX sin wx. 

The fi~t two of these result from eAX and eAx as before, and the second two from xeAT 

and xeAX in the same fashion. Obviously, the corresponding general solution is 

(12) 

For complex triple roots (which hardly ever occur in applications), one would obtain 
two more solutions x 2eAX cos wx, x 2eYx sin wx, and so on. 

11-61 ODE FOR GIVEN BASIS 17-121 GENERAL SOLUTION 
Find an ODE (1) for which the given functions fonn a basis 
of solutions. 

1. eX, e2X, e3x 

3. e:c , e- x • cos x. sin x 

4. cos x, sin x, x cos x, x sin x 

5. I, x, cos 2x. sin 2x 

6. e-2x
, e- x , eX, e2x, I 

Solve the given ODE. (Show the details of your work.) 

7. y'" + y' = 0 

8. yiv - 29y" + LOOy = 0 

9. y'" + y" - y' - y = 0 

10. 16yiV - 8y" + Y = 0 

11. ylll - 3)''' - 4y' + 6y = 0 

12. yiv + 3y" - 4y = 0 
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L13-18! INITIAL VALUE PROBLEMS 
Solve by a CAS, giving a general solution and the particular 
solution and its graph. 

13. lV + 0.45.\"'" - 0.165y" + 0.0045y' - 0.00175y = 0, 
)"(0) = 17.4, y' (0) = -2.82. y"(O) = 2.0485. 
y'''(0) = -1.458675 

14. 4,,'" + 8,," + 41 v' + 37v = 0, 1'(0) = 9, 
y"(O) = ~6.5, /i(O) = ....:39.75 . 

15. y'" + 3.2y" + 4.81/ = 0, ,,(0) = 3.4, 
/(0) = -4.6.y"(O) = 9.91 

16. yiv + 4y = o . .\'(0) = !, y' (0) = -!. y" (0) = ~, 
-,,"'(0) = -~ 

17. 1'iv - 91''' - 400" = O. ,,(0) = O. /(0) = O. 
~"(O) ~ 4\. y'''(0) = 0 . . 

18. y''' + 7.5.\"" + 14.25/ - 9.125-" = 0, 
.\"(0) = 10.05, y' (OJ = -54.975, 
y"(O) = 257.5125 

19. CAS PROJECT. Wronskians. Euler-Cauchy 
Equations of Higher Order. Although Euler-Cauchy 
equations have mriable coefficients (powers of x). we 
include them here because they fit quite well into the 
present methods. 

(a) Write 11 program for calculating WronsJ..ians. 

(b) Apply the program to some bases of third-order 
and fourth-order constant-coefficient ODEs. Compare 

the results with those obtained by the program most 
likely available for Wronskians in your CAS. 

(C) Extend the solution method in Sec. 2.5 to any order 
11. Solve X3y '" + 2x2y" - 4xy' + 4y = 0 and another 
ODE of your choice. In each case calculate the 
Wronskian. 

20. PROJECT. Reduction of Order. This is of practical 
interest since a single solution of an ODE can often be 
guessed. For second order. see Example 7 in Sec. 2.1. 

(a) How could you reduce the order of a linear 
constant-coefficient ODE if a solution is known? 

(b) Extend the method to a variable-coefficient ODE 

.1'''' + P2(xly" + PI(X)Y' + Po(x)y = o. 
Assuming a solution YI to be known, show that another 
solution is Y2(X) = U(X)YI(X) with u(x) = J z(x) dx and 
.:: obtained by solving 

)"1'::" + (3y; + P2YI)'::' + (3y~ + 2P2Y ; + PIYI)':: = O. 

(e) Reduce 

x3)"'" - 3x\" + (6 - X2)X/ - (6 - X2»)" = O. 

using Yl = x (perhaps obtainable by inspection). 

21. CAS EXPERIMENT. Reduction of Order. Starting 
with a basis, find third-order ODEs with variable 
coefficients for which the reduction to second order 
turns out to be relatively simple. 

3.3 Nonhomogeneous Linear ODEs 
We now turn from homogeneous to nonhomogeneous linear ODEs of nth order. We write 

them in standard form 

(1) /n) + Pn_I(X)y<n-D + ... + PI(X)'" + Po(x)y = rex) 

with /n) = d'\ldx n as the first term, which is practical, and r(x) 'i= O. As for second-order 

ODEs, a general solution of (I) on an open interval I of the x-axis is of the form 

(2) 

Here Yh(X) = CIYt(X) + ... + cny,,(x) is a general solution of the corresponding 

homogeneous ODE 

(3) /n) + Pn_I(X)/n-D + ... + PI(X)y' + Po(x)y = 0 

on I. Also, Yp is any sulution of (l) on I containing no arbitrary constants. If (I) has 

continuous coefficients and a continuous rex) on J, then a general solution of (1) exists 
and includes all solutions. Thus (1) has no singular solutions. 
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An initial value problem for (I) consists of (l) and 11 initial conditions 

(4) 

with Xo in I. Under those continuity assumptions it has a unique solution. The ideas of 
proof are the same as those for n = 2 in Sec. 2.7. 

Method of Undetermined Coefficients 
Equation (2) shows that for solving (I) we have to determine a particular solution of (1). 
For a constant-coefficient equation 

(5) 

(ao, ... , an - 1 constant) and special r(x) as in Sec. 2.7, such a )'p(x) can be detennined 
by the method of undetermined coefficients. as in Sec. 2.7, using the following rules. 

(A) Basic Rule as in Sec. 2.7. 

(B) Modification Rule. If a term il1 your choice for )'p(x) is a solution of the 
homogeneous equation (3), thel111l111tiply yp(x) by xk, where k is the smallest positive 
integer such that no tenn of xkyp(X) is a solution of (3). 

(C) Sum Rule as in Sec. 2.7. 

The practical application of the method is the same as that in Sec. 2.7. It suffices to 
illustrate the typical steps of solving an initial value problem and, in particular, the new 
Modification Rule, which includes the old Modification Rule as a particular case (with 
k = 1 or 2). We shall see that the technicalities are the same as for 11 = 2. perhaps except 
for the more involved detennination of the constants. 

E X AMP L E 1 Initial Value Problem. Modification Rule 

Solve the initial value problem 

(6) y'" + 3y" + 3y' + Y = 30e-x , yeo) = 3, /(0) = -3, y"(0) = -47. 

Solution. Step 1. The characteristic equation is A3 + 3A2 + 3'\ + 1 = (A + 1)3 = O. It has the triple root 
A = -I. Hence a general solution of the homogeneous ODE is 

Step 2. If we try Yp = Ce -x, we get -C + 3C - 3C + C = 30, which has no solution. Try Cxe -x and Cx2e -x. 
The Modification Rule calls for 

Yp = Cx3e-x . 

Then )'~ = C(3x2 - x3)e -x. 

).; = C(6x - 6x2 + x 3)e-x, 

y;' = C(6 - I Sx + 9x2 
- x 3 )e -x. 
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Substitlllion of these expressions into (6) and omission of the common factor e -x gives 

The linear, quadratic. and cubic terms drop out. and 6C = 30. Hence C = 5. This gives yp = 5x3e-x. 

Step 3. We now write down y = Jh + yp' the general solution of the given ODE. From it we find C1 by the 
first initial condition. We insert the value. ditTerenliate, and determine c2 from the second initial condition. insert 
the value, and finally determine ("3 from /'(0) and the third initial condition: 

)"(0) = C1 = 3 

/ = [-3 + C2 + (-c2 + 2C3}X + (15 - C3}X
2 

- 5x3 je-X
, 

y" = [3 + 2c3 + (30 - 4c3)x + (-30 + (3)X2 + 5x3je-x. 

Hence the allswer 10 our problem is (Fig. 73) 

/(0) = -3 + ("2 = -3. 

/'(0) = 3 + 2c3 = -47. C3 = -25. 

The curve of y begins at (0, 3) with a negative slope. as expected from the initial values. and approaches zero 
as x --'> ce. The da~hed curve in Fig. 73 is yp- • 

y 

5 

0 

\ 
5 10 x 

-5 

Fig. 73. Y and Yp (dashed) in Example 1 

Method of Variation of Parameters 
The method of variation of parameters (see Sec. 2.10) also extends to arbitrary order 11. 

It gives a particular solution Yp for the nonhomogeneous equation (1) (in standard foml 
with y<n) as the first term!) by the formula 

(7) 

~ I Wk(x) 
Yp(X) = ..c.. Yk(X) -- rex) dx 

k = 1 W(x) 

I WI (x) I Wn(x) 
= Yl(X) W(x) rex) dx + ... + Yn(X) W(x) rex) dx 

on an open interval I on which the coefficients of (I) and rex) are continuous. [n (7) the 
functions .1'1> •••• )'n form a basis of the homogeneous ODE (3), with Wronskian W. and 
l1j (j = I, ... , 11) is obtained from W by replacing the jtb culumn of W by the column 
[0 0 0 J]T. Thus, when 11 = 2. this becomes identical with (2) in Sec. 2.10, 

W= 
. 1 

/ 

r 
, 

" . 1 "/ 
.2 

, . 
)'2 

~I = ."1' 

The proof of (7) uses an extension of the idea of the proof of (2) in Sec. 2.10 and can 
be found in Ref [All] listed in App. I. 
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E X AMP L E 2 Variation of Parameters. Nonhomogeneous Euler-Cauchy Equation 

Solve the nonhomogeneous Euler-Cauchy equation 

(x> 0). 

Solution. Step 1. General solution of the homogeneous ODE. Substitution of)' = xm and the derivatives 
into the homogeneous ODE and deletion of the factor xm give~ 

/11(/11 - 1)(1/1 - 2) - 3m(m - I) + 6111 - 6 = O. 

The roots are L 2, 3 and give as a basis 

)'1 = x, 

Hence the corresponding general solution of the homogeneous ODE is 

2 3 
)'h = Clx + C2 x + C3~ 

Step 2. Determinants needed in (7). These fiT 

x x2 3 x 

W= 2x 3x2 = 2x3 

0 2 6x 

0 x2 3 x 

Wj 0 2, 3x 2 4 =x 

2 6x 

x 0 x3 

W2 = 0 3x2 -2x3 

0 6x 

2 0 x x 

W3 = 2x 0 = x2
. 

0 2 

Step 3. Integration. In (7) we also need the right side rex) of our ODE in standard fonn. obtained by division 
of the given equation by the coefficient x3 of /"; thus, rex) = (x4 In x)/.1'3 = x In .1'. In (7) we have the simple 
quotients W1/W = x/2, W2 /W = -I, W3/W = 11(2,). Hence (7) becomes 

Ix 2I 3I 1 
Yp = x 2 x In x dx - x x In x dx + x 2x x In x dt 

( 3 3) (2 X2) .1'3 ~ ~ In x - ~ - x
2 ~ In x - 4 + 2 (x In X - x). 

Simplification gives yp = ~x4 (in x -11'). Hence the answer is 

Figure 74 shows Yv Can you explain the shape of this curve? Its behavior near x = O? The occurrence of 
a minimum? Its rapid increase? Why would the method of undetermmed coefficients not have given the 
~~~ . 



120 CHAP. 3 Higher-Order Linear ODEs 

y 

30 

20 

10 

0 

------- J "-
-10 

-20 

10 x 

Fig. 74. Particular solution Yp of the nonhomogeneous 
Euler-Cauchy equation in Example 2 

Application: Elastic Beams 
Whereas second-order ODEs have various applications, some of the more important ones 
we have seen, higher order ODEs occur much more rarely in engineering work. An 
important fourth-order ODE governs the bending of elastic beams, such as wooden or iron 
girders in a building or a bridge. 

Vibrations of beams will be considered in Sec. 12.3. 

E X AMP L E 3 Bending of an Elastic Beam under a Load 

We consider a beam B of length L and constant (e.g .. rectangular) cross section and homogeneous elastic 
material (e.g .. ~teel): see Fig. 75. We assume that under its own weight the beam is bent so little that it is 
practically straight. If we apply a load to B in a vertical plane through the axis of symmetry (the x-axis in 
Fig. 75). B is bent. Its axis is curved into the so-called elastic curve C (or deflection curw). It is shown in 
elasticity theory that the bending moment M(x) is proportional to the curvarure k(x) of C. We assume the bending 
to be small, ~o that the deflection )"(x) and its derivative y' (X) (determining the tangent direction of C) are small. 
Then. by calculus. k = y"I(1 + /2)312 = /'. Hence 

M(x) = Ely"(x). 

El is the constant of proportionality. E is Young's lIlodulus of elasticity of the material of the beam. 1 is the 
moment of inertia of the cross section about the (horizontal) ~-axis in Fig. 75. 

Elasticity theory shows further that M"(x) = f(x). where f(x) is the load per unit length. Together, 

(8) Elyiv = f(x). 

~--; --- L 

y Z Undeformed beam 

Z 

Fig. 75. 

Deformed beam 
under uniform load 
(simply supported) 

Elastic Beam 
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The practically most important supports and corresponding boundary conditions are as follows (see Fig. 76). 

(Al Simply supported 

(B) Clamped at both ends 

(C) Clamped at x = 0, free at x = L 

y = y" = 0 at x = 0 and L 

y = y' = 0 at x = 0 and L 

.1'(0) = y' (0) = 0, y"(L) = y"'(L) = o. 

The boundary condition y = 0 means no displacement at that point, y' = 0 means a horizontal tangent, v" = 0 
means no bending moment. and y'" = 0 means no shear force. 

Let us apply this to the uniformly loaded simply supported beam in Fig. 75. The load is i(x) "" io = const. 
Then (8) is 

(9) k = io . 
EI 

This can be solved simply by calculus. Two integrations give 

y"(0) = 0 gives c2 = O. Then y"(L) = L(~kL + cl) = 0, Cl = -kLl2 (since L '* 0). Hence 

" k 2 Y = "2(X - Lx). 

Integrating this twice. we obtain 

with C4 = 0 from yeO) = O. Then 

yeLl = kL (L3 
_ L3 + c ) = 0, 

2 12 6 3 

Inserting the expression for k, we obtain as our solution 

io 4 3 3 
Y = 24EI (x - 2Lx + Lx). 

Since the boundary conditions at both ends are the same. we expect the deflection y(x) to be "symmetric" with 
respect to L12, that is, y(x) = y(L - x). Verify this directly or set.r = u + L12 and show that y becomes an 
even function of u, 

From this we can see that the maximum deflection in the middle at II = 0 (x = L12) is 5ioL4 /(16 . 24EI). Recall 
that the positive direction points downward. • 

x=O x=L 

x=L 

CA) Simply supported 

(B) Clamped at both 
ends 

(el Clamped at the left 
end, free at the 

x = 0 x = L right end 

Fig. 76. Supports of a Beam 
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. . 11 HIE -M-=:3 E T 1-;:-3= _____ _ 

11.:-iil GENERAL SOLUTION 
Solve the following ODEs. (Show the details of your work.) 

1. y'" - 2y" - 4/ + 8y = e-3 ,' + 8\"2 

2. y'" + 3y" - 5/ - 39y = 30 cos x 

3. yiv + 0.5y" + 0.0625y = e-x cos 0.5x 

4. ,,'" + 2,," - 5y' - 6y = 100e-3x + 18e-x 

5. x 3y'" + 0.75x),· - 0.75.\" = 9X5
.
5 

6. (x03 + 4D2)y = 8ex 

7. (D4 + IOD2 + 9/)y = 13 cosh 2x 

8. (03 - 2D2 - 9D + 18/))' = e2x 

19-141 INITIAL VALUE PROBLEMS 

Solve the following initial value problems. (Show the 
details.) 

9. rIll - 9\"" + 27/ - 27\" = 54 sin 3x. yeO) = 3.5, 
:\"' (0) ~ U.S, . y" (0) ;", 38.5 

10. )'iv - 16y = 128 cosh 2x, yeO) = 1, ),'(0) = 24. 
y"(O) = 20, /"(0) = -HiO 

11. (x 3D3 - x 2D2 - 7xD + 16/)y = 9x In x. 
yO) = 6. Oy(!) = 18, D2y(l) = 65 

12. (04 - 26D2 + 25/)y = 50(x + 1)2, yeO) = 12.16, 
Dy(O) = -6. D2y(0) = 34. D3 \"lO) = -130 

• = 
1. What is the superposition or linearity principle? For 

what 11th-order ODEs does it hold? 

2. List some other basic theorems that extend from 
second-order to 11th-order ODEs. 

3. If you know a general solution of a homogeneous linear 
ODE. what do you need to obtain from it a general 
solution of a corresponding nonhomogeneous linear 
ODE? 

4. What is an initial value problem for an 11th-order linear 
ODE? 

5. What is the Wronskian? What is it used for? 

16-151 GENERAL SOLUTION 

Solve the given ODE. (Show the details of your work.) 

6. ylll + 6y" + 18y' + 40y = 0 

7. 4x2-,,'" + 12x-,," + 3-,,' = 0 

8. yiv + lOy" + 9y = 0 

9. 8y'" + 12y" - 2)" - 3)' = 0 

10. (D3 + 3D2 + 3D + I)' = x 2 

13. (D3 + 402 + 850)y = 135xex
, yeO) = 10.4. 

Dy(O) = -18.1, D2y(0) = -691.6 

14. (2D3 - 0 2 - 8D + 4/)y = sin x. yfO) = I, 
Dy(O) = O. D2yfO) = 0 

15. WRITING PROJECT. Comparison of Methods. 
Write a report on the method of undetermined coefficients 
and the method of variation of parameters. discussing and 
comparing the advantages and disadvantages of each 
method. Illustrate your findings with typical examples. 
Try to show that the method of undetermined coefficients. 
say. for a third-order ODE with constant coefficients and 
an exponential function on the right, can be derived from 
the method of vmlation of parameters. 

16. CAS EXPERIMENT. Undetermined Coefficients. 
Since variation of parameters is generally complicated, 
it seems worthwhile to try to extend the other method. 
Find out experimentally for what ODEs this is possible 
and for what not. Hint: Work backward. solving ODEs 
with a CAS and then looking whether the solution 
could be obtained by undetermined coefficients. For 
example. consider 

y'" - 12,r" + 48/ - 64y = x l12e4x 

x 3 y'" + x2
-,," - 6xy' + 6,v = x In x. 

TIONS AND PROBLEMS 

11. (xD4 + 03)y = 150x4 

12. (D4 
- 2D3 - SD2)y = 16 cos 2x 

13. lD3 + l)y = gexl2 

14. (x 3D3 - 3x202 + 6xD - 61)y = 30x-2 

15. (D3 - D2 - D + /)' = eX 

116-201 INITIAL VALUE PROBLEMS 

Solve the given problem. (Show the details.) 

16. y'" - 2-,," + 4/ - 8y = O. yeO) = -I, 
y' (0) = 30. y" (0) = 28 

and 

17. x 3,,'" + 7x2,," - 2xv' - 10" = O. yO) l. 
,. "' If· -

Y (I) = - 7 • ." (l) = 44 

18. (D3 + 25D)y = 32 cos2 4x, yeO) = 0, 
Dy(O) = 0, D2y(0) = 0 

19. (D4 + 40D2 - 441I)y = 8 cosh x. yeO) = 1.98, 
Oy(O) = 3, 02y (0) = -40.02. D3y(0) = 27 

20. (x 3D3 + 5x2D2 + 2xD - 2/)y = 7x3/2 , 
y(l) = 10.6, Dy(l) = -3.6, D2y(l) = 31.2 
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Higher Order Linear ODEs 

Compare with the similar Summary of Chap. 2 (the case 11 = 2). 
Chapter 3 extends Chap. 2 from order 11 = 2 to arbitrary order 11. An nth-order 
linear ODE is an ODE that can be written 

(1) In) + Pn_1(X)/n-1) + ... + P1(X)/ + Po(x)y = r(x) 

with y(n) = dny/dxn as the first term; we again call this the standard form. Equation 
(I) is called homogeneous if r(x) == 0 on a given open interval 1 considered, 
nonhomogeneous if r(x) =1= 0 on 1. For the homogeneous ODE 

(2) /n) + Pn_1(X)/n-ll + ... -, P1(X)y' + Po(.x)y = 0 

the superposition principle (Sec. 3.1) holds, just as in the case 11 = 2. A basis or 
fundamental system of solutions of (2) on I consists of 11 linearly independent 
solutions Yi, ... ,.\"n of(2) on I. A general solution of(~) on lis a linear combination 
of these, 

(3) r=cr +"'+cr . 1. 1 n. n (Cb ... , Cn arbitrary constants). 

A general solution of the nonhomogeneous ODE (1) on I is of the form 

(4) Y = Yh + Yp (Sec. 3.3). 

Here, Yp is a particular solution of (1) and is obtained by two methods 
(undetermined coefficients or variation of parameters) explained in Sec. 3.3. 

An initial value problem for (I) or (2) consists of one of these ODEs and 11 

initial conditions (Secs. 3.1, 3.3) 

(5) 

with given Xo in I and given Ko, .... K Il - l . If Po • .... Pn-1o r are continuous on 
I. then general solutions of (I) and (2) on J exist. and initial value problems (I). 
(5) or (2). (5) have a unique solution. 
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CHAPTER 4 

Systems of ODEs. Phase Plane. 
Qualitative Methods 

Systems of ODEs have various applications (see, for instance, Secs. 4.1 and 4.5). Their 
theory is outlined in Sec. 4.2 and includes that of a single ODE. The practically important 
conversion of a single nth-order ODE to a system is shown in Sec. 4.1. 

Linear systems (Secs. 4.3, 4.4, 4.6) are best treated by the use of vectors and matrices, 
of which, however, only a few elementary facts will be needed here, as given in Sec. 4.0 
and probably familiar to most students. 

Qualitative methods. In addition to actually solving systems (Sec. 4.3, 4.6), which is 
often difficult or even impossible, we shall explain a totally different method, namely, the 
powerful method of investigating the general behavior of Whole families of solutions in 
the phase plane (Sec. 4.3). This approach to systems of ODEs is called a qualitative 
method because it does not need actual solutions (in contrats to a "quantitative method" 
of actually solving a system). 

This phase plane method, as it is called, also gives information on stability of ~olutions. 
which is of general importance in control theory, circuit theory, population dynamics, and 
so on. Here, stability of a physical system means that, roughly speaking, a small change 
at some instant causes only small changes in the behavior of the system at all later times. 

Phase plane methods can be extended to nonlinear systems, for which they are 
particularly useful. We will show this in Sec. 4.5, which includes a discussion of the 
pendulum equation and the Lotka-Volterra population model. We finally discuss 
nonhomogeneous linear systems in Sec. 4.6. 

NOTATION. Analogous to Chaps. 1-3, we continue to denote unknown functions by 
y; thus, YI (I), h(!)· This seems preferable to suddenly using x for functions, Xl (t), X2(t), 

as is sometimes done in systems of ODEs. 

Prerequisite: Chap. 2. 
References and Ansll'ers 10 Problems: App. 1 Part A. and App. 2. 

4.0 Basics of Matrices and Vectors 

124 

In discussing li1/ear systems of ODEs we shall use matrices and vectors. This simplifies 
formulas and clarifies ideas. But we shall need only a few elementary facts (by no means 
the bulk of material in Chaps. 7 and 8). These facts will very likely be at the disposal of 
most students. Hence this sectio1l is for reference only. Begin with Sec. 4.1 and consult 
4.0 as needed. 



SEC 4.0 Basics of Matrices and Vectors 125 

Most of our linear systems will consist of two ODEs in two unknown functions .' let). 

)'2(t), 

(1) for example, 

(perhaps with additional given functions .Rl(t), g2(t) in the two ODEs on the right), 
Similarly, a linear system of n first-order ODEs in n unknown functions YI(t). 

)'n(t) is of the fonn 

(2) 

(perhaps with an additional given function in each ODE on the right). 

Some Definitions and Terms 
Matrices. In (I) the (constant or variable) coefficients form a 2 x 2 matrix A, that is. 
an anay 

for example, A = [-5 2] . 
13 ~ 

Similarly, the coefficients in (2) form an n x n matrix 

(4) 

The (lIb (/12' ... are called entries, the horizontal lines rows, and the 
columns. Thus, in (3) the first row is [al1 a12]' the second row is [a2l 

first and second columns are 

and 
[

a
12

] . 

a22 

vertical lines 
a22], and the 

In the "double subscript notation" for entries, the first subscript denotes the row and the 
second the column in which the entry stands. Similarly in (4). The main diagonal is the 
diagonal an a22 ann in (4), hence all {/22 in (3). 

We shall need only square matrices, that is, matrices with the same number of rows 
and columns, as in (3) and (4). 
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Vectors. A column vector x with n components Xl, ... , Xn is of the form 

x= thus if 11 = 2. 

Similarly. a row vector v is of the form 

thus if 11 = 1. then 

Calculations with Matrices and Vectors 
Equality. Two 11 X 11 matrices are equal if and only if corresponding entries are equal. 
Thus for 1l = 2. let 

[ all a12 ] [b
ll 

b
12 

] A= and B= 
a21 a22 b21 b22 

Then A = B if and only if 

all = bu. a12 = bI2 

a21 = b2I, a22 = b22· 

Two column vectors (or two row vectors) are equal if and only if they both have 11 

components and corresponding components are equal. Thus. let 

Then v = x if and only if 

Addition is performed by adding corresponding entries (or components); here, matrices 
must both be II X 11, and vectors must both have the same number of components. Thus 
for n = 2, 

(5) 

Scalar multiplication (multiplication by a number c) is performed by multiplying each 
entry (or component) by c. For example, if 

[-: :]. [ -63 -2~J . A= then -7A = 
14 

If 

v ~ [04]. then IOv = [ -:30} -13 
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Matrix Multiplication_ The product C = AB (in this order) of two n X n matrices 
A = [ajk] and B = [bjk] is the n X n matrix C = [Cjk] with entries 

(6) 

n 

Cjk = 2: aj'mb'mk 
'm~1 

j = 1, ... , n 

k = 1, ... , n, 

that is, multiply each entry in the jth row of A by the corresponding entry in the kth column 
of B and then add these n products. One says briefly that this is a "multiplication of rows 
into columns." For example, 

[
9 3J[I-4J [9-1+3-2 

-2 0 2 5 -2 - 1 + 0 - 2 

9-(-4) + 3-5J 

(-2)-(-4) + 0-5 

~ [~: -2:J 

CAUTION! Matrix multiplication is not commutative, AB =1= BA in general. In our 
example, 

[
I -4J [9 3J = [1-9 + (-4)-(-2) 

2 5 - 2 0 2 - 9 + 5 - (-2) 

1 - 3 + (-4) - OJ 

2-3+5-0 

Multiplication of an n X n matrix A by a vector x with n components is defined by the 
same rule: v = Ax is the vector with the n components 

For example, 

n 

Vj = 2: ajmx'm 

'm~1 

j = I, - - -, n. 

Systems of ODEs as Vector Equations 
Differentiation_ The derivative of a matrix (or vector) with variable entries (or 
components) is obtained by differentiating each entry (or component). Thus, if 

[
Yl(t)] [e-2t] 

yet) = = , 
Y2(t) sin t 

then 
[

Vl(t)] [-2e-2t] I . 1 
Y (t) = = . 

Y~(t) cos t 

Using matrix multiplication and differentiation, we can now write (1) as 

[ '] [ I Yl all 
(7) y = I = Ay = 

Y2 a21 
a

12
] [VI] [-5 . , e.g., y' = 

a22 Y2 13 
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Similarly for (2) by means of an n X n matrix A and a column vector y with II components, 
namely, y' = Ay. The vector equation (7) is equivalent to two equations for the 
components. and these are precisely the two ODEs in (1). 

Some Further Operations and Terms 
Transposition is the operation of writing columns as rows and conversely and is indicated 
by T. Thus the transpose AT of the 2 X 2 matrix 

a
12J [-5 2J 

a22 - 13 ! 
is 

The transpose of a column vector, say, 

is a row vector, 

and conversely. 

Inverse of a Matrix. The n X n unit matrix I is the 11 X 11 matrix with main diagonal 
1, 1, ... ,land all other entries zero. If for a given n X n matrix A there is an n X 11 

matrix B such that AB = BA = I, then A is called nonsingular and B is called the inverse 
of A and is denoted by A -1; thus 

(8) 

If A has no inverse, it is called singular. For 11 = 2, 

(9) A-I = 
det A 

where the determinant of A is 

(10) 

l
a 11 

detA = 
1I2I 

(For generaln, see Sec. 7.7, but this will not be needed in this chapteL) 

Linear Independence. r given vectors v(1), ... , VCT) with n components are called a 
linearly independent set or, more briefly, linearly independent, if 

(11) C1 VCl) + ... + c,.vCr) = 0 

implies that all scalars c1 , ••. , c,. must be zero; here, 0 denotes the zero vector, whose 
n components are all zero. If (II) also holds for scalars not all zero (so that at least 
one of these scalars is not zero), then these vectors are called a linearly depel1dent set 
or, brietly, linearly dependent, because then at least one of them can be expressed as 
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a linear combination of the others; that is, if, for instance, C1 * 0 in (ll), then we 
can obtain 

v(1) = - ~ (C2VC2) + ... + crvc'·)). 
C] 

Eigenvalues, Eigenvectors 
Eigenvalues and eigenvectors will be very important in this chapter (and, as a matter of 
fact, throughout mathematics). 

Let A = [Ujk] be an n X n matrix. Consider the equation 

(12) Ax = AX 

where A is a scalar (a real or complex number) to be determined and x is a vector to be 
determined. Now for every A a solution is x = O. A scalar A such that (12) holds for some 
vector x * 0 is called an eigenvalue of A, and this vector is called an eigenvector of A 
corresponding to this eigenvalue A. 

We can write (12) as Ax - AX = 0 or 

(13) (A - AI)X = O. 

These are n linear algebraic equations in the n unknowns Xl> ••• , Xn (the components of 
x). For these equations to have a solution x * 0, the determinant of the coefficient matrix 
A - AI must be zero. This is proved as a basic fact in linear algebra (Theorem 4 in 
Sec. 7.7). In this chapter we need this only for n = 2. Then (13) is 

(14) 

in components, 

=0 
(14*) 

Now A - AI is singular if and only if its determinantdet (A - AI), called the characteristic 
determinant of A (also for general n), is zero. This gives 

det (A _ AI) = I Uu - A U12 I 
U21 U22 - A 

(15) 

This quadratic equation in A is called the characteristic equation of A. Its solutions are 
the eigenvalues Al and A2 of A. First determine these. Then use (14*) with A = Al to 
determine an eigenvector xCi) of A cOlTesponding to A1' FinaIly use (14*) with A = A2 to 
find an eigenvector X(2) of A cOlTesponding to A2' Note that if x is an eigenvector of A, 
so is h for any k * O. 
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E X AMP L E 1 Eigenvalue Problem 

Find the eigenvalues and eigenvectors of the maliix 

(16) [

-4.0 
A= 

-1.6 

4.0J. 

1.2 

Soluti01l. The characteristic equation is the quadratic equation 

1

-4 - A 
det [A - All = 

-1.6 
4 1 = A2 + 2.8A + 1.6 = O. 

1.2 - A 

It has the solutions Al = -2 and A2 = -0.8. These are the eigenvalues of A. 
Eigenvectors are obtained from (14*). For A = Al = -2 we have from (14*) 

(-4.0 + 2.0)x1 + =0 

+ (1.2 + 2.0)x2 = O. 

A solution of the fir~t equation is Xl = 2, X2 = I. This also satisfies the second equation. (Why?). Hence an 
eigenvector of A corresponding to Al = -2.0 is 

(17) Similarly. X(2)=[I] 
0.8 

is an eigenvector of A corresponding to A2 = -0.8. as obtained from (14") with A = A2. Verify this. • 

4.1 Systems of ODEs as Models 
We first illustrate with a few typical examples that systems of ODEs can serve as models 
in various applications. We further show that a higher order ODE (with the highest 
derivative standing alone on one side) can be reduced to a first-order system. Both facts 
account for the practical importance of these systems. 

E X AMP L E 1 Mixing Problem Involving Two Tanks 

A mixing problem involving a single tank is modeled by a single ODE. and you may first review the 
corresponding Example 3 in Sec. 1.3 because the principle of modeling will be the same for two taoks. The 
model will be a system of two first-order ODEs. 

Taok T1 aod T2 in Fig. 77 contain initially 100 gal of water each. In T1 the water is pure, whereas 150 I b of 
fertilizer are dissolved io T2. By circulating liquid at a rate of 2 gal/min and stirring (to keep the mixture uniform) 

the amounts of fertilizer ,vI(t) III T1 and Y2(t) in T2 change with time t. How long should we let the liqUid circulate 
so that T1 will contain at least half as much fertilizer as there will be left in T2? 

Soluti01l. Step I. Setting up the model. As for a single tank. the time rate of change \.~ (t) Of)'l (t) equal& 
inflow minus outflow. Similarly for tank T2. From Fig. 77 we see that 

2 2 
y~ = Inflow/min - Outflow/min = 100.1'2 - IOOY1 

2 2 
}'~ = Inflow/min - Outflow/min = 100 \'1 - 100 Y2 

Hence the mathematical model of our mixture problem i, the system of first-order ODEs 

)'~ = -0.02Y1 + 0.02)'2 (Tank T1 ) 

(Tank T2 ). 
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T] 

'--

2 gal/min -
2 gal/min -

System of tanks 

r 
-----

T2 

yet) 

150 

100 

Fig. 77. Fertilizer content in Tanks T, (lower curve) and T2 

As a vector equation with column vector y = [YIJ and matrix A this becomes 
Y2 

y' = Ay, where 
[

-0.02 
A= 

0.02 

0.02J. 

-0.02 

Step 2. General solution. As for a single equation, we try an exponential function of t, 

(I) Then 

Dividing the last equation AxeAt = Axe).' by eAt and interchanging the left and right sides, we obtam 

Ax = Ax. 
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We need nontIivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues 
and eigenvectors of A. The eigenvalues are the solutions of the characteristic equation 

(2) 
1

-0.02 - A 
det (A - AI) = 

0.02 

0.02 I 
= (-O.oz - A)2 - 0.022 = A(A + 0.04) = O. 

-O.oz - A 

We see that Al = 0 (which can very well happen--don't get mixed up-it is eigenvectors that must not be zero) 
and A2 = -0.04. Eigenvectors are obtained from (14*) in Sec. 4.0 with A = 0 and A = 0.04. For our present 
A this gives [we need only the fIrst equation in (14*)J 

-0.02'1 + 0.02'2 = 0 and (-0.02 + 0.04)Xl + 0.02.\2 = 0, 

respectively. Hence Xl = X2 and Xl = -x2, respectively, and we can take Xl = x2 = 1 and Xl = -x2 = 1. 
This gives two eigenvectors corresponding to Al = 0 and A2 = -0.04, respectively, namely, 

and 

From (I) and the superposition principle (which continues to hold for systems of homogeneous linear ODEs) 
we thus obtain a solution 

(3) 

where Cl and C2 are arbitrary constants. Later we shall call this a general solution. 

Step 3. Use of initial conditions. The initial conditions are yt(O) = 0 (no fertilizer in tank T1) and Y2(0) = 150. 
From this and (3) with t = 0 we obtain 

[:: : ::J 
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In components this is cl + c2 = 0, CI - c2 = I SO. The solution is Cl = 7S. ("2 = -7S. This gives the answer 

In component~, 

)'1 = 75 - 7Se-O.04t 

)'2 = 75 + 75e-o.04t 

(Tank T I , lower curve) 

(Tank T2 • upper curve>. 

Figure 77 shows the exponential increase of \'1 and the exponential decrease of .\'2 to the common limit 75 lb. 
Did you expect this for physical reasons? Can you physically explain why the curves look "symmetric"? Would 
the limit change if TI initially contained 100 Ib of fertilizer and T2 contained 50 Ib? 

Step 4. Answer. T1 contains half the fertilizer amount of T2 if it contains 113 of the total amount, that is, 
SO lb. Thus 

YI = 75 - 75e -O,Mt = SO, -O.Mt 1 
e = 3' t = (In 3)/0.04 = 27,5, 

Hence the fluid should circulate for at lea,t about half an hour. • 
Electrical Network 

Find the CUlTents ft (t) and 12(1) in the network in Fig. 78. Assume all current~ and charges to be zero at t = 0, 
the instant when the switch is closed. 

L = 1 henry C = 0.25 farad 

SWitchlrI; 
t=O 

E = 12 volts-=-

R2 = 6 ohms 

Fig. 78. Electrical network in Example 2 

Solution. Step I. Setting up the mathematical model. The model of this network is obtained from 
Kirchhoff's voiLage law, as in Sec, 2.9 (where we considered single circuits). Let II(t) and 12(t) be the CUiTents 
in the left and right loops, respectively, In the left loop the voltage drops are Ll~ = I; [V] over the inductor 
and RI(ft - 12) = 4(h - 12 ) [V] over the resistor, the difference because 11 and 12 flow through the resistor 
in opposite directions. By Kirchhoff's voltage law the sum of these drops equals the voltage of the battery; that 
is, I; + 4(/1 - 12) = 12. hence 

(4a) I; = -4ft + 4/2 + 12. 

In the right loop the voltage drops are R2/2 = 612 [V] and R1(l2 - 'I) = 4(12 - 11) [V] over the resistors and 
(I/e)f 12 dt = 4 f 12 dt [V] over the capacitor. and their sum is zero. 

or 1012 - 4ft + 4 f '2 dt = O. 

Division by 10 and differentiation gives I~ - O.4/~ + 0.4/2 = O. 
To simplify the solution process. we first get rid of 0.4/~, which by (4a) equals 0.4(-4/1 + 4/2 + 12). 

Substitution into the present ODE gives 

I~ = OAli - 0.4/2 = OA( -4ft + 4/2 + 12) - 0.4/2 



SEC. 4.1 Systems of ODEs as Models 131 

and by simplification 

(4b) I~ = -1.6/1 + 1.212 + 4.8. 

In matrix form. (4) is (we write J since I is the unit matrix) 

(5) J' = AJ + g, where [
-4.0 

A= 
-1.6 

4.0J, 
l.2 

g = [12.0J . 
4.8 

Step 2. Solving (5). Because of the vector g thi~ is a nonhomogeneous system. and we try to proceed as for 
a single ODE. solving lim the homogeneous system J' = AJ (thu~.J' - A.J = 0) by substituting J = xeAl. 

This gives 

hence Ax = Ax. 

Hence to obtain a nontrivial solution, we again need the eigenvalues and eigenvectors. For the present matrix 
A [hey are derived in Example I in Sec. 4.0: 

X(2) = [ I ] 
0.8 

Hence a "general solution" of [he homogeneous system is 

For a particular ~olution of the nonhomogeneous sy~tem (5). since g is constant. we try a constant column vector 
Jp = a with components "I' 112' Then J~ = 0, and sub~titution into (5) gives Aa + g = 0; in components. 

-4.0111 + 4.0112 + 12.0 = 0 

-1.6aI + 1.2l12 + 4.8 = O. 

The solution is al = 3, {l2 = 0: thus a = [~J . Hence 

(6) 

in components. 

The initial conditions give 

('2+ 3 =0 

Hence ('1 = -4 and ('2 = 5. As the solution of our problem we thus obtain 

(7) 

In components (Fig. 79b), 

11 = -8e-2t + 5e-o.8t + 3 

12 = _4e-2t + 4e-O.8t. 

Now collles an important idea, un which we ~hall elaborate further. beginning in Sec. 4.3. Figure 79a shows 
II(t) and 12(t) as two separate curves. Figure 79b shows these two currents as a single curve [ft(l), 12(t)] in the 
1I/2-plane. Thi~ is a parametric representation with time t as the parameter. It is often important to know in 
which sense such a curve is traced. This can be indicated by an arrow in the sense of increasing t. as is shown. 
The 1I/2-plane is called the phase plane of our system (5), and the curve in Fig. 79b is called a trajectory. We 
shall see [hat such "phase plane representations" are far more important than graphs as in Fig. 79a because 
they will give a much better qualitative overall impression of the general behavior of whole familie~ of solutions, 
not merely of one solution as in the present case. • 
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1(t) 

4 i'--~ 
3 ~--------------=== 

2 

0.5 

/ 
OL-~L-__ L-__ L-____ ~~_ OL-__ L-__ L-__ L-__ ~ __ ~ __ __ 

o 2 3 4 

(a) Currents 11 
(upper curve) 

and 12 

5 o 2 3 4 

(b) Trajectory 1I1(t), 12(t)]T 

in the 1/2-plane 
(the "phase plane") 

Fig. 79. Currents in Example 2 

5 

Conversion of an nth-Order ODE to a System 
We show that an nth-order ODE ofthe general form (8) (see Theorem 1) can be converted 
to a system of n first-order ODEs. This is practically and theoretically important-­
practically because it permits the study and solution of single ODEs by methods for 
systems. and theoretically because it opens a way of including the theory of higher order 
ODEs into that of first-order systems. This conversion is another reason for the importance 
of systems, in addition to their use as models in various basic applications. The idea of 
the conversion is simple and straightforward, as follows. 

Conversion of an ODE 

An nth-order ODE 

(8) y<n) = F(t, y, y', ... , y<n-ll) 

call be converted to a system of n first-order ODEs by setting 

(9) Yl = y, Y2 = y', )'3 = y",' .. , Yn = y<n-ll. 

This system is of the form 

, 
Yl = Y2 
, 

)'2 =)'3 
(10) 

, 
Yn-l = Yn 

y~ = F(t, Y10 Y2, ... , Yn)· 

PROOF The first n - 1 of these n ODEs follow immediately from (9) by differentiation. Also, 
y~ = y<n) by (9), so that the last equation in (10) results from the given ODE (8). • 
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----_ .... -

E X AMP L E 3 Mass on a Spring 

To gain confidence in the conversion method, let us apply it to an old friend of ours. modeling the free motions 
of a mass on a spring (see Sec. 2.4) 

my" + cy' + ky = 0 " c, or y = --y 

For this ODE (8) the system (10) is linear and homogeneous, 

Setting y = [Y1J . we get in matrix form 
Y2 

, 
Y1 = .1'2 

, k c 
Y2 = - - Y1 - - )"2' 

m III 

m 

y' = Ay = [_ k

O 

_ cll [::J . 
m III 

The characteristic equation is 

-A 

k 
-yo 
III 

det (A - Ali = k c 
--- A 

= A2 + .!:... A + ~ = O. 
III 111 

111 m 

It agrees with that in Sec. 2.4. For an illustrative computation, let III = I, c = 2, and k = 0.75. Then 

A2 + 2A + 0.75 = (A + 0.5)(A + 1.5) = O. 

This gives the eigenvalues Al = -0.5 and A2 = -1.5. Eigenvectors follow from the first equation Lll 

A - AI = 0, which is -A,y] +.x2 = O. For A] this gives 0.5x1 + x2 = O. say. xl = 2. '\2 = -1. For A2 = -1.5 
it gives l.5XI + -'"2 = 0, say, Xl = I, X2 = -1.5. These eigenvectors 

X<2l=[ I J 
-1.5 

give Y - [2J -0.5t + . [ 1 J -1.5t - c1 e (2 e. 
-1 -1.5 

This vector solution has the first component 

which is the expected solution. The second componenl is its derivative 

.1'2 = yi = y' = _c]e-0.5t - 1.5c2 e-1.5t. • 

11-61 MIXING PROBLEMS 3. Derive the eigenvectors III Example 1 without 
consulting this book. 1. Find out without calculation whether doubling the flow 

rate in Example 1 has the same effect as halfing the 
tank sizes. (Give a reason.) 

2. What happens in Example 1 if we replace T2 by a tank 
containing 500 gal of water and ISO Ib of fertilizer 
dissolved in it? 

4. In Example 1 find a "general solution" for any ratio 

a = (flow rate)/(tank si:;;e), tank sizes being equal. 
Comment on the result. 

5. [f you extend Example I by a tank T3 of the same size 

as the others and connected to T2 by two tubes with 
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flow rates a~ between T1 and T2 , what system of ODEs 
will you get? 

6. Find a "general solution" of the system in Prob. 5. 

17-10 I ELECTRICAL NETWORKS 

7. Find the currents in Example 2 if the initial cun-ents 
are 0 and - 3 A (minus meaning that 12(0) flows against 
the direction of the an-ow). 

8. Find the cun-ents in Example 2 if the resistance of R1 
and R2 is doubled (general solution only). First, guess. 

9. What are the limits of the CUlTents in Example 27 
Explain them in terms of physics. 

10. Find the cun-ems in Example 2 if the capacitance is 
changed to C = 115.4 F (farad). 

111-151 CONVERSION TO SYSTEMS 

Find a general solution of the given ODE (a) by first 
converting it to a system. (b). as given. (Show the detaib 
of your work.) 

II. y" - 4y = 0 

13. y" - y' = 0 

15. 64y" - 48/ - 7." = 0 

12. y" + 2y' - 24y = 0 

14. y" + 15y' + SOy = 0 

16. TEAM PROJECT. Two Masses on Springs. (a) Set 
up the model for the (undamped) system in Fig. 80. 

(b) Solve the ~ystem of ODEs obtained. Him. Try 
y = xe'"' and set w2 

= A. Proceed as in Example I or 2. 

(e) Describe the influence of initial conditions on the 
possible kind of motions. 

System in 
static 

equilibrium 

(Net change in 
spring length 
=Y2- Y l) 

System in 
motion 

Fig. 80. Mechanical system in Team Project 16 

4.2 Basic Theory of Systems of ODEs 
In this section we discuss some basic concepts and facts about systems of ODEs that are 
quite similar to those for single ODEs. 

The first-order systems in the last section were special cases ofthe more general system 

(1) 

y~ = flU. Y1' ...• )'n) 

)'~ = f2(t· ."1, .... ),,,) 

We can write the system (I) as a vector equation by introducing the column vectors 
y = [."1 Yn]T and f = [fl fn]T (where T means transposition and saves us 
the space that would be needed for writing y and f as columns). This gives 

(1) y' = fU. y). 

This system (1) includes almost all cases of practical interest. For Il = I it becomes 
)'~ = flU. )'1) or. simply, y' = f(t, y). well known to us from Chap. I. 

A solution of (I) on some interval (/ < t < b is a set of n differentiable functions 

),,, = 1I,,(t) 
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on a < t < b that satisfy (1) throughout this interval. In vector form, introducing the 
"solution I'ector" h = [hI hnr (a column vector!) we can write 

y = h(t). 

An initial value problem for (I) consists of (1) and 11 given initial conditions 

(2) 

in vector form, y(to) = K, where to is a specified value of t in the interval considered and 
the components of K = [Kl Knr are given numbers. Sufficient conditions for the 
existence and uniqueness of a solution of an initial value problem (I), (2) are stated in 
the following theorem, which extends the theorems in Sec. 1.7 for a single equation. (For 
a proof, see Ref. [A 7].) 

Existence and Uniqueness Theorem 

Let f 1, •.. , f n in (1) be continuousfwlctiolls havi1lg collfil1UOUS pm1illl derivatil'es 
afl/aYI, ... , afl/aYn' ... , af,/iJYn in some domain R of f)·1.\"2 ••• Yn-space 
containing tlte point (to, K I , .•. , K,,). Theil (I) has a solutioll 011 some illfen'al 
to - a < t < to + a satisfying (2). and this solution is unique. 

Linear Systems 
Extending the notion of a linear ODE. we call (1) a linear system if it is linear in 
Yl ... , Yn; that is, if it can be written 

(3) 

In vector form. this becomes 

(3) y' = Ay + g 

where a~] [h] [~] ., y = ., g = .. 

ann Yn gn 

This system is called homogeneous if g = 0, so that it is 

(4) y' = Ay. 

If g * 0, then (3) is called nonhomogeneous. The system in Example I in the last section is 
homogeneous and in Example 2 nonhomogeneous. The system in Example 3 is homogeneous 
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For a linear system (3) we have atl/aYI = an(t), ... , at nlaYn = ann(t) in Theorem l. 
Hence for a linear system we simply obtain the following. 

Existence and Uniqueness in the Linear Case 

Let the ajk' sand g/ s in (3) be continuous functions of t on an open interval 
a < t < f3 containing the point t = to. Then (3) has a solution y(t} on this inten'al 
satisfying (2), and this solution is unique. 

As for a single homogeneous linear ODE we have 

Superposition Principle or Linearity Principle 

lfy(1) and y(2) are solutions of the homogeneous linear system (4) on some interval, 
so is any linear combination y = c l y(1) + C2y(2). 

PROOF Differentiating and using (4), we obtain 

• 
The general theory of linear systems of ODEs is quite similar to that of a single linear 
ODE in Secs. 2.6 and 2.7. To see this, we explain the most basic concepts and facts. For 
proofs we refer to more advanced texts, such as [A7J. 

Basis. General Solution. Wronskian 
By a basis or a fundamental system of solutions ofthe homogeneous system (4) on some 
interval J we mean a linearly independent set of n solutions y(1}, ... , yCn) of (4) on that 
interval. (We write J because we need I to denote the unit matrix.) We call a conesponding 
linear combination 

(5) (CI, ... , Cn arbitrary) 

a general solution of (4) on J. It can be shown that if the ajk(t) in (4) are continuous on 
J, then (4) has a basis of solutions on J. hence a general solution. which includes every 
solution of (4) on J. 

We can write n solutions ym, ... , yCn) of (4) on some interval J as columns of an 
11 X 11 matrix 

(6) 
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The determinant of Y is called the Wronskian of ym, ... , yen>, written 

,,(1) 
. I 

V(2) 
. I 

yCn) _ 1 

v(1) y~2) y~n) 

W(yCl), ... , yCn») = .2 
(7) 

" (1) .n 
\' (2) 
. n 

V Cn) 
. n 

The columns are these solutions, each in terms of components. These solutions form a 
basis on 1 if and only if W is not zero at any 11 in this interval. W either is identically zero 
or is nowhere zero in 1. (This is similar to Sees. 2.6 and 3.l.) 

If the solutions y(1), ... , yen) in (5) form a basis (a fundamental system), then (6) is 
often called a fundamental matrix. Introducing a column vector e = [CI C2 cnlT

, 

we can now write (5) simply as 

(8) y = Ye. 

Furthermore, we can relate (7) to Sec. 2.6, as follows. If y and z are solutions of a 
second-order homogeneous linear ODE, their Wronskian is 

I
v 

W(y,.:) = y' 

To write this ODE as a system, we have to set y = h, Y' = y~ = )'2 and similarly for z 
(see Sec. 4.1). But then W(y, z) becomes (7), except for notation. 

4.3 Constant-Coefficient Systems. 
Phase Plane Method 

Continuing, we now assume that our homogeneous linear system 

(1) y' = Ay 

under discussion has constant coefficients, so that the n X n matrix A = [OjkJ has entries 
not depending on t. We want to solve (I). Now a single ODE y' = ky has the solution 
y = Cekt

• So let us try 

(2) 

Substitution into (I) gives y' 
eigenvalue problem 

(3) 

Axe>" = Ay = AxeAl. Dividing by eAt, we obtain the 

Ax = AX. 
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Thus the nontrivial solutions of (1) (solutions that are not zero vectors) are of the form (2), 
where A is an eigenvalue of A and x is a con·esponding eigenvector. 

We assume that A has a linearly independent set of Il eigenvectors. This holds in most 
applications, in particular if A is symmetric (okj = Ojk) or skew-symmetric (okj = -Ojk) 

or has Il differellt eigenvalue~. 
Let those eigenvectors be XCll, .... x(n) and let them correspond to eigenvalues 

AI> ... , An (which may be all different, or some--or even all-may be equal). Then the 
corresponding solutions (2) are 

(4) 

Their Wronskian W = W(yCll ..... yen»~ [(7) in Sec. 4.2] is given by 

(1) Alt 
Xl e 

(n) Ant 
Xl e xil) 

(1) Alt (n) Ant X~l) 
W = (y(1), ... , y(n» = 

X2 e X2 e = eAlt + .. +Ant 

(1) Alt \: (n)e Ant XU) 
Xn e - n - n 

yen) 
-'n 

On the right, the exponential function is never zero, and the determinant is not zero either 
because its columns are the n linearly independent eigenvectors. This proves the following 
theorem, whose assumption is true if the matrix A is symmetric or skew-symmetric, or if 
the 11 eigenvalues of A are all different. 

General Solution 

If the constant matrix A in the system (I) has a linearly indepelldent set of Il 
eigenvectors, then the corresponding solutions y(1), .•. ,y(n) in (4)for711 a basis of 
solutiol1s of (l). olld the con'espollding general solution is 

(5) 

l __________________ ~ 

How to Graph Solutions in the Phase Plane 
We shall now concentrate on systems (I) with constant coefficients con ~isting of two 
ODEs 

(6) y' = Ay; in components, 

Of course, we can graph solutions of (6). 

(7) [
YI(t)] 

y(t) = , 
Y2(t) 
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as two curves over the t-axis, one for each component of ytf). (Figure 79a in Sec. 4.1 shows 
an example.) But we can also graph (7) as a single curve in the )'lY2-plane. This is aporamefric 
representation (parametric equation) with parameter t. (See Fig. 79b for an example. Many 
more follow. Parametric equations al~o occur in calculus.) Such a CUI ve is called a trajectory 
(or sometimes an orbit or path) of (6). The YIY2-plane is called the phase plane. 1 If we fill 
the phase plane with trajectories of (6), we obtain the so-called phase portrait of (6). 

E X AMP L E 1 Trajectories in the Phase Plane (Phase Portrait) 

In order to see what is going on, let u, find and graph solutions of the system 

(8) 
[

-3 
y' = Ay = I I] y. 

-3 
thus 

yi = -3)'1 + ,1'2 

y~ = )'1 - 3.1'2' 

Solution. By substituting y = xeAt and y' = lLxeAt and dropping the exponential function we get Ax = Ax. 
The characteristic equation is 

det (A - AI) = 1-3 
- A I 1 = ,1.2 + 6,1. + 8 = O. 
I -3 - A 

Thi. gives the eigenvalue, Al = -2 and ,1.2 = -4. Eigenvectors are then obtained from 

For Al = -2 this is -xl + t2 = O. Hence we can take x(1) = 1I JlT. For ,1.2 = -4 this becomes Xl + x2 = O. 

and an eigenvector is x(2) = [I _I]T. Tins gives the general solution 

Figure 81 on p. 142 shows a phase pomait of some of the trajectories (to which more trajectories could be added 
if so desired). The two straight trajectories correspond to Cl = 0 and C2 = 0 and the olhers to other choices of 

~~ . 
Studies of solutions in the phase plane have recently become quite important, along with 
advances in computer graphics, because a phase portrait gives a good general qualitative 
impression of the entire family of solutions. This method becomes particularly valuable 
in the frequent cases when solving an ODE or a system is inconvenient or impossible. 

Critical Points of the System (6) 
The point y = 0 in Fig. 81 seems to be a common point of all trajectories, and we want 
to explore the reason for this remarkable observation. The answer will follow by calculus. 
Indeed, from (6) we obtain 

, 
(9) ."2 , 

Y1 

(21)'1 + 022)'2 

0U)'l + 012)'2 

1A name that come, from physio. where il is the Y-(/IIv)-plane. used to plot a motion in terms of po,ition 
y and velocity / = v (m = mass): but the name is now used quite generally for the YlY2-plane. 

The use of the phase plane is a qualitatin method. a method of obtaining general qualitative information 
on solutions without actually solving an ODE 01' a system. This method was created by HENRI POINCARE 
(1854-1912). a great French mathematician, whose work was also fundamental in complex analysis, divergent 
series, topology, and astronomy. 
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This associates with every point P: (.vI' )'2) a unique tangent direction d.v2ldYl of the 
trajectory passing through P, except for the point P = Po: (0.0), where the right side of 
(9) becomes 0/0. This point Po, at which dY2idYl becomes undetermined. is called a critical 
point of (6). 

Five Types of Critical Points 
There are five types of critical points depending on the geometric shape of the trajectories 
near them. They are called improper nodes, proper nodes, saddle points, centers, and 
spiral points. We define and illustrate them in Examples 1-5. 

E X AMP L E 1 (Continued) Improper Node (Fig. 81) 

An improper node is a critical point Po at which all the trajectories. except for two of them, have the same 
limiting direction of the tangent. The two exceptional trajectories also have a limiting direction of the tangent 
at Po which, however, is different. 

The system (8) has an improper node at 0, as its phase portrait Fig. 81 shows. The common limiting direction 
at 0 is that of the eigenvector xU) = [lIlT because e -4t goes to zero faster than e -2t as r increases. The two 
exceptional limiting tangent directions are those of x(2) = [1 _l]T and -x(2) = [-I UT. • 

E X AMP L E 2 Proper Node (Fig. 82) 

A proper node is a critical point Po at which every trajectory has a definite limiting direction and for any given 
direction d at Po there is a trajectory having d as its limiting direction. 

The system 

(10) y' = [~ 
, 

.\"1 =)'1 
thus , 

.\"2 =)'2 

has a proper node at the origin (see Fig. 82). Indeed, the matrix is the unit matrix. Its chmacteristic equation 
(I - ),)2 = 0 has the root)' = 1. Any x '* 0 is an eigenvector, and we can take [1 ol and [0 l]T. Hence 
a general solution is 

y = cl [~J e
t 

+ c2 [~J e
t 

Y2 

"- }!:-' " , "-

-

---1' 
~ 

'" / \ 
/' '" / 

\ y
t2lCtJ 

Fig. 81. Trajectories of the system (8) 
(Improper node) 

or 

Yj 

)"1 = cle 
t 

or c!Y2 = c2Vl· 
)'2 = C2 et 

Y21 

,\j~ 
~\/~ 

EO ;)' 

~ ~ \' 

Fig. 82. Trajectories of the system (10) 
(Proper node) 

• 

Yj 
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E X AMP L E 3 Saddle Point (Fig. 83) 

A saddle point is a critical point Po at which there are two incoming trajeclOries. TWO outgoing trajeclOries. and 
all the other trajectories in a neighborhood of Po bypass Po. 

The system 

(11) , [0
1 

Y = OJ y. 
-1 

thus 

, 
Yl = Yl 

has a saddle point at the origin. Its characteristic equation (I - ,1.)( - I - A) = 0 has the roots ,1.1 = I and 
,1.2 = -I. For A = I an eigenvector [l OlT is obtained from the second row of (A - AI)x = 0, that is. 
OXI + (-I - I)x2 = O. For ,1.2 = -1 the fIrst row gives [0 nT. Hence a general solution is 

or or YIY2 = c{)nst. 

This is a family of hyperbolas (and the coordinate axes); see Fig. 83. • 
E X AMP L E 4 Center (Fig. 84) 

A center is a critical point that is enclosed by infinitely many closed trajectories. 
The system 

(12) y' = [ 0 
-4 

thus 

, 
,vI = Y2 

Y~ = -4Y1 

has a center at the origin. The characteristic equation ,1.2 + 4 = 0 gives the eigenvalues 2i and -2i. For 2i an 
eigenvector follows from the fIrst equation -2ixl + X2 = 0 of (A - AI)x = 0, say. [l 2ilT. For A = -2i that 
equation is -(-2i)xl + X2 = 0 and gives. say. [I -2ilT. Hence a complex general solution is 

(12*) thus 

The next step would be the transfOlmation of this solution 10 real form by the Euler formula (Sec. 2.2). But we 
were just curious to see what kind of eigenvalues we obtain in the case of a center. Accordingly, we do not 
continue. but start again from the beginning and use a shortcut. We rewrite the given equations in the form 
yi. = )'2. 4"1 = -y~; then the product of the left sides must equal the product of the right sides. 

By integration, 

This is a family of ellipses (see Fig. 84) enclosing the center at the origin. • 

Fig. 83. Trajectories of the system (11) 
(Saddle point) 

Fig. 84. Trajectories of the system (12) 
(Center) 
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E X AMP L E 5 Spiral Point (Fig. 85) 

A spiral point is a critical point Po about which the trajectories spiral. approaching Po as t ---'> rx (or tracing 
these spirals in the opposite sense. away from Po). 

The system 

(13) y' = [-I 
-\ 

IJ y, 
-I 

thus 

has a spiral point at the origin, as we shall see. The characteristic equation is A2 + 2A + 2 = O. It gives the 
eigenvalues -\ + i and -\ - i. Corresponding eigenvectors are obtained from (-\ - A)XI + -"2 = O. For 
A = -I + ; this becomes -if 1 + X2 = 0 ami we can take [I ;]T as an eigenvector. Similarly. an eigenvector 
corresponding to -1 - ; is [I _;]T. This gives the complex general solution 

[IJ (-I+i)t + [IJ (-I-i)t Y = ci e c2 e . 
i -; 

The next step would be the transformation of this complex solution to a real general solution by the Euler 
fOlmula. But. as in the last example. we ju~t wanted to see what eigenvalues to expect in the ca,e of a spiIaI 
point. Accordingly. we start again from the beginning and instead of that rather lengthy systematic calculation 
we use a shortcut. We multiply the f,rst equation in (13) by YI. the second by Y2. and add. obtaining 

We now introduce polar coordinates r. t. where r2 = ."1
2 + .'"22. Differentiating this with respect to t gives 

21T' = 2YIY~ + 2Y2Y~' Hence the previous equation can be written 

, 2 
rr = -r . Thus. drlr = -dt. In Irl = -t + c"'. 

For each real c thi~ is a spiral. a~ claimed. (see Fig. 85). 

Fig. 85. Trajectories of the system (13) (Spiral point) 

E X AMP L E 6 No Basis of Eigenvectors Available. Degenerate Node (Fig. 86) 

-t r = ce . 

• 

This cannot happen if A in (1) is symmetric (alQ = ajk. as in Examples 1-3) or skew-symmetnc (akj = -ajk. 

thus ajj = 0). And ,t does not happen in many other cases (see Examples 4 and 5). Hence it suffices to explain 
the method to be used by an example. 
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Find and graph a general ~olution of 

(14) y' = Ay = [ 4 
-I 

IJ y. 
2 

Solution. A is not skew-symmetric! Its characteristic equation is 

det (A - AI) = 14 - A I 1 = ,1.2 - 6,1. + 9 = (A - 3)2 = O. 
-I 2 - A 
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It has a double root A = 3. Hence eigenvectors are obtained from (4 - ,1.).\"1 + x2 = O. thus from Xl + -'"2 = O. 
say. x(l) = [I - J]T and nonzero multiples of it (which do not help). The method now is to substitute 

with constant u = [Ill 112{ into (14). (TIle xT-term alone, the analog of what we did in Sec. 2.2 in the case of 
a double rool. would nol be enough. Try iLl This gives 

On the right. Ax = Ax. Hence the terms AXTeAt cancel, and then division by eAt gives 

x+Au=Au, 

Here A = 3 and x = [l -nT. so that 

[

4 - 3 
(A - 31)u = 

-I 

thus (A - Anu = x. 

thus 

A solution. linearly independent of x = [l _lJT. is u = [0 lJT. This yields the answer (Fig. 86) 

The critical point at the origin is often called a degenerate node. c1y(l) gives the heavy straight line, with 
("1 > 0 the lower part and c1 < 0 the upper part of it.l2J give~ the right part of the heavy curve from 0 through 
the second, first. and-finally-fourth quadrants. -l2) gives the other part of that curve. • 

y 

(2) 
Y 

Fig. 86. Degenerate node in Example 6 
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We mention that for a system (1) with three or more equations and a triple eigenvalue 
with only one linearly independent eigenvector, one will get two solutions. as just 
discussed, and a third linearly independent one from 

11-91 GENERAL SOLUTION 

Find a real general solutiun of the following systems. (Show 
the details.) 

2. y~ 
, 

Y2 

3. Y ~ = Yl + )"2 4. Y~ 
, 

Y2 

6. y~ 
, 

Y2 

7. y~ 

Y~ = -4Yl - 10Y2 + 2Y3 

y~ = -4.\"1 - 4.\"2 - 4)"3 

y~ =)"1 - 0.IY2 + 1.4Y3 

, 
v . 2 

9Yl + 13.5Y2 

1.5)'1 + 9Y2 

2Yl 2)"2 

2Yl + 2."2 

110-151 INITIAL VALUE PROBLEMS 

Solve the following initial value problems. (Show the details.) 

10. Y ~ = Y1 + )"2 

y~ = 4Yl + Y2 y~ = ~Yl + .\'2 

6 ."1(0) = 16, )"2(0) = -2 

14. )"~ = -Yl + 5Y2 15. Y~ = 2Yl + 5Y2 

y~ = -Yl + 3Y2 Y; = 5Yt + l2.5Y2 

with v from u + Av = Av. 

! 16-171 CONVERSION 

Find a general solution by conversion to a single ODE. 

16. The system in Prob. 8. 

17. The system in Example 5. 

18. (Mixing problem, Fig. 87) Each of the two tanks 
contains 400 gal of water. in which initially 100 lb 
(Tank T l ) and 40 Ib (Tank T2 ) of fertilizer are 
dissolved. The intlow, circulation, and outflow are 
shown in Fig. 87. The mixture is kept uniform by 
stirring. Find the fertilizer contents Yl(t) in T] and Y2(t) 
in T2 . 

4S ..... a lJ ...... 

}, ----;- ..........-
(P Nat 

T
J non T2 '8 --" 

----;- ----;- I. 

---
Fig. 87. Tanks in Problem 18 

19. (Network) Show that a model for the currents I] (1) and 
12(t) in Fig. 88 is 

Find a general solution, assuming that R = 20 .0, 
L = 0.5 H, C = 2' 10-4 F. 

20. CAS PROJECT. Phase Portraits. Graph some of the 
figures in this section, in particular Fig. 86 on the 
degenerate node. in which the vector y(2J depends on 
t. In each figure highlight a trajectory that satisfies an 
initial condition of your choice. 

c 

R 

L LI 
-Y 

Fig. 88. Network in Problem 19 
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4.4 Criteria for Critical Points. Stability 
We continue our discussion of homogeneous linear systems with constant coefficients 

[

(lU 

(1) y' = Ay = 
(121 

in components, 

From the examples in the last section we have seen that we can obtain an overview of 
families of solution curves if we represent them parametrically as yet) = lVI(t) Y2(t)]T 
and graph them as curves in the YLv2-plane, called the phase plane. Such a curve is called 
a trajectory of (I), and their totality is known as the phase portrait of (I). 

Now we have seen that solutions are of the form 

Substitution into (1) gives 

Dropping the common factor eAt, we have 

(2) Ax = Ax. 

Hence yet) is a (nonzero) solution of (1) if A is an eigenvalue of A and x a corresponding 
eigenvector. 

Our examples in the last section show that the general form of the phase portrait is 
determined to a large extent by the type of critical point of the system (1) defined as a 
point at which dY2/dYI becomes undetermined, DID; here [see (9) in Sec. 4.3] 

(3) 
(l21YI + (l22Y2 

(lUYI + 1112Y2 

We also recall from Sec. 4.3 that there are various types of critical points, and we shall 
now see how these types are related to the eigenvalues. The latter are solutions A = Al 
and A2 of the characteristic equation 

(4) det (A - AI) = I(lU - A al2 I = A2 - (au + a22)A + det A = O. 
U21 (122 - A 

This is a quadratic equation A2 - pA + q = 0 with coefficients p. q and discriminant D. 
given by 

From calculus we know that the solutions of this equation are 

(6) 

Furthermore, the product representation of the equation gives 
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Hence]J is the sum and q the product of the eigenvalues. Also Al - A2 = VA from (6). 
Together. 

(7) 

This gives the criteria in Table 4.1 for classifying critical points. A derivation will be 
indicated later in this section. 

Table 4.1 Eigenvalue Criteria for Critical Points 
(Derivation after Table 4.2) 

I Name p = Al + A2 q = AIA2 !:J. = (AI - A2)2 Comments on A1• A2 
-

(a) Node q>O ~~O Real, same sign 

I 
(b) Saddle point q<O Real, opposite sign 
(c) Center p=O q>O Pure imaginary 
(d) Spiral point p=l=O ~ <0 Complex. not pure 

imaginary 

Stability 
Critical points may also be classified in terms of their stability. Stability concepts are basic 
in engineering and other applications. They are suggested by physics. where stability 
means, roughly speaking, that a small change (a small disturbance) of a physical system 
at some instant changes the hehavior of the system only slightly at all future times t. For 
critical points, the following concepts are appropriate. 

Stable, Unstable, Stable and Attractive 

A critical point Po of (\) is called stable2 if, roughly, all trajectories of (\) that at 
some instant are close to Po remain close to Po at all future times: precisely: if for 
every disk D" of radius E > 0 with center Po there is a disk D t; of radius 8 > 0 with 
center Po such that every trajectory of (l) that has a point PI (corresponding to 
t = t1 , say) in Dt; has all its points corresponding to t ~ t1 in DE" See Fig. 89. 

Po is called unstable if Po is not stable. 
Po is called stable and attractive (or asymptotically stable) if Po is stable and 

every trajectory that has a point in DB approaches Po as t ~ x. See Fig. 90. 

Classification criteria for critical points in terms of stability are given in Table 4.2. Both 
tables are summarized in the stability chart in Fig. 91. In this chart the region of instability 
is dark blue. 

21n the sense of the Russian mathematician ALEXANDER MICHAILOVICH LJAPUNOV (1857-1918), 
whose work was fundamental in stability theory for ODEs. This is perhaps the most appropriate defmition of 
stability (and the only we shall lise), but there are others, too. 
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Fig. 89. Stable critical point Po of (1) (The trajectory 
initiating at P1 stays in the disk of radius E.) 

Fig. 90. Stable and attractive critical 
point Po of (1) 

Table 4.2 Stability Criteria for Critical Points 

Type of Stability p = Al + A2 q = AIA2 
--

(a) Stable and attractive p<O q>O 
(b) Stable p~O q>O 
(e) Unstahle p>O OR q<O 

-

q 

p 
Saddle point 

Fig. 91. Stability chart of the system (1) with p, q, ~ defined in (5). 
Stable and attractive: The second quadrant without the q-axis. 

Stability also on the positive q-axis (which corresponds to centers). 
Unstable: Dark blue region 

We indicate how the criteria in Tables 4.1 and 4.2 are obtained. If q = Al A2 > 0, 
both eigenvalues are positive or both are negative or complex conjugates. If also 
p = Al + A2 < O. both are negative or have a negative rea] part. Hence Po is stable 
and attractive. The reasoning for the other two lines in Table 4.2 is similar. 

If fj, < 0, the eigenvalues are complex conjugates, say, Al = a + i{3 and A2 = a - i{3. 
If also p = Al + A2 = 20' < 0, this gives a spiral point that is stable and attractive. If 
p = 20' > 0, this gives an unstable spiral point. 

If p = 0, then A2 = -AI and q = AIA2 = -AI2. If also q > 0, then A12 = -q < 0, 
so that AI, and thus A2, must be pure imaginary. This gives periodic solutions, their 
trajectories being closed curves around Po, which is a center. 

E X AMP L E 1 Application ofthe Criteria in Tables 4.1 and 4.2 

In Example I, Sec. 4.3, we have y' = [-: 

is stable and attractive by Table 4.2(a). 

lJ y,p = -6, q = 8, ~ = 4, a node by Table 4.1(a), which 
-3 

• 
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E X AMP L E 2 Free Motions of a Mass on a Spring 

What kind of critical point does my" + 0" + ky = 0 in Sec. 2.4 have? 

Solution. Division by m gives y" = -(kIm))" - (elm)y'. To get a system, set )'1 = y, Y2 = Y' (see Sec. 
4.1). Then)'~ = y" = -(klm)Yl - (elm)Y2' Hence 

[ 
0 I ] y' = y 

-kIm -elm ' I
-A 

det (A - AI) = 
-kIm 

We see thatp = -elm. q = kIm, l:!. = (elm)2 - 4klm. From this and Tables 4.1 and 4.2 we obtain the following 
results. Note that in the last three cases the discriminant l:!. plays an essential role. 

No damping. c = 0, p = 0, q > 0, a center. 
UnderdaJllping. c2 < 4mk, p < O. q > O. ~ < 0, a stable and attractive spiral point. 
Critical damping. c2 = 4mk. p < O. q > O. l:!. = O. a stable and attractive node. 
Overdamping. c2 > 4mk, p < 0, q > 0, l:!. > 0, a stable and attractive node. • 

.•. -.-.­
... --... ... ~ ... .-..--­.. .. --.----....... 

11-91 TYPE AND STABILITY OF CRITICAL POINT 

Determine the type and stability of the critical point. Then 
find a real general solution and sketch or graph some of the 
trajectories in the phase plane. (Show the details of your 
work.) 

1. 
, 

2)'2 Yl 
, 

8y! Y2 = 

3. 
, 

= 2Yl + Yl Y2 
, 

+ 2)'2 Y2 = y . 1 

5. 
, 

-4Yl + Yl Y2 
, 

- 4Y2 Y2 )'1 

7. 
, 

-2Y2 Yl 
, 

8Y1 Y2 = 

9. Y~ = )'1 + 2)'2 

y~ = 2Yl + Y2 

2. 
, 

4Yl )'1 

, 
3Y2 Y2 = 

4. Y~ = Y2 

, 
-5)'1 Y2 

6. 
, 

+ Yl Yl 
, 

= 7)'1 Y2 

8. 
, 

3)'1 Yl 
, 

-5)'1 Y2 = 

110-121 FORM OF TRAJECTORIES 

- 2)'2 

IOY2 

8Y2 

+ 5Y2 

- 3Y2 

What kind of curves are the trajectories of the following 
ODEs in the phase plane? 

10. y" + 5)" = 0 

11. y" - k 2 y = 0 

12. Y" + tBY = 0 

13. (Damped oscillation) Solve y" + 4y' + 5y = O. What 
kind of curves do you get as trajectories? 

14. (Transformation of variable) What happens to the 
system (1) and its critical point if you introduce T = -t 

as a new independent variable? 

15. (Types of critical points) Discuss the critical points in 
(10)-( 1-1-) in Sec. 4.3 by applying the criteria in Tables 
4.1 and 4.2 in tlus section. 

16. (Perturbation of center) If a system has a center as 
its critical point, whal happens if you replace the matrix 
A by A = A + kI with any real number k =1= 0 
(representing measurement errors in the diagonal 
entries)? 

17. (Perturbation) The system in Example 4 in Sec. 4.3 
has a center as its critical point. Replace each Gjk in 
Example 4, Sec. 4.3, by ajk + b. Find values of b such 
that you get (a) a saddle point. (b) a stable and attractive 
node, (c) a stable and attractive spiral. (d) an unstable 
spiral, (e) an unstable node. 

18. CAS EXPERIMENT. Phase Portraits. Graph phase 
portraits for the systems in Prob. 17 with the values of 
b suggested in the answer. Try to illustrate how the phase 
portrait changes "continuously" under a continuous 
change of b. 

19. WRITING EXPERIMENT. Stability. Stability 
concepts are basic in physics and engineering. Write a 
two-part report of 3 pages each (A) on general 
applications in which stability plays a role (be as 
precise as you can), and (B) on material related to 
stability in this section. Use your own formulations and 
examples: do not copy. 

20. (Stability chart) Locate the critical points of the 
systems (0)-(14) in Sec. 4.3 and of Probs. 1,3,5 in 
this problem set on the stability chart. 
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4.5 Qualitative Methods for Nonlinear Systems 
Qualitative methods are methods of obtaining qualitative information on solutions 
without actually solving a system. These methods are particularly valuable for systems 
whose solution by analytic methods is difficult or impossible. This is the case for many 
practically important nonlinear systems 

(1) y' = fey), thus 
Y~ = fl(Yl, Y2) 

Y~ = f 2(Yb Y2)· 

In this section we extend phase plane methods, as just discussed, from linear systems 
to nonlinear systems (1). We assume that (1) is autonomous, that is, the independent 
variable t does not occur explicitly. (All examples in the last section are autonomous.) 
We shall again exhibit entire families of solutions. This is an advantage over numeric 
methods, which give only one (approximate) solution at a time. 

Concepts needed from the last section are the phase plane (the YIY2-plane), trajectories 
(solution curves of (1) in the phase plane), the phase portrait of (1) (the totality of these 
trajectories), and critical points of (1) (points (Yb .\'2) at which both fl()'b )'2) and f2(Yb )'2) 
are zero). 

Now (1) may have several critical points. Then we discuss one after another. As a 
technical convenience, each time we first move the critical point Po: (a, b) to be considered 
to the origin (0, 0). This can be done by a translation 

which moves Po to (0, 0). Thus we can assume Po to be the origin (0, 0), and for 
simplicity we continue to write .\'1' Y2 (instead of 511, )'2). We also assume that Po is 
isolated, that is, it is the only critical point of (1) within a (sufficiently small) disk with 
center at the origin. If (1) has only finitely many critical points, this is automatically 
true. (Explain!) 

Linearization of Nonlinear Systems 
How can we determine the kind and stability property of a critical point Po: (0, 0) of 
(1)? In most cases this can be done by linearization of (1) near Po. writing (1) as 
y' = fey) = Ay + hey) and dropping hey), as follows. 

Since Po is critical, fl(O. 0) = 0, f2(0, 0) = O. so that fl and f2 have no constant terms 
and we can write 

(2) y' = Ay + hey), thus 

A is constant (independent of t) since (1) is autonomous. One can prove the following 
(proof in Ref. [A7], pp. 375-388, listed in App. 1). 
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Linearization 

If f 1 and f 2 ill (1) are comillllolls alld have contilluollS partial derivatives ill a 
neighborhood of the critical point Po: (0, 0). alld !f det A =1= 0 in (2), then the kind 
and stability of the critical poillt of (1) {Ire the same as those of the linearized 
system 

(3) 

, 
+ r = aIL"l (/12Y2 , . I 

Y Ay, thus , 
+ Y2 = a21Yl a22Y2' 

Exceptions occllr!f A has equal or pure i111agilwry eigellvalues; then (1) may have 
the same kind of critical point as (3) or a spiral point. 

E X AMP L E 1 Free Undamped Pendulum. Linearization 

Figure 91a shows a pendulum comisting of a body of mass 111 (the bob) and a rod of length L. Detenmne the 
locations and types of the critical points. Assume that the mass of the rod and air resistance are negligible. 

Solutioll. Step 1. Settillg lip the mathematical model. Let () denote the angular displacement, measured 
counterclockwise from the equilibrium position. The weight of the bob is mg (g the acceleration of gravity). It 
causes a restoring force IIlg sin () tangent to the curve of motion (circular arc) of the bob. By Newton's second 
law. at each instant this force is balanced by the force of acceleration mL()", where L()" is the acceleration: 
hence the resultant of these two forces is zero. and we obtain as the mathematical model 

IIlL()" + IIlg sin () = O. 

Dividing this by mL. we have 

(4) ()" + k sin () = 0 

When () is very small. we can approximate sin () rather accurately by () and obtain as an approximate solution 
A cos V kt + B sin Vkt. but the exact solution for any () is not an elementary function. 

Step 2. Critical po;"ts (0, 0), ±(2rr, 0), ±l4rr, 0), ... , Lilleari;;.atioll. To obtain a system of ODEs. we set 
() = .1"1' ()' = )"2' Then from (4) we obtain a nonlinear system (I) of the form 

Y~ = hlYl, Y2) = Y2 

y~ = .12(.1"1 . .1"2) = -k sinY1· 

The right sides arc both zero when .1'2 = 0 and sin.\"1 = O. This gives infinitely many critical points (111T. 0). 

where Il = O. ± I. ±2, .... We consider (0, 0). Since the Maclaurin series is 

sin."1 = .\'1 - ~Y13 + - ... = .\'1' 

the linearized system at (0. 0) i, 

y' = Ay = [ 0 
-k 

thus 

To apply our criteria in Sec. -lA we calculate p = all + a22 = 0, q = det A = k = gIL (> 0), and 
j. = p2 - 4q = -4k. From this and Table 4.1 (c) in Sec. 4.4 we conclude that (0. 0) is a center. which is always 
stable. Since sin (j = sinYI is periodic with period 11T. the critical points (/l1T. 0), /I = ±1. ±4 ..... are all 
centers. 

Step 3. Critical poillts ±(rr. 0). ±(3rr. 0), ±(5rr. 0) •.. '. Lilleari:.atioll. We now consider the critical point 
(1T. 0). setting () - 1T = Yl and «() - 1T)' = ()' = .\'2' Then in (4). 

sin () = sin 1.\'1 + 1Tl = -sin Yl = -Yl + ~YI 3 
- + ... = -\'1 
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EXAMPLE 2 

and the linearized system at (7T, 0) is now 

thus 

We see that p = 0, q = - k « 0), and D. = -4q = 4k. Hence, by Table 4.1(b), this gives a saddle point, which 
is always unstable. Because of periodicity, the critical points (/17T, 0), /1 = ::'::1, ::'::3, .. " are all saddle points. 
These results agree with the impression we get from Fig. Y2b. • 

mg 

(a) Pendulum (b) Solution curvesY2(Yj) of (4) in the phase plane 

Fig. 92. Example 1 (C will be explained in Example 4.) 

Linearization of the Damped Pendulum Equation 

To gain further experience in investigating critical points, as another practically imponant case. let us see how 
Example I changes when we add a damping term ce' (damping proportional to the angular velocity) to equation 
(4), so that it becomes 

(5) e" + ce' + k sin e = 0 

where k > 0 and c ::::; 0 (which includes Ollr previous casc of no damping, c = o1. Setting e = -"1, e' = Y2' as 
before, we obtain the nonlinear system (use e" = )'~) 

, 
Y1 =)'2 

y~ = -k sinYI - cY2. 

We see that the critical poinrs have the same locations as before. namely. (0, 0). (::'::7T. 0), (::'::27T. 0), .... We 
consider (0, 0). Linearizing sin Yl = )'1 as in Exan1ple 1, we get the linearized system at (0, 0) 

(6) y' = Ay = [0 lJ Y 
-k -c ' 

, 
)'1 = Y2 

thus 

This is identical with the system in Example 2 of Sec 4.4, except for the (positive!) facror I1l (and except for 
the physical meaning of Yl)' Hence for c = 0 (no damping) we have a center (see Fig. 92b). for small damping 
we have a spiral point (see Fig. 93), and so on. 

We now consider the critical point (7T, 0). We set e - 7T = Yl, (e - 7T/ = e' = Y2 and linearize 

sin e ~ sin(YI + 7T) = - sinYl = -y!. 

This gives the new linemized system at (7T, 0) 

(6*) y'=AY=[O IJy, 
k -c 

, 
Yj = Y2 

thus 
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For our criteria in Sec 4.4 we calculate p = au + a22 = -c. q = det A = -k, and D. = p2 - 4q = c2 + 4k. 
This gives the following results for the critical point at (1T, 0). 

No damping. c = 0, p = O. q < 0, ~ > O. a saddle point. See Fig. 92b. 
Damping. c > 0, p < O. q < 0, D. > O. a saddle point. See Fig. 93. 

Since sin ,1'1 is periodic with period 21T, the critical points (:+:21T, 0), (:+:41T, 0), ... are of the same type a~ 
(0.0). and the critical points (-1T, 0), (:+:31T. 0), ... are of the same type as (1T. 0), so that our task is finished. 

Figure 93 shows the trajectories in the case of damping. What we see agrees with our physical intuition. Indeed. 
damping means loss of energy. Hence instead of the closed trajectories of periodic solutions in Fig. 92b we now 
have trajectories spiraling around one of the critical points (0, 0), (:!:21T, 0), .... Even the wavy trajectorie~ 
corresponding to whirly motions eventually spiral around one of these points. Furthermore. there are no more 
trajectories that connect critical points (as there were in the undamped case for the saddle points). • 

Fig. 93. Trajectories in the phase plane for the damped pendulum 
in Example 2 

Lotka-Volterra Population Model 

E X AMP L E 3 Predator-Prey Population Model3 

This model concerns two species, say, rabbits and foxes, and the foxes prey on the rabbits. 

Step 1. Setting lip the model. We assume the following. 

1. Rabbits have unlimited food supply. Hence if there were no foxes. their number Yl(t) would grow 
exponentially. \'~ = ay!. 

2. Actually, Yl is decrea,ed because of the kill by foxes. say. at a rate proportional to YIY2' where )'2(t) is 
the number of foxes. Hence y~ = aYl - bYIY2, where a > 0 and b > O. 

3. If there were no rabbits, then Y2(f) would exponentially decreaSe to zero, y~ = -1.\'2' However, Y2 is 
increased by a rate proportional to the number of encounters between predator and prey; together we 
have Y~ = - IY2 + kyl)'2' where k > 0 and 1 > O. 

This gives the (nonlinear!) Lotka-Volterra system 

(7) 
Y; = h(Yl, )'2) = aYl - bylY2 

,1'2 = f 2(Yl,.\'2) = /"'}'1.'·2 - lY2 . 

3lntroduced by ALFRED 1. LOTKA (1880-1949), Amelican biophySicist. and VITO VOLTERRA 
(1860-1940), Italian mathematician, the initiator of functional analysis (see [GR7] in App. 1). 
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Step 2. Critical point (0, 0), Linearization. We see from (7) that the critical pomts are the solutIOns of 

(7*) 

I a 
The solutions are (Yl, Y2) = (0,0) and (k' b)' We consider (0, 0). Dropping -bYIY2 and kYIY2 from 0) gives 

the linearized system 

OJ y. 
-I 

Its eigenvalues are Al = a > 0 and ,1,2 = -I < O. They have opposite signs, so that we get a saddle point. 

Step 3. Critical point (lIk, alb), Linearization. We set Yl = Yl + Ilk, Y2 = 3'2 + alb. Then the critical point 
(Ilk, alb) corresponds to (Yl, Y2) = (0,0). Since Y; = y;, y~ = y~, we obtain from 0) [factorized as in (8)] 

yi = (Yl + ±) [a - b(Y2 + ~) J = (Yl + ± ) (-byv 

y~ = (Y2 + i) [k(S\ + ±) - lJ (3'2 + i )k)\. 
Dropping the two nonlinear terms -bYIY2 and "5'IY2, we have the linearized system 

~, Ib ~ 
(a) Yl = - T Y2 

(7**) 

(b) 
~, ak 
Y2= b ''t. 

The left side of (a) times the right side of (b) must equal the right side of (a) times the left side of (b), 

By integration. 
ak ~ 2 lb ~ 2 
bYI + T)'2 = const. 

This is a family ellipses, so that the critical point (Ilk, alb) of the linearized system 0**) is a center (Fig. 94). 
It can be shown by a complicated analysis that the nonlinear system (7) also has a center (rather than a spiral 
point) at (Ilk, alb) surrounded by closed trajectories (not ellipses). 

We see that the predators and prey have a cyclic variation about the critical point. Let us move counterclockwise 
around the ellipse, beginning at the right vertex, where the rabbits have a m1L'dmum number. Foxes are sharply 
increasing in number until they reach a maximum at the upper vertex, and the number of rabbits is then sharply 
decreasing until it reaches a minimum at the left vertex, and so on. Cyclic variations of this kind have been 
observed in nature, for example, for lynx and snowshoe hare near the Hudson Bay, with a cycle of about 10 
years. 

For models of more complicated situations and a systematic discussion, see C. W. Clark, Mathematical 
Bioeconolllics (Wiley, 1976), • 

Y2 

~ ~ 
b ------~ 

I 
k 

Fig. 94. Ecological equilibrium pOint and trajectory 
of the linearized Latka-Volterra system (7**) 
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Transformation to a First-Order Equation 
in the Phase Plane 
Another phase plane method is based on the idea of transforming a second-order 
autonomous ODE (an ODE in which t does not occur explicitly) 

F()'. y'. -,"") = 0 

to first order by taking), = )"1 as the independent variable, setting y' = )'2 and transforming 
y" by the chain rule, 

" , )' =)'2 = 

Then the ODE becomes of first order, 

(8) 

dY2 dy! 

dy! dt 

and can sometimes be solved or treated by direction fields. We illustrate this for the 
equation in Example I and shall gain much more insight into the behavior of solutions. 

E X AMP L E 4 An ODE (8) for the Free Undamped Pendulum 

If in (4) 6" + k sin 6 = 0 we set 6 = .\"1. 6' = .1"2 (the angular velocity) and use 

" dY2 6 =-
dt 

dY2 ((VI 

dYl dt 
we get 

Separation of variables gives.l'2 dY2 = -k sin Yl elYl' By integration. 

(9) ll'22 = k cosYl + e 

Multiplying this by mL2. we get 

(e constant). 

We see that these three terms are energies. Indeed. Y2 is the angular velocity. so that LY2 is the velocity and the 
tirst term b the kinetic energy. The ~ecoml term (including the minus sign) is the potential energy of the pendulum. 
and mL2e is its total energy, which is constant, as expected from the law of conservation of energy, because 
there is no damping (no loss of energy). The type of motion depends on the total energy. hence on C. as follows. 

Figure 92b on p. 153 shows trajeclOries for various values of C. These graphs continue periodically with 
period 27TtO the left and to the right. We see that some of them are ellipse-like and closed. others are wavy, 
and there are two trajectories (passing through the saddle points (1/7T. 0). n = ::':: I. ::'::3 .... I that ~eparate 
those two types of trajectories. From (9) we see that the smallest possible e is e = -k; then.l"2 = 0, and 
cos VI = I. so that the pendulum is at rest. The pendulum will change its direction of motion if there are points 
at which Y2 = e' = O. Then k cos Yl + e = 0 by (9). If,vl = 7T, then cos .1'1 = - I and e = k. Hence if 
-J.. < e < k, then the pendulum reverses its direction for a IYll = lei < 7T. and for these values of e with 
lei < Ii: the pendulum oSl:iIlates. This corresponds to the closed trajectories in the figure. However. if e > k, 

then Y2 = 0 is impossible and the pendulum makes a whirly motion that appears as a wavy trajectory in the 
YIY2-plane. Finally. the value e = k correspond, to the two "separating trajectories" in Fig. 92b connecting the 
saddle points. • 

The phase plane method of deriving a single first-order equation (8) may be of practical interest 
not only when (8) can be solved (as in Example 4) but also when solution is not possible and 
we have to utilize direction fields (Sec. 1.2). We illustrate this with a very famous example: 
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E X AMP L E 5 Self-Sustained Oscillations. Van der Pol Equation 

There are physical systems such that for small oscillations, energy is fed into the system, whereas for large 
oscillations. energy is taken from the ~y~tem. In o!her words, large oscillations will be damped, whereas for 
small oscillations there is "negative damping" (feeding of energy into the system). For physical reason~ we 
expect such a system to approach a periodic behavior, which will thus appear as a closed trajectory in the phase 
plane. called a limit cycle. A differential equation describing such vibrations is the famous van der Pol 
equation4 

(10) (M > 0, constant). 

It first occurred in the study of electrical circuits containing vacuum tubes. For M = 0 this equation becomes 
Y" + ." = 0 and we obtain harmonic oscillations. Let M > O. The damping term has !he factor -M(I _ y2). 

This is negative for small oscillation~, when y2 < I. so that we have "negative damping," is .lero for y2 = I (no 
damping), and is positive if)'2 > 1 (positive damping, loss of energy). If M is small, we expect a limit cycle 
that is almost a circle because then our equation differs bm little from y" + )' = O. If M is large. the limit 
cycle will probably look different. 

Setting y = ."1, y' = )'2 and using y" = (dY2/dYl)Y2 as in (8), we have from (10) 

(II) 

The isoclines in the YIY2-plane (the phase plane) are the curves dY2/dYl ~ K = consf, thaI is, 

Solving algebraically for Y2, we see that the isoclines are given by 

K= l 
4 

K= 1 

K=-5 

/ 

Yl 

Y2 
5 K=O K=-l 

K=-l 
-5 

K=-5 

K=l 

(Figs. 95, 96). 

Fig. 95. Direction field for the van der Pol equation with fL = 0.1 in the phase plane, 
showing also the limit cycle and two trajectories. See also Fig. 8 in Sec. 1.2. 

4BALTHASAR VAN DER POL (I 88<j-I<jS9), Dutch physicist and engineer. 



158 CHAP. 4 Systems of ODEs. Phase plane. Qualitative Methods 

Figure 9S shows some isoclines when fL is small, f.L = 0.1. the limit cycle (almost a circle), and two (blue) 
trajectories approaching it. one from the outside and the other from the inside. of which only the initial portion, 
a small spiral, is shown. Due to this approach by trajectories. a limit cycle differs conceprually from a closed 
curve (a trajectory) surrounding a center, which is not approached by trajectories. For larger fL the limit cycle 
no longer resembles a circle, and the trajectories approach it more rapidly than for smaller fL. Figure 96 illustrates 
this for fL = I. • 

K=-l K=D 

K=-l K= 1 K=O K=-5 

\ 

K=-5 K=O 

K=-l 

,,/'" 

-3 

K= 1 

K=O 

K=-l 

Fig. 96. Direction field for the van der Pol equation with IL = 1 in the phase plane. 
showing also the limit cycle and two trajectories approaching it 

CRITICAL POINTS, LINEARIZATION 9 " . \' + cos y = 0 10. y" + sin y = 0 
Detennine the location and type of all critical points by 
linearization. In Probs. 7-12 first transform the ODE to a 
system. (Show the details of your work.) 

Ll. Y" + 4)' - y3 = 0 12. Y" + Y' + 2}' - y2 = 0 

13. (Trajectories) What kind of curves are the trajectories 
of -,~y" + 2/2 = O? 1. y~ = Y2 + )"22 2. 

, 
4\' - 2 

\' \' • 1 . 1 . 1 

, ,. 
. 2 \' .2 

3. y~ 4Y2 4. y~ = -3Yl + Y2 - Y22 

2Yl - h 2 y~ = YI - 3Y2 
, 

.\'2 

5. )' ~ -YI + )'2 - Y22 6. y~ = Y2 - Y22 

-Yl - Y2 y~ = Yl - Y1 2 , 
Y2 

7. y" + Y o 8. y" + 9)' + y2 o 

14. (Trajectories) Write the ODE y" - 4y + )'3 = 0 as a 

system. ~llive it for Y2 as a function of ."1. and sketch 
or graph some of the trajectories in the phase plane. 

15. (Trajectories) What is the radius of a real general 
solution of y" + Y = 0 in the phase plane? 

16. (Trajectories) In Prob. 14 add a linear damping tenn 
to get y" + 2y' - 4y + y3 = O. Using arguments from 
mechanics and a comparison with Prob. 14, as well as 
with Examples I and 2. guess the type of each critical 
point. Then determine these types by linearization. 
(Show all details of your work.) 
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17. (Pendnlum) To what state (position, speed, direction 
of motion) do the four points of intersection of a 
closed trajectory with the axes in Fig. 92b correspond? 
The point of intersection of a wavy curve with the 

Y2-axis? 

18. (Limit cycle) What is the essential difference between 
a limit cycle and a closed trajectory surrounding a 
center? 

19. CAS EXPERIMENT. Deformation of Limit Cycle. 
Convert the van der Pol equation to a system. Graph 
the limit cycle and some approaching trajectories for 
fL = 0.2,0.4,0.6, 0.8, 1.0, l.5, 2.0. Try to observe how 
the limit cycle changes its form continuously if you 
vary IL continuously. Describe in words how the limit 
cycle is deformed with growing fL. 

20. TEAM PROJECT. Self-sustained oscillations. 
(a) Van der Pol Equation. Determine the type of the 
critical point at (0, 0) when IL > 0, IL = 0, IL < O. 

159 

Show that if IL -) 0, the isoclines approach straight 
lines through the origin. Why is this to be expected? 

(b) Rayleigh equation. Show that the so-called 
Rayleigh equation5 

y" - IL(I - §y'2)y' + Y = 0 (IL> 0) 

also describes self-sustained oscillations and that by 
differentiating it and setting y = y' one obtains the van 
der Pol equation. 

(c) Duffing equation. The Duffing equation is 

y" + wo2y + f3y3 = 0 

where usually 1f31 i~ small. thus characterizing a small 
deviation of the restoring force from linearity. f3 > 0 
and f3 < 0 are called the cases of a hard spring and a 
soft spring, respectively. Find the equation of the 
trajectories in the phase plane. (Note that for f3 > 0 all 
these curves are closed.) 

4.6 Nonhomogeneous Linear Systems of ODEs 
In this last section of Chap. 4 we discuss methods for solving nonhomogeneous linear 
systems of ODEs 

(1) y' = Ay + g (see Sec. 4.2) 

where the vector g(t) is not identically zero. We assume g(t) and the entries of the 11 X II 

matrix A(t) to be continuous on some interval 1 of the t-axis. From a general solution 
y(h)(t) of the homogeneous system y' = Ay on J and a particular solution y(P)(t) of 
(1) on J [i.e., a solution of (1) containing no arbitrary constants], we get a solution 
of (l), 

(2) 

y is called a general solution of (I) on 1 because it includes every solution of (l) on 1. 
This follows from Theorem 2 in Sec. 4.2 (see Prob. 1 of this section). 

Having studied homogeneous linear systems in Secs. 4.1-4.4. our present task will be 
to explain methods for obtaining particular solutions of (I). We discuss the method of 
undetermined coefficients and the method of the variation of parameters; these have 
counterparts for a single ODE, as we know from Secs. 2.7 and 2.10. 

5 LORD RAYLEIGH (JOHN WILLIAM STRUTI) (1842-1919). great English physicist and mathematician. 
professor at Cambridge and London. known by his important contributions to the theory ot waves, elasticity 
theory. hydrodynamics. and various other branches of applied mathematics and theoretical physics. In 1904 he 
received the Nobel Prize in physics. 
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j 

Method of Undetermined Coefficients 
As for a single ODE, this method is suitable if the entries of A are constants and the 
components of g are constants, positive integer powers of t, exponential functions, or 
cosines and sines. In such a case a particular solution yep) is assumed in a fonn similar 
to g; for instance, y(P) = U + vt + wt2 if g has components quadratic in t, with u, v, w 
to be determined by substitution into (I). This is similar to Sec. 2.7, except for the 
Modification Rule. It suffices to show this by an example. 

E X AMP L E 1 Method of Undetermined Coefficients. Modification Rule 

Find a general solution of 

Solution. A general equation of the homogeneous system is (see Example I in Sec. 4.3) 

Since A = -2 is an eigenvalue of A, the function e-2t on the right also appears in yChl, and we must apply the 
Modification Rule by setting 

(rather than ue -2t). 

Note that the first of these two terms is the analog of the modification in Sec. 2.7. but it would not be sufficient 
here. (Try It.) By substitution, 

Equating the Ie -2t -terms on both sides, we have - 2u = Au. Hence u is an eigenvector of A corresponding to 
A = -2; thus [see (5)] u = all lIT with any a 'F O. Equating the other terms gives 

thus 

Collecting terms and reshuffling gives 

-v 1 + V2 = -a + 2. 

By addition, 0 = -2a - 4, a = -2, and then v2 = VI + 4, say, VI = k, v2 = k + 4, thus, v = [k k + 4]T. 
We can simply choose k = O. This gives the answer 

For other k we get other v; for instance, k = -2 gives v = [-2 2]T, so that the answer becomes 

(5*) etc .• 

Method of Variation of Parameters 
This method can be applied to nonhomogeneous linear systems 

(6) y' = A(t)y + get) 
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EXAMPLE 2 

with variable A = ACt) and general get). It yields a particular solution y(p) of (6) on some 
open interval J on the t-axis if a general solution of the homogeneous system y' = A(t)y 
on J is known. We explain the method in terms of the previous example. 

Solution by the Method of Variation of Parameters 

Solve (3) in Example I. 

Solutioll. A basis of solutions of the homogeneous, ystem is [e -2t 

the general solution (4) of the homogenous system may be written 

(7) 
[ 

-2t 

y(hl = e 
e-2t 

-4t] [ ] e '"I 

_e-4t C2 = YU)e. 

-e -4t]T. Hence 

Here, Y(n = [y(!) y(2Jr is the fundamental matrix (see Sec. 4.2). As in Sec 2.10 we replace the constant 
vector e by a variable vector u(t) to obtain a particular solution 

yep) = Y(t)u(t). 

Substitution into (3) y' = Ay + g gives 

(8) Y'u+Yu'=AYu+g. 

Now since y(lJ and y(2J are solutions of (he homogeneous system. we have 

thus Y' = AY. 

Hence Y' u = AYu, so that (8) reduces to 

Yu' = g. The solution is 

here we use that the inverse y- 1 of Y (Sec. 4.0) exists because the detenninant of Y is the Wronskian W, which 
is not zero for a basis. Equation (9) in Sec. 4.0 gives the form of y-l. 

y-l = 
2 -6t - e [ 

-4t -e 

-2t -e 

We multiply this by g, obtaining 

Integration is done componentwi,e (just a~ differentiation) and gives 

t [ -2 ] [-2t ] u(t) = - dt = L -4e2t _2e2t + 2 

(where + 2 comes from the lower limit of integration). From this and Y in (7) we obtain 

Yu = [

e-2t 

-2t e 

e-
4t

] [ -2t ] [-2Ie-
2t 

- 2e-
2t 

+ 2e-
4t

] [-2t - 2J 
-e-4t -2e2t + 2 = -2te-2t + 2e-2t _ 2e-4t = -21 + 2 e-

2t 

+ 

The last term on the right is a solution of the homogeneous system. Hence we can absorb it into lh). We thus 
obtain as a general solution of the system (3). in agreement with (5*). 

(9) • 
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----_ Z.Q.i= ~CI==~ -
1. (General solution) Prove that (2) includes every 

solution of (I). 

12-91 GENERAL SOLUTION 

Find a general solution. (Show the details of your work.) 

2'Y~=Y2+t 3. Y~ = 4Y2 + 9t 

y~ = Y1 - 3t Y~ = -4Y1 + 5 

4. Y; = )"1 + )'2 + 5 cos t 5. J~ = 2)'1 + 2Y2 + 12 

)"~ = 3Y1 - "2 - 5 sin t y~ = 5)'1 - )"2 - 30 

7. Y~ = -14)"1 + IOY2 + 162 

y~ = -5Yl + Y2 - 3241 

8. y; = IOY1 - 6)'2 + 10(1 - t - t2
) 

y~ = 6YI - IOY2 + 4 - 20t - 6t2 

9 . .\'~ = -3Ji - 4)'2 + lit + 15 

)'~ = 5Y1 + 6.\'2 + 3e- t 
- 15T - 20 

10. CAS EXPERIMENT. Undetermined Coefficients. 
Find out experimentally how general you mLLst choose 
y(jJ). in particular when the components of g have a 
different form (e.g., as in Prob. 9). Write a short report, 
covering also the situation in the case of the 
modification rule. 

= 1-161 INITIAL VALUE PROBLEM 
Solve {showing details): 

II. y~ = -2Y2 + 4t 

y~ = 2YI - 2t 

)'1(0) = 4, )'2 (0) = ! 
12. ." ~ = 4Y2 + 5e

t 

y~ = -Yl - 20e- t 

13. Y; = YI + 2.\"2 + e2t 
- 2t 

y~ = - )'2 + 1 + t 

)'1(0) = 1, )"2(0) = -4 

14. 

15. 

16. 

)' ~ = 3YI - 4Y2 + 20 co~ t 

)'~ = 4Yl + 8Y2 + 2 cos t - 16 sin t 

y~ = 6YI + 2Y2 + cust - 14 sint 

17. (Network) Find the currents in Fig. 97 when R = 2.5 D. 
L = 1 H, C = 0.04 F, E(t) = 845 sin t Y, and 11(0} = 0, 
[2(0) = O. (Show the details.) 

18. (Network) Find the currents in Fig. 97 when R = I D. 
L = 10 H, C = 1.25 F, E(t) = 10 kY, and 11(0) = 0, 
[2(0) = O. (Show the details.) 

E c 

Fig. 97. Network in Probs. 17, 18 

19. (Network) Find the CUiTents in Fig. 98 when R1 = 2 D, 
R2 = 8 n. L = 1 H. C = 0.5 F. E = 200 Y. (Show the 
details.) 

L 

Switch c 
Fig. 98. Network in Prob. 19 

20. WRITING PROJECT. Undetermined Coefficients. 
Write a short report in which YOLL compare the 
appl ication of the method of undetennined coeflicients 
to a single ODE and to a system of two ODEs, using 
ODEs and systems of your choice. 



Chapter 4 Review Questions and Problems 

• . , 

1. State some applications that can be modeled by systems 
of ODEs. 

2. What is population dynamics? Give examples. 

3. How can you transform an ODE into a system of ODEs? 

4. What are qualitative methods for systems? Why are they 
important? 

5. What is the phase plane? The phase plane method? The 
phase portrait of a system of ODEs? 

6. What is a critical point of a system of ODEs? How did 
we classify these points? 

7. What are eigenvalues? What role did they play in this 
chapter? 

8. What does stability mean in general? In connection with 
critical points? 

9. What does linearization of a system mean? Give an 
example. 

10. What is a limit cycle? When may it occur in mechanics? 

Il~-!2J GENERAL SOLUTION. CRITICAL POINTS 

Find a general solution. Determine the kind and stability of 
the critical point. (Show the details of your work.) 

11. Y~ = 4.\'2 12. Y~ = 9Y1 

I 
Y2 = Y2 

13. Y~ = Y2 14. I 
3)'1 Y1 

I 
3)'1 + Y2 

16. I 
-3Y1 Y1 15. y~ = 1.5.h - 6Y2 

I 
-2Y1 .\'2 

18. I 
3Y1 + Y1 

I 
-5Yl Y2 = 

[ u.!.-~ NONHOMOGENEOUS SYSTEMS 
Find a general solution. (Show the details.) 

3Y2 

3)'2 

2Y2 

3Y2 

5Y2 

- 3Y2 

20. y~ = 3)'2 + 6t 21. )'~ = )'1 + 2.\'2 + e2t 

y~ = 12Y1 + 1 

22. y~ = )'1 + Y2 + sin t 
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23. Y ~ = 4.h + 3Y2 + 2 

24. y~ = Y1 - 2Y2 - sin t 

y~ = 3Y1 - 4Y2 - cos t 

26. (Mixing problem) Tank Tl in Fig. 99 contains initially 
200 gal of water in which 160 lb of salt are dissolved. 
Tank T2 contains initially 100 gal of pure water. Liquid 
is pumped through the system as indicated. and the 
mixtures are kept uniform by stirring. Find the amounts 
of salt Y1(t) and Y2(t) in Tl and T2 , respectively. 

Water, 
10< --

16 gal/min 

Fig. 99. Tanks in Problem 26 

Mixture, 
o gal/min 

---

27. (Critical point) What kind of critical point does y' = Ay 
have if A has the eigenvalues -6 and I? 

28. (Network) Find the currents in Fig. 100. where 
R1 = 0.5 fl, R2 = 0.7 fl, Ll = 0.4 H, L2 = 0.5 H, 
E = 1 kV = 1000 V, and ll(O) = 0,/2(0) = O. 

Fig. 100. Network in Problem 28 

29. (Network) Find the currents in Fig. 10 1 when R = 10 fl, 
L = 1.25 H. C = 0.002 F. and 11(0) = liG) = 3 A. 

Fig. 101. Network in Problem 29 
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130-331 LINEARIZATION 32. )' ~ = COS)'2 33. y~ = Y2 - 2Y22 

Y; = Yl - 2Y1
2 

Detelmine the location and kind of all critical points of the 
given nonlinear system b) linearization. 
30. y~ = )'2 31. )'~ = -9Y2 

, . 
Y2 = smYI 

==-~::.".::'.I' -;:~==]= .. :: :.:==: 
Systems of ODEs. Phase Plane. Qualitative Methods 

L 

Whereas single electric circuits or single mass-spring systems are modeled by single 
ODEs (Chap. 2). networks of several circuits. systems of several masses and springs. 
and other engineering problems lead to systems of ODEs, involving several unknown 
functions ."1(1), ... , YI1(1)· Of central interest are first-order systems (Sec. 4.2): 

y' = f(t, y), in components, 

to which higher order ODEs and systems of ODEs can be reduced (Sec. 4.1). In 
this summary we let 11 = 2. so that 

(1) y' = f(t, y), in components. 
Y; = fl(t, Yh Y2) 

.\'~ = f2(1, .\'1, .\'2) 

Then we can represent solution curves as trajectories in the phase plane (the 
YIY2-plane), investigate their totality [the "phase portrait" of (1 )J, and study the 
kind and stability of the critical points (points at which both f 1 and f 2 are zero), 
and classify them as nodes, saddle points, centers, or spiral points (Secs. 4.3, 4.4). 
These phase plane methods are qualitative; with their use we can discover various 
general properties of solutions without actually solving the system. They are 
primarily used for autonomous systems, that is, systems in which t does not occur 
explicitly. 

A linear system is of the fonn 

(2) y' = Ay + g, where A = [(/11 
°21 

:~:J' y = [:J, g = [:J . 
If g = 0, the system is called homogeneous and is of the form 

(3) y' = Ay. 



Summary of Chapter 4 

If all, ... , a22 are constants, it has solutions Y = xeAt, where A is a solution of the 
quadratic equation 

and x -:f- 0 has components Xl' X2 determined up to a multiplicative constant by 

(These A's are called the eigenvalues and these vectors x eigenvectors of the matrix 
A. Further explanation is given in Sec. 4.0.) 
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A system (2) with g -:f- 0 is called nonhomogeneous. Its general solution is of 
the form Y = Yh + Yp, where Yh is a general solution of (3) and Yp a particular 
solution of (2). Methods of determining the latter are discussed in Sec. 4.6. 

The discussion of critical points of linear systems based on eigenvalues is 
summarized in Tables 4.1 and 4.2 in Sec. 4.4. It also applies to nonlinear systems 
if the latter are first linearized. The key theorem for this is Theorem L in Sec. 4.5, 
which also includes three famous applications, namely the pendulum and van der 
Pol equations and the Lotka-Volterra predator-prey population model. 
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CHAPTER 5 

Series Solutions of ODEs. 
Special Functions 

In Chaps. 2 and 3 we have seen that linear ODEs with constant coefficients can be solved 
by functions known from calculus. However. if a linear ODE has variable coefficients 
(functions of x). it must usually be solved by other methods. as we shall see in this 
chapter. 

Legendre polynomials, Bessel functions, and eigenfunction expansions are the three 
main topics in this chapter. These are of greatest importance to the applied mathematician. 

Legendre's ODE and Legendre polynomials (Sec. 5.3) are likely to occur in problems 
showing spherical symmetry. They are obtained by the power series method (Secs. 5.1, 
5.2). which gives solutions of ODEs in power series. 

Bessel's ODE and Bessel functions (Secs. 5.5, 5.6) are likely to occur in problems 
showing cylindrical symmetry. They are obtained by the Frobenius method (Sec. 5.4), 
an extension of the power series method which gives solutions of ODEs in power series, 
possibly multiplied by a logarithmic tenn or by a fractional power. 

Eigenfunction expansions (Sec. 5.8) are infinite series obtained by the Sturm­
Liouville theory (Sec. 5.7). The terms of these series may be Legendre polynomials or 
other functions, and their coefficients are obtained by the orthogonality of those functions. 
These expansions include Fourier series in terms of cosine and sine, which are so 
in1portant that we shall devote a whole chapter (Chap. II) to them. 

Special functions (also called higher functions) is a name for more advanced functions 
not considered in calculus. If a function occurs in many applications, it gets a name, and 
its properties and values are investigated in all details, resulting in hundreds of formulas 
which together with the underlying theory often fill whole books. This is what has 
happened to the gamma, Legendre, Bessel, and several other functions (take a look into 
Refs. [GRI], [GRIO], [All] in App. 1). 

Your CAS knows most of the special functions and corresponding formulas that you 
will ever need in your later work in industry, and this chapter will give you a feel for the 
basics of their theory and their application in modeling. 

COMMENT You can study this chapter directly after Chap. 2 because it needs no 
material from Chaps. 3 or 4. 

Prerequisite: Chap. 2. 
Sections that may be omitted il1 a shorter course: 5.2, 5.6-5.8. 
References and Answers to Problems: App. I Part A, and App. 2. 
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5.1 Power Series Method 
The power series method is the standard method for solving linear ODEs with variable 
coefficients. It gives solutions in the form of power series. These series can be used for 
computing values, graphing curves, proving formulas, and exploring properties of solutions, 
as we shall see. In this section we begin by explaining the idea of the power series method. 

Power Series 
From calculus we recall that a power series (in powers of x - xo) is an infinite series of 
the form 

(1) 2: a",(x - xo)m = ao + al (x - xo) + a2(x - XO)2 + 
m=O 

Here, x is a variable. ao, at. a2, ... are constants, called the coefficients of the series. 
Xo is a constant, called the center of the series. In particular, if Xo = 0, we obtain a power 
series in powers of x 

(2) 2: amx ln 
= ao + alx + a2x2 + a3x3 + 

m=O 

We shall assume that all variables and constants are real. 
Familiar examples of power series are the Maclaurin series 

I 00 

--- = 2: xm = 1 + x + x2 + ... 
1 - x 

(Ixl < 1, geometric series) 
m=O 

eX = 2: 
xm x 2 x3 

= I +x+ + + ... 
m=O 

111! 2! 3! 

x 2 X4 
cosx = 2: 

(_l)mx2m 
I - + - + ... 

'1'11=0 
(2111) ! 2! 4! 

sin x = 2: 
(_I)mx2m+l x3 x5 

=x- + - + .... 
m=O 

(2m + I)! 3! 5! 

We note that the term "power series" usually refers to a series of the form (1) lor (2)] 
but does not include series of negative or fractional powers of x. We use 111 as the 
summation letter, reserving n as a standard notation in the Legendre and Bessel equations 
for integer values of the parameter. 

Idea of the Power Series Method 
The idea of the power series method for solving ODEs is simple and natural. We describe 
the practical procedure and illustrate it for two ODEs whose solution we know, so that 
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we can see what is going on. The mathematical justification of the method follows in the 
next section. 

For a given ODE 

y" + p(x)y' + q(x)y = 0 

we first represent p(x) and q(x) by power series in powers of x (or of x - Xo if solutions 
in powers of x - xo are wanted). Often p(x) and q(x) are polynomials, and then nothing 
needs to be done in this first step. Next we assume a solution in dle form of a power series 
with unknown coefficients, 

(3) y = L arnxTn = ao + (/tX + a2x2 + a3x3 + 
m=O 

and insert this series and the series obtained by term wise differentiation, 

(4) 

(a) )" = L mamxrn - 1 = a] + 2a2x + 3a3x2 + ... 
m~] 

(b) )''' = L m(m - l)am xm- 2 = 2(/2 + 3· 2a3x + 4· 3a4x2 + .. 
m=2 

into the ODE. Then we collect like powers of x and equate the sum of the coefficients of 
each occuning power of x to zero, starting with the constant terms, then taking the terms 
containing x, then the terms in x 2

, and so on. This gives equations from which we can 
determine the unknown coefficients of (3) successively. 

Let us show this for two simple ODEs that can also be solved by elementary methods, 
so that we would not need power series. 

E X AMP L E 1 Solve the following ODE by power series. To grasp the idea. do this by hand: do not use your CAS (for 
which you could program the Whole process). 

y' = 2xy. 

Soluti01l. We insert (3) and (4a) into the given ODE. obtaining 

We must perform the multiplication by 2~ on the right and can write the resulting equation conveniently as 

a] + 2112X + 3a3x2 + 4a4x3 + 5a5-\·4 + 6a&y5 + ... 

2110X + 2111X2 + 2112X
3 + 2a3x4 + 2114X5 + .. 

For this equation to hold, the two coefficients of every power of x on both sides must be equal. that is. 

Hence a3 = 0, 1I5 = 0, ... and for the coefficients with even SUbscripts. 

ao 
3! ' 
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ao remain~ arbitrary. With these coefficients the series (3) gives the following solution. which you should confirm 
by the method of separating variables. 

More rapidly, (3) and (4) give for the ODE y' = 2\:" 

x x x 

] ·UIXo + L InunzXm - 1 = 2\- L DmXTn = L 2amx'11+
1 

1n=2 m=O m=O 

Now, to get the same general power on both sides, we make a "shift of index" on the left by sening III = S + 2, 
thus 111 - I = s + I. Then am becomes lIs+2 and x",-I becomes i'+I. Also the summation. which started with 
m = 2. now starts with s = 0 because s = /11 - 2. On the right we simply make a change of notation /11 = S, 

hence lim = as and X"H I = xs+ 1: abo the summation now starts with s = O. This altogether gives 

<Xl 

al + L (s + 2)aS+2xs+I = L 2llsXS+I. 

s~o s=o 

Every occurring power of x must have the same coefficient on both sides: hence 

2 
and (s + 2kls+2 = 2l1s or a s +2 = s + 2 as' 

For s = 0, I. 2 .... we thus have a2 = (2/2)lIo, a3 = (2/3)aI = O. a4 = (2/4)a2' ... as before. • 
EXAMPLE 2 Solve 

y" + y = O. 

Solutioll. By in,erting (3) and (4b) into the ODE we have 

x 

L /11(111 - l)llmxm-2 + L a m x 7n = O. 
m~2 m~O 

To obtain the same general power on both selies. we set 11/ = S + 2 in the first series and 111 = s in the second, 
and then we take the laner to the right side. This gives 

"" ex; 

L (s + 2)(.\' + I)lIs+2"'s = L {{sXS. 

5=0 5=0 

Each power XS must have the same coefficient on both sides. Hence (s + 2)(s + I )lls+2 = -as' This gives the 
recursion formula 

{{s 

a s +2 = - -,----,--"-----
(s + 2)(s + I) 

(s = 0, 1, .. '). 

We thu, obtain successively 

110 lIo a l al 
112 = 

2' I 2! 
a3 = 

3·2 3! 

a2 110 a3 al 
lI4 = 

4'3 4! 
a5 = 

5'4 5! 

and so on. ao and {{I remain arbitrary. With these coefficients the series (3) becomes 

ao 2 ~ \.3 + {{o \.4 +!!.!. 5 + 
'" = ao + {{IX - 2! x - 3! . 4! . 5! X 
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Reordering terms lwhich is permissible for a power series), we can write this in the form 

( 

3 5 ) X X 
+ a1 x - 3! + 5! - + ... 

and we recognize the familiar general solution 

y = Go cosx + G1 sinx. • 
Do we need the power series method for these or similar ODEs? Of course not; we used 
them just for explaining the idea of the method. What happens if we apply the method 
to an ODE not of the kind considered so far, even to an innocent-looking one such as 
y" + xy = 0 ("Airy's equation")? We most likely end up with new special functions given 
by power series. And if such an ODE and its solutions are of practical (or theoretical) 
interest, we name and investigate them in terms of formulas and graphs and by numeric 
methods. 

We shall discuss Legendre's, Bessel's, and the hypergeometric equations and their 
solutions, to mention just the most prominent of these ODEs. To do this with a good 
understanding, also in the light of your CAS. we first explain the power series method 
(and later an extension, the Frobenius method) in more detail. 

11-10 I POWER SERIES METHOD: TECHNIQUE, 11. y' + 4y = 1. yeO) = 1.25. Xl = 0.2 
FEATURES 

Apply the power series method. Do this by hand, not by a 
CAS, so that you get a feel for the method, e.g., why a 
series may terminate, or has even powers only, or has no 
constant or linear terms, etc. Show the details of your work. 

1. y' - y = 0 2. y' + xy = 0 

3. y" + 4y = 0 4. y" - y = 0 

5. (2 + x)y' = y 6. y' + 3(1 + X2)y = 0 

7. y' = Y + x 8. (x 5 + 4x3 )y' = (5x 4 + 12x2»)' 

9. y" - )" = 0 10. y" - xy' + y = 0 

111-161 CAS PROBLEMS. INITIAL VALUE 
PROBLEMS 

Solve the initial value problems by a power series. Graph 
the partial sum s of the powers up to and including x 5

. Find 
the value of s (5 digits) at Xl' 

12. y' = 1 + y2, yeO) = 0, Xl = !1T 
13. / = y - y2, yeO) = !, Xl = 1 

14. (x - 2)y' = xy, yeO) = 4, Xl = 2 

15. y" + 3xy' + 2y = 0, yeO) = 1, 
/(0) = 1, Xl = 0.5 

16. (1 - X2)y" - 2xy' + 30y = 0, yeO) 0, 
/ (0) = l.875, Xl = 0.5 

17. WRITING PROJECT. Power Series. Write a review 
(2-3 pages) on power series as they are discussed in 
calculus, using your own formulation and examples­
do not just copy passages from calculus texts. 

18. LITERATURE PROJECT. Maclaurin Series. 
Collect Maclaurin series of the functions known from 
calculus and arrange them systematically in a list that 
you can use for your work. 

5.2 Theory of the Power Series Method 
In the last section we saw that the power series method gives solutions of ODEs in the 
form of power series. In this section we justify the method mathematically as follows. We 
first review relevant facts on power series from calculus. Then we list the operations on 
power series needed in the method (differentiation, addition, multiplication, etc.). Near 
the end we state the basic existence theorem for power series solutions of ODEs. 
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Basic Concepts 
Recall from calculus that a power series is an infinite series of the form 

(1) 
oc 

~ am(x - xoyn = ao + al (x - Xo) + a2(X - XO)2 + 
m~O 
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As before, we assume the variable x, the center .\"0' and the coefficients ao, aI, •.• to be 
real. The nth partial sum of (1) is 

where n = 0, 1, .... Clearly, if we omit the terms of s" from (I), the remaining expression 
is 

(3) 

This expression is called the remainder of (1) after the tenn a,/x - xo)n. 
For example, in the case of the geometric series 

I + x + X2 + ... + xn + ... 
we have 

So = 1, 

Sl = + x. 

etc. 

In this way we have now associated with (1) the sequence of the partial sums 
so(x), SI(X), S2(X), .... If for some x = Xl this sequence converges, say, 

lim sn(xI ) = S(XI)' 
11.-----"'00 

then the series (I) is called convergent at X = Xl, the number S(XI) is called the value or 
sum of (I) at Xl, and we write 

Then we have for every n, 

(4) 

00 

S(XI) = ~ am(XI - XOrn. 
m~O 

If that sequence diverges at X = Xl> the series (I) is called divergent at X = Xl. 

In the case of convergence, for any positive E there is an N (depending on E) such that, 
by (4), 

(5) for all n > N. 
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Geometrically, this means that all Sn(Xl) with n > N lie between s(x l ) - E and s(xl ) + E 

(Fig. 102). Practically, this means that in the case of convergence we can approximate 
the sum S(Xl) of (I) at Xl by Sn(Xl) as accurately as we please, by taking 11 large enough. 

Convergence Interval. Radius of Convergence 
With respect to the convergence of the power series (I) there are three cases, the useless 
Case I, the usual Case 2, and the best Case 3, as follows. 

Case 1. The series (1) always converges at x = xo, because for x = Xo all its terms are 
zero, perhaps except for the first one, ao. In exceptional cases x = Xo may be the only x 
for which (l) converges. Such a series is of no practical interest. 

Case 2. If there are further values of x for which the series converges, these values form 
an interval, called the convergence interval. If this interval is finite, it has the midpoint 
xo, so that it is of the form 

(6) Ix - xol < R (Fig. 103) 

and the series (1) converges for all x such that Ix - xol < R and diverges for all x such 
that Ix - xol > R. (No general statement about convergence or divergence can be made 
for x - Xo = R or -R.) The number R is called the radius of convergence of 0). (R is 
caned "radius" because for a complex power series it is the radius of a disk of convergence.) 
R can be obtained from either of the formulas 

(7) (a) R = l/lim Vfa:f 
111~'JC 

(b) R = 1 him I am+l I 
/ m_x, lint 

provided these limits exist and are not zero. [If these limits are infinite, then (1) converges 
only at the center xo.] 

Case 3. The convergence interval may sometimes be infinite, that is, (l) converges for 
all x. For instance, if the limit in (7a) or (7b) is zero, this case occurs. One then writes 
R = x, for convenience. (Proofs of all these facts can be found in Sec. 15.2.) 

For each x for which (1) converges. it has a certain value sex). We say that (1) represents 
the function sex) in the convergence interval and write 

00 

seX) = L {/m(X - Xo)m (Ix - xol < R). 
m~O 

Let us illustrate these three possible cases with typical examples. 

~E--+-E_I 
I I I 

Fig. 102. Inequality (S) 

Divergence iconvergence ------j Divergence 

I -R· ~I' R-I 
I I I 

Fig. 103. Convergence interval (6) of a power 
series with center Xo 
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E X AMP LEI The Useless Case 1 of Convergence Only at the Center 

In the case of the series 

we have am. = Ill!, and in (7b). 

~ m!x'" = 1 + x + 2x2 + 6x3 + ... 
m=O 

a",+1 (1/1 + I)! 
--= =m+1-,,<o 

am. In! 

Thus this series converges only at the center x = O. Such a series is useless. 

E X AMP L E 2 The Usual Case 2 of Convergence in a Finite Interval. Geometric Series 

For the geometric series we have 

1 x m 2 
--=~x =I+x+x + ... 
I-x 

m=O 
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as ,n ----7 ro. 

• 

(Ixl < I). 

In fact, am = 1 for all m, and from (7) we obtain R = I, that is. the geometric series converges and represent~ 
1/(1 - x) when Ixl < L • 

E X AMP L E 3 The Best Case 3 of Convergence for All x 

In the case of the series 

we have a", = 11m!. Hence in (7b), 

so that the series converges for all x. 

E X AMP L E 4 Hint for Some of the Problems 

Find the radius of convergence of the series 

x2 

1 + x + + ... 
2! 

l/{m + I)! 

11m! 
-,,0 

111 + 1 

OJ ( I)'" x 3 x6 x9 
~ _-__ .3m_ 
L.J 8'" .\ - I - 8 + 64 - ill + - .... 

'tn=O 

as 111 ~ co, 

• 

Solution. This is a senes in powers of t = x 3 with coefficients am = (-1)"'/8"', so that in (7b), 

I 
a"'+1 I = ~ = .!. 

am 8",+1 8' 

Thus R = 8. Hence the series converges for Itl = Ix31 < 8, that is, Ixl < 2. • 
Operations on Power Series 
In the power series method we differentiate, add, and multiply power series. These three 
operations are permissible, in the sense explained in what follows. We also list a condition 
about the vanishing of all coefficients of a power series, which is a basic tool of the power 
series method. (Proofs can be found in Sec. 15.3.) 
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Termwise Differentiation 

A power series may be d(fferenlialed Term by Term. More precisely: if 

y(x) = "L am(x - XO)111 
m~O 

converges for Ix - xol < R, where R > 0, then the series obtained by differentiating term 
by term also converges for those x and represents the derivative y' of y for those x, 
that is, 

Similarly, 

Termwise Addition 

x 

y' (x) = "L 17Ulm {.X - xo)'n-l 
m~l 

y"(x) = "L m(m - l)am(x - xo)m-2 
m~2 

(Ix - xol < R). 

(Ix - xol < R), etc. 

Two power series lIlay be added term by term. More precisely: if the series 

GC 

(8) and "L bm(x - xo)m 
m~O 

have positive radii of convergence and their sums are f(x) and g(x). then the series 

CXJ 

"L (am + bm)(x - xo)m 
m~O 

converges and represents f(x) + g{x) for each x that lies in the interior of the convergence 
interval of each of the two given series. 

Termwise Multiplication 
Two power series may be multiplied Tel7ll by Term. More precisely: Suppose that the series 
(8) have positive radii of convergence and let f(x) and g(x) be their sums. Then the 
series obtained by multiplying each term of the first series by each term of the second 
series and collecting like powers of x - Xo, that is, 

GC 

"L (aobm + a1bm- 1 + ... + ambo)(x - xo)m 
m~O 

converges and represents f(x)g(x) for each x in the interior of the convergence interval of 
each of the two given series. 
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DEFINITION 

THEOREM 1 

Vanishing of All Coefficients 
If a power series has a positive radius of convergence and a sum that is identically zero 
throughout its illterval of convergence, then each coeffIcient of the series must be zero. 

Existence of Power Series Solutions of ODEs. 
Real Analytic Functions 
The properties of power series just discussed form the foundation of the power series 
method. The remaining question is whether an ODE has power series solutions at all. An 
answer is simple: If the coefficients p and lj and the function r on the right side of 

(9) y" + p(x)y' + q(x)y = r(x) 

have power series representations, then (9) has power series solutions. The same is true 
if h, p, q, and r in 

(10) h(x)y" + p(x)y' + q(x»)' = r(x) 

have power series representations and h(xo) *- 0 (xo the center of the series). Almost all 
ODEs in practice have polynomials as coefficients (thus te1l11inating power series), so that 
(when r(x) == 0 or is a power series, too) those conditions are satisfied, except perhaps 
the condition h(xo) *- O. If h(xo) *- 0, division of (10) by h(x) gives (9) with p = pIli, 
q = qlh, r = 'ilh. This motivates our notation in (0). 

To formulate all this in a precise and simple way, we use the following concept (which 
is of general interest). 

Real Analytic Function 

A real function f(x) is called analytic at a point x = Xo if it can be represented by 
a power series in powers of x - Xo with radius of convergence R > O. 

Using this concept, we can state the following basic theorem. 

Existence of Power Series Solutions 

If p, q, and r in (9) are analytic at x = xo, then every SoluTion of (9) is analYTic aT 
x = Xo and can thus be represenTed by a power series in powers of x - Xo with 
radius of convergence R > O. Hence the same is true if h, p, q, and r in (10) are 
analytic at x = Xo and h(xo) *- O. 

The proof of this theorem requires advanced methods of complex analysis and can be 
found in Ref. [All] listed in App. 1. 

We mention that the radius of convergence R in Theorem I is at least equal to the 
distance from the point x = Xo to the point (or points) closest to Xo at which one of the 
functions p, q, r, as functions of a complex variable, is not analytic. (Note that that point 
may not lie on the x-axis but somewhere in the complex plane.) 
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= .. 
/1-12/ RADIUS OF CONVERGENCE 

Determine the radius of convergence. (Show the details.) 

0:: y7n 

1. L ~ (c 1= 0) 
m~O C 

(m + I)m 
(x - 3)271> 

m~l 

4. L (-I )7l1 x4m 

"n1=O 

(2m)! 
5. L 4 xm 
m~O (2111 + 2 )(2m + ) 

00 ( I)m 
6 ~ --- 2m" 10 . L.. 2 X 
m~O (m!) 

x (-l)m 
7 ~ (1)2m 'L..~x-
m~2 

~ (4m)! 
8. L.. --4 xnt 

71>~1 (m!) 

m=4 

(Ill + 3)2 

(111 - 3)4 

= (7 )' ~ _111. 
10. L.. --2- Xm 

",~1 111 

x m. 

~ 1 1m 
11. L.. "r" (x - 21T) 

7n=1 

(m + 1)111 
12 ~ x21n+l 

• L.. 
71l~1 (2m + \)! 

/13-15/ SHIFTING SUMMATION INDICES 
(CF. SEC. 5.1) 

Thi~ is often convenient or nece~sary in the power series 
method. Shift the index so that the power under the 
summation sign is xS. Check by writing the first few terms 
explicitly. Also determine the radius of convergence R. 

2 

15. L p xp + 4 

p~l (p + l)! 

/16-23/ POWER SERIES SOLUTIONS 

Find a power series solution in powers of x. (Show the 
details of your work.) 

16. " + = 0 y xy 

17. " -
, 

+ x 2 y = 0 .I' Y 

18. " -
, 

+ = 0 y y xy 

19. " + 4xy 
, 

= 0 y 

20. " + lxy 
, 

+ = 0 y y 

21. y" + (I + X2»)' = 0 

22. y" - 4xy' + (4x 2 2).1' = 0 

23. (2x 2 - 3x + I)y" + 2xv' - 2." = 0 

24. TEAM PROJECT. Properties from Power Series. 
In the next sections we shall define new functions 
(Legendre functions. etc.) by power series. deriving 
properties of the functions directly from the series. To 
understand this idea. do the same for functions familiar 
from calculus. using Maclaurin series. 

(a) Show that cosh x + sinh x = eX. Show that 
cosh x > 0 for all x. Show that eX ;:;:; e-x for all 
x;:;:; O. 

(b) Derive the differentiation formulas for eX. cos x, 

sinx. 11(1 - x) and other functions of your choice. 
Show that (cos xl" = -cos x. (cosh :d' = cosh x. 

Consider integration similarly. 

(c) What can you conclude if a series contains only 
odd powers? Only even powers? No constant tenn? If 
all its coefficients are positive? Give examples. 

(d) What properties of cos x and sin x are lIot obvious 
from the Maclaurin series? What properties of other 
functions? 

25. CAS EXPERIMENT. Information from Graphs of 
Partial Sums. In connection with power series in 
numerics we use partial sums. To get a feel for the 
accuracy for various x. experiment with sin x and 
graphs of partial sums of the Maclaurin series of an 
increasing number of terIllS, describing qualitatively 
the "breakaway points" of these graphs from the 
graph of sin x. Consider other examples of your own 
choice. 
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5.3 Legendre's Equation. 
Legendre Polynomials Pn{x) 

In order to first gain skill, we have applied the power series method to ODEs that can 
also be solved by other methods. We now turn to the first "big" equation of physics, for 
which we do need the power series method. This is Legendre's equationl 

(1) (l - x 2 )y" - 2AY' + n(n + I)y = 0 

where n is a given constant. Legendre's equation arises in numerous problems, particularly 
in boundary value problems for spheres (take a quick look at Example I in Sec. 12.10). 
The parameter n in (1) is a given real number. Any solution of (1) is called a Legendre 
function. The study of these and other "higher" functions not occurring in calculus is 
called the theory of special functions. Further special functions will occur in the next 
sections. 

Dividing 0) by the coefficient 1 - x 2 of y". we see that the coefficients -2x/(1 - x 2
) 

and n(n + 1 )/(1 - x 2
) of the new equation are analytic at x = O. Hence by Theorem I, 

in Sec. 5.2. Legendre's equation has power series solutions of the form 

(2) 

Substituting (2) and its derivatives into (1), and denoting the constant n(n + 1) simply by 
k, we obtain 

ex:; 00 

l) amxm.-2 - 2x.L mamxm- l + k"L amxm = O. 
"m,=2 m=1 

By writing the first expression as two separate series we have the equation 

00 X) 00 X) 

"L m(m l)amxm- 2 - "L m(1Il - l)amx m - "L 2mamx m + "L kamxm = O. 
m=2 

To obtain the same general power X S in all four series, we set m - 2 = s (thus m = s + 2) 
in the first series and simply write s instead of III in the other three series. This gives 

00 00 00 00 

"L (s + 2)(s + l)as+2-C\:s - "L s(s - I)asxs - "L 2sasxs + "L kasxs = O. 

lADRIEN-MARIE LEGENDRE (1752-1833). French mathematician. who became a professor in Paris in 

1775 and made important contributions to special functions, elliptic integrals, number theory, and the calculus 
of variations. His book Elements de geollletrie (1794) became very famous and had 12 editions in less than 30 
years. 

Fonnulas On Legendre functions may be found in Refs. [GRJ] and [GRIO]. 
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(Note that in the first series the summation begins with s = 0.) Since this equation with 
right side 0 must be an identity in x if (2) is to be a solution of (1), the sum of the 
coefficients of each power of x on the left must be zero. Now X

O occurs in the first and 
fourth series and gives [remember that k = n(n + 1)] 

(3a) 2 . la2 + l1(n + 1) ao = O. 

"\"1 occurs in the first, third, and fourth series and gives 

(3b) 3' 2a3 +[-2 + n(n + l)]aI = O. 

The higher powers x 2
, x 3

, ••• occur in all four series and give 

(3c) (s + 2)(s + l)aS +2 + [-s(s - I) - 2s + n(n + l)]as = O. 

The expression in the brackets [ .. ·1 can be written (n - s)(n + s + I), as you may 
readily verify. Solving (3a) for a2 and (3b) for a3 as well as (3c) for as +2' we obtain the 
general formula 

(4) 
(n - s)(n + s + 1) 

(s + 2)(s + 1) 
(s = 0, 1, ... ). 

This is called a recurrence relation or recursion formula. (Its derivation you may verify 
with your CAS.) It gives each coefficient in terms of the second one preceding it except 
for ao and aI, which are left as arbitrary constants. We find successively 

a2 =-
n(n + I) 

2! 

(n - I)(n + 2) 

3! 

(II - 2)(11 + 3) 

4·3 

(n - 2)1l(11 + 1)(/1 + 3) 

4! 

(n - 3)(n + 4) 

5·4 

(11 - 3)tll - I )(Il + 2)(11 + 4) 

5! 

and so on. By inserting these expressions for the coefficients into (2) we obtain 

(5) y(x) = aoY! (x) + aIY2(x) 

where 

11(11 + 1) (n - 2)11(11 + 1)(11 + 3) 
(6) Yl(X) = 1 - 2! X2 + 4! x4 - + ... 

(7) 
(n - l)(ll + 2) (n - 3)(11 - 1)(11 + 2)(11 + 4) 

)'2(X) = x - ------ x3 + x5 - + .... 
3! 5! 

These series converge for Ixl < (see Prob. 4; or they may terminate, See below). Since 
(6) contains even powers of x only, while (7) contains odd powers of x only, the ratio 
YtiY2 is not a constant, so that Yl and Y2 are not proportional and are thus linearly 
independent solutions. Hence (5) is a general solution of (I) on the interval - I < x < I. 
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Legendre Polynomials Pn{x) 
In various applications. power series solutions of ODEs reduce to polynomials. that i~. 
they terminate after finitely many terms. This is a great advantage and is quite common 
for special functions. leading to various important families of polynomials (see Refs. [GR I] 
or [GRIO] in App. 1). For Legendre's equation this happens when the parameter n is a 
nonnegative integer because then the right side of (4) is zero for s = n, so that an +2 = 0, 
an +4 = 0, (In+6 = 0, .... Hence if n is even, hex) reduces to a polynomial of degree n. 
If II is odd, the same is true for Y2(X). These polynomials, multiplied by some constants. 
are called Legendre polynomials and are denoted by P n(x). The standard choice of a 
constant is done as follows. We choose the coefficient an of the highest power xn as 

(8) a = n 

I . 3 . 5 . . . (2n - I) 

n! 
(n a positive integer) 

(and an = 1 if n = 0). Then we calculate the other coefficients from (4). solved for as in 
terms of as +2, that is, 

(9) 
(s + 2)(s + 1) 

(Is = - ------- (ls+2 
(n - s)(n + s + 1) 

(s ~ n - 2). 

The choice (8) makes P ,,(I) = 1 for every n (see Fig. 104 on p. 180); this motivates (8). 
From (9) with s = 11 - 2 and (8) we obtain 

n(n - 1) 

2(211 - l) 
(In =-

11(11 - 1 )(2n)! 

2(211 - 1 )2n( 11 !)2 

Using (2n)! = 2n(211 - 1)(211 - 2)!, II! = n(1I - 1)!, and n! = n(1I - 1)(n - 2)!, we 
obtain 

n(n - 1 )2n(2n - 1 )(2n - 2)! 
a

n
-2 = - ----'----'-----'---_..:...:.._---'---

2(211 - 1 )2nn(1I - I)! n(n - 1 )(n - 2)! 

n(11 - 1)211(211 - 1) cancels. so that we get 

Similarly, 

(211 - 2)! 

(11 - 2)(n - 3) 

4(211 - 3) 

(211 - 4)! 

2n 2! (11 - 2)! (n - 4)! 

and so on, and in general, when 11 - 2111 ~ 0, 

(10) 
(211 - 2111)! 

(In-2m = (-I)m ----------
2nm! (n - Ill)! (n - 2m)! 
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The resulting solution of Legendre's differential equation 
polynomial of degree n and is denoted by P n(x). 

From (10) we obtain 

M 

(l) is called the Legendre 

(2n - 2m)! 
P n(x) = 'L (-1)'m ---'------'---- xn - 2'm 

2nm! (n - m)! (n - 2m)! 
(11) 

where M = nl2 or (11 - I )/2, whichever is an integer. The first few of these functions are 
(Fig. 104) 

Po(X) = 1, PI(X) = x 

(11') P2(x) = !(3x2 
- 1), P3 (x) = !(5x3 

- 3x) 

P4(x) = ~(35x4 - 30x2 + 3), P5(x) = ~(63x5 - 70x3 + I5x) 

and so on. You may now program (11) on your CAS and calculate Pn(x) as needed. 
The so-called orthogonality of the Legendre polynomials will be considered in 

Sees. 5.7 and 5.8. 

x 

Fig. 104. Legendre polynomials 

--
1. Verify that the polynomials in (11') satisfy Legendre's 5. (Legendre function Qo(x) for n = 0) Show that (6) 

with 11 = 0 gives Yl(X) = Po(x) = I and (7) gives equation. 

2. Derive (11 ') from (11). 

3. Obtain P6 and P7 from (11). 

4. (Convergence) Show that for any 11 for which (6) or 
(7) does nol reduce to a polynomial, the series has 
radius of convergence 1. 

2 (-3)(-1)·2·4 
Y2(X) = x + - x3 + x 5 + ... 

3! 5! 

x 3 
X5 I I + x 

=x+ +-+···=-In--. 
3 5 2 I-x 
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Verify this by solving (\) with /I = 0, setting z = y' 
and separating variables. 

6. (Legendre function -Ql(X) for II = 1) Show that (7) 

with 11 = I gives )"2(X) = PI(x) = x and (6) gives 
)"I(X) = -Ql(X) (the minus sign in the notation being 
conventional), 

)"I(X) = I -
3 5 

I - x (r + .~ + .~5 + ... ) 

I I + x 
= 1- -xln--

2 I - x 

7. (ODE) Find a solution of 
(a 2 

- x 2 )y" - 2xy' + n(/1 + l)y = 0. a *' 0. 
by reduction to the Legendre equation. 

8. [Rodrigues's formula (12)]2 Applying the binomial 
theorem to (X2 - I)n, differentiating it 11 times term 
by term. and comparing the result with (II), show 
that 

(12) 

9. (Rodrigues's formula) Obtain (II ') from (12). 

110-131 CAS PROBLEMS 

10. Graph P2 (x) • ...• PIO(.\) on common axes. For what 
\" (approximately) and II = 2 ... " 10 is Ipn(x)1 <!? 

It. From what /I on will your CAS no longer produce 
faithful graphs of P n(x)? Why? 

12. Graph Qo(x), QI (x), and some further Legendre 
functions. 

13. Substitute asxs + a s + IXs + 1 + as+2xs+2 into Legendre's 
equation and obtain the coefficient recursion (4). 

14. TEAM PROJECT. Generating Functions. 
Generating functions playa significant role in modem 
applied mathematics (see [GR5]). The idea is simple. 
If we want to study a certain sequence (fn(x» and can 
find a function 

"" 
C(u, x) = L fn(x)u n, 

n=O 

we may obtain properties of (f ,,(x» from those of C. 
which ""generates" this sequence and is called a 
generating function of the sequence. 

181 

(a) Legendre polynomials. Show that 

(13) 

is a generating function of the Legendre polynomials. 
Hint: Start from the binomial expansion of 11"\ 1 - v. 
then set v = 2xlI - u2• multiply the powers of 
2m - u2 out. collect all the terms involving un, and 
verify that the slim of these terms is Pn(x)u n. 

(b) Potential theory. Let Al and A2 be two points in 
space (Fig. 105, r2 > 0). Using (13), show that 

1 

r Vr12 + r22 
- 2rlr2 cos e 

This formula has applications in potential theory. 
(Qlr is the electrostatic potential at A2 due to a 
charge Q located at Al . And the series expresses I1r 
in terms of the distances of Al and A2 from any origin 
o and the angle e between the segments OA I and 
OA2·) 

Fig. 105. T earn Project 14 

(c) Further applications of (13). Show that 
Pn(l) = I, Pn( -I) = (-It'. P2n+ 1(0) = 0, and 

P2n(O) = (-I)n'I'3'" (211 - 1)/[2,4", (2n)]. 

(d) Bonnet's recursion.3 Differentiating (\3) with 
respect to u, using (13) in the resulting formula, and 
comparing coefficients of un, obtain the Bonnet 
recursion 

(14) (II + l)Pn+l(x) = (211 + I)xP,/:r) - IlPn_I(X), 

where Il = I, 2, .... This formula is useful for 
computations, the loss of significant digits being small 
(except near zeros). Try ( 14) out for a few computations 
of your own choice. 

20UNDE RODRIGUES (1794-1851). French mathematician and economist. 
30SSIAN BONNET (1819-1892), French mathematician. whose main work was in differential geometry. 
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15. (Associated Legendre functions) The associated 
Legendre functions P nk(x) play a role in quantum 
physics. They are defined by 

and are solutions of the ODE 

(I - x2 )y" - 2\)" 

(15) 

(16) 
+ [n(n + I) - ~ ] y = O. 

1 - x2 

Find P1
1(X), P2

1(X), P22(X), and P4
2(X) and verify that 

they satisfy (16). 

5.4 Frobenius Method 

THEOREM 1 

Several second-order ODEs of considerable practical importance-the famous Bessel 
equation among them-have coefficients that are not analytic (definition in Sec. 5.2), but 
are "not too bad," so that these ODEs can still be solved by series (power series times a 
logarithm or times a fractional power of x, etc.). Indeed, the following theorem permits 
an extension of the power series method that is called the Frobenius method. The latter­
as well as the power series method itself-has gained in significance due to the use of 
software in the actual calculations. 

Frobenius Method 

Let b(x) and c(x) be any Junctions that are analytic at x = O. Then the ODE 

(1) 
b(x), c(x) 

y" + -- y + -- v = 0 
X x 2 -

has at least one solution that can be represented in the JOI7I1 

(2) 
co 

y(x) = xT.L a",x'in = xT(ao + alx + a2x 2 + ... ) 
7n~0 

(ao *" 0) 

where the exponent r may be any (real or complex) number (and r is chosen so that 

ao *" 0). 
The ODE (1) also has a second solution (such that these two solutions are linearly 

independent) that may be similar to (2) (with a different r and different coefficients) 
or m£ly contain a logarithmic tenn. (Details in Theorem 2 below.)4 

For example, Bessel's equation (to be discussed in the next section) 

y" + 1 y' + (X2 - V2) V = 0 
X x 2 -

(va parameter) 

4GEORG FROBENIUS (1849-1917), German mathematician, also known for his work on matrices and in 
group theory. 

In this theorem we may replace x by x - Xo with any number xo. The condition ao * 0 is no restriction: it 
simply means that we factor out the highest possible power of x. 

The singular point of (1) at x = 0 is sometimes called a regular singular point, a term confusing to the 
student, which we shall not use. 
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is of the form (I) with b(x) = 1 and c(x) = x 2 
- v2 analytic at x = 0, so that the theorem 

applies. This ODE could not be handled in full generality by the power series method. 
Similarly, the so-called hypergeometric differential equation (see Problem Set 5.4) also 

requires the Frobenius method. 
The point is that in (2) we have a power series times a single power of x whose exponent 

r is not restricted to be a nonnegative integer. (The latter restriction would make the whole 
expression a power series, by definition; see Sec. 5.1.) 

The proof of the theorem requires advanced methods of complex analysis and can be 
found in Ref. [A 11] listed in App. I. 

Regular and Singular Points 
The fonowing commonly used terms are practical. A regular point of 

y" + p(x)y' + q(x)y = 0 

is a point Xo at which the coefficients p and q are analytic. Then the power series method 
can be applied. If Xo is not regular, it is called singular. Similarly, a regular point of the 
ODE 

h(x)y" + p(x)y' (x) + q(x)y = 0 

is an Xo at which h. p. q are analytic and h(xo) -=I=- 0 (so what we can divide by h and get 
the previous standard form). If Xo is not regular. it is called singular. 

Indicial Equation, Indicating the Form of Solutions 
We shall now explain the Frobenius method for solving (1). Multiplication of (1) by x2 

gives the more convenient form 

(1') x 2y" + xb(x)y' + c(x)y = O. 

We first expand b(x) and c(x) in power series. 

or we do nothing if b(x) and c(x) are polynomials. Then we differentiate (2) term by term, 
finding 

GC 

y' (x) =.L (/11 + r)amx'm+r-l = xr - 1 [rao + (r + l)alx + ... ] 
'm=o 

co 

(2*) -,",'(x) = .L (m + r)(m + r - I )amx'm+r-2 
m~O 

By inserting all these series into (1') we readily obtain 

(3) 
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We now equate the sum of the coefficients of each power XT, XT+l, XT+2, ••• to zero. This 
yields a system of equations involving the unknown coefficients (1m- The equation 
cOlTesponding to the power x" is 

[r(r - I) + bor + colao = o. 

Since by assumption ao *- 0, the expression in the brackets [ ... ] must be zero. This gives 

(4) r(r - I) + bor + Co = O. 

This important quadratic equation is called the indicial equation of the ODE (I ). Its role 
is as follows. 

The Frobenius method yields a basis of solutions. One of the two solutions will alway~ 
be of the form (2), where r is a root of (4). The other solution will be of a form indicated 
by the indicial equation. There are three cases: 

Case 1. Distinct roots not differing by an integer I. 2. 3 ..... 

Case 2. A double root. 

Case 3. Roots differing by an integer I. 2, 3 ..... 

Cases I and 2 are not unexpected because of the Euler-Cauchy equation (Sec. 2.5), the 
simplest ODE of the form (1). Case I includes complex conjugate roots r1 and r2 = rl 
because rl - r2 = rl - rl = 2i 1m /"1 is imaginary. so it cannot be a real integer. The 
form of a basis will be given in Theorem 2 (which is proved in App. 4). without a general 
theory of convergence, but convergence of the occurring series can he tested in each 
individual case as usuaL Note that in Case 2 we must have a logarithm, whereas in Ca'>e 
3 we mayor may 110t. 

Frobenius Method. Basis of Solutions. Three Cases 

Suppose that the ODE (1) satisfies the assumptions in Theorem I. LRt /"1 and r2 be 
the roots of the indicial equation (4). Then we have the following three cases. 

Case 1. Distinct Roots Not Differing by all Integer. A basis is 

(5) 

al1d 

(6) 

with coefficients obtained successivelyfrom (3) with r = rl and r = r2, respectivel)'. 

Case 2. Double Root rl = r2 = r. A basis is 

(7) [r = ~(1 - bo)] 

(of the .\£lme general form as before) and 

(8) (x> 0). 
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Case 3. Roots Differing by an Integer. A basis is 

(9) 

(of the same generalfoml as before) and 

(10) 

where the roots are so denoted that rl - r2 > 0 and k may tum out to be zero. 

Typical Applications 
Technically, the Frobenius method is similar to the power series method, once the roots 
of the indicial equation have been determined. However, (5)-00) merely indicate the 
general form of a basis, and a second solution can often be obtained more rapidly by 
reduction of order (Sec. 2.1). 

E X AMP L E 1 Euler-Cauchy Equation, Illustrating Cases 1 and 2 and Case 3 without a Logarithm 

For the Euler-Cauchy equation (Sec. 2.5) 

(bo, Co constant) 

substitution of y ~ xT gives the auxiliary equation 

r(r - 1) + bor + Co = 0, 

which is the indicial equation [and y = x T is a very special form of (2)!]. For different roots rI, r2 we get a 

basis YI = XTt,.I'2 = XT2, and for a double root r we get a basis XT, xT lnx. Accordingly, for this simple ODE, 
Case 3 plays no extra role. • 

E X AMP L E 2 Illustration of Case 2 (Double Root) 

Solve the ODE 

(11) x(x - I)y" + (3x - I)y' + Y = O. 

(This is a special hypergeometric equation, as we shall see in the problem set.) 

Solution. Writing (11) in the standard form (1), we see that it satisfies the assumptions in Theorem I. [What 
are b(x) and c(x) in (II )?] By inserting (2) and its derivatives (2*) into (11) we obtain 

co 

L (m + r)(m + r - I)a",xm+ r - L (m + r)(m + r - l)a'mx'm+T-l 

m=O 7n=O 
(12) 

7n=O m=O 7n=O 

The smallest power is xT-t, occurring in the second and the fourth series; by equating the sum of its coefficients 
to zerO we have 

[-r(r - 1) - r]ao = 0, thus 

Hence this indicial equation has the double root r = O. 
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First Solutioll. We insert this value I" = 0 into (12) and equate the ~um of the coefficients of the power 
X

S to zero. obtaining 

s(s - l)0s - (s + llSOs+1 + 3sos - (s + I )os+1 + Os = 0 

thus {/s+1 = (/s. Hence 00 = 01 = 02 = .... and by choosmg 00 = I we obtain the solution 

0::: m I 
\'I(X) = L x = --­

I-x 
1n=O 

(Ixl < I). 

Second Solution. We get a second independent solution)"2 by the method of reduction of order (Sec. 2.1). 

substituting)"2 = 11.\"1 and its derivatives into the equation. This leads to (9). Sec. 2.1. which we shall use in this 
example. instead of starting reduction of order from scratch (as we shall do in the next example). In (9) of 
Sec. 2.1 we have p = (3.1' - I )/(x2 

- x). the coefficient of y' in (11) ill stalldard form. By partial fractions. 

-J pdt = -J 3x - I dx = -J (_2_ + -.:.) dx = -2 In (x - I) - In x . 
.1'(.l-1) x-I, 

Hence (9), Sec. 2.1, becomes 

Inx 
11= In x, )"2 = 11.\'1 = I -x . x 

)"1 and )"2 are shown in Fig. 106. These functions are linearly independent and thus form a basis on the interval 
o < x < 1 (as well as on I < x < X). • 

Fig. 106. Solutions in Example 2 

E X AMP L E 3 Case 3, Second Solution with Logarithmic Term 

Solve the ODE 

(13) (x2 - t)y" - t)-' + )" = o. 

Solution. Substituting (2) and (2*) into (13), we have 

00 cc x 

(x2 - x) L (111 + r)(111 + r - 1){/m x'llt+T-2 - t L (111 + rJo",xm +,'- l + L omx7lt+T = O. 
m 0 7ft = 0 TTL=O 

We now take x 2
, x. and x inside the summation~ and collect all tenns with power x"'+r and simplify algebraically, 

'XC 

L (m + r - l)2omxm+r - L (/II + 1")(/11 + r - l)lIm x",+r-l = O. 
1n=O nz,=O 

In the first scnes We set /II = S and in the second III = S + L thus s = /II - 1. Then 

oc x 

(14) L (s + I" - 1)2{/sxs+r - L (s + r + I)(s + r)lI
S

+1.t'H" = O. 
s=o s=-l 
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The lowest power is xr - 1 (take s = -I in the second series) and gives the indicial equation 

r(r - 1) = o. 

The roots are /"1 = 1 and r2 = U. They differ by an integer. This is Case 3. 

First Solution. From (14) with r = rl = I we have 

L 1·,211s - (s + 21(s + IllIs+ljx
S

+
1 = O. 

s~o 

This gives the recurrence relation 

187 

as+l = (s + 2)(s + 1) as 
(s = 0, I, ., '). 

Hence "1 = O. {/2 = 0, ... successively. Taking "0 ~ 1, we get a." a first solution 1'1 = ./lao = x. 

Second Solution. Applying reduction of order (Sec. 2.1), we substitute Y2 = Ylll = Xli, y~ = Xll' + u and 
Y~ = xu" + 2u' into the ODE, obtaining 

(x2 - XJlXll" + 2u') - x(x,,' + ul + XII = O. 

xu drops Olll. Division by x and simplification give 

(x2 - x)u" + (x - 2)11' = O. 

From this. using partial fractions and integrating (taking the integration constant zero). we get 

" u 
, 

1/ 

2 
+ 

x ~ - I I 
x - I I Inu'=ln ~. 

Taking exponents and integrating (again taking the integration constant zero), we obtain 

, 
1/ = 

x 2 • 
X 

1/ = Inx + 
x 

)'2 = XI/ = x Inx + 1. 

Yl and ."2 are linearly independent. and."2 has a logarithmic term. Hence."l and."2 constitute a basis of solutions 
for positive .t. • 

The Frobenius method solves the hypergeometric equation. whose solutions include 
many known functions as special cases (see the problem set). In the next section we use 
the method for solving Bessel's equation. 

11-171 BASIS OF SOLUTIONS BY THE 
FROBENIUS METHOD 

Find a basis of solutions. Try to identify the series as 
expansions of known functions. (Show the details of your 
work.) 

1. xy" + 2y' - xy = 0 2. (x + 2)2)''' - 2)' = 0 

3. xv" + 51" + xy = 0 

4. 2xy" + (3 - 4.1.'lY' + (2x - 3)y 0 

5. x 2
)"" + -1-.1:\" + (x2 + 2»)" = 0 

6. 4.1.')," + 2/ + y = 0 

7. (x + 3)2)''' - 9(x + 3»),' + 25y o 

8. xy" - }' = 0 

9. x/' + (2x + 1)/ + (x + 1»), = 0 

10 . .1'2)''' + 2x3),' + (x2 - 2)y = 0 

11. (x 2 + f)Y" + (4x + 2»),' + 2)" = 0 

12. x 2y" + 6xy' + (4x 2 + 6)y = 0 

13. 2x)"" - (8x - 1)y' + (8x - 2).\' 0 

14 • .1.'y" + y' - xy = 0 

15. (x - 4)2)''' - (x - 4)y' - 35y o 
16. x 2y" + 4xy' - (x2 - 2)y = 0 

17. v" + (x - 6»)' = 0 
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18. TEAM PROJECT. Hypergeometric Equation, 
Series, and Function. Gauss' 5 hypergeometric ODE5 

is 

In (1 + x) = xF(l. I, 2; -x), 

1 + T 
In --' = 2tF(.1 I .3. T2) 

I 
2' , 2' . . -x 

(15) TO - x)}"" + [e - (0 + b + l)x]/ - aby = O. 

Here. a. b, e are constants. This ODE is of the form 

P2y" + Ply' + Po)" = 0, where P2' PI' Po are 
polynomials of degree 2, 1, 0, respectively. These 
polynomials are written so that the series solution takes 
a most practical form. namely. 

ab ala + I)b(b + I) 
heX) = ] + -- x + x 2 

I! e 2! e(e + I) 
(16) 

a(a + I)(a + 2)b(b + 1)(b + 2) + T3 + .... 
3! e(e + 1)(e + 2) 

This series is called the hypergeometric series. Its sum 
.\'I(X) is called the hypergeometric function and is 
denoted by F(a, b, e; x). Here. e =fo 0, -I, -2 ..... 
By choosing specific values of 0, b. e we can obtain 
an incredibly large number of special functions as 
solutions of (15) [see the small sample of elementary 
functions in part (c)]. This accounts for the importance 
of (15). 

(a) Hypergeometric series and function. Show that 
the indicial equation of (15) has the roots /"1 = 0 and 
/"2 = I-c. Show that for /"1 = 0 the Frobenius method 
gives (16). Motivate the name for (16) by showing that 

1 
F(1, I. I; x) = HI. b, b; x) = F(a. 1. a; x) = -­

I - x 

(b) Convergence. For what 0 or b will (16) reduce to 
a polynomial? Show that for any other a, b. e 
(e =fo 0, - I, - 2, ... ) the series (16) converges when 

Ixl < 1. 

(c) Special cases. Show that 

(I -I- x)n = F( -11, b. b; -x), 

(I - x)n = I - 1IxF(1 - 11, 1.2: x). 

arctan x = x F(!, 1.~; -x2
). 

arcsin x = x F(!, !, ~: x2
). 

Find more such relations from the literature on special 
functions. 

(d) Second solution. Show that for /"2 = I - c the 
Frobenius method yields the following solution (where 
e =fo 2.3.4 .... ): 

] 
(

a - c + I)(h - c + I) 
\'2(.\") = x -c I + x 

I! (-c + 2) 
07} 

+ Ca - c + l)(a - c + 2}Ch - c + I)Ch - c + 2) x 2 

2! (-c + 2)(-c + 3) 

+ .. -). 

Show that 

)'2(X) = TI-CF(a - e + I, b - e + 1,2 - e;x). 

(e) On the generality of the hypergeometric 
equation. Show that 

(18) (12 + At + B)y + (Ct + D»)' + K)' = 0 

with .,. = dyldt. etc.. constant A, B. C. D. K. and 
t2 + At + B = (t - tl)(t - t2), tl =fo t2, can be reduced 
to the hypergeometric equation with independent 
variable 

x= 

and parameters related by Ct] + D = -e(t2 - tl), 

e = a + b + I, K = abo From this you see that (15) 
is a "normalized fonn" of the more general (18) and 
that various cases of (18) can thus be solved in terms 
of hypergeometric functions. 

119-241 HYPERGEOMETRIC EQUATIONS 

Find a general solution in terms of hypergeometric 
functions. 

19. x(\ - x»)''' + (! - 2x)), , - !y = 0 

20. 2x(l - x»," - (1 + 6x)y' - 2y = 0 

21. x(1 - x),," + h' + 2.\' = 0 

22. 3[( I + t)y + t)' - )' = 0 

23. 2(£2 - 5t + 6)5; + (2t - 3).}· 8y = 0 

24. 4(t2 
- 3t + 2)5: - 2." + Y o 

5CARL FRIEDRICH GAUSS (1777-1855 J. great German mathemmician. He already made the first of his great 
discoveries as a student at Helmstedt and Gottingen. In 1807 he became a professor and director of the Observatory 
at Giittingen. His work was of basic importance in algebra. number theory, differential equations. differential 
geometry. non-Euclidean geometry. complex analysis. numeric analysis. a~trollomy. geodesy. electromagnetism. 
and theoretical mechanics. He also paved the way for a general and systematic use of complex numbers. 



SEC. 5.5 Bessel's Equation. Bessel Functions},,(x) 189 

5.5 Bessel's Equation. Bessel Functions J v (x) 
One of the most important ODEs in applied mathematics in Bessel's equation,6 

(1) 

Its diverse applications range from electric fields to heat conduction and vibrations (see 
Sec. 12.9). It often appears when a problem shows cylindrical symmetry (just as Legendre's 
equation may appear in cases of spherical symmetry). The parameter v in (1) is a given 
number. We assume that v is real and nonnegative. 

Bessel's equation can be solved by the Frobenius method, as we mentioned at the 
beginning of the preceding section, where the equation is written in standard form 
(obtained by dividing 0) by x 2

). Accordingly, we substitute the series 

(2) y(x) = ~ amxm
+

r 

7n~O 

with undetermined coefficients and its derivatives into (1). This gives 

00 :x: 

(ao -=/=- 0) 

We equate the sum of the coefficients of xs
+

r to zero. Note that this power X
S

+
T 

corresponds to 111 = s in the first, second, and fourth series. and to 111 = S - 2 in the 
third series. Hence for s = 0 and s = I, the third series does not contribute since 
111 ~ O. For s = 2, 3, ... all four series contribute, so that we get a general formula for 
all these s. We find 

(a) 

(3) (b) 

r(r - l)ao + rao - V2ao = 0 

(r + l)ral + (r + 1)(/1 - V
2

(/1 = 0 

From (3a) we obtain the indicial equation by dropping ao, 

(4) (r + v)(r - v) = O. 

The roots are r I v(~ 0) and 1"2 = -v. 

(s = 0) 

(8 = 1) 

(8 = 2,3, ... ). 

6FRIEDRICH WILHELM BESSEL (1784-1846l. German astronomer and mathematician. studied astronomy 
on his own in his spare time as an apprentice of a trade company and finally became director of the new Konigsberg 
Observatory. 

Formulas on Bessel functions are contained in Ref. [GRI] and the standard treatise [AB]. 
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Coefficient Recursion for r = rl = v. For r = v, Eq. (3b) reduces to (2v + I)al = 0. 
Hence al = ° since v ~ 0. Substituring r = v in (3c) and combining the three terms 
containing as gives simply 

(5) (s + 2v)sas + lIs-2 = 0. 

Since al = ° and v ~ 0, it follows from (5) that a3 = 0, a5 = 0, .... Hence we have 
to deal only with even-numbered coefficients as with s = 2m. For s = 2m. Eq. (5) becomes 

(2m + 2v)2ma2rn + lI2m-2 = O. 

Solving for a2m gives the recursion formula 

(6) --;;:2---- a2m-2, 
2 m(v + m) 

m = I, 2, .... 

From (6) we can now determine a2' £14' ••• successively. This gives 

and so on, and in general 

(7) 
( -l)'mao 

II = --;;:-------~------
2m 2211117l! (V + l)(V + 2) ... (v + Ill) 

III = 1, 2, .... 

Bessel Functions In(x) For Integer v = n 
Illteger vailles oIv are denoted by 11. This is standard. For v = II the relation 0) becomes 

(8) 
(-l)'mao 

(/2 = --;;:--------------
111 22'mm! (11 + l)(n + 2) ... (n + m) 

m = 1,2,···. 

ao is still arbitrary, so that the series (2) with these coefficients would contain this arbitrary 
factor ao. This would be a highly impractical situation for developing formulas or 
computing values of this new function. Accordingly, we have to make a choice. ao = 1 
would be possible, but more practical turns out to be 

(9) lIo = 
2"n! . 

because then n!(11 + 1) ... (n + m) = (Ill + n)! in (8), so that (8) simply becomes 

(10) 
(-l)m 

a2m = """"="2----'------
2 1n+n m! (n + 1Il)! 

m = 1,2,···. 
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This simplicity of the denominator of (10) partially motivates the choice (9). With these 
coefficients and rl = v = II we get from (2) a particular solution of (I), denoted by in(x) 
and given by 

(11) 

i,,(x) is called the Bessel function of the first kind of order 11. The series (II) converges 
for all x. as the ratio test shows. In fact. it converges very rapidly because of the factorials 
in the denominator. 

E X AMP L E 1 Bessel Functions lo(x) and l,(x) 

For 11 = 0 we obtain from (I I) the Bessel function of order 0 

(12) ./o(x) = L-
1l1,-O 

(_I)'nJ'x2m 

2211t(m!)2 

x6 

26(3!)2 + - . " 

which looks similar to a cosine (Fig. 107). For II = I we obtain the Bessel function of order I 

(131 
(-I ),,'x2111 + 1 :3 x5 x7 

hex) = L- X 

12m+ 11ll! (Ill + 2:31!2! 
+ 

251!3! 273!4! 
+ - ... 

l)! 2 
1n=O 

which looks similar to a sine (Fig. 107). But the zeros of these functions are not completely regularly spaced 
(see also Table Al in App. 5) and the height of the "waves" decreases with increasing x. Heuristically. n 2/x2 

in (I) in standard form [( I) divided by .\'21 is zero (if It = 0) or small in absolute \alue for large x. and so is 
\·'/x. so that then Besser s equation comes close to /' + Y = O. the equation of cos y and sin y; also / Ix acts 
as a "damping term."' in part responsible for the decrea~e in height. One can show that for large x. 

(141 [2 ( itT. T.) 
./,,(x) - ~ -:;;:;:- cos x - 2 - 4 

where - is read "asymptotically equal"' and means thatfor.fhed II the quotient of the two ~ide~ appruache~ I 
aSX---i> x. 

Formula (14) is surprisingly accurate even for smaller x (> 0). For instance. it will give you good starting 
values in a computer program for the basic task of computing Leros. For example. for the first three zeros of ./0 
you obtain the values 2.356 (2.405 exact to 3 decimals. error 0.049). 5.498 (5.520. error 0.022), 8.639 (8.654. 
error 0.015), etc. • 

0.5 

/ 
/ 

" " / 

" 
/ 

/ 

" O~---L----~~-L----~--~~L-~--,,~/~--~--~~--~lO~--~--~/~/~--x 

,,/ 
..... _--/ 

Fig. 107. Bessel functions of the first kind Jo and JI 
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Bessel Functions J v{x) for any JJ ::> o. Gamma Function 
We now extend our discussion from integer v = 11 to any v ~ O. All we need is an 
extension of the factorials in (9) and (11) to any v. This is done by the gamma function 
[( v) defined by the integral 

(15) (v> 0). 

By integration by parts we obtain 

The first expression on the right is zero. The integral on the right is f( v). This yields the 
basic functional relation 

(16) rev + l) = v rev). 

Now by (I5) 

From this and (16) we obtain successively r(2) = f(J) = I!, [(3) = 2f(2) = 2!, ... 
and in general 

(17) nil + 1) = n! (n = O. L .. '). 

This shows the the gamma function does in fact generalize the factorial function. 
Now in (9) we had ao = 1I(2nn!). This is 1!(271rell + 1)) by (17). It suggests to choose, 

for any v, 

(18) 

Then (7) becomes 

22mm! (v + l)(v + 2) ... (v + m)2'T(v + 1) . 

But (16) gives in the denominator 

(v + l)[(v + IJ = rev + 2), (v + 2)nv + 2) = rev + 3) 

and so on, so that 

(v + 1)(11 + 2) ... (v + 171) rev + I) = rev + 11l + 1). 
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THEOREM 1 

THEOREM 2 

Hence because of our (standard!) choice (18) of ao the coefficients (7) simply are 

(19) 
(-1)= 

a2nz = 2 2 m+"m! rev + m + 1) 

With these coefficients and r = r) = v we get from (2) a particular solution of (1), denoted 
by i,.(x) and given by 

00 

(20) i,.(x) = x"L 
22m +"I1l! rev + m + 1) 

m=O 

i,,(x) is called the Bessel function of the first kind of order v. The series (20) converges 
for all x, as one can verify by the ratio test. 

General Solution for Noninteger v. Solution )-'/ 
For a general solution, in addition to I,. we need a ~econd linearly independent solution. 
For v not an integer this is easy. Replacing v by - v in (20), we have 

(21) 

Since Bessel's equation involves v2
, the functions i" and i_,. are solutions of the 

equation for the same v. If v is not an integer, they are linearly independent, because 
the first term in (20) and the first term in (21) are finite nonzero multiples of x" and 
x-", respectively. x = 0 must be excluded in (21) because of the factor x-v (with v> 0). 
This gives 

General Solution of Bessel's Equation 

If v is not an integer. a general solution of Bessel's equation for all x -=I=- 0 is 

(22) 

But if v is an integer, then (22) is not a general solution because of linear dependence: 

Linear Dependence of Bessel Functionsln andl_n 

For integer v = n the Bessel functions in(x) and i_n(x) are linearly dependent, 
because 

(23) (n = 1,2, .. '). 
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PROOF We use (21) and let v approach a positive integer n. Then the gamma functions in the 
coefficients of the first n terms become infinite (see Fig. 552 in App. A3.1). the 
coefficients become zero. and the summation starts with rn = II. Since in this case 
rem - n + 1) = (m - Il)! by (17). we obtain 

THEOREM 3 

(m = 11 + s). 

The last series represents (-I)n In{x), as you can see from (11) with m replaced by s. This 
completes the proof. • 

A general solution for integer 11 will be given in the next section, based on some further 
interesting ideas. 

Discovery of Properties From Series 
Bessel functions are a model case for showing how to discover properties and relations of 
functions from series by which they are defined. Bessel functions satisfy an incredibly large 
number of relationships-look at Ref. [AI3] in App. I; also, find out what your CAS 
knows. In Theorem 3 we shall discuss four formulas that are backbones in applications. 

Derivatives, Recursions 

The derivative of l,,(x) with respect to x can be expressed by lv_lex) or Iv+I(X) by 
the fOl1llu/lls 

(a) [xVI,,(x)]' = xVJ,,_I(X) 
(24) 

(b) [x-vI,,(x)]' = -X-vI,,+I(X). 

Furthermore. J,,(x) and its derivative satisfy the recurrence relations 

(24) 

2v 
(c) lv_leX) + lv+l(x) = -lv(x) 

x 
(d) lv_leX) - Iv+I(X) = 2l~(x). 

PROOF (a) We multiply (20) by xl' and take X2v under the summation sign. Then we have 

We now differentiate this, cancel a factor 2, pull X
2v- 1 out, and use the functional 

relationship n v + III + 1) = (v + l7l)re v + m ) [see (16)]. Then (20) with v-I instead 
of v shows that we obtain the right side of (24a). Indeed, 
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(b) Similarly, we multiply (20) by x-", so that x" in (20) cancels. Then we differentiate, 
cancel 2111, and use Ill! = m(m - I)!. This gives, with III = s + I, 

Equation (20) with v + I instead of v and s instead of m shows that the expression on 
the right is -x- vJ v + 1(x). This proves (24b). 

(e), (d) We perform the differentiation in (24a). Then we do the same in (24b) and 
multiply the result on both sides by x2v. This gives 

(a*) vx,.-lJ .. + x''''~ = x"J,,_1 

(b*) -vX,·-IJv + xVJ:, = -x"Jv+ 1' 

Substracting (b*) from (a*) and dividing the result by x" gives (24c). Adding (a*) and 
(b~') and dividing the result by xl' gives (24d). • 

E X AMP L E 2 Application of Theorem 3 in Evaluation and Integration 

Formula (24c) can be used recursively in the form 

for calculating Bessel functions of higher order from those of lower order. For instance, J2(x) = 2J 1 (.1')/.1' - JoC>:), 
so that J 2 can be obtained from tables of Jo and h (in App. 5 or, more accurately, in Ref. [GRI] in App. 1). 

To illustrate how Theorem 3 helps in integration. we use (24b) with v = 3 integrated on both sides. This 
evaluates. for instance. the integral 

A table of J 3 (on p. 398 of Ref. [GR I]) or yom' CAS will give you 

- A· 0.128943 + 0.019563 = 0.003445. 

Yom CAS (or a hnman computer in precomputer times) obtains h from (24), first u~ing (24e) with v = 2, 
that is, J 3 = 4.1'-1J2 - J1• then (24c) with v = I. thal is. J 2 = 2r:- 1h - Jo. Together. 

1= x-3 (4r:- 1(2r- 1h - Jo) - hI I: 
= -A[2h(2) - 2Jo(2) - h(2)] + [8h(l) - 4Jo(l) - hill] 

= -AJ1(2) + !Jo(2) + 7h(l) - 4JoO). 

This is what you get, for instance. with Maple if you type int(·· '). And if you type evalf(int(·· .», you obtain 
0.00344544K in agreement with the result near the beginning of the example. • 

In the theory of special functions it often happens that for certain values of a parameter 
a higher function becomes elementary. We have seen this in the last problem set, and we 
now show this for J r,. 
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THEOREM 4 

CHAP. 5 Series Solutions of ODEs. Special Functions 

Elementary}" for Half-Integer Order v 

Besselfunctions J" of orders ±!, ±~, ±~, ... are elementary; the}' call be expressed 
by fillitely many cosines and sines and powers of x. In particular, 

(25) (a) 11/2(X) = J 2 sin x. 
7T"X 

(b) Ll/2(x) = J 2 cos X. 
7T"X 

PROOF When lJ = !, then (20) is 

To simplify the denominator. we first write it out as a product AB. where 

A = 2mm! = 2m(2111 - 2)C2m - 4) ... 4·2 

and [use (16)J 

= (2m + 1)(2111 - I) ... 3· 1 • v.r;; 
here we used 

(26) 

We see that the product of the two right sides of A and B is simply (2111 + I )!v.r;, so that 
J 1/2 becomes 

[f x (_I}lnx 2m+1 [f. 
11/2(x) = - ~ = - sin x, 

7T"X m=O (2m + I)! 7T"X 

as claimed. Differentiation and the use of (24a) with lJ = ! now gives 

This proves (25b). From (25) follow further formulas successively by (24c), used as in 
Example 2. This completes the proof. • 

E X AMP L E 3 Further Elementary Bessel Functions 

From (24c) with v = ~ and v = -~ and (25) we obtain 

I [f (cosx ) L 3/2(X) = - - L 1/2(X) - h/2(X) = - - -- + sinx 
x TTX x 

respectively, and so on. • 
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We hope that our study has not only helped you to become acquainted with Bessel 
functions but ha<; also convinced you that series can he quite useful in obtaining various 
properties of the corresponding functions. 

PROBL~ME5EE~E3~.35L-____ _ 

1. (Convergence) Show that the series in (I I) converges 
for all x. Why is the convergence very rapid? 

2. (Approximation) Show that for small Ixl we have 
10 = I - 0.25x2 . From this compute 10(.'r) for 
x = O. 0.1. 0.2 ..... 1.0 and determine the error by 
using Table Al in App. 5 or your CAS. 

3. ("'Large" values) Using 04), compute 10lx) for 
x = 1.0, 2.0. 3.0 ..... 8.0, determine the error by 
Table Al or your CAS. and comment. 

4. (Zeros) Compute the fIrst four positive zeros of 10(.r) 

and 11(x) from (14). Determine the error and comment. 

15-201 ODEs REDUCIBLE TO BESSEL'S 
EQUATION 

Using the indicated substitution~. find a general solution in 
temlS of 1 v and 1 -v or indicate when this is not possible. 
(This is just a sample of various ODEs reducible to Bessel's 
equation. Some more follow in the next problem set. Show 
the details of your work.) 

5. (ODE "ith two parameters) 
x 2)"" + xy' + (A2x 2 - JJ2)y = 0 lAx = ;::) 

6. x 2
/' + xy' + (x 2 

- -W)Y = 0 

7. x 2)''' + xy' + !(x - JJ2)y = 0 CVx = z) 

8. (2x + 1 )2y" + 2(2x + 1)/ + 16x( t + l)y = 0 
(2x + I = ::.;) 

9. x/' - / + 4ry = 0 (\. = XII, 2t = z) 
10. x 2

)"" + x.v' + !(x2 
- I)), = 0 lx = 2::.;) 

11. xy" + (2v + l)y' + xy = 0 (y = x-Vu) 

12. x2)"" + xy' + 4(x4 - JJ2)y = 0 (x2 = z) 

13 .... 2y" + xy' + 9(x6 - v 2»' = 0 (x 3 = z) 

I-I. y" + (e2x 
- ~)y = 0 (eX = .::.) 

15. xy" + y = 0 l)' = Vx u. 2Vx = z) 

16. 16x2
)''' + 8xy' + (x1/2 + :a)y = 0 

(y = xl/4 u. X1l4 = ::.;) 

17. 36x2,," + 18x\" + Vx V = 0 
(y =. x 1l4u, ixi/4 = z) . 

18. x 2
)''' + xy' + Vx y = 0 (4t1l4 = z) 

19. x 2)"" + !xy' + Vx y = 0 ly = x 2/5u. 4X1l4 = .::.) 

20. x 2/' + (I - 2v)xy' + v 2(x2v + 1 - v2)y = 0 
(y = t"u, XV = ::.;) 

121-281 APPLICATION OF (24): DERIVATIVES, 
INTEGRALS 

Use the powerful formulas (24) to do Probs. 21-28. (Show 
the details of your work.) 

21. (Derivatives) Show that l~(x) = - 11(x), 

l~(x) = 10(x) - 11(X)/X, l~(x) = Ml1(x) - 13(x)l. 

22. (Interlacing ofzeros) Using (24) and Rolle's theorem, 
show that between two consecutive zeros of 10(x) there 
is precisely one zero of 11 (x). 

23. (Interlacing ofzeros) Using (24) and Rolle's theorem. 
show that between any two consecutive positive zeros 
of In(x) there i~ precisely one J:ero of l,,+I(X). 

24. (Bessel's equation) Derive (I) from (24). 

25. (Basic integral formulas) Show that 

IX"l"-l(X) dx = x "1" (x) + C, 

26. (Integration) Evaluate I x- 114 (x) dx. (Use Prob. 25; 
integrate by parts.) 

27. (Integration) Show that 

Ix 210 (x) dx = x211(x) + x10(x) - Ilo(X) dx. (The 

last integral is nonelementary; tables exist, e.g. in Ref. 
[A13J in App. L) 

28. (Integration) Evaluate I15(X) dx. 

29. (Elimination of first derivative) Show that y = ltV 

with vex) = exp (-~ J p(x) dx) gives from the ODE 

y" + p(x)y' + q(x)y = 0 the ODE 

no longer containing the first derivative. Show that for 
the Bessel equation the substitution is y = UX-1I2 and 
gives 

(27) 
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30. (Elementary Bessel functions) Derive (25) in 
Theorem 4 from (27). 

31. CAS EXPERIMENT. Change of Coefficient. Find 
and graph (on common axes) the solutions of 

.v" + h- 1y' + Y = O • .1'(0) = I. y' (0) = O. 

for k = 0, 1, 2 ... '. 10 (or as far as you get useful 
graphs). For what k do you get elementary functions? 
Why? Try for noninteger k. particularly between 0 and 
2. to see the continuous change of the curve. Describe 
the change of the location of the zeros and of the 
extrema as k increases from O. Can you interpret the 
ODE as a model in mechanics, thereby explaining your 
observations? 

32. TEAM PROJECT. Modeling a Vibrating Cable 
(Fig. 108). A flexible cable, chain, or rope of length L 
and density (mass per unit length) p is fixed at the upper 
end (x = 0) and allowed to make small vibrations 
(small angles a in the horizontal displacement u(x. t), 

t = time) in a vertical plane. 

(a) Show the following. The weight of the cable below 
a point x is W(x) = pg(L - x). The restoring force is 
F(x) = W sin a = Wu.". Ux = (JuliJx. The difference in 
force between x and x + D.X is D.x (Wu~')x' Newton's 
second law now gives 

p .1x IItt = .lx pg[(L - X)lI"Jx. 

For the expected periodic motion 
u(x, t) = .r(x) cos (wt + 8) the model of the problem 
is the ODE 

(L - x).r" - y' + A\ = O. 

(b) Transform this ODE to~; + ,1'-1" + Y = O. 
. " = dylds. s = 2A::,1I2. ::. = L - x. so that the 
solution is 

y(x) = 10 (2wV(L - >;)Ig). 

(c) Conclude that possible frequencies wl27f are those 
for which s = 2wv Llg is a zero of 10 , The 
con-esponding solutions are called normal modes. 
Figure 108 shows the first of them. What does the second 
normal mode look like? The third? What is the frequency 
(cycles/min) of a cable of length 2 m? Of length 10 m? 

Equilibrium 
position 

Fig. 108. Vibrating cable in Team Project 32 

33. CAS EXPERIMENT. Bessel Functions for Large x. 
(a) Graph l,,(x) for 11 = 0, ... , 5 on common axes. 

(b) Experiment with (14) for integer II. Using graphs. 
find out from which x = Xn on the curves of (II) and 
(14) practically coincide. How does Xn change with n? 

(c) What happens in (b) if II = ::!::~? (Our usual 
notation in this case would be v.) 

(d) How does the en-or of (14) behave as function 
of x for fixed II? [En-or = exact value minus 
approximation (14).1 

(e) Show from the graphs that 10 (x) has extrema where 
11(x) = O. Which formula proves this? Find further 
relations between zeros and extrema . 

(f) Raise and answer questions of your own. for 
instance. on the zeros of 10 and 11 , How accurately are 
they obtained from (14)? 

5.6 Bessel Functions of the Second Kind Yv(x) 
From the last section we know that I" and I_v fonn a basis of ~olution<; of Bessel's 
equation, provided v is not an integer. But when v is an integer, these two solutions are 
linearly dependent on any interval (see Theorem 2 in Sec. 5.5). Hence to have a general 
solution also when v = 11 is an integer, we need a second linearly independent solution 
besides In. This solution is called a Bessel function of the second kind and is denoted 
by Yn . We shall now derive such a solution. beginning with the case II = O. 

n = 0: Bessel Function of the Second Kind Yo(x) 
When II = 0, Bessel's equation can be written 

(1) xy" + y' + .\}' = O. 
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Then the indicial equation (4) in Sec. 5.5 has a double root r = O. This is Ca<;e 2 in 
Sec. 5.4. In this case we first have only one solution. 10(x). From (8) in Sec. 5.4 we see 
that the desired second solution must be of the form 

00 

(2) Y2(X) = 10(x) In x + "L Amx7n. 
m=1 

We substitute .'"2 and its derivatives 

I I 10 + ~ 1 .'"2 = 10 In x + L.. 111A",x"'-

"" 21~ 
)'2 = 10 Inx + --

x 

x m=1 

10 'Xc 

+ "L 111 (m - I )Am xm
-

2 

x 2 
Jll,=l 

into (1). Then the sum of the three logarithmic terms x 1~ In x, 1 ~ In x, and xl 0 In x is Lero 
because 10 is a solution of (l). The terms - 10 Ix and 10 lx (from xy" and :v') cancel. Hence 
we are left with 

x x x 

21~ + "L m(m - I)Am xm - 1 + "L mAm·\·m-I + "L Amxm+I = O. 
111=1 m=l ==1 

Addition of the first and second series gives Lm2Amxm-l. The power series of 1~(x) is 
obtained from 1I2) in Sec. 5.5 and the use of m!/m = (111 - I)! in the form 

00 

="L 
In=l 

Together with Lm2A",xm
-

1 and LAmxm+l this gives 

(3*) 
( -1 )nlx2m-l 'Xc 

" +" 2A "In-I + "A .=+1 = O. L.. 2 ,-2 L.. 111 mX L.. .,..,..': 
m=1 2 n Ill! (m - I)! ==1 m=1 

First, we show that the Am with odd subscripts are all zero. The power X O occurs only in 
the second series. with coefficient AI' Hence Al = O. Next, we consider the even powers 
X2s. The first series contains none. In the second serie", m - 1 = 25 gives the term 
(25 + 1)2A2s+1X2s. In the third series. m + 1 = 25. Hence by equating the sum of the 
coefficients of x 2s to zero we have 

5 = L. 2 ..... 

Since Al = 0, we thus obtain A3 = O. A5 = O .... , successively. 
We now equate the sum of the coefficients of X2s

+
I to zero. For s = 0 this gives 

-1 + 4A2 = 0, thus 

For the other values of s we have in the first series in (3*) 2111 - I = 2s + 1, hence 
m = s + 1, in the second m - 1 = 2s + 1, and in the third 111 + 1 = 2s + I. We thus obtain 

(_l)s+1 
2s 1 + (2s + 2)2A2s+ 2 + A2s = O. 

2 (s + )! s! 
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For s = J tills yields 

thus 

and in general 

(3) 
(-I )m-l ( 1 1 J ) 

A2m = 1 + 2 + + ... + - . 
22m(m!)2 3 III 

Using the short notations 

(4) hm = ] + 2 + ... + 
m 

3 

128 

and inserting (4) and Al = A3 = . . . = 0 into (2). we obtain the result 

(5) 
1 2 = Jo(x) lnx + 4x _3_ X4 + _1_1_ x 6 

128 13824 
+ 

m = 1,2,···. 

m = 2.3.··· 

Since 10 and )"2 are linearly independent functions, they fonn a basis of (I) for x > o. 
Of course, another basis is obtained if we replace )"2 by an independent particular solution 
of the form a(Y2 + b10), where a (of:. 0) and b are constants. It is customary to choose 
a = 2/7T and b = y - ]n 2. where the number y = 0.577 215 664 90 ... is the so-called 
Euler constant, which is defined as the limit of 

1 + + ... + - In s 
2 s 

as s approaches infinity. The standard particular solution thus obtained is called the Bessel 
function of the second kind of order ~ero (Fig. 109) or Neumann's function of order 
zero and is denoted by Yo(x). Thus [see (4)] 

(6) 

For small x > 0 the function Yo(x) behaves about like In x (see Fig. 109, why?), and 
Yo(x) ~ - 'XJ as x ~ o. 

Bessel Functions of the Second Kind Yn(x) 
For v = 11 = 1, 2, ... a second solution can be obtained by manipulations similar to those 
for 11 = 0, st<uting from (10), Sec 5.4. It turns out that in these cases the solution also 
contains a logarithmic term. 

The situation is not yet completely satisfactory, because the second solution is defined 
differently, depending on whether the order v is an integer or not. To provide uniformity 
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of fonnalism, it is desirable to adopt a form of the second solution that is valid for all 
values of the order. For this reason we introduce a standard second solution Y,,(x) defined 
for all v by the formula 

(a) Y,.(X) = [1,.(x) cos V7T - i_.,(x)] 
Sill V7T (7) 

(b) Yn(X) = lim VAx). 
,,~n 

This function is called the Bessel function of the second kind of order vor Neumann's 
function7 of order v. Figure 109 shows Yo(x) and YI(X), 

Let LIS show that i,. and YI' are indeed linearly independent for all v (and x > 0). 
For non integer order v. the function Y,lx) is evidently a solution of Bessel's equation 

because i,.(x) and 1 -,,(x) are solutions of that equation. Since for those v the solutions 1" 
and i_,. are linearly independent and Y,. involves I_v, the functions i,. and Y" are linearly 
independent. Furthermore, it can be shown that the limit in (7b) exists ,md Yn is a solution 
of Bessel's equation for integer order; see Ref. [A13] in App. 1. We shall see that the 
series development of Yn(x) contains a logarithmic term. Hence i,lr) and Yn(x) are linearly 
independent solutions of Bessel's equation. The series development of Yn(x) can be 
obtained if we inseI1 the series (20) and (21), Sec. 5.5. for i,.(x) and L,.(x) into (7a) and 
then let v approach 11; for details see Ref. [A13]. The result is 

(8) 

2 (x ) xn ~ (-I)m-l(hm + hm+ n ) 
Y,,(x) = - 1n(x) In -2 + 'Y + - ~ 2 

7T 7T m~O 2 m+1l-17l ! (Ill + n)! 

-n n-l 
_x '" (n - m - I)! 2 

~ -----;::----- X 1ll 

7T m~O 22m
-

n m! 

where x > 0, 11 = O. 1. .... and [as in (4)] ho = O. hI = L 

1 1 
h =1+-+ .. ·+ 

m 2 111 hm+n = 1 + 2. + . . . + 111 + 11 

Fig. 109. Bessel functions of the second kind Yo and Y,. 
(For a small table, see App. 5.) 

7CARL NEUMANN (1832-\9251. German mathematician and physicist. His work on potential theory sparked 
the development in the field of integral equations by VITO VOLTERRA (1860-1940) of Rome. ERIC IVAR 
FREDHOLM (I 866--19D) of Stod.holm. and DAVID HILBERT (1862-1943) of Giittingen (see the footnote 
in Sec. 7.91. 

The solutions Y,.(X) are sometimes denoted by N,.(x); in Ref. [A13] they are called Weber's functions; Euler', 
constant in (6) is often denoted by C or In 1'. 
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For n = 0 the last sum in (8) is to be replaced by 0 [giving agreement with (6)]. 
Furthermore, it can be shown that 

Our main result may now be formulated as follows. 

THEOREM 1 General Solution of Bessel's Equation 

A general solution of Bessel's equatimz for all values of v (and x > 0) is 

(9) 

We finally mention that there is a practical need for solutions of Bessel's equation that 
are complex for real values of x. For this purpose the solutions 

(10) 
H~~\>;;) = J v(X) + iY,,(x) 

H~~)(x) = Jv(x) - iY,,(x) 

are frequently used. These linearly independent functions are called Bessel functions of 
the third kind of order v or first alld second Hankel functionsB of order v. 

This finishes our discussion on Bessel functions, except for their "orthogonality," which 
we explain in Sec. 5.7. Applications to vibrations follow in Sec. 12.9. 

11-10 1 SOME FURTHER ODEs REDUCIBLE TO 
BESSEL'S EQUATIONS 

(See also Sec. 5.5.) 

Using the indicated substinl!ions, find a general solution in 
terms of J v and Y •. Indicate whether you could also use J- v 

instead of Yv ' (Show the details of your work.) 

1. x2y" + x)" + (x2 - 25)y = 0 
2. x2

-,," + x/ + (9x 2 
- ~)y = 0 (3x = .:::) 

3. 4xy" + 4/ + y = 0 (~=.:::) 
4. xy" + y' + 36)" = 0 (\ 2~ = z) 

5. x 2 y" + xy' + (4X 4 - 16)y = 0 (x 2 = z) 

6. x 2
-,," + x/ + (x 6 

- I)." = 0 (~x3 = z) 

7. xy" + 11/ + xy = 0 (y = x- 5
,,) 

8. y" + -1-x2 y = 0 (y = u~. x 2 = z) 

9. x 2y" - 5xy' + 9(x6 
- 8)y = 0 (y = x3 u, x 3 = z) 

10. xy" + 7/ + 41·Y = 0 (y = x- 3 u. 2x = z) 

11. (Hankel functions) Show that the Hankel functions ( 10) 
form a basis of solutions of Bessel's equation for any v. 

12. CAS EXPERIMENT. Bessel Functions for Large x. 
It can be shown that for large x. 

(11) Yn(x) - v'2/( 7TX) sin (x - ! 1l7T - ~7T) 

with - defined as in (14) of Sec. 5.5. 

(a) Graph Yn(x) for 11 = O .... , 5 on common axes. 
Are there relations between zeros of one function and 
extrema of another? For what functions? 

(b) Find out from graphs from which x = Xn on 
the curves of (8) and (11) (both obtained from your 
CAS) practically coincide. How does Xn change 
with 11? 

(c) Calculate the first ten Leros Xm ' In = I, ... , 10, 
of Yo(x) from your CAS and from (II). How does the 
error behave as 171 increases? 

(d) Do (c) for Yl(X) and Y2(x). How do the errors 
compare to those in (c)? 

BHERMANN HANKEL (1839-1873). German mathematician. 
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13. Modified Bessel functions of the first kind of order P 

are defined by Iv(x) = i-vJ,,(ix), i = \1"="1. Show that 
Iv satisfies the ODE 

(12) x2y" + xy' - (x2 + v2 )y = 0 

and has the representation 

cc x2m.+v 

(13) [,Jx) = L 22m+vm! rem + v + I) 
711=-0 

203 

14. (Modified Bessel functions I.,) Show that I,,(x) is real 
for all real x (and real v), 1 v (x) "* 0 for all real x "* 0, 
and Ln(x) = In(x). where n is any integer. 

15. Modified Bessel functions of the third kind (sometimes 
called of the second kind) are defined by the formula (14) 
below. Show that they satisfy the ODE (12). 

7r 
(14) KJI:) = . [Lv(.\) - IJr)] 

2 sm V7r 

5.7 Sturm-Liouville Problems. 
Orthogonal Functions 

So far we have considered initial value problems. We recall from Sec. 2.1 that such a problem 
consists of an ODE, say, of second order, and initial conditions .1'(xo) = Ko, y' (xo) = KI 
referring to the same point (initial point) x = Xo. We now turn to boundary value problems. 
A boundary value problem consists of an ODE and given boundary conditions referring 
to the two boundary points (endpoints) x = a and x = b of a given interval a ~ x ~ b. 
To solve such a problem means to find a solution of the ODE on the interval a ~ x ~ b 
satisfying the boundary conditions. 

We shall see that Legendre's, Bessel's, and other ODEs of importance in engineering 
can be written as a Sturm-Liouville equation 

(1) [p(x)y']' + [q(x) + Ar(x)]y = 0 

involving a parameter A. The boundary value problem consisting of an ODE (1) and given 
Sturm-Liouville boundary conditions 

(a) kIy(a) + k2 y' (a) = 0 
(2) 

(b) IIy(b) + 12y'(b) = 0 

is called a Sturm-Liouville problem.9 We shall see further that these problems lead to 
useful series developments in terms of particular solutions of (1), (2). Crucial in this 
connection is orthogonality to be discussed later in this section. 

In (1) we make the assumptions thatp, q, r, andp' are continuous on a ~ x ~ b, and 

rex) > 0 (a ~ x ~ b). 

In (2) we assume that kI , k2 are given constants, not both zero, and so are II, 12, not both 
zero. 

9JACQUES CHARLES FRAN<;:OIS STURM (1803-1855), was born and studied in Switzerland and then 
moved to Paris, where he later became the successor of Poisson in the chair of mechanics at the Sorbonne (the 
University of Paris). 

JOSEPH LIOUVILLE (1809-1882), French mathematician and professor in Paris, contributed to various 
fields in mathematics and is particularly known by his important work in complex analysis (Liouville's theorem; 
Sec. 14.4), special functions, differential geometry, and number theory. 
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E X AMP L E 1 Legendre's and Bessel's Equations are Sturm-Liouville Equations 

Legendre's equation (I - x2)y" - 2.\)"' + "(,, + I)y = 0 may be written 

A = 11(11 + I). 

This is (1) With P = I - x 2
, q = O. and r = 1. 

In Bessel's equation 

.,. = dyldx. etc. 

as a model in physics or elsewhere. one often likes to have another parameter k in addition to II. For this reason 
we set x = h. Then by the chain rule .,. = dyld.y = «(~,"ldx) drldx = y'lk. ;.' = y"lk2

. In the first two lerms. k2 

and k drop out and we get 

Division by x gives the Sturm-Liouville equation 

[xy'l' + + A.\}' = 0 

This is (I) with p = x. q = _/12/x, and r = x. • 
Eigenfunctions, Eigenvalues 
Clearly, y == 0 is a solution-the "trivial solution"-for any A because (I) is homogeneous 
and (2) has zeros on the right. This is of no interest. We want to find eigenfunctions y(x), 

that is, solutions of (l) satisfying (2) without being identically zero. We call a number A 
for which an eigenfunction exists an eigenvalue of the Sturm-Liouville problem (1), (2). 

E X AMP L E 2 Trigonometric Functions as Eigenfunctions. Vibrating String 

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem 

(3) y" + Ay = O. .1'(0) = 0, .1'( 77) = O. 

This problem arises. for instance. if an elastic SIring (a violin sIring, for example) is slrelched a little and then 
fixed at its ends x = 0 and x = 77 and allowed to vibrate. Then y(x) is the "space function'" of the deflection 
II(X. 1) of the string. assumed in the fom1 II(X, 1) = y(x)II'(1). where t is time. (This model will be discussed in 
great det:Jil in Secs. 12.2-12.4.) 

Sollltion. From (I) and (2) we see that p = I, if = O. r = I in (I I. and a = O. b = 77. kl = 11 = I. 
k2 = 12 = 0 in (2). For negative A = - v2 a general solution of the ODE in (3) is y(x) = ("levx + c2e -VX. From 
the boundary conditions we obtain ("1 = ("2 = O. so that y == O. which is not an eigenfunction. For A = 0 the 
situation is similar. For positive A = v2 a general solution is 

y(x) = A cos vx -t- B sin vx. 

From the first boundary condition we obtain \'(0) = A = O. The second boundary condition then yields 

)'(77) = B sin V77 = 0, thus v = O. :!:I, :+:2,···. 

For v = 0 we have y == O. For A = v2 = 1. 4. 9. 16 ..... laking B = I. we obtain 

y(X) = sin vr (v = 1,2, .. '). 

Hence the eigenvalues of the problem are A = v2
, where v = I, 2, ... , and corresponding eigenfunctions are 

y(x) = sin VX, where" = 1. 2. . . . . • 

Existence of Eigenvalues 

Eigenvalues of a Sturm-Liouville problem (I), (2), even infinitely many, exist under rather 
general conditions on p. q. r in (1). (Sufficient are the conditions in Theorem I, below, 
together with p(x) > 0 and r(x) > 0 on a < x < b. Proofs are complicated; see Ref. LA3] 
or [All] listed in App. 1.) 
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DEFINITION 

Reality of Eigenvalues 

Furthermore, if p, q, r, and p' in (l) are real-valued and continuous on the interval 
a ~ x ~ band r is positive throughout that interval (or negative throughout that interval). 
then all the eigenvalues of the Sturm-Liouville problem (l), (2) are real. (Proof in 
App. 4.) This is what the engineer would expect since eigenvalues are often related to 
frequencies, energies. or other physical quantities that must be real. 

Orthogonality 
The most remarkable and important property of eigenfunctions of Sturm-Liouville problems 
is their 0I1hogonality, which will be crucial in series developments in terms of eigenfunctions. 

Orthogonality 

Functions Yl(X), Y2(X), ... defined on some interval a ~ x ~ b are called orthogonal 
on this interval with respect to the weight function rex) > 0 if for all 111 and all n 
different from tn, 

b I rex) Ym(X) Yn(X) dx = 0 (4) (m *- n). 
a 

The norm II Ym II of Ym is defined by 

b I r(x)Ym2(x) dr: . (5) IIYmll 
a 

Nore thar this is the "quare roor of the integral in (4) with Il = Ill. 

The functions .'"1> )"2, •.• are called orthonormal on a ~ x ~ b if they are 
orthogonal on this interval and all have norm I. 

If r{x) = I, we more briefly call the functions orthogonal instead of orthogonal 
with respect to rex) = I; similarly for orthonormality. Then 

b I Ym(X) Yn(X) dx = 0 (m *- 11), 
a 

IIYmll = 
b I Ym

2
(x) dx. 

a 

E X AMP L E 3 Orthogonal Functions. Orthonormal Functions 

The functions y",(x) = sin mx, m = I. 2 .... form an orthogonal set on the interval - 7T ;§; X ;§; 7T, because for 
m 1= 11 we obtain by integration [see (II) in App. A3. II 

IT>' J'm(X)Yn(X) d,' = IT>' sin Ill\' sin In dx = 1 I" cos (111 - II)T tiT -1 IT>' cos (/II + II)X dx = O. 
-77' -r, -71 -17 

The norm IiYmli equals V;. because 

IIYmli 2 = I:"sin
2 /11x dx = 7T tm = 1,2," 'J. 

Hence the corre'ponding orthonormal set, obtained by division by the norm, is 

sinx 
v;,. , 

sin2x 
v;,. , 

sin 3x 
V; , • 
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THEOREM 1 

CHAP. 5 Series Solutions of ODEs. Special Functions 

Orthogonality of Eigenfunctions 

Orthogonality of Eigenfunctions 

Suppose that the functions p, q, r, and p' in the Snl17ll-Liouville equation (l) are 
real-valued alld contilluous alld r(x) > 0 Oil the interval a ~ x ~ b. Let Ym(x) and 
Yn(x) be eiRellfilllctiolls of the Sturm-Lioul'iIIe problem (I), (2) that correspond to 
different eigelll'alues Am alld An' respectively. Theil .1'm, Yn are orthogollal on that 
interval with respect to the weight jilllctioll r. that is. 

b J r(x)ym(x)yn(x) dl: = 0 
a 

(6) (111 =1= 11). 

fr pea) = 0, thell (2a) can be dropped from the problem. fr pCb) = 0, thell (2b) 
can be dropped. [It is then required that y and .1" remain bounded at such a point, 
and the problem is called singular, as opposed to a regular problem in which (2) 
is used.] 

ljp(a) = pCb), thell (2) call be replaced by the "periodic boundary conditions" 

(7) yea) = y(b), )" (a) = y' (b). 

The boundary value problem consisting of the Sturm-Liouville equation (I) and the 
periodic boundary conditions (7) is called a periodic Sturm-Liouville problem. 

PROOF By assumption. Ym and )'n satisfy the Sturm-Liouville equations 

(PY;nJ' + (q + Amr)Ym = 0 

(py;J' + (q + Anr »)'" = 0 

respectively. We multiply the first equation by .1'n, the second by -Ym' and add. 

where the last equality can be readily verified by performing the indicated differentiation 
of the last expression in brackets. This expression is continuous on a ~ x ~ b since p 
and p' are continuous by assumption and Y>n' Yn are solutions of (I). Integrating over x 
from a to b, we thus obtain 

(8) 

The expression on the right equals the sum of the subsequent Lines I and 2, 

(9) 
p(b)L,,:,(iJ)Ym(b) - y';"(b)Yn(b)] 

-p(a)[y~(a)Ym(a) - Y:n(a)Yn(a)] 

(Line I) 

(Line 2). 

(a < b). 

Hence if (9) is zero. (8) with Am - An =1= 0 implies the orthogonality (6). Accordingly, 
we have to show that (9) is zero, using the boundary conditions (2) as needed. 
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Case 1. pea) = pCb) = O. Clearly. (9) is zero, and (2) is not needed. 

Case 2. pea) '* 0, pCb) = O. Line I of (9) is zero. Consider Line 2. From (2a) we have 

k1Yn(a) + k2y~(a) = 0, 

k1Ym(a) + k2Y;n(a) = O. 

Let k2 =F O. We multiply the first equation by Ym(a). the last by -y,,(a) and add. 

k2[Y;t(a)Ym(a) - y,',.,(a))",,(a)] = O. 

This is k2 times Line 2 of (9), which thus is zero since k2 =F O. If k2 = O. then kl =F 0 by 
assumption, and the argument of proof is similar. 

Case 3. pea) = O,p(b) '* O. Line 2 of (9) is zero. From (2b) it follows that Line 1 of (9) 
is zero; this is similar to Case 2. 

Case 4. pea) '* O,p(b) '* O. We use both (2a) and (2b) and proceed as in Cases 2 and 3. 

Case 5. pea) = pCb). Then (9) becomes 

The expression in brackets [ .. '1 is zero, either by (2) used as before, or more directly by 
(7). Hence in this case, (7) can be used instead of (2), as claimed. This completes the 
proof of Theorem 1. • 

E X AMP L E 4 Application of Theorem 1. Vibrating Elastic String 

The ODE in Example 2 is a Sturm~Liouville equation with p = 1. q = O. and r = I. From Theorem I it follows 
that the eigenfunctions Yilt = sin m~ (111 = 1.2 .... ) are orthogonal on the interval 0 ~ x ~ 7T. • 

E X AMP L E 5 Application of Theorem 1. Orthogonality of the Legendre Polynomials 

Legendre's equation is a Sturm~Liouville equation (see Example I) 

[ 2 'l' (I-x).'" +A.I'=O. A = nen + I) 

with I' = I - x 2
• q ~ 0, and r = I. Since p( -1) = p(l) = 0, we need no boundary conditions. but have a 

~illglliar Sturm-Liouville problem on the interval -1 ~ x ~ 1. We know that for 11 = 0, I, ... , hence 
A = O. I . 2, 1 . 3 ....• the Legendre polynomials P n(x) are solution, of the problem. Hence these are the 
eigenfunctions. From Theorem I it follows that they are orthogonal on that interval. that is, 

(10) 

1 f Pm(x)Pn(x) dx = 0 
~1 

E X AMP L E 6 Application of Theorem 1. Orthogonality of the Bessel Functions In(x) 

The Bessel function in(x) with fixed integer II ~ 0 satisfies Bessel's equation (Sec. 5.5) 

(Ill 1= n) .• 

where j" = dJnldx. j~ = d2i,/dx2
. In Example 1 we transformed this equation. by setting x = h. into a 

Stuml~Liouville equation 

with pIx) = ~,q(x) = -1l
2/x, rex) = x, and parameter A = k2

. Since 1'(0) = O. Theorem 1 implies orthogonality 
on an interval 0 ~ x ~ R (R given. fixed) of those solutions JnVer) that are zero at x = R. that is. 

(11) in(kR) = 0 (II fixed). 
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THEOREM 2 

CHAP. 5 Series Solutions of ODEs. Special Functions 

[Note that q(x) = -1l
2/x is discontinuous at O. but this does not affect the proof of Theorem 1.1 It can be shown 

(see Ref. [A 13]) that In(Ji) ha~ infinitely many zeros, say, x = an.l < 0'n.2 < ... (see Fig. 107 in Sec. 5.5 for 
II = 0 and I). Hence we must have 

(12) kR = O'n,711 thus (Ill = 1,2." '). 

This prove~ the following orthogonality property. 

Orthogonality of Bessel Functions 

For each fixed nonnegative integer n the sequence of Bessel functions of the first 
ki1ld In(k,,.lX), I n (kn.2 x), ... with ~.m as in (12) forms an orthogonal set on the 
imell'al 0 ~ x ~ R with respect to the weight function r(x) = x, that is. 

(13) 

R f xJn(kn,mx)Jn(kn,jx) dx = 0 
o 

(j *- 111, II fixed). 

Hence we have obtained illfinitely lIIallY orthogollal sets. each conesponding to one of the fixed values Il. This 
also illustrates the importance of the zeros of the Bessel functIons. • 

E X AMP L E 7 Eigenvalues from Graphs 

Solve the Sturm-Liouville problem y" + Ay = O. .1'(0) + y' (0) = O. y( 17) - y' (17) = o. 

Solution. A general solution and its derivative are 

y=Acosb:+Bsinb: and y' = . Ak sin b: + Bk cos b:. k= VA. 

The fust boundary condition gives yeO) + y' (0) = A + Bk = O. hence A = - Bk. The second boundary condilion 
and substitution of A ~ -B/.. give 

)'(17) - y' (17) = A cos 17/... + B sin 17k + Ak sin 17k - Bk cos 17k 

= -Bk cos 17k + B sin 17k - Bk2 sin 17k - Bk cos 17k = D. 

We must have B "* 0 since otherwise B = A = O. hence y = O. which is not an eigenfunction. Division by 
B cos 17k gives 

-k + tan 17k - k2 tan 17k - k = 0, 
-2k 

thus tan 17k = 
k2 - I . 

The graph in Fig. I IO now shows u, where to look for eigenvalues. These conespond to the k-values of the points 
of intersection of tan 17k and the right side - 2k/(k2 - I) of the last equation. The eigenvalues are Am = k",2, 
where 1..0 = 0 with eigenfunction Yo = I and (he other An, are located near 22

, 32,42 , ... , with eigenfunctions 
cos k",x and sin k",x, 111 = 1,2, .... The precise numeric determination of the eigenvalues would require a 
root-finding method (such as those given in Sec. 19.2). • 

y 

1 1/: 
Or-~-+--r-7--+~~+--r~--+---

k 

-1 

-2 

-3 

Fig. 110. Example 7. Circles mark the intersections of tan 1Tk and - 2k/(e - 1) 
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.......... _ ..... _ ....... ..- ...... -_ .............. ---. .... 
1. (Proof of Theorem 1) CalTY out the details in Cases 

3 and 4. 

2. Normalization of eigenfunctions Ym of (I), (2) means 
that we multiply Ym by a nonzero constant em such that 
emYm has norm I. Show that 2m = ey", with any e * 0 
is an eigenfunction for the eigenvalue corresponding to 

vm -

3. (Change of x) Show that if the functions Yo(x), YI(X), 
... form an orthogonal set on an interval a ~ x ~ b 
(with rex) = I), then the functions )'o(er + k), )'l(er + k), 
... , e > 0, form an orthogonal set on the interval 
(a - k)/e ~ I ~ (b - k)!c. 

4. (Change of x) Using Prob. 3, derive the orthogonality 
of I, cos wx, sin wx, cos 2wx. sin 2wx. ... on 
-1 ~ x ~ I (r(x) = 1) from that of 1, cos x, sin x, 
cos 2x, sin 2x, ... on -w ~ x ~ rr. 

5. (Legendre polynomials) Show that the functions 
P,,{cos 6), n = 0, I, ... , form an orthogonal set on 
the interval 0 ~ e ~ rr with respect to the weight 
function sin e. 

6. (Tranformation to Sturm-Liom iIIe form) Show that 
Y" + fy' + (g + Ah»)' = 0 takes the form (I) if you 
set p = exp (If dx), q = pg, r = hp. Why would you 
do such a transformation? 

17-191 STURM-LIOUVILLE PROBLEMS 

Write the given ODE in the form (I) if it is in a different 
form. (Use Prob. 6.) Find the eigenvalues and eigenfunctions. 
Verify orthogonality. (Show the details of your work.) 

7. y" + Ay = o. yeO) = 0, )'(5) = 0 

8. y" + Ay = 0, ),'(0) = 0, y'(w) = 0 
9. y" + Ay = 0, yeO) = 0, )" (L) = 0 

10. y" + Ay = 0, yeo) = yO), y' (0) = y' 0) 

11. y" + Ay = O. yeO) = y(2w), y' (0) = y' (2rr) 
12. v" + AV = O. \,(0) + v'(O) = 0, 

.' . , .,. -
yO) + y (I) = 0 

13. y" + Ay = 0, yeO) 
14. (xY')' + Ax-Iy = 0, 

(Set x = et
.) 

=0, y(\)+y'(1)=O 

yO) = 0, y'(e) = O. 

15. (x-1y')' + (A + L)x-3y = 0, 
y(e"") = o. (Set x = et

.) 

16. y" - 2/ + (A + I)y = 0, 
yO) = 0 

17. y" + 8y' + (A + 16)y = 0, 
y( rr) = 0 

y(l) = O. 

yeO) = 0, 

yeO) = 0, 

18. xY" + 2y' + Axy = 0, yew) = 0, n2rr) = O. 
(Use a CAS or set y = x-1u.) 
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19. y" - 2x- 1y' + (k2 + 2x-2 )y = o. yO) = 0, y(2) = O. 
(Use a CAS or set y = xu.) 

20. TEAM PROJECT. Special Functions. Orthogonal 
polynomials playa great role in applications. For this 
reason, Legendre polynomials and various other 
orthogonal polynomials have been studied extensively; 
see Refs. [GR1], [GRIO] in App. 1. Consider some of 
the most important ones as follows. 

(a) Chebyshev pol)nomiaIs lO of the first and second 
kind are defined by 

Tn(x) = cos (n arccos x) 

sin [(n + I) arccos x] 
Un(x) = 
~ 

respectively, where 11 = O. 1, .. '. Shuw that 

To = 1, 

Uo = 1, 

Show that the Chebyshev polynomials Tn(x) are 
orthogonal on the interval - I ~ x ~ I with respect to 

the weight function rex) = 1I~. (Hint. To 
evaluate the integral, set arccos x = e.) Verify that 
T1l(x), 11 = 0, I, 2. 3, satisfy the Chebyshev equation 

(1 - x2 )y" - xy' + n2y = O. 

(b) Orthogonality on an infinite interval: Laguerre 
polynomialsll are defined by Lo = I, and 

n = 1,2,'" 

Show that 

Prove that the Laguerre polynomials are orthogonal on 
the positive axis 0 ~ x < :x; with respect to the weight 
function /"p:) = e-x

. Hint. Since the highest power in 
Lm is x"', it suffices to show that f e-xxkLn dx = 0 for 
k < n. Do this by k integrations by parts. 

IOpAFNUTI CHEBYSHEV (1821-1894), Russian mathematician. is known for his work in approximation 
theory and the theory of numbers. Another transliteration of the name is TCHEBICHEF. 

llEDMOND LAGUERRE (1834-1886). French mathematician. who did research work in geometry and in 
the theory of infinite series. 
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5.8 Orthogonal Eigenfunction Expansions 
Orthogonal functions (obtained from Sturm-Liouville problems or otherwise) yield 
important series developments of given functions. as we shall see. This includes the famous 
FOllrier series (to which we devote Chaps. 11 and 12), the daily bread of the physicist and 
engineer for solving problems in heat conduction. mechanical and electrical vibrations, etc. 
Indeed, orthogonality is one of the most useful ideas ever introduced in applied mathematics. 

Standard Notation for Orthogonality and Orthonormality 
The integral (4) in Sec. 5.7 defining orthogonality is denoted by (Ym. Yn). This is standard. 
Also. Kronecker's deJta12 omn is defined by omn = 0 if 111 *- II and omn = 1 if 111 = 11 

(thus on" = I). Hence for orthonormal functions Yo, ."1' Y2' ... with respect to weight 
rex) (> 0) on [I ;:::; x ;:::; b we can now simply write (Ym' Yn) = om11,' written out 

if /11 *- 11 

(1) 
if 11l = n. 

Also. for the norm we can now write 

(2) lIyll = \I(y",. Ym) = 
b f r(x)Ym2(x) d.r. 

a 

Write down a few examples of your own, to get used to this practical ~hort notation. 

Orthogonal Series 
Now comes the instant that shows why orthogonality is a fundamental concept. Let 
Yo, .1'1' .1'2 • .•. be an orthogonal set with respect to weight r(x) on an interval [I ;:::; x;:::; b. 
Let J(x) be a function that can be represented by a convergent series 

(3) 
x 

J(x) = ~ [lmY",(x) = [loYo(x) + [lIYl(X) + 
m~O 

This is called an orthogonal expansion or generalized Fourier series. If the Ym. are 
eigenfunctions of a Sturm-Liouville problem. we call (3) an eigenfunction expansion. In 
(3) we use again 111 for summation since 11 will be used as a fixed order of Bessel functions. 

Given J(x). we have to determine the coefficients in (3), called the Fourier constants 
of J(x) with re:,pect to Yo, )'1, .... Because of the orthogonality this is simple. All we have 
to do is to multiply both sides of (3) by r(x)y,,(x) (nfixed) and then integrate on both sides 
from a to b. We assume that term-by-term integration is permissible. (This is justified, for 
instance, in the case of "uniform convergence," as is shown in Sec. 15.5.) Then we obtain 

(J, )'n) = f rJ)'n dr = f r ~ [I",Ym .1'" dx = ~ [lm(Y",., Yn)' 
b b (x ) ex: 

a a m=O m~O 

12LEOPOLD KRONECKER (1823-1891 l. German mathematician at Berlin University. who made important 
contribution~ to algebra. group theory. and number theory. 
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EXAMPLE 1 

Because of the orthogonality all the integrals on the right are zero. except when 111 n. 
Hence the whole infinite series reduces to the single term 

Assuming that all the functions Yn have nonzero norm, we can divide by II.vn 112; writing 
again 111 for n, to be in agreement with (3), we get the desired formula for the Fourier 
constants 

(4) 

Fourier Series 

(f, YIll) 

Ily",11 2 

1 b f r(x)f(x)Ym(x) dx (m 0, 1, .. '). 
a 

A mo,t important c\as, of eigenfunction expansions is obtained from the periodic Sturm-Liouville problem 

y" + Ay = 0, y'('iT) = y'(-'iT). 

A general solution of the ODE is y = A cos kx + B sin kx, where k = VA. Substituting y and its derivative 
into the boundary conditions, we obtain 

A cos k'iT + B ,in k7T = A cos (-k'iT) + B sin (-k7T) 

-kA sin k7T + kB cos k'iT = -kA sin (-k'iT) + kB cos (-k7T). 

Since cos l-a) = cos a, the cosine terms cancel, so that these equations give no conditlOn for these terms. Since 
sin (-a) = -sin a, thc equations gives the condition sin k7T = 0, hence k'iT = 1II'iT, k = 11/ = 0, 1,2, ... , so 
that the eigenfunctions are 

cos 0 = 1, cos X, sin x, cos 2x, sin 2x, .. " cos IIIX, sinlllx, ... 

corresponding pairwise to the eigenvalues A = k 2 = 0, 1,4, ... , m2
, .... lsin 0 = 0 is not an eigenfunction.) 

By Theorem I in Sec. 5.7, any two of these belonging to different eigenvalues are orthogonal on the interval 
-7T ~ X ~ 7T (note that rex) = 1 for the present ODE). The orthogonality of cos I1lX and sin 111X for the same 
111 follows by integration. 

For the 1l0mlS we get III II = \1'2;, and v:;;: for all the others, as you may verify by integrating I, cos2
'y, 

sin2 
x. etc .. from -'iTto 'iT. This gives the series (with a slight extension of notation sincc we have two functions 

for each eigenvalue I, 4, 9, ... ) 

(5) f(x) = ao + L (am cos IIIX + bm sin fI1x). 

1#l.=1 

According to (4) the coefficients (with 111 = 1,2, ... ) are 

(6) b1ll. = ..!.. f'" J(x) sin 111X £lx. 
7T -71 

The series (5) is called the Fourier series of f(x). Its coefficients are called the Fourier coefficients of f(x), 

as given by the so-called Euler formulas l6) lnot to be confused with the Euler formula (11) in Sec. 2.2). 
For instance, for the "periodic rectangular wave" in Fig. III, given by 

{

-I 
f(x) = 1 

if -7T<X<O 
and f(x + 27T) = ./(x), 

if O<x<'iT 
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we get from (6) the values ao = ° and 

b = m 

7r [I~,,-(-I)COSIIIXdX+ L"-I'COS11lXdT] =0, 

7r [I~,,-(-I)SinIllXdT+ Io"-l,sinIllXdT] 

7Tln {

4f( mil) 

[I - 2 cos 1117r + I] = ° ifm = 1.3.···. 

if m = 2,4···. 

Hence the Fourier senes of the periodic rectangular wave is 

f (x) = ~ (Sin x + ~ sin 3x + ~ sin 5, + ... ) 
7r 3 5 - . 

1C 0 1C 21C 

-~-l ~ 
x 

Fig. 111. Periodic rectangular wave in Example 1 

• 

Fourier series are by far the most important eigenfunction expansions. so important to 
the engineer that we shall devote two chapters (11 and 12) to them and their applications, 
and discuss numerous examples. 

Did it surprise you that a series of continuous functions (sine functions) can represent 
a discontinuous function? More on this in Chap. 11. 

E X AMP L E 2 Fourier-Legendre Series 

A Fourier-Legendre series is an eigenfunction expansion 

.f(x) = L a'mP'm(x) = aoPo + a1P1(x) + (l2P2(x) + - - - = ao + a1x + a2(ix2 - i) -'- -
m=O 

in terms of Legendre polynomials (Sec_ 5.3). The latter are the eigenfunctions of the Sturm-Liouville problem 
in Example 5 of Sec. 5.7 on the interval -I ~ x ~ I. We have rex) = I for Legendre'S equation, and (4) gives 

(7) 

becau~e the norm is 

(8) 

1 

2111+ I I am = --- f(x)Pm(x) d>:. 
2 -1 

1 

I Pm(x)2 dx = 1_2_ 
-1 V 2111 + 1 

111 = 0, I,'" 

(Ill = 0, I, ... ) 

as we state without proof (The proof is tricky; it uses Rodrigues's formula in Problem Set 5 3 and a reduction 
of the resulting integral to a quotient of gamma functions_) 
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For instance, let j(x) = sin 7TX. Then we obtain the coefficients 

1 

2nz+II 
a'ln = --2-- (sin 7TX) P 'In(x) dx, 

-1 
thus 

Hence the Fourier-Legendre series of sin TTX is 

1 

a1 = 3 J x sin TTX tIT: = 3 = 0.95493, 
2 -1 7T 
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etc. 

sin TTX = 0.95493P1(x) - 1.15824P3(x) + 0.21429P5 (x) - 0.OJ664P7 (x) + 0.00068P9(x) - 0.OO002Pll(x) + .... 

The coefficient of P 13 is about 3 . 10-7
. The sum of the first three nonzero terms gives a curve that practically 

coincides with the sine curve. Can you see why the even-numbered coefficients are 7ero? Why a3 is the absolutely 
biggest coefficient? • 

E X AMP L E 3 Fourier-Bessel Series 

In Example 6 of Sec. 5.7 we obtained infinitely many orthogonal sets of Bessel functions, one for each of Jo, 
ft, J2 , •••. Each set is orthogonal on an interval 0 ~ x ~ R with a fixed positive R of our choice and with 
respect to the weight x. The orthogonal set for I n is In(kn,lX), In(kn,2X), In(kn,3x), ... , where n is fixed and 
kn,'In is given in (12), Sec. 5.7. The corresponding Fourier-Bessel series is 

(9) f(x) = L a",Jn(kn,'lnx) = a1Jn(kn ,1 x) + a2Jn(kn,2X) + a3Jn(kll,3X) + 
1n=1 

The coefficients are (with O'n,m = kn,mR) 

(10) a = 'In 

because the square of the norm is 

(11) 

as we state without proof (which is tricky; see the discussion beginning on p. 576 of [A13]). 

(n fixed). 

m = 1,2," 

For instance, let us consider f(x) = I - x 2 and take R = I and n = 0 in the series (9), simply writing A for 
0'0,'In' Then kn,m = O'O,m = A = 2.405, 5.520, 8.654, 11.792, etc. luse a CAS or Table Al in App. 5). Next we 
calculate the coefficients ~ by (10), 

2 II 2 
am = -2-- x(l - x )Jo(Ax) dx. 

J1 (A) 0 

This can be integrated by a CAS or by formulas as follows. First use [xftlAx)], = AxJolAx) from Theorem 3 
in Sec. 5.5 and then integration by parts, 

1 [ 11 1 ] 2 2 2 I 2 I 
am = -2- I x(1 - x )Jo(Ax) dx = -2- - (l - x )xft(Ax) - - I xft(Ax)(-2x) d, 

J 1 (Al 0 ft (A) A 0 A 0 

The integral-free part is zero. The remaining integral can be evaluated by [x2lz(Ax) l' = Ax2ft (Ax) from Theorem 
3 in Sec. 5.5. This gives 

a = 'In (A = 0'0,,,,)' 

Numenc values can be obtained from a CAS (or from the table on p. 409 of Ref. [GRI] in App. I, together 
with the formula J2 = 2,-Ift - Jo in Theorem 3 of Sec. 5.5). This gives the eigenfunction expansion of 
I - x 2 in terms of Bessel functions J 0, that is, 

I - x 2 
= 1.1081Jo(2.405x) - 0.1398Jo(5.520x) + 0.0455Jo(8.654x) 0.02IOJo(11.792,) + .... 

A graph would show that the curve of I - x2 and that of the sum of the first three terms practically coincide. • 
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Mean Square Convergence. 
Completeness of Orthonormal Sets 
The remaining part of this section will give an introduction to a convergence suitable in 
connection with orthogonal series and quite different from the convergence used in 
calculus for Taylor series. 

In practice, one uses only orthonormal sets that consist of "sufficiently many" functions, 
so that one can represent large classes of functions by a generalized FOUlier series (3)­
certainly all continuous functions on an interval a ~ x ~ b, but also functions that do "not 
have too many" discontinuities (see Example 1). Such orthonormal sets are called "complete" 
(in the set of functions considered; definition below). For instance, the orthonormal sets 
corresponding to Examples 1-3 are complete in the set of functions continuous on the 
intervals considered (or even in more general sets of functions; see Ref. [OR7], Secs. 3.4-3.7, 
listed in App. 1. where "complete sets" bear the more modem name "total sets"). 

In this connection, convergence is convergence in the norm, also called mean-square 
convergence; that is. a sequence of functions fk is called convergent tvith the limit f if 

(12*) lim Ilfk - fll = 0; 
k~x 

written out by (2) (where we can drop the square root, as this does not affect the limit) 

(12) 
b 

lim I r(x)[fk(X) - f(X)]2 dx = O. 
k_x a 

Accordingly, the series (3) converges and represents f if 

(13) 
b 

lim I r(x)[Sk(X) - f(X)]2 dx = 0 
k_x a 

where Sk is the hh partial sum of (3), 

k 

(14) sk(x) = L (lmYm(x). 
1n=0 

By definition, an 0l1honormal set )'0' YI' ... on an interval {l ~ x ~ b is complete ill 

{l set of fimctiolls S defined on (/ ~ x ~ b if we can approximate every f belonging to S 
arbitrarily closely by a linear combination ao)'o + al)'1 + ... + akYk, that is, technically, 
if for every E > 0 we can find constants (/0, ... , {lk (with k large enough) such that 

(15) 

An interesting and basic consequence of the integral in (13) is obtained as follows. 
Performing the square and using (14), we first have 

b b b b I r(x)[Sk(X) - f(X)]2 dr = I rSk 
2 d-r - 2 I rfSk d-r + I rf2 dr 

a a a a 

b [ k J2 k b b 

= I I' L amY", dx - 2 L am I rfYm dx + I rp dx. 
a 1n.=O Ul,=o a a 

The, f~rst in~egral on the right equals L a",2 ?ecause ! rYmYz dr = 0 for III =1= I, and 
Ir)m dx - 1. In the second sum on the fIght, the mtegral equals am' by (4) with 
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THEOREM 1 

II Ym II 2 = 1. Hence the first term on the right cancels half of the second term, so that the 
right side reduces to 

k b 

- 'L am
2 + I rp dx. 

a 1lZ.=O 

This is nonnegative because in the previous formula the integrand on the left is nonnegative 
(recall that the \Veight r(x) is positive!) and so is the integral on the left. This proves the 
important Bessel's inequality 

(16) 
b 

11/112 = I r(x)/(x)2 dx (k = 1,2, .. '). 
a 

Here we can let k ---7 YJ, because the left sides foml a monotone increasing sequence that 
is bounded by the right side, so that we have convergence by the familiar Theorem 1 in 
App. A3.3. Hence 

(17) 
m=O 

Furthermore, if )'0, )'1 •... is complete in a set of function~ S. then (13) holds for every 
1 belonging to S. By (15) this implies equality in (16) with k ---7 :>C. Hence in the case of 
completeness every 1 in S satisfies the so-called Parseval's equality 

(18) 
b 

II 1 112 = I r(x)/(x)2 dr. 
a 

As a consequence of (18) we prove that in the case of complete1less there is no function 
orthogonal to every function of the orthonormal set. with the trivial exception of a function 
of zero norm: 

Completeness 

Let Yo, )'1 •... be a complete ort/101101711al set on a ~ x ~ b in (I set off unctions S. 
Then if a .function 1 belongs to S alld is orthogonal to every )'m, it must have norm 
zero. In particular, if 1 is continuous, then 1 must be identical!.v zero. 

PROOF Since 1 is orthogonal to every )'m' the left side of (18) must be zero. If 1 is continuous, 
then II 1 II = 0 implies I(x) == 0, as can be seen directly from (2) with 1 instead of )'m 

because r(x) > O. • 

E X AMP L E 4 Fourier Series 

The orthonormal set in Example I is complete in the set of continuous functions on -7T~ x ~ 7T. Verify directly 
that fIx) == 0 is the only continuous function orthogonal to all the functions of that set. 

Solutioll. Lef f be any continuou~ function. By the orthogonality (we can unlit Vh and \ S), 

J" J(x) sin IIIX d," ~ O. 
-r. 

Hence am ~ 0 and bm ~ 0 in (6) for all III. su thaI (3) reduces to J(X) == O. • 
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This is the end of Chap. 5 on the power series method and the Frobenius method, which 
are indispensable in solving linear ODEs with variable coefficients, some of the most 
important of which we have discussed and solved. We have also seen that the latter are 
important sources of special functions having orthogonality properties that make them 
suitable for orthogonal series representations of given functions. 

- : 

11-41 FOURIER-LEGENDRE SERIES 

Showing the details of your calculations, develop: 

1. 7x4 - 6x2 2. (x + 1)2 

5. Prove that if f(x) in Example 2 is even [that is, 
f(x) = f( - x)], its series contains only P m(x) with 
even 111. 

16-161 CAS EXPERIMENTS. FOURIER-LEGENDRE 

SERIES 

Find and graph (on common axes) the partial sums up to 
that S"'o whose graph practically coincides with that of/ex) 
within graphical accuracy. State what 1Il0 is. On what does 
the size of IIlO seem to depend? 

6. f(x) sin TTX 7. f(x) sin 27TX 

8. f(x) cos TTX 9. f(x) cos 27TX 

10. f(x) cos 37TX n. f(x) eX 

12. f(x) e-
x2 13. f(x) = 1/(1 + x 2) 

14. f(x) = 10(aO,1x). where aO,1 is the first positive zero 
of 10 

15. f(x) = 10(aO,2x), where aO,2 is the second positive 
zero of 10 

16. f(x) = 11ta1,1x), where a1,1 is the first positive zero 
of 11 

17. CAS EXPERIMENT. Fourier-Bessel Series. Use 
Example 3 and again take n = 10 and R = 1. so that 
you get the series 

(19) flx) = al10lao,lX) + a210(aO,2x) + a310lao,3x) 

+ ... 

with the zeros 0:0,1 0:0,2' .•. from your CAS (see also 
Table AI in App. 5). 

(a) Graph the terms 10(aO,lx), ... , 10(aO,lOx) for 
o ~ x ~ l on common axes. 

(b) Write a program for calculating partial sums of 
(9). Find out for what f(x) your CAS can evaluate the 
integrals. Take two such f(x) and comment empirically 

on the speed of convergence by observing the decrease 
of the coefficients. 

{c) Take f(x) = 1 in (19) and evaluate the integrals 
for the coefficients analytically by (24a), Sec. 5.5, with 
JJ = I. Graph the first few partial sums on common 
axes. 

18. TEAM PROJECT. Orthogonality on the Entire 
Real Axis. Hermite Polynomials.13 These orthogonal 
polynomials are defined by HeoO) = 1 and 

REMARK. As is true for many special functions, the 
literature contains more than one notation, and one 
sometimes defines as Hermite polynomials the 
functions 

dn _X2 
2 e 

H *(x) = (-l)ne" ---
n dxn 

This differs from our definition, which is preferred in 
applications. 

(a) Small Values of n. Show that 

He1(X) = x, 

He3(X) = x 3 - 3x, 

He2(X) = x 2 - 1, 

He4(X) = X4 - 6x2 + 3. 

(b) Generating Function. A generating function of 
the Hermite polynomials is 

(20) 
-n 

etx-t2/2 = L anlx)fn 

n=O 

because He.,(x) = n!anlx), Prove this. Hint: Use the 
formula for the coefficients of a Maclaurin series and 
note that tx - ~f2 = ~X2 - ~(x - t)2. 

(C) Derivative. Differentiating the generating function 
with respect to x, show that 

(21) 

13CHARLES HERMITE (1822-1901), French mathematician, is known for his work in algebm and number 
theory. The great HENRI POINCARE 11854-1912) was one of his students, 
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(d) Orthogonality on the x-Axis needs a weight 
function that goes to zero sufficiently fast as x ---? ::,:::cc. 
(Why?) Show that the Hermite polynomials are 
orthogonal on -<Xl < X < cc with respect to the weight 
function rex) = e-x2/2. Hint. Use integration by parts 
and (21). 

(e) ODEs. Show that 

(22) He~(x) = xHen(x) - Hen+l(x). 

Using this with n - 1 instead of nand (21), show that 
y = Hen(x) satisfies the ODE 

1. What is a power series? Can it contain negative or 
fractional powers? How would you test for convergence? 

2. Why could we use the power series method for 
Legendre's equation but needed the Frobenius method 
for Bessel's equation? 

3. Why did we introduce twO kinds of Bessel functions, 
J and Y? 

4. What is the hypergeometric equation and why did Gauss 
introduce it? 

5. List the three cases of the Frobenius method, giving 
examples of your own. 

6. What is the difference between an initial value problem 
and a boundary value problem? 

7. What does orthogonality of functions mean and how is 
it used in series expansions? Give examples. 

8. What is the Sturm-Liouville theory and its practical 
importance? 

9. What do you remember about the orthogonality of the 
Legendre polynomials? Of Bessel functions? 

10. What is completeness of orthogonal sets? Why is it 
important? 

[I ~-~ SERIES SOLUTIONS 

Find a basis of solutions. Try to identify the series as 
expansions of known functions. (Show the details of your 
work.) 

11. y" - 9y = 0 

12. (1 - X)2y" + (1 - x)y' - 3y = 0 

13. xy" - (x + l)y' + y = 0 

14. x 2 y" - 3xy' + 4y = 0 

15. y" + 4xy' + (4x2 + 2)y = 0 

16. x 2y" - 4xy' + (x 2 + 6)y = 0 

17. xy" + (2x + I)Y' + (x + l)y = 0 
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(23) y" - xy' + ny = O. 

Show that w = e-X2/4y is a solution of Weber's 
equation14 

(24) w" + (n + ~ - !x2 )w = 0 (n=O,l,···). 

19. WRITING PROJECT. Orthogonality. Write a short 
report (2-3 pages) about the most important ideas and 
facts related to orthogonality and orthogonal series and 
their applications. 

TIONS AND PROBLEMS 

18. (x 2 - l)y" - 2xy' + 2y = 0 

19. (x 2 
- l)y" + 4xy' + 2y = 0 

20. x 2y" + xy' + (4x4 
- 1)y = 0 

~1-251 BESSEL'S EQUATION 

Find a general solution in terms of Bessel functions. (Use 
the indicated transformations and show the details.) 

21. x 2y" + xy' ., (36x 2 - 2))" = 0 (6x = z) 

22. x 2y" + 5xy' + (x 2 
- 12)y = 0 (y = u/x2) 

23. x 2y" + xy' + 4(x4 
- l)y = 0 (x 2 = z) 

24. 4x2y" - 20xy' + (4x 2 + 35)y = 0 (y = x 3 u) 

25. y" + k 2x 2y = 0 (y = uVx, ~kX2 = z) 

126-301 BOUNDARY VALUE PROBLEMS 

Find the eigenvalues and eigenfunctions. 

26. y" + Ay = 0, yeO) = 0, y' (7T) 0 

27. y" + Ay = 0, yeO) = y(I). 
y' (0) = y' (1) 

28. (xy')' + Ax- 1y = 0, y(l) = 0, y(e) = O. 
(Set x = e t

.) 

29. x 2y" + xy' + (Ax2 - J)y = 0, 
yeO) = 0, y(1) = 0 

30. y" + Ay = 0, yeO) + y'(O) = 0, y(27T) = 0 

131-~ CAS PROBLEMS 

Write a program, develop in a Fourier-Legendre series, and 
graph the first five partial sums on common axes, together 
with the given function. Comment on accuracy. 

31. e2x ( - 1 ~ x ~ I) 

32. sin ( 7TX 2) ( - 1 ~ x ~ I) 

33. 11(1 + Ixl) (-1 ~ x ~ 1) 

34. Icos 7Txl (-1 ~ x ~ 1) 

35. x if 0 ~ x ~ 1,0 if -1 ~ x < 0 

14HEINRICH WEBER (1842-1913), German mathematician. 
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Series Solution of ODEs. Special Functions 

The power series method gives solutions of linear ODEs 

(1) y" + p(.'l)y' + q(.'l)Y = 0 

with variable coefficients p and q in the form of a power series (with any center 
.'lo, e.g., .'lo = 0) 

(2) Y(.'l) = L am(.'l - .'lo)m = (10 + (l1(.'l - .'lo) + (l2(X - XO)2 + .... 
In=O 

Such a solution is obtained by substituting (2) and its derivatives into (I). This gives 
a recurrence formula for the coefficients. You may program this formula (or even 
obtain and graph the whole solution) on your CAS. 

If p and q are analytic at .'lo (that is. representable by a power series in powers 
of x - .'lo with positive radius of convergence: Sec. 5.2). then (I) has solutions of 
this form (2). The same holds if h. p. q in 

h(x»)"" + p(.'l)y' + q(.'l)Y = 0 

are analytic at .'lo and h(.'lo) oF O. so that we can divide by h and obtain the standard 
form 0). Legendre's equation is solved by the power series method in Sec. 5.3. 

The Frobenius method (Sec. 5.4) extends the power selies method to ODEs 

(3) 
(I(X), b(x) 

y" + --- \" + \" = 0 
X - .'lo . (x - xO)2 . 

whose coefficients are singular (i.e., not analytic) at xo. but are "not too bad," 
namely, such that a and b are analytic at Xo. Then (3) has at least one solution of 
the form 

(4) y(x) = (x - xor L (I",(x - .'loY'" = (lo(x - xor + (/l(X - XO)'"+I + ... 
111, 0 

where r can be any real (or even complex) number and is determined by substituting 
(4) into (3) from the indicial equation (Sec. 5.4), along with the coefficients of (4). 
A second linearly independent solution of (3) may be of a similar form (with different 
rand (l11/S) or may involve a logarithmic term. Bessel's equation is solved by the 
Frobenius method in Secs. 5.5 and 5.6. 

"Special functions" is a common name for higher functions. as opposed to the 
usual functions of calculus. Most of them arise either as nonelementary integrals 
fsee (24)-(44) in App. 3.11 or as solutions of (1) or (3). They get a name and notation 
and are included in the usual CASs if they are important in application or in theory. 
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Of this kind, and particularly useful to the engineer and physicist, are Legendre's 
equation and polynomials Po, PH ... (Sec. 5.3), Gauss's hypergeometric 
equation and functions F(a, b, c; x) (Sec. 5.4), and Bessel's equation and 
functions J v and Yv (Secs. 5.5, 5.6). 

Modeling involving ODEs usually leads to initial value problems (Chaps. 1-3) 
or boundary value problems. Many of the latter can be written in the form of 
Sturm-Liouville problems (Sec. 5.7). These are eigenvalue problems involving 
a parameter A that is often related to frequencies, energies, or other physical 
quantities. Solutions of Sturm-Liouville problems, called eigenfunctions, have 
many general properties in common, notably the highly important orthogonality 
(Sec. 5.7), which is useful in eigenfunction expansions (Sec. 5.8) in terms of cosine 
and sine (··Fourier series", the topic of Chap. 11), Legendre polynomials, Bessel 
functions (Sec. 5.8), and other eigenfunctions. 
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CHAPTER 6 

Laplace Transforms 

The Laplace transform method is a powerful method for solving linear ODEs and 
corresponding initial value problems, as well as system~ of ODEs arising in engineering. 
The process of solution consists of three steps (see Fig. 112). 

Step 1. The given ODE is transformed into an algebraic equation ("subsidiary 
equation"). 

Step 2. The subsidiary equation is solved by purely algebraic manipulations. 

Step 3. The solution in Step 2 is transformed back, resulting in the solution of the given 
problem. 

IVP 
I Initial Value f---~ 1--- of the 

[

Solution I 
Problem ® IVI" ~ 

Fig. 112. Solving an IVP by Laplace transforms 

Thus solving an ODE is reduced to an algebraic problem (plus tho~e transformations). 
This switching from calculus to algebra is called operational calculus. The Laplace 
transform method is the most important operational method to the engineer. This method 
has two main advantages over the usual methods of Chaps. 1-4: 

A. Problems are solved more directly, initial value problems without first determining 
a general solution. and nonhomogeneous ODEs without first solving the corresponding 
homogeneous ODE. 

B. More importantly, [he use of the unit step function (Heaviside function in 
Sec. 6.3) and Dirac's delta (in Sec. 6.4) make the method particularly powerful for 
problems with inputs (driving forces) that have discontinuities or represent short impulses 
or complicated periodic functions. 

In this chapter we consider the Laplace transform and its application to engineering 
problems involving ODEs. PDEs will be solved by the Laplace transform in Sec. 12.11. 

General formulas are listed in Sec. 6.8, transforms and inverses in Sec. 6.9. The 
usual CASs can handle most Laplace transforms. 

Prerequisite: Chap. 2 
Sections that lIlay be omitted in a shorter course: 6.5, 6.7 
References and Answers to Problems: App. 1 Part A, App. 2. 
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6.1 Laplace Transform. Inverse Transform. 
Linearity. s-Shifting 

If f(t) is a function defined for all t ~ 0, its Laplace transforml is the integral of f(t) 

times e-st from t = 0 to x. It is a function of s, say, F(s), and is denoted by ;£(f); thus 

(1) F(s) = 9::(f) = fCe-stf(t) dt. 
o 

Here we must assume that f(t) is such that the integral exists (that is, has some finite 
value). This assumption is usually satisfied in applications-we shall discuss this near the 
end of the section. 

Not only is the result F(s) called the Laplace transform, but the operation just described, 
which yields F(s) from a given f(t), is also called the Laplace transform. It is an "integral 
transform" 

with '·kernel" k(s, t) = e-st
. 

F(s) = fC k(s, t)f(t) dt 
o 

Furthermore, the given function f(t) in (1) is called the inverse transform of F(s) and 
is denoted by 9::- I (F); that is, we shall write 

(1*) f(t) = 9::-l (F). 

Note that (1) and (1 *) together imply 9::-\9::(f) = f and 9::(9::- l (F» = F. 

Notation 
Original functions depend on t and their transforms on s-keep this in mind! Original 
functions are denoted by lowercase letters and their transforms by the same letters in 
capital, so that F(s) denotes the transform of f(t), and Y(s) denotes the transform of y(t), 

and so on. 

E X AMP L E 1 Laplace Transform 

Let l(t) = 1 when t ~ O. Find F(s). 

Solution. From (1) we obtain by integration 

5£(f) = 5£(1) = LOG e-st dt = _ ~ e-st I"" 
o s 0 s 

(s> 0). 

IPIERRE SIMON MARQUIS DE LAPLACE (1749-1827), great French mathematician, was a professor in 
Paris. He developed the foundation of potential theory and made important contributions to celestial mechanics, 
astronomy in general, special functions. and probability theory. Napoleon Bonaparte was his student for a year. 
For Laplace's interesting political involvements. see Ref. [GR2], listed in App. I. 

The powerful practical Laplace transform techniques were developed over a century later by the English 
electrical engineer OLIVER HEA VISIDE (1850-1925) and were often called "Heaviside calculus." 

We shall drop variables when this simplifies formulas without causing confusion. For instance, in (1) we 
wrote 5£(f) instead of 5£(f)(s) and in (I *) 5£-l(F) instead of 5£-\F)(t). 
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Our notation is convenient, but we should say a word about it. The interval of integration in (1) is infinite. 
Such an integral is called an improper integral and, by definition, is evaluated according to the rule 

oc T 

( e -stfU) dt = Jim f e -Si.f(t) dt. Jo 1~cx:; 0 

Hence our convenient notation means 

(s> 0) . 

We shall use thi, notation throughout this chapter. • 
E X AMP L E 2 Laplace Transform .:£(eat) of the Exponential Function eat 

Let f(t) = eat when t :0;; 0, where a is a constant. Find :.f(f). 

Solution. Again by (1), 

THEOREM 1 

hence, when s - a > 0, 

• 
Must we go on in this fashion and obtain the transform of one function after another 
directly from the definition? The answer is no. And the reason is that new transforms can 
be found from known ones by the use of the many general properties of the Laplace 
transform. Above all, the Laplace transform is a "linear operation," just as differentiation 
and integration. By this we mean the following. 

Linearity of the Laplace Transform 

The Laplace transform is a linear operation; that is, for anyfunctions f(t) a17d g( t) whose 
transjol7lls exist and any constants a and b the tran,~for11l of afft) + bg(t) exists, and 

.:£{af(t) + bgU)} = a.:£{f(t)} + b.:£{g(t)}. 

PROOF By the definition in (1), 

.:£{af(t) + bg(t)} = L=e-st[af(t) + bg(t)l dt 
o 

= a f'e-stf(t) dt + b ICCe-stg(t) dt = a.:£{f(t)} + b.:£{gU)}. • 
o 0 

E X AMP L E 3 Application of Theorem 1: Hyperbolic Functions 

Find the transforms of cosh at and sinh aI. 

Solution. Since cosh at = ~(eat + e -at) and sinh at = ~(eat - e -at), we obtain from Example 2 and 
Theorem 1 

1 I( I 1) s .'£(coshat) = -2 (:£(eat) + 5£'(e-at» = - -- + -- - ---
2 s - a s + a - s2 - a 2 

!f(smhat) = -(!f(ea ) - !f(e-at» = - -- _ __ = __ _ . 1 t 1( J 1) a 
2 2 s - a s + a .1'2 - a 2 • • 
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EXAMPLE 4 Cosine and Sine 

Derive the formulas 

s w 
9'(sin wt) = 2 2' 

S + w 
.:f(cos wt) = 

s2 + w2 ' 

Solution by Calculus. We wlite Lc = !£(cos wt) and Ls = .'t:(sin wt). Integrating by pmts and noting that the 
integral-free parts give no contribution from the upper limit 00. we obtain 

Lc= lCOe-stcoswtdt= e~:t coswtl~- -; lCOe-stsin wtdt = s 

Ls = foo e -st sin wt dt = e -st sin wtl = + ~ (= e -st cos wt dt = ~ Lc' 
o -s 0 s Jo s 

By substituting Ls into the formula for Lc on the light and then by substituting Lc into the formula for Ls on 
the right. we obtain 

L = ..!.. - ~ (!.'!..L) 
C s sse' 

L = ~ (..!.. - ~L) s s ' 
S S S 

( 
w2) 1 

Lc 1+2 = -, 
s s 

w 

2 ' S 

Solution by Transforms Using Derivatives. See next section. 

L = s 

s 

w 

Soilltion by Complex Methods. In Example 2, if we set a = iw with i = \1=1, we obtain 

. tIs + iw 
:i(e'W ) = --- = ------

< - iw (s - iw)(s + iw) 

s + iw s w 
= --- = --- +i---

s2 + w2 s2 + w2 ,,2 + w2 . 

Now by Theorem I and eiwt 
= cos wt + i sin wt [see (11) in Sec. 2.2 with wt instead of t] we have 

5£(eiwt) = 5£(cos wt + i sin wt) = ':ECcos wt) t- i.'£(sin wt). 

If we equate the real and imaginary parts of this and the previous equation, the result follows. (This formal 
calculation can be justified in the theory of complex integration.) • 

Basic transforms are listed in Table 6.1. We shall see that from these almost all the others 
can be obtained by the use of the general propelties of the Laplace transform. Formulas 
1-3 are special cases of formula 4, which is proved by induction. Indeed, it is true for 
n = 0 because of Example 1 and O! = 1. We make the induction hypothesis that it holds 
for any integer n ~ 0 and then get it for /1 + 1 directly from (1). Indeed, integration by 
parts first gives 

Now the integral-free part is zero and the lasl part is (n + 1)/s times :£(tn). From this 
and the induction hypothesis, 

n + 1 n + 1 n! (n + I)! 

s s 

This proves formula 4. 
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THEOREM 2 

CHAP. 6 Laplace Transforms 

Table 6.1 Some Functions f(t) and Their Laplace Transforms ~(f) 

f(t) ~(f) J(t) ~(f) 

s 
1 1 lis 7 cos wt 

S2 + w2 

2 t lIs2 
I 

W 
8 sin wt 

S2 + uJ 

3 t2 2 !Is 3 s 
9 cosh ar S2 - a2 

tn n! 
4 

(n = 0, 1, ... ) sn+l 
a 

10 sinh at S2 - a2 

5 
ta rCa + 1) 

(a positive) sa+l eat cos wt 
s-a 

11 
(s - a)2 + uJ 

I 

eat L 
6 --

s-a 
eat sin wt 

w 
12 

(s - a)2 + uJ 
I 

f(a + I) in formula 5 is the so-called gamma function [(15) in Sec. 5.5 or (24) in 
App. A3.1]. We get formula 5 from (1), setting st = x: 

where s > O. The last integral is precisely that defining f(a + 1), so we have 
f(a + I)/sa+t, as claimed. (CAUTION! f(a + 1) has x a in the integral, not xa + 1

.) 

Note the formula 4 also follows from 5 because f(n + I) = n! for integer n ;::::; O. 
Formulas 6-10 were proved in Examples 2-4. Fonllulas 11 and 12 will follow from 7 

and 8 by "shifting," to which we tum next. 

s-Shifting: Replacing 5 by 5 - a in the Transform 
The Laplace transform has the very useful property that if we know the transform of f(t), 
we can immediately get that of eatf(t), as follows. 

First Shifting Theorem, s-Shifting 

Iff(f) has the transfonn F(s) (where s > kfor some k), thell eatf(t) has the transform 
F(s - a) (where s - a > k). In fonnuias, 

or, (f we take the inverse on both sides, 
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PROOF We obtain F(s - a) by replacing s with s - a in the integral in (1), so that 

F(s - a) = {'e-Cs-a)tf(t) dt = ["e-st[eatf(t)] dt = .:£{eatf(t)}. 
o 0 

If F(s) exists (i.e., is finite) for s greater than some k, then our first integral exists for 
s - a > k. Now take the inverse on both sides of this formula to obtain the second formula 
in the theorem. ( ~AUTION! -a in F(s - a) but +a in eatf(t).) • 

E X AMP L E 5 s-Shifting: Damped Vibrations. Completing the Square 

From Example 4 and the first shifting theorem we immediately obtain formulas II and 12 in Table 6.1, 

s-a 
~{eat cos wt} = ------;;------;;-

(s a)2 + u} , 

For instance, use these formulas to find the inverse of the transform 

3s - 137 
5£(f) = 2 . 

s + 2s + 401 

Solution. Applying the inverse transform. using its linearity (Prob. 28). and completing the square. we obtain 

= ~-1{ 3(s + 1) - 140} = 3~-1{ s + I } _ 7:J:- 1{ 20 } . 
I (s + 1)2 + 400 (s + 1)2 + 202 - (s + 1)2 + 202 

We now see that the inverse of the right side is the damped vibration (Fig. 113) 

I(t) = e -t(3 cos 20 t - 7 sin 20 t). 

6 

~ 4 

2 

A 

0 05 .0 

-2 

-4 ' 

-6 

Fig. 113. Vibrations in Example 5 

Existence and Uniqueness of Laplace Transforms 

• 

This is not a big practical problem because in most cases we can check the solution of 
an ODE without too much trouble. Nevertheless we should be aware of some basic facts. 

A function f(t) has a Laplace transform if it does not grow too fast, say, if for all 
t ~ 0 and some constants M and k it satisfies the "growth restriction" 

(2) 
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(The growth restriction (2) is sometimes called "growth of exponential order," which may 
be misleading since it hides that the exponent must be kt, not kt2 or similar.) 

f(t) need not be continuous, but it should not be too bad. The technical term (generally 
used in mathematics) is piecewise continuity. f(t) is piecewise continuous on a finite interval 
a ~ t ~ b where f is defined, if this interval can be divided into finitely many subintervals 
in each of which f is continuous and has finite limits as t approaches either endpoint of such 
a subinterval from the interior. This then gives finite jumps as in Fig. 114 as the only possible 
discontinuities, but this suffices in most applications, and so does the following theorem. 

a \", b 

Fig. 114. Example of a piecewise continuous function fIt). 
(The dots mark the function values at the jumps.) 

THEOREM 3 Existence Theorem for Laplace Transforms 

If f(t) is defined alld piecewise colltinuolls on every finite imerval on the semi-alCis 
t ~ 0 and satisfies (2) for all t ~ 0 and some constants M and k, then the Laplace 
transform ;t(n exists for all s > k. 

PROOF Since f(t) is piecewise continuou~, e-stf(t) is integrable over any finite interval on the 
t-axis. From (2), assuming that s > k (to be needed for the existence of the last of the 
following integrals), we obtain the proof of the existence of ;t(n from 

:.:- : 

Note that (2) can be readily checked. For instance, cosh t < et
, t n < n!et (because t n /ll! 

is a single term of the Maclaurin series), and so on. A function that does not satisfy (2) 

for any M and k is et2 (take logarithms to see it). We mention that the conditions in 
Theorem 3 are sufficient rather than necessary (see Prob. 22). 

Uniqueness. If the Laplace transform of a given function exists, it is uniquely 
determined. Conversely, it can be shown that if two functions (both defined on the positive 
real axis) have the same transform. these functions cannot differ over an interval of positive 
length, although they may differ at isolated points (see Ref. [AI4] in App. 1). Hence we 
may say that the inverse of a given transform is essentially unique. In particular, if two 
cominuolls functions have the same transform, they are completely identical. 

--. 
11-20 I LAPLACE TRANSFORMS 3. cos 2,Trt 

5. e2t cosh t 

4. sin2 4r 

Find the Lapial:e transforms of the following functions. 
Show the details of your work. (a. b, k, w, B are constants.) 

1. t2 
- 2t 2. (t2 - 3 f 

7. cos (wt + B) 

9. e3a-2bt 

6. e- t sinh 5t 

8. sin (3t - ~) 

10. -8 sin O.2t 
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11. sin t cos t 12. (t + 1)3 

13. kD_ 14. klI=L I I 
I I 

b a b 

15. 

1~ 
16. 

k~ 
2 b 

170 bll 18. 

k~ 
b 

b 

19. 20. 

1~ '~ I I 
I I 2 

-1 -----' 

21. Using :£(f) in Prob. 13, find :£(f1), where fN) = 0 if 
t ~ 2 and f1(r) = 1 if t > 2. 

22. (Existence) Show that :£(llVt) = ~. [Use 
(30) r@ = V; in App. 3.1.J Conclude from this that 
the conditions in Theorem 3 are sufficient but not 
necessary for the existence of a Laplace transform. 

23. (Change of scale) If :£(f(t» = F(s) and c is any 
positive constant, show that .'£(f(ct» = F(s/c)/c. (Hint: 
Use (1).) Use this to obtain :£(cos wt) from :£(cos t). 

24. (Nonexistence) Show that e
t2 does not satisfy a 

condition of the form (2). 

25. (Nonexistence) Give simple examples of functions 
(defined for all x ~ 0) that have no Laplace transform. 

26. (Table 6.1) Derive formula 6 from formulas 9 and lO. 

27. (Table 6.1) Convert Table 6.1 from a table for finding 
transforms to a table for finding inverse transforms (with 
obvious changes. e.g .. :£-l(lIsn ) = t n - 1/(n - I)!. etc.). 
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28. (Inverse transform) Prove that :£-1 is linear. Hint. 

Use the fact that :£ is linear. 

129-401 INVERSE LAPLACE TRANSFORMS 

Given F(s) = :£(f), find f(t). Show the details. (L, n, k, a, 
17 are constants.) 

4.1 - 31T 2.1 + 16 
29. 

.1
2 + ~ 

30. 
.12 - 16 

.1
4 

- 3.1
2 + 12 10 

31. 
.1

5 32. 
2.1 +Yz 

n1TL 20 
33. 

L 2s2 + n2~ 34. 
(.I - 1)(.1 + 4) 

8 
4 (k + 1)2 

35. 
.1

2 + 4.1 
36. L 

.I + k 2 
k~l 

1 18.1 - 12 
37. 

(.I - v3)(s + Vs) 38. 
9.12 - 1 

1 
39. ------ 40. 

.1
2 + 5 .I + 5 (.I + a)(s + b) 

141-541 APPLICATIONS OF THE FIRST SHIFTING 
THEOREM (s-SHIFTING) 

In Probs. 41--46 find the transform. In Probs. 47-54 find 
the 1l1verse transform. Show the details. 
41. 3.Ste2 .4t 42. - 3t4 e-O.5f 

43. 5e-at sin wt 44. e-3t cos 1Tt 

45. e-kt(o cos t + 17 sin t) 

46. e-t(ao + a1t + ... + o.J n ) 

7 1T 
47. 

(.I - 1)3 
48. 

(.I + 1T)2 

Vs .1-6 
49. 

(.I + Yz)3 
50. 

(.I - 1)2 + 4 

15 4.1 - 2 
51. 

.1
2 + 4.1 + 29 

52. 
.12 - 6.1 + 18 

1T 2.1 - 56 
53. 

.1
2 + 10m + 24~ 54. 

.1 2 - 4.1 - 12 

6.2 Transforms of Derivatives and Integrals. 
ODEs 

The Laplace transform is a method of solving ODEs and initial value problems. The crucial 
idea is that operations of calculus on functions are replaced by operations of algebra 
on transfonns. Roughly, differentiation of f(t) will correspond to multiplication of 5£(f) 
by s (see Theorems 1 and 2) and integration of f(t) to division of 5£(f) by s. To solve 
ODEs, we must first consider the Laplace transform of derivatives 
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THE 0 REM 1 Laplace Transform of Derivatives 

The transforms of the first and second derivatives of f(t) satisfy 

(1) 

(2) 

5£(j') = s5£(f) - f(O) 

5£(f") = s25£(f) - sf(O) - ff (0). 

F0I711ula (1) holds if f(t) is contilluousforall t ~ 0 and satisfies the growth restriction 
(2) ill Sec. 6.1 and f' (t) is piecewise continuous on every finite imen'al on the semi­
axis t ~ O. Similarly, (2) holds if f and f' are continuous for all t ~ 0 and satisfy 
the growth restriction and f" is piecewise continuous on every finite interval on the 
semi-ar:is t ~ O. 

PROOF We prove (l) first under the additional assumption that j' is continuous. Then by the 
definition and integration by parts, 

THEOREM 2 

Since f satisfies (2) in Sec. 6.1, the integrated part on the right is zero at the upper limit 
when s > k, and at the lower limit it contributes - f(O). The last integral is 5£(f). It exists 
for s > k because of Theorem 3 in Sec. 6.1. Hence .c£(j' ) exists when s > k and (1) holds. 

If j' is merely piecewise continuous, the proof is similar. In this case the interval of 
integration of f' must be broken up into parts such that j' is continuous in each such part. 

The proof of (2) now follows by applying (1) to f" and then substituting (1), that is 

.c£(f") = s.c£(f') - reO) = s[s.c£(f) - f(O)] = s 2.c£(f) - sf CO) - rCO). • 

Continuing by substitution as in the proof of (2) and using induction, we obtain the 
following extension of Theorem 1. 

Laplace Transform of the Derivative f (n) of Any Order 

Let f, j', . .. , In-ll be continuous for all t ~ 0 and satisfy the growth restriction 
(2) in Sec. 6.1. Furthermore, let In} be piecewise continuous on every finite interval 
on the semi-axis t ~ O. Then the transform of In} satisfies 

E X AMP L E 1 Transform of a Resonance Term (Sec. 2.8) 

Let f(t) = ! sin Cd!. Then f{O) = 0, f' (t) = sin Cdr + Cdr cos Cdr, f' (0) = 0, I' = 2Cd cos Cdr - Cd2r sin Cdr. Hence 
by (2), 

" s 2 2 f£(f ) = 2Cd -2--2 - Cd f£(f) = s f£(f), 
s + Cd 

thus • 
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E X AMP L E 2 Formulas 7 and 8 in Table 6.1, Sec. 6.1 

THEOREM 3 

This is a third derivation of ;£(cos wt) and ;£(sin wt); cf. Example 4 in Sec. 6.1. Let f(t) = cos wt. Then 
f(O) = I, f' (0) = 0, f"(t) = _w2 cos wt. From this and (2) we obtain 

XU") = s2:£(f) - .I = -w2X(f). By algebra, 
.I 

P( cos wt) = -2--2 
.I + w 

Similarly, let g = sin wt. Then g(O) = 0, g' = w cos wf. From this and (I) we obtain 

X(g') = s'£(g) = w:£(cos wt). Hence 
w w 

.:r(sin wt) = -:£(cos wt) = -2--2 . 
.I .I + w 

Laplace Transform of the Integral of a Function 

• 

Differentiation and integration are inverse operations, and so are multiplication and division. 
Since differentiation of a function J(t) (roughly) corresponds to multiplication of its 
transform ::£(f) by s, we expect integration of J(t) to correspond to division of ::£(f) by s: 

Laplace Transform of Integral 

Let F(s) denote the transfonn of a function J(t) which is piecewise continuous for 
t ~ 0 and satisfies a growth restriction (2), Sec. 6.1. Then, for s > 0, s > k, and 
t> 0, 

(4) thus 

PROOF Denote the integral in (4) by get). Since J(t) is piecewise continuous, get) is continuous, 
and (2), Sec. 6.1, gives 

Ig(t)1 = (J(T) dT ~ (IJ(T)I dT ~ M ( ekT dT = _(ekt 
- L):S _ekt 

I
t Itt M M 

10 10 10 k - k 
(k> 0). 

This shows that get) also satisfies a growth restriction. Also, g' (t) = J(t), except at points 
at which J(t) is discontinuous. Hence g' (t) is piecewise continuous on each finite interval 
and, by Theorem 1, since g(O) = 0 (the integral from 0 to 0 is zero) 

::£{f(t)} = ::£{g'(t)} = s::£{g(t)} - g(O) = s::£{g(t)}. 

Division by s and interchange of the left and right sides gives the first formula in (4), 
from which the second follows by taking the inverse transform on both sides. • 

E X AMP L E 3 Application of Theorem 3: Formulas 19 and 20 in the Table of Sec. 6.9 
I I 

Using Theorem 3. find the inverse of 2 2 and 2 2 2 
.1(.1 + w ) .I (.I + W ) 

Solution. From Table 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged) 
we obtain 

C _I{ __ I_} = sin wt 
:£ 2 2 ' s + w w 

-I{ I } It sin WO' I ;£ 2 2 = -- dO' = 2 (l - cos wt). 
.1(.1 + w) 0 w w 
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This is formula 19 in Sec. 6.9. lmegraring this result again and using (4) as before, we obtain formula 20 in 
Sec. 6.9: 

;;e-l{ 2 21 2} = ~ ft(1 - cos wr) dr = [-;. - sin :r JI 
s (s + w ) WOW W 0 w2 

sin wt 

w3 

It is typical that results such as these can be found in several ways. In this example. try partial fraction 
reduction. • 

Differential Equations, Initial Value Problems 
We shall now discuss how the Laplace transfonn method solves ODEs and initial value 
problems. We consider an initial value problem 

(5) y" + ay' + by = ret), yeO) = Ko, y'(O) = Kl 

where a and b are constant. Here ret) is the given input (driving force) applied to the 
mechanical or electrical system and yet) is the output (response to the input) to be obtained. 
In Laplace's method we do three steps: 

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transfonn 
Y = .;£(y) obtained by transforming (5) by means of (J) and (2), namely, 

[S2y - sy(O) - ),'(0)] + a[sY - yeO)] + bY = R(s) 

where R(s) = ;£(r). Collecting the Y-tenns, we have the subsidiary equation 

(S2 + as + b)Y = (s + a)y(O) + y' (0) + R(s). 

Step 2. Solution of the subsidiary equation by algebra. We divide by s2 + as + band 
use the so-called transfer function 

1 
(6) Q(s) = s2 + as + b 

(Q is often denoted by H. but we need H much more frequently for other purposes.) This 
gives the solution 

(7) Yes) = [(s + a)y(O) + y' (O)]Q(s) + R(s)Q(s). 

If yeO) = y' (0) = 0, this is simply Y = RQ; hence 

Y 
Q= 

R 

;£(output) 

;£(input) 

and this explains the name of Q. Note that Q depends neither on ret) nor on the initial 
conditions (but only on a and b). 

Step 3. III version ofY to obtain y = ;£-1(1'). We reduce (7) (usually by partialfractiolls 
as in calculus) to a sum of tenns whose inverses can be found from the tables (e.g .• in 
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution yet) = ?l(y) of (5). 
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E X AMP L E 4 Initial Value Problem: The Basic Laplace Steps 

Solve 
y" - y = t, y(o) = 1, y' (0) = I. 

Solution. Step 1. Prom (2) and Table 6.1 we get the subsidiary equation [with Y = .P(yl] 

thus 

Step 2. The transfer function is Q = 1/(.1'2 - 1), and (7) becomes 

I .I' + I 
Y = (.I' + I)Q + .1'2 Q = .1'2 _ 1 + .1'2(.1'2 - 1) 

Simplification and partial fraction expansion gives 

1 (1 Y=--+ ---
s-] .1'2-1 

- ~). 
s 

Step 3. From this expression for Y and Table 6.1 we obtain the solution 

_ ,-1 _ _1{_I} '_I{_1 } c -1{~} _ t . _ y(t) -:£ (Y) - :£ + Y 2 - Y 2 - e + smh t t . 
.1'-1 .1'-1 .I' 

The diagram in Pig. liS summarizes our approach. 

t-space s-space 

Given problem Subsidiary equation 

y" -y = t 
~ (s2 - I)Y = s + 1 + 1Is2 

y(O) =1 
y'(O) =1 

t 
Solution of given problem Solution of subsidiary equation 

yet) = e' + sinh t - t -E- Y= _1_ +_I __ ...l 
s-1 s2-1 s2 

Fig. 115. Laplace transform method 

E X AMP L E 5 Comparison with the Usual Method 

Solve the initial value problem 

y" + y' + 9y = 0, y(O) = 0.16, )"(0) = o. 

Solution. From (1) and (2) we see that the subsidiary equation is 

s2y - 0.16.1' + sY - 0.16 + 9Y = 0, thus ts2 + .I' + 9)Y = 0.16(.1' + I). 

The solution is 

0.16(.1' + 1) 0.16(.1' + ~) + 0.08 

(.I' + ~)2 + ~ 

Hence by the first shifting theorem and the formulas for cos and sin in Table 6.1 we obtain 

yet) = Y-\y) = e- tI2 (0.16 cos f35 t + 1°.08 
sin f35t) V4 2V35 V4 

= e -0.5\0.16 cos 2.96t + 0.027 sin 2.96tl. 

This agrees with Example 2, Case (TIl) in Sec. 2.4. The work was less. 
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• 

• 
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Advantages of the Laplace Method 

1. Solving a nonhomogeneous ODE does not require first solving the 
homogeneous ODE. See Example 4. 

2. Initial values are automatically taken care of See Examples 4 and 5. 

3. Complicated inputs ret) (right sides of linear ODEs) can be handled very 
efficiently, as we show in the next sections. 

E X AMP L E 6 Shifted Data Problems 

This means initial value problems with initial conditions given at some 1 = 10 > 0 instead of t = O. For such 
a problem set 1 = 7 + to, so that t = to gives 7 = 0 and the Laplace transform can be applied. For instance, 
solve 

y" + Y = 2t, 

Solution. We have to = !7T and we set r = 7 + !7T. Then the problem is 

y" + Y = 2(1 + !7T), yeO) = !7T, y'(O) = 2 - vi 

where y(7) = y(t). Using (2) and Table 6.1 and denoting the transform of y by Y, we see that the subsidiary 
equation of the "shifted·' initial value problem is 

2- ~ - 2 17T 
S Y - S·!7T - (2 - V 2) + Y = 2" + ~ 

S S 
thus 

2 - 2 
(s + I)Y = 2" + 

s S 

1 ~ 
+ 2" 7TS + 2 - V 2. 

Solving this algebraically for Y, we obtam 

_ 2 !7T !7TS 2 - Yz 
Y = (s2 + l)s2 + (s2 + l)s + s2 + 1 + ~ . 

The inverse of the first two terms can be seen from Example 3 (with w = 1), and the last two terms give cos 
and sin, 

y = .;e-l(y) = 2(7 - sin 7) + !7T(I - cos 7) + !7T cos 7 + (2 - Yz) sin 7 

= 27 + !7T - Yz sin 7. 

1 - 1 Now 7 = t - 47T, sin 1 = Yz (sin t - cos 1), so that the answer (the solution) is 

y = 21 - sin t + cos t. • 

11-81 OBTAINING TRANSFORMS BY 
DIFFERENTIATION 

expressing cos2 !t in terms of cos t, (b) by using 

Prob.3. 

Using (l) or (2), find ;£(f) if fU) equals: 

1. tekt 2. 1 cos 51 

3. sin2 wt 

5. sinh2 at 

7. 1 sin ~'1Tr 

4. cos2 7rt 

6. cosh2 !t 
8. sin4 t (Use Prob. 3.) 

9. (Derivation by different methods) It is typical that 

various transforms can be obtained by several methods. 

Show this for Prob. 1. Show it for ;£(cos2 !t) (a) by 

110-241 INITIAL VALUE PROBLEMS 

Solve the following initial value problems by the Laplace 

transform. (If necessary, use partial fraction expansion as 

in Example 4. Show all details.) 

10. y' + 4y = O. yeO) = 2.8 

11. y' + h = 17 sin 2t, yeO) = -} 
12. y" - y' - 6y = 0, yeO) = 6, 

y'(O) = 13 
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13. y" - h = 0, yeO) = 4, y' (0) = 0 

14. y" - 4y' + 4y = 0, 
y' (0) = 3.9 

yeO) = 2.1, 

15. y" + 2y' + 2y = 0, 
y'(O) = -3 

yeO) = 1, 

16. y" + ky' - 2k2y = O. 
y' (0) = 2k 

yeO) = 2. 

17. y" + 7y' + 12y = 21e 3t
, 

y'(0) = -10 

18. y" + 9y = lOe-t, y(O) = 0, 

19. y" + 3y' + 2.2Sv = 9t3 + 64. 
y'(O) = 31.S 

20. y" - 6y' + Sy = 29 cos 2t. 
y' (0) = 6.2 

21. (Shifted data) y' - 6y = 0, 

22. y" - 2y' - 3y = 0, yO) 
y'(l) = -17 

23. y" + 3y' - 4y = 6e2t
-

2
• 

y'(l) = S 

24. y" + 2y' + Sy = SOt - ISO, 

y'(3) = 14 

yeO) = 3.S, 

/(0) = 0 

yeo) = 1, 

y(O) = 3.2. 

y(2) = 4 

= -3, 

y(l) = 4, 

y(3) = -4, 

25. PROJECT. Comments on Sec. 6.2. (a) Give reasons 
why Theorems 1 and 2 are more important than 
Theorem 3. 

(b) Extend Theorem 1 by showing that if f(t) is 
continuous, except for an ordinary discontinuity (finite 
jump) at some t = a (> 0), the other conditions 
remaining as in Theorem 1, then (see Fig. 116) 

(1*) .;£(f') = s.;£(f) - f(O) - [f(a + 0) - f(a - O)]e-a.s. 

(c) Verify (1 *) for f(t) = e-t if 0 < t < 1 and 0 if 
t> 1. 

(d) Verify (l *) for two more complicated functions of 
your choice. 

(e) Compare the Laplace transform of solving ODEs 
with the method in Chap. 2. Give examples of your 
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own to illustrate the advantages of the present method 
(to the extent we have seen them so far). 

f(t) I 

:/f(a-O) 
1 
:.....--f(a + Ol 

i~ 
o a 

Fig. 116. Formula (1*) 

26. PROJECT. Further Results by DifferentiatiolL 
Proceeding as in Example 1, obtain 

S2 - w2 

(a) .;£(t cos wt) = 2 2 2 
(s + w) 

and from this and Example 1: (b) formula 21, (c) 22, 
(d) 23 in Sec. 6.9, 

( e) .;£(t cosh at) = 
(S2 _ a2 )2 

2as 
(f) 

127-341 OBTAINING TRANSFORMS BY 
INTEGRATION 

Using Theorem 3, find f(t) if .;£(f) equals: 

1 10 
27. 

S2 + s/2 
28. 

S3 - "'S2 

29. 
S3 - ks2 30. 

S4 + S2 

S 2 
31. 

S3 - Ss 
32. 

S3 + 9s 

33. 
S4 - 4s2 34. 

S4 + 7f2s 2 

35. (Partial fractions) Solve Probs. 27, 29, and 31 by 
using partial fractions. 

6.3 Unit Step Function. f-Shifting 
This section and the next One are extremely important because we shall now reach the point 
where the Laplace transform method shows its real power in applications and its superiority 

over the classical approach of Chap. 2. The reason is that we shall introduce two auxiliary 
functions, the unit step function or Heaviside function u(t - a) (below) and Dirac's delta 
(jet - a) (in Sec. 6.4). These functions are suitable for solving ODEs with complicated 

right sides of considerable engineering interest, such as single waves, inputs (driving forces) 

that are discontinuous or act for some time only, periodic inputs more general than just 

cosine and sine, or impUlsive forces acting for an instant (hammerblows, for example). 
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Unit Step Function (Heaviside Function) u(t - a) 
The unit step function or Heaviside function u(t - a) is 0 for t < a, has a jump of size 
I at t = a (where we can leave it undefined), and is I for t > a, in a formula: 

(1) u(t - a) = {~ if t < a 
(a ~ 0). 

if t > a 

Figure 117 shows the special case u(t), which has its jump at zero, and Fig. 118 the general 
case u(t - a) for an arbitrary positive a. (For Heaviside see Sec. 6.1.) 

The transform of u(t - a) follows directly from the defining integral in Sec. 6.1, 

~{u(t - a)} = lXe- stU(l - a) dt = JXe- st • 1 dt = _ e-
st I"" ; 

o a S t=a 

here the integration begins at t = a (~ 0) because u(t - a) is 0 for 1 < a. Hence 

(2) ~{u(t - a)} (S > 0). 
S 

The unit step function is a typical "engineering function" made to measure for 
engineering applications. which often involve functions (mechanical or electrical 
driving forces) that are either "off' or "on." Multiplying functions f(t) with U(l - a). 
we can produce all sorts of effects. The simple basic idea is illustrated in Figs. 119 
and 120. In Fig. 119 the given function is shown in (A). In (B) it is switched off 
between t = 0 and t = 2 (because u(t - 2) = 0 when t < 2) and is switched on 
beginning at t = 2. In (C) it is shifted to the righl by 2 units, say, for instance, by 2 secs, 
so that it begins 2 secs later in the same fashion as before. More generally we have the 
following. 

Let f(t) = 0 for all negative t. Then f(t - a)u(t - a) with a > 0 is f(t) shifted 
(translated) to the right by the amount a. 

Figure 120 shows the effect of many unit step functions, three of them in (A) and 
infinitely many in (B) when continued periodically to the right: this is the effect of a 
rectifier that clips off the negative half-waves of a sinuosidal voltage. CAUTION! Make 
sure that you fully understand these figures, in particular the difference between parts (B) 
and (C) of Figure 119. Figure 119(C) will be applied next. 

o t o a 

Fig. 117. Unit step function u(tJ Fig. 118. Unit step function u(t - oj 
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THEOREM 1 

(tt) 

5'L 5 
f\ I I 

o 2 11: 211: t 
0 

2 11:-1-2211:+2 

-5 V -5 V 
(A) ((t) = 5 sin t (B) {(t)u(t - 2) (el {(t - 2)u(t - 2) 

Fig. 119. Effects of the unit step function: (A) Given function. 
(B) Switching off and on. (e) Shift. 

k~'-------' I , 
I , 

1. 4 6 ---t 

-k ~ 02468lO 

(A) k[u(t - 1) - 2u(t - 4) + u(t - 6)] (B) 4 sin (~11:t)[u(t) - u(t - 2) + u(t - 4) - + ... ] 

Fig. 120. Use of many unit step functions. 

Time Shifting (t-Shifting): Replacing t by t - a in f{t) 
The first shifting theorem ("s-shifting") in Sec. 6.1 concerned transforms pes) = ~{f(t)} 
and F(s - a) = ~{eatJ(t)}. The second shifting theorem will concern functions J(t) and 
J(t - a). Unit step functions are just tools, and the theorem will be needed to apply them 
in connection with any other functions. 

Second Shifting Theorem; Time Shifting 

If J(t) has the tran~fonl! F(s), then the "shifted function" 

(3) let) = J(t - a)u(t - a) = { 0 
J(t - a) 

if t < a 

if t > a 

has the tran~fonn e-aSP(s). That is, if ~{f(t)} = pes), then 

(4) ~{f(t - a)uCt - a)} = e-asF(s). 

Or, !f we take the inverse on both sides, we can write 

(4*) J(t - a)u(t - a) = ~-l{e-a.sp(s)}. 

Practically speaking, if we know pes), we can obtain the transform of (3) by multiplying 
pes) bye-as. In Fig. 119, the transform of 5 sin tis F(s) = 5/(S2 + 1), hence the shifted 
function 5 sin (t - 2) u(t - 2) shown in Fig. 1 19(C) has the transform 
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PROOF We prove Theorem 1. In (4) on the right we use the definition of the Laplace transform, 
writing 'T for t (to have t available later). Then, taking e-as inside the integral, we have 

:x x 

e-asp(s) = e-as L e-S7J('T) d'T = L e-scT+a>f('T) d'T. 
o 0 

Substituting 'T + a = t, thus 'T = t - a, d'T = dt, in the integral ( 'AUTION, the lower limit 
changes!), we obtain 

00 

e-asp(s) = J e-stf(t - a) dt. 
a 

To make the right side into a Laplace transform, we must have an integral from 0 to 00, 

not from a to IX. But this is easy. We multiply the integrand by u(l - a). Then for t from 
o to a the integrand is 0, and we can write, with f as in (3), 

(Do you now see why u(t - a) appears?) This integral i., the left side of (4), the Laplace 
transform of f(t) in (3). This completes the proof. • 

E X AMP L E 1 Application of Theorem 1. Use of Unit Step Functions 

Write the following function using unit step functions and find its rransform. 

Solulioll. Step 1. In terms of unit step functions, 

iro < I < I 

if I < I <!1' 
if I> !1'. 

f(t) = 2(1 - u(t - I)) + !t2(1l(1 - I) - lI(t - !7T» + (cos I)U(I - !1'). 

Indeed. 2(1 - 11(1 - I)) gives I(t) for 0 < I < 1, and so on. 

(Fig. 121) 

Step 2. To apply Theorem \, we must write each term in I(tl in the form 1(1 - a)u(1 - a). Thus, 2(\ - 1I(t - I» 
remains as it is and gives the transform 2(1 - e -')1.1'. Then 

{12 } (I 2 I)} (1 1 1) ;e 21 11(1 - I) ~ 9., "2(t - I) + (t - 1) + 2 lI(t - 1) ~ 7i + --;;: + 2s e-
S 

Together, 

( 
I I I ) ( I 7T 1'2 ) I "3" + ""2 + - e-s - - + - + - e-ws/2 - ___ e-ws12 

s s 2.1' .1'3 2s2 8s s2 + I . 
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If the conversion of f( t) to f( t - a) is inconvenient. replace it by 

(4**) ~{f(t)u(t - a)} = e-as~{f(t + a)}. 

(4**) follows from (4) by writing f(t - a) = get). hence f(t) = get + a) and then again writing f for g. Thus. 

as before. Similarly for .'£{~t2u(t - ~'17)}. Finally, by (4**). 

fIt) 
2 

Or--L~--~--~r----L--~~--~---T----L---~--~ 

-1 
1T 21T 41T 

Fig. 121. t(t} in Example 1 

E X AMP L E 2 Application of Both Shifting Theorems. Inverse Transform 

Find the inverse transform f(t) of 

Solution. Without the exponential functions in the numerator the three terms of F(s) would have the inverses 
(sin '17t)/'17, (sin '17t)/'17, and te -21; because IIs2 has the inverse t, so that 1/(s + 2)2 has the inverse te -2t by the 
first shifting theorem in Sec. 6.1. Hence by the second shifting theorem (t-shifting), 

1 1 
f(t) = - sin ('17(t - 1» u(t - 1) + - sin ('17(t - 2» u(t - 2) + (t - 3)e -2(t-3) u(t - 3). 

'17 '17 

Now sin ('17t - '17) = -sin '17t and sin ('17t - 2'17) = sin '17t, so that the second and third terms cancel each other 
when t > 2. Hence we obtain f(t) = 0 if 0 < t < 1, -(sin '17t)/'17ifl < t < 2,0 if2 < t < 3, and (t - 3)e -2(t-3) 

if t > 3. See Fig. 122. • 

0.3 

0.2 

0.1 

OL------L ______ L-____ ~ ______ ~ ____ ~~~==~ __ _ 
o 2 3 4 5 6 

Fig. 122. t(t} in Example 2 

E X AMP L E 3 Response of an RC-Circuit to a Single Rectangular Wave 

Find the current i(t) in the RC-circuit in Fig. 123 if a single rectangular wave with voltage Vo is applied. The 
circuit is assumed to be quiescent before the wave is applied. 
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c 
vet) 

v(t) 

R a 

Fig. 123. RC-circuit, electromotive force v(t), and current in Example 3 

Solutioll. The input is Vo[lI(t - a) - 11([ - b)]. Hence the circuit is modeled by the integro-differential 
equation (see Sec. 2.9 and Fig. 123) 

t 

Ri(t) + q(t) = Ri(t) + ~ f i(T) dT = vet) = Vo [lI(t - a) - tI(t - b)l. 
C C 0 

Using Theorem 3 in Sec. 6.2 and formula (I) in this section, we obtain the subsidiary equation 

RI(s) + Irs) = Vo [e -as _ e -bsj. 
sC s 

Solving this equation algebmically for I(s). we get 

where 
VoIR 

F(s) = ---"--­
s + J/(RC) 

and 

the last expression being obtained fi'om Table 6.1 in Sec. b.l. Hence Theorem 1 yields the solution (Fig. 123) 

that is. i(l) = 0 if t < a. and 

ifa<l<b 

if a > b 

• 
E X AMP L E 4 Response of an RLC-Circuit to a Sinusoidal Input Acting Over a Time Interval 

Find the response (the current) of the RLC-circuit in Fig. 124, where E(t) is sinusoidal. acting for a short time 
interval only. say. 

E(t) = 100 sin 400t if 0 < t < 27T and E(t) = 0 if t > 27T 

and current and charge are initially zero. 

Solution. The electromotive force E(t) can be represented by (100 sin 400t){l - u(t - 27T)). Hence the 
model for the current i(t) in the circuit is the integro-differential equation (see Sec. 2.9) 

t 

O.li' + I Ii + 100 f i(T) dT = (100 sin 400t)(1 - tI(t - 27T», ;(0) = O. /(0) = O. 
o 

From Theorems 2 and 3 in Sec. 6.2 we obtain the subsidiary equation for Irs) = 5£(i) 

/ 
O.ls/ + 111 + 100-

s 
100' 400s (-sl _ e-

s

2r.S). 
s2 + 4002 
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Solving it algebraically and noting that .12 + 110.1 + 1000 = (s + 10)(.1 + 100), we obtain 

1000·400 (s se-2.,,-s ) 
I(s) = (.I + 10)(.1 + 100) .12 + 4002 - s2 + 4002 . 

For the first term in the parentheses ( ... ) times the factor in front of them we use the partial fraction expansion 

400000.1 A B Ds + K 

(s + 10)(.1 + 100)(s2 + 4002) 
+ + ~-----= 

.1+10 s+100 s2+4002 

Now determine A, B, D, K by your favorite method or by a CAS or as follows. Multiplication by the common 
denominator gives 

400000.1 = A(s + 100)(.12 + 4002) + B(s + 1O)(s2 + 4002) + (Ds + K)(s + 10)(.1 + 100). 

We sets = -10 and -100 and then equate the sums of the s3 and .12 terms to zero, obtaining (all 
values rounded) 

(s = -10) 

(s = -100) 

(s3-terms) 

(s2-terms) 

-4000000 = 90(102 + 4002)A, 

-40000000 = -90(1002 + 4002)B, 

0= A + B + D, 

0= 100A + lOB + llOD + K, 

Since K = 258.66 = 0.6467' 400, we thus obtain for the first term I1 in I = II - 12 

0.2776 2.6144 2.3368.1 0.6467 . 400 
h = - ----- + ------

.I + 10 s + 100 
+ ---,;;--------;:-

.12 + 4002 s2 + 4002 

From Table 6.1 in Sec. 6.1 we see that its inverse is 

A = -0.27760 

B = 2.6144 

D = -2.3368 

K = 258.66. 

i1U) = -0.2776e- lOt + 2.6144e- lOOt - 2.3368 cos 400t + 0.6467 sin 400/. 

This is the cunent i(t) when 0 < t < 27T. It agrees for 0 < r < 27T with that in Example 1 of Sec. 2.9 (except 
for notation), which concerned the same RLC-circuit. Its graph in Fig. 62 in Sec. 2.9 shows that the exponential 
terms decrease very rapidly. Note that the present amount of work wa, substantially less. 

The second term h of 1 differs from the first term by the factor e -2.,,-s. Since cos 400(1 - 27T) = cos 400t 

and sin 400(1 - 27T) = sin 400t, the second shifting theorem (Theorem I) gives the inverse i2(t) = 0 if 
o < t < 27T. and for > 27T it gives 

i2(t) = -0.2776e- lOCt - 2.,,-) + 2.6144e- lOO\t-2r.) - 2.3368 cos 400t + 0.6467 sin 400t. 

Hence in i(t) the cosine and sine terms cancel, and the current for t > 27T is 

i(t) = -0.2776(e-lOt - e- lOCt - 2.,,-) + 2.6144(e- lOOt _ e-lOOCt-2.,,-). 

It goes to zero very rapidly, practically within 0.5 sec. • 

E(t) 

Fig. 124. RLC-circuit in Example 4 
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1. WRITING PROJECT. Shifting Theorem. Explain 
and compare the different roles of the two shifting 
theorems, using your own formulations and examples. 

\2-13\ UNIT STEP FUNCTION AND SECOND 
SHIFTING THEOREM 

Sketch or graph the given function (which is assumed to 
be zero outside the given interval). Represent it using unit 
step functions. Find its transform. Show the details of your 
work. 

2. t (0 < t < 1) 3. et (0 < t < 2) 

4. sin 3t (0 < t < 'IT) 5. t 2 (I < t < 2) 

6. t 2 It > 3) 7. cos 'lTf (1 < t < 4) 

8. I - e- t (0 < t < 'IT) 9. t (5 < t < 10) 

10. sin wt (t > 6 'IT/ w) 11. 20 cos 7ft (3 < f < 6) 

12. sinh t (0 < t < 2) 13. e'Ut (2 < t < 4) 

\14-22\ INVERSE TRANSFORMS BY THE 
SECOND SHIFTING THEOREM 

Find and sketch or graph f(t) if ;e(n equals: 

14. se- s/(s2 + w 2) 

15. e- 4s /s 2 

16. S-2 - (s-2 + s-l)e- S 

17. (e- 27TS - e- Br.s)/(s2 + I) 

18. e- 7Ts /{s2 + 2s + 2) 19. e- 2s /s 5 

20. (1 - e-s+k)/(s - k) 21. se- 3s /(s2 - 4) 

22. 2.5(e- 3 . Bs - e- 2 . 6S )/s 

\23-34\ INITIAL VALUE PROBLEMS, SOME WITH 
DISCONTINUOUS INPUTS 

Using the Laplace transform and showing the details, solve: 

23. y" + 2y' + 2v = O. 
y' (0) = 1 

yeO) = 0, 

24. 9)''' - 6)"' + Y = 0, 
y'(O) = 1 

yeO) = 3, 

25. y" + 4y' + 13y = 145 cos 2t, 
y'(O) = 14 

26. y" + lOy' + 24y = 144t2
, 

y'(0) = -5 

yeO) = 10, 

yeO) = ~, 

27. y" + 9y = r(r), 1'(1) = 8 sin t if 0 < t < 'IT and 0 
if t > 'IT; yeO) = 0, y'(O) = 4 

28. y" + 3;-' + 2y = r(t), r(t) = 1 if 0 < t < 1 and 
o if t > 1; yeO) = 0, y' (0) = 0 

29. y" + y 

t> 1; 
r(t), r(t) = t if 0 < t < 1 and 0 if 

yeO) = y'(O) = 0 

30. y" - 16)' = r(t), ret) = 48e 21 if 0 < t < 4 and 
o if t > 4: y(O) = 3. y'CO) = -4 

31. y" + y' - 2)" = 1'(1), r(t) = 3 sin t - cos t if 
o < t < 2'IT and 3 sin 2t - cos 2t if t > 2 'IT; 
yeO) = 1, y'(O) = 0 

32. y" + 8y' + 15)' = ret), r(t) = 35e 21 if 
o < t < 2 and 0 if t > 2; yeO) = 3. 
y'(O) = -8 

33. (Shifted data) v" + 4v = 8t2 if 0 < t < 5 and 0 
if t > 5; y{ 1) ~ I + 'cos 2, y' (1) = 4 - 2 sin 2 

34. y" + 2)"' + 5)' = 10 sin t if 0 < t < 2'IT and 0 if 
t > 2'IT; Y('IT) = I, y'('IT) = 2e-r. - 2 

MODELS OF ELECTRIC CIRCUITS 

35. (Discharge) Using the Laplace transform, find the 
charge q(t) on the capacitor of capacitance C in Fig. 125 
if the capacitor is charged so that its potential is Vo and 
the switch is closed at f = O. 

R 

Fig. 125. Problem 35 

\36-38\ RC-CIRCUIT 
Using the Laplace transform and showing the details. rmd 
the current i(f) in the circuit in Fig. 126 with R = 10 fl and 
C = 10-2 F, where the current at t = 0 is assumed to be 
zero. and: 

36. v(t) = 100 V if 0.5 < f < 0.6 and 0 otherwise. 
Why does i(t) have jumps? 

37. v = 0 if t < 2 and 100 (t - 2) V if t > 2 

38. v = 0 if t < 4 and 14' 106e-3t V if t > 4 

C

L 
R 

vet) 

Fig. 126. Problems 36-38 

/39-411 RL-CIRCUIT 

Using the Laplace transform and showing the details, find 
the current i(t) in the circuit in Fig. 127, assuming i(O) = 0 
and: 
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39. R = 10 fl, L = 0.5 H, v = 200t V if 0 < t < 2 and 
Oift>2 

40. R = 1 kfl (= 1000 fl), L = 1 H, v = 0 if 
o < t < r., and 40 sin t V if t > 'iT' 

41. R = 25 fl, L = 0.1 H, v = 490e-5t V if 
o < t < 1 and 0 if t > 1 

R L 

u(t) 

Fig. 127. Problems 39-41 

142-441 LC-CIRCUIT 

Usmg the Laplace transform and showing the details, find 
the current i(t) in the circuit in Fig. 128, assuming zero 
initial current and charge on the capacitor and: 

42. L = 1 H, C = 0.25 F, v = 200(t - tt3
) V if 

o < t < 1 and 0 if t > 1 

43. L = I H, C = 10-2 F, v = -9900 cos t V if 
'iT' < t < 3 r. and 0 otherwise 

44. L = 0.5 H, C = 0.05 F, v = 78 sin t V if 
o < t < r. and 0 if t > r. 

C

L 
L 

u(t) 

Fig. 128. Problems 42-44 

RLC-CIRCUIT 

Using the Laplace transform and showing the details, find 
the current i(t) in the circuit in Fig. 129. assuming zero 
initial current and charge and: 

45. R = 2 n, L = I H. C = 0.5 F. vet) = 1 kV if 
o < t < 2 and 0 if t > 2 

46. R = 4 n, L = I H, C = 0.05 F, v = 34e- t V 
if 0 < t < 4 and 0 if t > 4 

47. R = 2 n, L = I H, C = 0.1 F, v = 255 sin t V 
if 0 < t < 2r. and 0 if t > 2r. 

u(t) 

Fig. 129. Problems 45-47 

6.4 Short Impulses. Dirac's Delta Function. 
Partial Fractions 

Phenomena of an impulsive nature. such as the action of forces or voltages over short 
intervals of time, arise in various applications, for instance, if a mechanical system is hit 
by a hammerblow, an airplane makes a "hard" landing, a ship is hit by a single high wave, 
or we hit a tennisball by a racket, and so on. Our goal is to show how such problems are 
modeled by "Dirac's delta function" and can be solved very efficiently by the Laplace 
transform. 

To model situations of that type, we consider the function 

(1) {

Ilk 
h(t - a) = 0 

ifa~t~a+k 
(Fig. 130) 

otherwise 

(and later its limit as k --'.> 0). This function represents. for instance. a force of magnitude 
11k acting from t = a to t = a + k, where k is positive and small. In mechanics, the 
integral of a force acting over a time intervalll ~ t ~ a + k is called the impulse of the 
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force; similarly for electromotive force!. E(t) acting on circuits. Since the blue rectangle 
in Fig. 130 has area 1, the impulse of fk in (l) is 

(2) 
:x: a+k I 

h = L fk(t - a) dt = J ---: dt = 1. 
oak 

To find out what will happen if k becomes smaller and smaller, we take the limit of fk 
as k ~ 0 (k > 0). This limit is denoted by 8(t - a), that is, 

8(t - a) = lim h(t - a). 
k-O 

8(t - a) is called the Dirac delta function2 or the unit impulse function. 
8(t - a) is not a function in the ordinary sense as used in calculus, but a so-called 

generalizedjullction.2 To see this, we note that the impulse lk of fk is I, so that from (1) 
and (2) by taking the limit as k ~ 0 we obtain 

(3) 8(t - a) = {: 
if t = a 

otherwise 
and 100 8(t - a) dt = 1, 

o 

but from calculus we know that a function which is everywhere 0 except at a single point 
must have the integral equal to O. Nevertheless, in impulse problems it is convenient to 
operate on 8(t - a) as though it were an ordinary function. In particular, for a continuous 
function get) one uses the property [often called the sifting property of B(t - a), not to 
be confused with shifting 1 

(4) IX g(t) B(t - a) dt = g(a) 
o 

which is plausible by (2). 
To obtain the Laplace transform of 8(t - a), we write 

I 
fk(t - a) = - [u(t - a) - u(t - (a + k»] 

k 

r~Area=l 
11k 

t 
a a+k t 

Fig. 130. The function fk(t - 0) in (1) 

2PAUL DIRAC (1902-1984), English physicist, was awarded the Nobel Plize [jointly with the Austrian 
ERWIN SCHRODINGER (1887-1961)] in 1933 for his work in quantum mechanics. 

GeneralIzed functions are also called distributions. Their theory was created in 1936 by the Russian 
mathematician SERGEI L'VOVICH SOBOLEV (1908-1989). and in 1945. under wider aspects, by the French 
mathematician LAURENT SCHWARTZ (1915-2002). 
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and take the transform [see (2)] 

:£{h(t - a)} 
1 1 - e-ks 

_ [e- as _ e-Ca+k)s] = e-as ----

ks ks 

We now take the limit as k----7 O. By l'H6pital's rule the quotient on the right has the limit 
1 (differentiate the numerator and the denominator separately with respect to k, obtaining 
se-ks and s, respectively, and use se-ks/s ----7 1 as k ----7 0). Hence the right side has the 
limit e-as

• This suggests defining the transform of 8(t - a) by this limit, that is, 

(5) :£(8(t - a)} = e-as
• 

The unit step and unit impulse functions can now be used on the right side of ODEs 
modeling mechanical or electrical systems, as we illustrate next. 

E X AMP L E 1 Mass-Spring System Under a Square Wave 

Determine the response of the damped mass-spring system (see Sec. 2.8) under a square wave, modeled by (see 
Fig. 131) 

y" + 3y' + 2y = r(t) = u(r - 1) - u(t - 2). .1'(0) = O. /(0) = o . 

Solution. From (1) and (2) in Sec. 6.2 and (2) and l4) in this section we obtain the subsidiary equation 

1 
s2y -t 3sY + 2Y = - (e-s e-2S). 

s 
Solution 

1 
Yes) = 2 (e-s - e-2S). 

s(s + 3s + 2) 

Using the notation F(,,) and partial fractions, we obtain 

1 1 112 112 
F(s) = = -----

s(s2 + 3s + 2) s(s + 1)(s + 2) 
--+ 

s s+1 s+2 

From Table 6.1 in Sec. 6.1. we see that the inverse is 

Therefore, by Theorem 1 in Sec. 6.3 (t-shifting) we obtain the square-wave response shown in Fig. 131, 

yet) 

0.5 

y = :g-\F(s)e-s - F(s)e-2s) 

= f(t - I)u(t - I) - f(t - 2)u(t - 2) 

{

o 
= ~ _ e-Ct-1) + ~e-2Ct-l) 

-Ct-l) + -Ct-2) 1 -2(t-1) 1 -2(t-2) -e e + "2e - "2e 

2 3 4 

Fig. 131. Square wave and response in Example 1 

(0 < t < J) 

(1 < t < 2) 

(t> 2) .• 
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E X AMP L E 2 Hammerblow Response of a Mass-Spring System 

Find the response of the system in Example I with the square wave replaced by a unit impulse at time 
t = L 

Solutioll. We now have the ODE and the subsidiary equation 

y" + 3/ + 2y = S(t - I). and (S2 + 3s + 2)Y = e-s. 

Solving algebraically gives 

-s e 
Yes) = (s + 1)(5 + 2) ( 1 I) -s 

~-s+2 e. 

By Theorem 1 the inverse is 

{ 

0 
y(t) = ~C\Y) = 

-(t-l) -2(t-ll e - e 

ifO<t<1 

if t> 1. 

y(t) is shown in Fig. 132. Can you imagine how Fig. 131 approaches Fig. 132 as the wave becomes shorter and 
shorter. the area of the rectangle remaining I? • 

yet) 

0.2 

0.1 

,-
3 5 

Fig. 132. Response to a hammerblow in Example 2 

E X AMP L E 3 Four-Terminal RLe-Network 

Find the output voltage response in Fig. 133 if R = 20 n. L = I H, C = 10-4 F, the input is S(t) (a umt impulse 
at time t = 0). and current and charge are zero at time t = O. 

Solutioll. To understand what is going on, note that the network is an RLC-cucuit to which two wires at A 

and B are attached for recording the voltage v(r) on the capacitor. Recalling from Sec. 2.9 that current i(t) and 
charge q(t) are related by i = q' = dqldt, we obtain the model 

Li' + Ri + !!.. = Lq" + Rq' + q = q" + 20q' + 10000q = Set). 
C C 

From (1) and (2) in Sec. 6.2 and (5) in this section we obtain the subsidiary equation for Q(s) = '£(q) 

(S2 + 20s + 10OOO)Q = 1. Solution Q=------::--­
(s + 10)2 + 9900 

By the first shifting theorem in Sec. 6.1 we obtain from Q damped oscillations for q and v; rounding 
9900 = 99.502

, we get (Fig. 133) 

I 
q = ~C\Q) = 99.50 e-

lOt 
sin 99.50t and v = q = lOO.5e-1ot sin 99.50t. 

C • 
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8(t) v 

80 

/\ R L 40 f\ 0-
C 0 \ "" 

O.O~ dlj O.l!'L 0.2 :25 0.3 
A B 

V -40 

v(t); ? -80 

Network Voltage on the capacitor 

Fig. 133. Network and output voltage in Example 3 

More on Partial Fractions 
We have seen that the solution Y of a subsidiary equation usually appears as a quotient 
of polynomials Y(s) = F(s)JG(s), so that a partial fraction representation leads to a 
sum of expressions whose inverses we can obtain from a table, aided by the first 
shifting theorem (Sec. 6.1). These representations are sometimes called Heaviside 
expansions. 

An un repeated factor s - a in G(s) requires a single partial fraction AJ(s - a). See 
Examples I and 2 on pp. 243, 244. Repeated real factors (s - a)2, (s - a)3, etc., require 
partial fractions 

etc., 

The inverses are (A2t + AI)eat
, (iA3t2 + A2t + Al)eat

, etc. 
Unrepeated complex factors (s - a)(s - a), a = 0: + i{3, a = 0: - i{3, require a partial 

fraction (As + B)J[(s - 0:)2 + 132]. For an application, see Example 4 in Sec. 6.3. 
A further one is the following. 

E X AMP L E 4 Unrepeated Complex Factors. Damped Forced Vibrations 

Solve the initial value problem for a damped mass-spring system acted upon by a sinusoidal force for some 
time interval (Fig. 134), 

y" + 2y' + 2y = rlt), r(t) = 10 sin 2t if 0 < t < 7T and 0 if t > 7T; y(O) = I, y' (0) = ~5. 

Solution. From Table 6.1, (1), (2) in Sec. 6.2, and the second shifting theorem in Sec. 6.3, we obtain the 
subsidiary equation 

2 
(s2y ~ S + 5) + 2(sY ~ I) + 2Y = 10 ~2-- (1 ~ e-7TS

). 

s + 4 

We collect the Y-terms, (s2 + 2s + 2)Y, take ~s + 5 - 2 = ~s + 3 to the right, and solve, 

(6) 
20 

y = ----;;----;:---­
(s2 + 4)(s2 + 2s + 2) 

s ~ 3 

(S2 + 4)(s2 + 2s + 2) + s2 + 2s + 2 

For the last fraction we get from Table 6.1 and the first Shifting theorem 

(7) I{ S+I~4} t 
';£- 2 = e- (cost ~ 4sint). 

(s + I) + I 
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In the first fraction in (6) we have unrepeated complex roots, hence a partial fraction representation 

20 As + B Ms+N 

(S2 + 4)(s2 + 2s + 2) 

Multiplication by the common denominator gives 

20 = (As + 8)(s2 + 2s + 2) + (Ms + M(s2 + 4). 

We determine A, B, M, N. Equating the coefficients of each power of s on both sides gives the four equations 

(a) [s3]: 0 = A + M (b) [s2]: 0 = 2A + B + N 

(c) [sl: 0 = 2A + 2B + 4M (d) [sol: 20 = 2B + 4N. 

We can solve this, for instance, obtaining M = -A from (a), then A = B from (c), then N = - 3A from (b), 
and finally A = -2 from (d). Heuce A = -2, B = -2, M = 2. N = 6. and the fust fraction in (6) has the 
representation 

(8) 
-2s - 2 

s2 + 4 
+ 

2(s + I) + 6 - 2 

(s + 1)2 + I 
Inverse transform: -2 cos 2f - sin 2f + e- t (2 cos f + 4 sin f). 

The ,urn of this and (7) is the ,olution of the problem for 0 < f < 1'. namely (the sines cancel). 

(9) y(t) = 3e-t cos f - 2 cos 2f - sin 21 if 0<1<1'. 

In the second fraction in (6) taken with the minus sign we have the factor e--rrs, so that from (8) and the second 
shifting theorem (Sec. 6.3) we get the inverse transform 

+2 cos (2f - 21') + sin (2, - 217) - e-(t--rr) [2 cos (I - 17) + 4 sin (I - 1T)] 

= 2 cos 2f + sin 21 + e -(t-.,,-) (2 cos, + 4 sin f). 

The sum of this and (9) is the solution for f > 17, 

(iO) y(l) = e- t [(3 + 2e"') cos f + 4e7T sin I] if'> 17. 

Figure 134 shows (9) (for 0 < , < 17) and (10) (for' > 17). a beginning vibration, which goes to zero rapidly 
because of the damping and the absence of a driving force after r = 1'. • 

-----l y = 0 (Equilibrium 
position) 

y 

Driving force l----II'=~ 
Dashpot (damping) 

yet) 

2 

-1 

-2 

2rr 3rr 

Mechanical system Output (solution) 

Fig. 134. Example 4 

The case of repeated complex factors [(s - a)(s - a)]2, which is important in connection 
with resonance, will be handled by "convolution" in the next section. 
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PROBLEM SH 6:;:4 

11-121 EFFECT OF DELTA FUNCTION ON 
VIBRATING SYSTEMS 

Showing the details. find. graph. and discuss the ~olution. 

1. y" + Y = OCt - 217), yeO) = 10. 
y' (0) = 0 

2. v" + 2v' + 2v = e- t + Sfj(t - 2). 
:,,(0) = '0. 'y' (0) = I 

3 . .v" - y = 100(t - !) - 1000U - 1). 

yeO) = 10. y' (0) = 1 

4. y" + 3/ + 2)' = 10(sin t + oCt - I». 
yeO) = 1. y' (0) = -I 

5. y" + 4y' + Sy = [I - ult - lO)]et - elOo(t - 10), 
yeO) = 0, y' (0) = I 

6. -,," + 2\"' - 3y = 1000(t - 2) + 1000(t - 3L 
yeO) = I. y'(O) = 0 

7. y" + 2\"' + lOy = 10[1 - lilt - 4)] - 100(t - S). 
. - . I 

y(O) = I. y (0) = I 

8. y" + S/ + 6)' = o(t - !17) + u(t - 17) cos t, 
yeo) = 0, -,,'(0) = 0 

9. y" + 2/ + Sy = 2St - 1000(1 17), 

yeo) = -2, y' (0) = S 

10. y" + S)' = 2St - 1000(t - 17). yeo) = -2. 
y' (0) = S. (Compare with Prob. 9.) 

11. v" + 3," - 41' = 2et - 8e 2 0(t - 2), 

~'(0)='2 .. /(0)=0 

12. v" + y = -2 sin t + 100(t - 17), yeO) = 0, 
Y' (0)'= I 

13. CAS PROJECT. Effect of Damping. Consider a 
vibrating system of your choice modeled by 

y" + cy' + ky = I'lt) 

with r(t) involving a B-function. (a) Using graphs of 
the solution. describe the etJect of continuously 
decreasing the damping to O. keeping k constant. 

(b) What happens if c is kept constant and k is 
continuously increased, starting from O? 

(c) Extend your results to a system with two 
o-functions on the right. acting at different times. 

14. CAS PROJECT. Limit of a Rectangular Wave. 
Effects of ImpUlse. 

(a) In Example I. take a rectangular wave of area 1 
from 1 to I + k. Graph the responses for a sequence 
of values of k approaching zero. illustrating that for 
smaller and smaller" those curves approach the curve 
shown in Fig. 132. Hint: If your CAS gives no solution 

for the differential equation. involving k, take specific 
k's from the beginning. 

(b) Experiment on the response of the ODE in 
Example 1 (or of another ODE of your choice) to an 
impulse OCt - a) for various systematically chosen a 

(> 0); choose initial conditions yeO) =1= 0, y' (0) = O. 

Also consider the solution if no impulse is applied. Is 
there a dependence of the response on a? On b if you 
choose bo(t - a)? Would -o(t - Ii) with a > a 

annihilate the effect of o(t - a)? Can you think of 
other questions that one could consider 
experimentally by inspecting graphs? 

15. PROJECT. Heaviside Formulas. (a) Show that for a 
simple root a and fraction AI(s - a) in F(s)/G(s) we 
have the Heal'iside formllia 

• (.I' - a)F(s) 
A = hm -----'--'-

s~a G(s) 

(b) Similarly, show that for a root a of order m and 
fractions In 

F(s) 

G(s) 

Al + -- + further fractions 
s-a 

we have the Heaviside formulas for the first coefficient 

. (.I' - a)mF(s) 
Am = hm -----

s-.a G(s) 

and for the other coefficients 

I d m
-

k [(.I' - ai"'F(s) ] 
Ak = lim ---k 

(m - k)! s~a d.~m- G(s) 

k= 1."'.111-\. 

16. TEAM PROJECT. Laplace Transform of Periodic 
Functions 

(a) Theorem. The Laplace trallSform of a piecewise 
COlltilluOllS fUllctioll f(t) n'ith period p is 

(I \) I JV 
~(f) = 1 _ e-Ps 0 e-stf(t) dt (.I' > 0). 

Prove this theorem. Hint: Write {o'" = I P + tv + ... o v . 
Set t = (n - I)p in the nth integral. Take out e -(n-l)p 

from under the integral sign. Use the sum formula for 
the geometric series. 
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(b) Half-wave rectifier. Using (11), show that the 
half-wave rectification of sin wt in Fig. 135 has the 
Laplace transform 

w 

(A half-wave rectifier clips the negative portions of the 
curve. Afull-wave rectifier converts them to positive; 
see Fig. 136.) 

v~_ 
2rrlm 3rrlm 

Fig. 135. Half-wave rectification 

f(t) I 
lr",~~Y~ 
o TrIm 2rrlm 3rrlm 

Fig. 136. Full-wave rectification 

(c) Full-wave rectifier. Show that the Laplace 
transform of the full-wave rectification of sin wt is 

W 7TS 
2 2 coth -. 

S + w 2w 

(d) Saw-tooth wave. Find the Laplace transform of 
the saw-tooth wave in Fig. 137. 

fit) 

k 
I 

i/ 
o p 2p 3p 

Fig. 137. Saw-tooth wave 

(e) Staircase function. Find the Laplace transform of 
the staircase function in Fig. 138 by noting that it is 
the difference of ktlp and the function in (d). 

~':~ 
O~-----pL------2~p----~3pL------

Fig. 138. Staircase function 

6.5 Convolution. Integral Equations 
Convolution has to do with the multiplication of transforms. The situation is as follows. 
Addition of transforms provides no problem; we know that :£(f + g) = :£(f) + :£(g). 
Now multiplication of transforms occurs frequently in connection with ODEs, integral 
equations, and elsewhere. Then we usually know :£(f) and :£(g) and would like to know 
the function whose transform is the product :£(f):£(g). We might perhaps guess that it is 
fg, but this is false. The transform of a product is generally differentfrom the product of 
the transforms of the factors, 

:£(fg) =1= :£(f):£(g) in general. 

To see this take f = et and g = 1. Then fg = et , :£(fg) = lI(s - 1), but :£(f) = lI(s - 1) 
and :£(1) = lis give :£(/):£(g) = lI(s2 - s). 

According to the next theorem, the correct answer is that :£(f):£(g) is the transform of 
the convolution of f and g, denoted by the standard notation f * g and defined by the 
integral 

(1) 
t 

h(t) = (f * g)(t) = f f( 'T)g(t - 'T) d'T. 
o 
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THEOREM 1 Convolution Theorem 

If two functions f and g satisfy the assumption in the existence theorem in Sec. 6.1, 
so that their transfonns F and G exist, the product H = FG is the transform of h 
given by (1). (Proof after Example 2.) 

E X AMP L E 1 Convolution 

Let H(s) = 1/[(s - a)s]. Find h(t). 

Solution. 1/(s - a) has the inverse fft) = eat. and lis has the inverse get) = 1. With f( 7) = eM and 
g(t - 7) == I we thus obtain from (I) the answer 

t 

h(t) = eat * I = I eaT. I d7 = .!.. (eat - I). 
o a 

To check. calculate 

H(s) = :£(h)(s) = (_1- .!..) 
a s-a - s 

a I 1 
• --- = -- . - = :£(eat) :£(1). 

~ s2-as s-a s • 
E X AMP L E 2 Convolution 

Let H(s) = 1I(s2 + w2)2. Find h(t). 

Solution. The inverse of l/(s2 t- w2
) is (sin wt)lw. Hence from (I) and the trigonometric formula (11) in 

App. 3.1 with x = ~(wt + W7) and y = ~(wt - W7) we obtam 

sin wt sin wt 
h(t) = -- *--

w w 
1 It 

= 2 sin W7 sin w(t - 7)d7 
W 0 

I It 
= --2 [-cos wt + cos W7] d7 

2w 0 

[
sin W7 Jt 

-7COS wt + -w-
7~O 

[ 
sinwwtJ 2w2 -t cos wt + 

in agreement with formula 21 in the table in Sec. 6.9. • 
PROOF We prove the Convolution Theorem 1. CAUTION! Note which ones are the variables 

of integration! We can denote them as we want, for instance, by T and p, and write 

and G(s) = L= e-SPg(p) dp. 
o 

We now set t = p + T, where T is at first constant. Then p = t - T, and t varies from T 

to 00. Thus 

G(s) = t)O e-sCt-'r)g(t - T) dt = eST t)O e-stg(t - T) dt, 
T T 
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T in F and t in G vary independently. Hence we can insert the G-integral into the 
F-integral. Cancellation of e-

ST and eST then gives 

x cc X:xl 

F(s)G(s) = I e-STf(T)eST I e-stg(t - T) dulT = I f(T) I e-stg(t - T) dtdT. 
o TOT 

Here we inregrate for fixed T over T from T to rye and then over T from 0 to co. This is the 
blue region in Fig. 139. Under the assumption on f and g the order of integration can be 
reversed (see Ref. [A5] for a proof using uniform convergence). We then integrate first 
over T from 0 to t and then over t from 0 to x, that is, 

x t oc 

F(s)G(s) = I e-st f f(T)g(t - T) cIT dt = I e-sth(t) dt = ~(h) = H(s). 
o 0 0 

This completes the proof. 

r 

Fig. 139. Region of integration in the 
tT-plane in the proof of Theorem 1 

• 

From the definition it follows almost immediately that convolution has the properties 

f*g=g*f 

f * (gl + g2) = f * g] + f * g2 

(f * g) * v = .f * (g * v) 

f*O=O*f=O 

(commutative law) 

(distributive law) 

(associative law) 

similar to those of the multiplication of numbers. Unusual are the following two properties. 

E X AMP L E 3 Unusual Properties of Convolution 

f * I "* f in general. For instance. 
t 

(* I = f .. I d. = ~ (2 "* t. 
o 

(f * j)(t) ~ 0 may not hold. For instance. Example 2 with w = I gives 

sin t * sin t = -~ t cos t + ~ sin t (Fig. 140). • 
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4 

2 

-2 

-4 

Fig. 140. Example 3 

We shall now take up the case of a complex double root (left aside in the last section in 
connection with partial fractions) and find the solution (the inverse transform) directly by 
convolution. 

E X AMP L E 4 Repeated Complex Factors. Resonance 

In an undamped mass-spring system, resonance occurs if the frequency of the driving force equals the natural 
frequency of the system. Then [he model is lsee Sec. 2.8) 

where "'0
2 

= kIm, k is the spring constant. and 111 is the mass of the body attached to the spring. We assume 
yeO) = ° and y' (0) = 0, for simplicity. Then the subsidiary equation is 

2 2 K",o 
s Y + "'0 Y = 2 2 . 

S + "'0 
Its solution is 

This is a transform as in Example 2 with", = "'0 and multiplied by K",o' Hence from Example 2 we can see 
directly that the solution of our problem is 

K",o ( sin "'ot ) K 
y(t) = --2 -tcoS "'ot + = --2 (-"'olCOS "'ol + sin "'ot)· 

2"'0 "'0 2"'0 

We see that the first term grows without bound. Clearly, in the case of resonance such a tenn must occur. (See 
also a similar kind of solution in Fig. 54 in Sec. 2.8.) • 

Application to Nonhomogeneous Linear ODEs 
Nonhomogeneous linear ODEs can now be solved by a general method based on 
convolution by which the solution is obtained in the form of an integral. To see this, recall 
from Sec. 6.2 that the subsidiary equation of the ODE 

(2) y" + ay' + by = ret) (a. b constant) 

has the solution [(7) in Sec. 6.2] 

Yes) = [(s + a)y(O) + y' (O)jQ(s) + R(s)Q(s) 

with R(s) = :£(r) and Q(s) = 1/(S2 + as + b) the transfer function. Inversion of the first 
term [ ... ] provides no difficulty; depending on whether !a2 

- b is positive, zero, or 
negative, its inverse will be a linear combination of two exponential functions, or of the 



252 CHAP. 6 Laplace Transforms 

form (Cl + c2t)e-at/2, or a damped oscillation, respectively. The interesting term is 
R(s)Q(s) because ret) can have various forms of practical importance, as we shall see. If 
yeo) = 0 and y' (0) = 0, then Y = RQ, and the convolution theorem gives the solution 

(3) 
t 

y(t) = f qV - T)r( T) dT. 
o 

E X AMP L E 5 Response of a Damped Vibrating System to a Single Square Wave 

Using convolution. determine the response of the damped mass-spring system modeled by 

y" + 3/ + 2)' = r(t), r(t) = 1 if I < t < 2 and 0 otherwise, yeO} = / (O) = o. 

This system with an input (a driving force) that acts for sOllie lillie ollly (Fig. 141) has been solved by partial 
fraction reduction in Sec. 6.4 (Example I). 

Solution by Convolution. The transfer function and its inverse are 

Q(s} = s2 + 3s + 2 (s + I}(s + 2) s + I s+2' 
hence 

Hence the convolution integral (3) is (except for the limits of integration) 

( ) I ( ) I d I[ -(t-T) -2(t-T)] d -(t-T) 1 -2(t-T) 
Y t = q t - T' T = e - e T = e - 2e . 

Now comes an important point in handling convolution. reT} = 1 if I < T < 2 only. Hence if t < I. the integral 
is zero. If I < t < 2. we have to integrate from T = I (not 0) to t. This gives (with the first two terms from the 
upper limit) 

If t > 2, we have to integrate from T = I to 2 (not to t). This gives 

Figure 141 shows the input (the square wave) and the interesting output, which is zero from 0 to I. then increases, 
reaches a maximum (near 2.6) after the input has become zero (why?), and finally decreases to zero in a monotone 
fashion. • 

yet) 

1 

0.5 

2 

/output (response) 

3 4 

Fig. 141. Square wave and response in Example 5 

Integral Equations 
Convolution also helps in solving certain integral equations. that is, equations in which 
the unknown function yet) appears in an integral (and perhaps also outside of it). This 
concerns equations with an integral of the form of a convolution. Hence these are special 
and it suffices to explain the idea in terms of two examples and add a few problems in 
the problem ~et. 
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E X AMP L E 6 A Volterra Integral Equation of the Second Kind 

Solve the Volterra integral equation of the second kind3 

t 

yet) - f yeT) sin (t - T) dT = t. 
o 

Solutioll. From (I) we see that the given equation can be written as a convolution. y - y * sin t = t. Writing 
Y = !ley) and applying the convolution theorem, we obtain 

I s2 

The solution is 

yes) - Yes) -2-- = yes) -2--
s+1 s+l 

and give~ the answer 
t3 

yet) = t + (5 . 

Check the result by a CAS or by substitution and repeated integration by parts (which will need patience) .• 

E X AMP L E 7 Another Volterra Integral Equation of the Second Kind 

Solve the Volterra integral equation t 

y(t) - J (1 + T) ylt - T) dT = I - sinh r. 
o 

Solution. By (1) we can write y - (I + t) * Y = 1 - sinh t. Writing Y = !ley), we obtain by using the 
convolution theorem and then taking common denominators 

yeS) [I - (.!.. + ~)J = .!.. - _1_. 
S s2 s s2 - I 

hence Y(s) • 

(S2 - S - l)ls cancels on both sides, so that solving for Y simply gives 

s 
Yes) = s2 _ I and the solution is yet) = cosh t. • 

11-81 CONVOLUTIONS BY INTEGRATION 

Find by integration: 
13. 

S2(S2 + 1) 

s 
14. 

(S2 + 16)2 

1. 1 * 1 

3. t * et 

5. 1 * cos wt 

7. ekt * e-kt 

2. t * t 
4. eat * e bt (a i= b) 

6. 1 * f(t) 

8. sin t * cos t 

5 
15. 

S(S2 - 9) 
16. 

(S2 + 1 )(S2 + 25) 

19-161 INVERSE TRANSFORMS 

17. (Partial fractions) Solve Probs. 9, 11, and 13 by using 
partial fractions. Comment on the amount of work. 

118-251 SOLVING INITIAL VALUE PROBLEMS 

USing the convolution theorem, solve: 

BY CONVOLUTION 

Find f(t) if 5£(f) equals: 

1 
9. 

(s - 3)(s + 5) 

11. --=-2-­
s(s + 4) 

10. 
s(s - 1) 

12. -::-2 --­
S (s - 2) 

18. y" + y = sin t. yeO) = O. /(0) = 0 

19. y" + 4)' = sin 3t, yeO) = o. /(0) 0 

20. y" + 5/ + 4)' = 2e-2t , yeO) = 0, 
y' (0) = 0 

31f the upper limit of integration is variable, the equation is named after the Italian mathematician VITO 
VOLTERRA (1860-1940), and if that limit is collsta1l1, the equation is named after the Swedish mathematician 
IVAR FREDHOLM (1866-1927). "Of the second kind (fust kind)" indicates that y occurs (does not occur) 
outside of the integral. 
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21. y" + 9y = 8 sin t if 0 < t < IT and 0 if t > 7.; 

yeO) = 0, y'(O) = 4 

127-341 INTEGRAL EQUATIONS 
Using Laplace transforms and showing the details, solve: 

22. y" + 3y' + 2y = 1 if 0 < t < a and 0 if t > a; 

yeO) = 0, y' (0) = 0 

23. y" + 4)' = 5u(t - I); y(O) = 0, y' (0) = 0 

24. y" + 5/ + 6y = 8(t - 3); yeo) = 1, 
y'(O) = 0 

25. y" + 6/ + 8y = 28(t - I) + 28(t - 2); 
y(o) = L /(0) = 0 

26. TEAM PROJECT. Properties of Convolution. 
Prove: 

(a) Commutativity. f * g = g * f 
(b) Associativity, (f * g) 7- v = f * (g * v) 

(c) Distrihutivity, f * (gl + g2) = f * gl + f * g2 

(d) Dirac's delta. Derive the sifting formula (4) in 
Sec. 6.-1- by using h· with a = 0 [(1), Sec. 6.4] and 
applying the mean value theorem for integrals. 

(e) Unspecified drhing force. Show that forced 
vibrations governed by 

),'(0) = K2 

with w =1= 0 and an unspecified driving force r(t) can 
be written in convolution form. 

I K2 
Y = - sin wt * ret) + Kl cos wt + - sin wt. 

w w 

t 

27. y(t) - J Y( T) (IT = I 
o 
t 

28. y(t) + f y( T) cosh (t - T) dT = t + e' 
o 
t 

29. y(T) - f y( T) sin (t - T) dT = cos t 
o 

t 

30. y(t) + 2 J Y(T) cos (t - T) d. = cos t 
o 

t 

31. y(t) + J (t - T)Y(T) dT = 1 
o 
t 

32. y(t) - J y( T)(t - T) dT = 2 - 4t2 

o 
t 

33. y(t) + 2e t J e-TY(T) ciT = te' 
o 

35. CAS EXPERIJ\iIENT. Variation of a Parameter. 
(a) Replace 2 in Prob. 33 by a parameter k and 
investigate graphically how the solution curve changes 
if you vary k, in particular near k = - 2. 

(b) Make similar experiments with an integral 
equation of your choice whose solution is oscillating. 

6.6 Differentiation and Integration of Transforms. 
ODEs with Variable Coefficients 

The variety of methods for obtaining transforms and inverse transforms and their 
application in solving ODEs is surprisingly large. We have seen that they include direct 
integration. the use oflinearity (Sec. 6.1), shifting (Secs. 6.1, 6.3), convolution (Sec. 6.5). 
and differentiation and integration of functions f(t) (Sec. 6.2). But this is not all. In this 
section we shall consider operations of somewhat lesser importance. namely. 
differentiation and integration of transforms F(s) and corresponding operations for 
functions f(t), with applications to ODEs with variable coefficients. 

Differentiation of Transforms 
It can be shown that if a function f(t) satisfies the conditions of the existence theorem in 
Sec. 6.1, then the derivative F' (s) = dF/ds of the transform F(s) = ::£(f) can be obtained 
by differentiating F(s) under the integral sign with respect to s (proof in Ref. LGR4] listed 
in App. 1). Thus, if 

F(s) = {O e-stf(t) dt, 
o 

then F'(s) = - fOe-sttf(t) dt. 
o 
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Consequently, if SE(f) = F(s), then 

(1) SE{tf(t)} = -F'(s), hence SE-I{F'(s)} = -rf(t) 

where the second formula is obtained by applying SE- I on both sides of the first formula. 
In this way, differentiation of the transform of a function corresponds to the multiplication 
of the function by -to 

E X AMP L E 1 Differentiation of Transforms. Formulas 21-23 in Sec. 6.9 

We shall derive the following three formulas. 

SE(f) f(t) 

1 1 
(2) 

(S2 + (32)2 
--3 (sin f3t - f3t cos f3t) 
2f3 

s t 

(S2 + (32)2 
- sin f3t 

I 2f3 
(3) 

, 

(4) I 
S2 1 

(S2 + (32)2 
- (sin f3t + f3t cos f3t) 
2f3 

Solutioll. From (I) and formula 8 (with w = (3) in Table 6.1 of Sec. 6.1 we obtain by differentiation 
(CAUTION! Chain rule') 

Dividing by 2f3 and using the linearity of 5£. we obtain (3). 

Formulas (2) and (4) are obtained as follows. From (I) and formula 7 (with w = (3) in Table 6.1 we find 

(5) 
(S2 +~) - 2s2 

f(t co~ f3t) = - 2 r:2 2 
(s + p ) 

From this and formula 8 (with w = (3) in Table 6.1 we have 

( I) s2_f32 
5£ t cos f3t ::':: - sin f3t = 2 2 2 ::':: _,,2 + f32 

f3 (s + f3 ), 

On the right we now take the common denominator. Then we see that for the plus sign the numerator becomes 
s2 - ~ + s2 + f32 = 2 .. 2, so that (4) follows by division by 2. Similarly. for the minus sign the numerator 
takes the form s2 - f32 - s2 - ~ = -2~. and we obtain (2). This agrees with Example 2 in Sec. 6.5. • 

Integration of Transforms 
Similarly, if f(t) satisfies the conditions of the existence theorem in Sec. 6.1 and the limit 
of f(t)/t, as t approaches 0 from the tight, exists, then for s > k, 

(6) 5£{ f;t) } = [" F('S) df hence 

In this way, illfegration of the tmllsform of a function f(t) corresponds 10 the division of 
f(t) by t. 



256 CHAP. 6 laplace Transforms 

We indicate how (6) is obtained. From the definition it follows that 

and it can be shown (see Ref. [GR4] in App. 1) that under the above a:.:.umptions we may 
reverse the order of integration, that is, 

Integration of e-st with respect to s gives e-st
/( -t)o Here the integral over s on the right 

equals e-st/t. Therefore, 

fO F(s) d'S = to e-st J(t) dr = 5£{ J(t) } 
sot t 

(s> k). • 

E X AMP l E 2 Differentiation and Integration of Transforms 

( 
W2) s2 + w2 

Find the inverse transform of In I + 7 = In --S-2-

Solution. Denote the given transfonn by F(s). Its derivative is 

, d ( 2 2 2) 2s 2s F (s) = -d In (s + w ) - In s = -2--2 - "2 . 
s s + w s 

Taking the inverse transform and using (I), we obtain 

II '} I{ 2s 2 } ;e- F (5) =;e- -2--2 - - = 2 cos wt - 2 = -tf(t). 
s + w s 

Hence the inverse fell of H,I') is fO) = 2(1 - cos wt)/t. This agrees with formula 42 in Sec, 6.9. 
Alternatively, if we let 

2s 2 
G(s) = -2---2 - - • 

s + w s 
then g(t) = ;e-1(G) = 2(cos wr - 1). 

From this and (6) we get. in agreement with the answer just obtained, 

2 2 00 

s + w J glt) 2 
In --2- = G(s) ds = - - = - (1 - cos wt). 
sst t 

the minus occurring since s is the lower limit of integration. 
In a similar way we obtain formula 43 in Sec. 6.9, 

;e-1 fin (I - ::)} = ~ (I - cosh at). • 
Special Linear ODEs with Variable Coefficients 
Formula (I) can be used to solve certain ODEs with variable coefficients. The idea is this, 
Let 5£(y) = Y. Then 5£(/) = sY - yeO) (see Sec. 6.2). Hence by (I), 

(7) 
, d 

5£(ty ) = - - [sY - yeO)] 
ds 

dY 
-Y- s -. 

ds 



SEC. 6.6 Differentiation and Integration of Transforms. ODEs with Variable Coefficients 257 

Similarly, :iCy") = s2y - sy(O) - y' (0) and by (1) 

(8) "d[2 ' ] 2
dY 

:i(ty ) = - - s Y - sy(O) - y (0) = -2sY - s - + y(O). 
~ ~ 

Hence if an ODE has coefficients such as at + b, the subsidiary equation is a first-order ODE 
for Y, which is sometimes simpler than the given second-order ODE. But if the latter has 
coefficients at2 + bt + c, then two applications of (1) would give a second-order ODE for 
Y, and this shows that the present method works well only for rather special ODEs with variable 
coefficients. An important ODE for which the method is advantageous is the following. 

E X AMP L E 3 Laguerre's Equation. Laguerre Polynomials 

Laguerre's ODE is 

(9) ty" + (I - t)y' + ny = O. 

We determine a ,olution of (9) with 11 = O. I. 2 ..... From (7)-(9) we get the subsidiary equation 

[ . 2sY_s2dY +y(O)] +sY-y(O)- (_Y_S
dY

) +IIY=O. 
ds ds 

Simplification gives 

2 dY 
(s - s ) ds + (n + I - slY = O. 

Separating variables, using partial fractions, integrating (with the constant of integration taken zero), and taking 
exponentials. we get 

(10*) dY = _ II + I - s ds = (_'_1 __ ~) ds 
Y s - s2 S - I s 

and 

We write In = Y-\Y) and prove Rodrigues's formula 

(10) 10 = I, II = 1,2,···. 

These are polynomials because the exponential terms cancel if we perform the indicated differentiations. They 
are called Laguerre polynomials and are usually denoted by Ln (see Problem Set 5.7, but we continue to reserve 
capital letters for transforms). We prove (10). By Table 6.1 and the first shifting theorem (s-shifting), 

hence by (3) in Sec. 6.2 

because the derivatives up to the order II - I are zero at O. Now make another shift and divide by n! to get [see 
(10) and then (10*)] 

(s _ I)n 
;£(1,,) = ~ = Y. 

s • 

11-121 TRANSFORMS BY DIFFERENTIATION 

Showing the details of your work. find 5£(f) if f(t) equals: 

5. 

7. 

te-2t ~in t 

t 2 sinh 4t 

6. t 2 sin 3t 

8. tnekt 

1. 4te t 2. - t cosh 2t 9. t 2 sin wt 10. t cos WI 

3. t sin wt 4. t cos (t + k) 11. t sin (t + k) 12. te -kt sin I 
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13-20 I INVERSE TRANSFORMS 
Using differentiation, integration. s-shifting. or convolution 
(and showing the details). find f(t) if 5£(f) equals: 

6 s 
13. 

(s + 1)2 
14. 

(S2 + 16)2 

15. 
2(s + 2) 

[(s + 2)2 + 1]2 

s 
16. 

(S2 _ 1)2 

2 s+a 
17. 

(s - k)3 
18. In--

s+b 
s 

19. In-­
S - 1 

20. 
s 

arccot -
w 

21. WRITING PROJECT. Differentiation and 
Integration of Functions and Transfonns. Make a 
shOlt draft of these four operations from memory. Then 
compare your notes with the text and write a report of 
2-3 pages on these operations and their significance in 
applications. 

22. CAS PROJECT. Laguerre Polynomials. (a) Write a 
CAS program for finding In(t) in explicit form from 
(10). Apply it to calculate 10 , ••• ,/10, Verify that 10 , 

• • . ,110 satisfy Laguerre's differential equation (9). 

f,.7 Systems of ODEs 

(b) Show that 

and calculate 10 , ••• , 110 from this formula. 

(c) Calculate 10 ,' ••• 110 recursively from 10 = 1, 
II=I-tby 

(11 + 1)ln+l = (2/l + I - t)ln - /lIn_I' 

(d) Experiment with the graphs of 10 , •••• 110, finding 
out empirically how the first maximum. first minimum. 
... is moving with respect to its location as a function 
of II. Write a short report on this. 

(e) A generating function (definition in Problem Set 
5.3) for the Laguerre polynomials is 

L I,,(t)xn = (1 - X)-IetX/(X-ll. 

n=O 

Obtain 10 , ••. ,110 trom the corresponding partial sum 
of this power series in x and compare the In with those 
in (a), (b), or (e) . 

The Laplace transform method may also be used for solving systems of ODEs. as we shall 
explain in terms of typical applications. We consider a first-order linear system with 
constant coefficients (as discussed in Sec. 4.1) 

(1) 

Writing Y1 = ~(Yl)' Yz = ':£(yz)· G1 = ':£(gl)' Gz = .:£(gz), we obtain from (I) in 
Sec. 6.2 the suhsidiary system 

By collecting the Yr and Yz-tenns we have 

(2) 

By solving this system algebraically for Y1(s), Yz(s) and taking the inverse transform we 
obtain the solution h = ~-l(Yl)' yz = ~-l(yZ) of the given system (I). 
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Note that (1) and (2) may be written in vector form (and similarly for the systems in 
the examples); thus, setting y = [h YZ]T, A = [ajk], g = [gl g2]T, Y = [Y1 Yz]T, 

G = [G 1 GZ]T we have 

y' = Ay + g and (A - sI)Y = -yeO) - G. 

E X AMP L E 1 Mixing Problem Involving Two Tanks 

Tank Tl in Fig. 142 contains initially 100 gal of pure water. Tank T2 contains initially 100 gal of water in which 
150 Ib of salt are dissolved. The inflow into Tl is 2 gal/min from T2 and 6 gal/min containing 6 Ib of salt trom 
the outside. The inflow into T2 is 8 gal/min from T1. The outflo\>; from T2 is 2 + 6 = 8 gal/min. as shown in 
the figure. The mixtures are kept unifonn by stirring. Find and plot the salt contents )"1(1) and Y2(t) in Tl and 
T2 , respectively. 

Solutioll. The model is obtained in the form of two equations 

Time rate of change = Inflow/min - Outflow/min 

for the two tanks (see Sec. 4.1). Thus, 

, 8 2 
)'1 = - Wo Y1 + 100)'2 + 6, 

, 8 8 
)'2 = Wo ."1 - Wo ."2' 

The initial conditions are )'1(0) = 0, )'2(0) = 150. From this we see that the subsidiary system (2) is 

(-0.08 - s)Y1 + 
6 

s 

+ (-0.08 - S)Y2 = -150. 

We solve this algebraically for YI and Y2 by elimination (or by Cramer's rule in Sec. 7.7), and we write the 
solutions in terms of partial tractions, 

9s + 0.48 
YI = -------­

s(s + 0.12)(s + 0.(4) 

150s2 + 12s + 0.48 
Y2 = 

s(s + 0.12)(s + 0.04) 

100 62.5 

s s + 0.12 

100 125 
--+ 

s s + 0.12 

By taking the inverse transfonn \>;e arrive at the solution 

)'1 = 100 - 62.5e-O.12t - 37.5e-O.04t 

)'2 = 100 + 125e-O.12t - 75e-o.04t . 

37.5 

s + 0.04 

75 

s + 0.04 

Figure 142 shows the interesting plot of these functions. Can you give physical explanations for their main 
features? Why do they have the limit 100? Why is ."2 not monotone, whereas Yl is? Why is )'1 from some time 
on suddenly larger than Y2? Etc. • 

y(tl 

2 gal/min 

-
50 100 150 200 

5 u l/min 

Fig. 142. Mixing problem in Example I 
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Other systems of ODEs of practical importance can be solved by the Laplace transform 
method in a similar way, and eigenvalues and eigenvectors as we had to determine them 
in Chap. 4 will come out automatically, as we have seen in Example 1. 

E X AMP l E 2 Electrical Network 

Find the currents ;1(1) and ;2(1) in the network in Fig. 143 with Land R measured in terms of the usual units 
(see Sec. 2.9). U(I) = 100 volts if 0 ~ I ~ 0.5 sec and 0 thereafter, and ;(0) = 0, ;' (0) = o. 

L
J 
=0.8H 

0.5 1.5 2 2.5 3 
Currents 

Network 

Fig. 143. Electrical network in Example 2 

Solution. The model of the network is obtained from Kirchhoff's voltage law as in Sec. 2.9. For the lower 
circuit we obtain 

0.8;~ + l(i} - ;2) + 1.4i} = 100[1 - U(I - i)l 
and for the upper 

= O. 

Division by 0.8 and ordering gives for the lower circuit 

;~ + 3;1 - 1.25;2 = 125[1 - 11(1 - i)l 
and for the upper 

With i}(O) = O. ;2(0) = 0 we obtain from (I) in Sec. 6.2 and the second shifting theorem the subsidiary system 

(s + 3)/1 _ 1.25/2 = 125 (+ _ e -:/2) 
-I} + (s + 1)12 = O. 

Solving algebraically for I} and 12 gives 

125(s + I) -s/2 
I} = (1 - e ), 

s(s + !)(s + ~) 

125 
12 = (l - e -s/2). 

s(s + i)(s + ~) 

The right sides without the factor I - e -S/2 have the partial fraction expansions 

500 125 625 
h - 3(s + i) - 21(s + ~) 

and 
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500 250 250 + ------,,-
7s 3(s + !) 21(s + ~) 

respectively. The inverse transform of this gives the solution for 0 ~ t ~ !, 

125 625 -7t/2 500 
;1(t) = - -- e-t12 --e + 

7 3 21 
(0 ~ t ~ i). 

250 250 -7t/2 500 
;2(t) = - -- e-tJ2 + --e + --

3 21 7 

According to the second shifting theorem the solution for t > I is ;1(t) - ;1(t - !) and ;2(t) - ;2(t -I), that is, 

125 625 
;1(t) = - -- (I - e1l4)e-tl2 - -- (I - e7/4)e-7t12 

3 21 
(t > i) 

250 250 
;2(t) = - -3- (1 - e1l4)e-t/2 + ~ (I - e7/4)e-7t/2 

Can you explain physically why both currents eventually go to zero, and why i1(t) has a sharp cusp whereas 
;2(t) has a continuous tangent direction at t = I? • 

Systems of ODEs of higher order can be solved by the Laplace transform method in a 
similar fashion. As an important application, typical of many similar mechanical systems, 
we consider coupled vibrating masses on springs. 

l' 
o~ mj = I 

~, Yj 

°l Q m 2 =1 

Y2 1, 
Fig. 144. Example 3 

E X AMP L E 3 Model of Two Masses on Springs (Fig. 144) 

The mechanical system in Fig. 144 consists of two bodies of mass I on three springs of the same spring constant 
k and of negligibly small masses of the springs. Also damping is assumed to be practically zero. Then the model 
of the physical system is the system of ODEs 

(3) 
Y~ = -kYI + k(Y2 - Yl) 

Y; = -k(Y2 - Yl) - kY2· 

Here Yl and Y2 are the displacements of the bodies from their positions of static equilibrium. These ODEs follow 
from Newton's second law, Mass X Acceleration = Force, as in Sec. 2.4 for a single body. We again regard 
downward forces as positive and upward as negative. On the upper body, -kyl is the force of the upper spring 
and k(Y2 - Yl) that of the middle spring, Y2 - Yl being the net change in spring length-think this over before 
going on. On the lower body, -k(Y2 - Yl) is the force of the middle spring and -ky2 that of the lower spring. 
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We shall determine the solution corresponding to the initial conditions )"1(0) = I, Y2(0) = I. y~(O) = V3k, 
y~(O) = -V3k. Let Y1 = ~(Yl) and Y2 = ~(Y2)' Then from (2) in Sec. 6.2 and the initial conditions we obtain 
the subsidiary system 

s2Yl - s - V3k = -kYl + k(Y2 - Y1) 

s2Y2 - s + "\'3i: = -k(Y2 - Y1 ) - kY2. 

This system of linear algebraic equations in the unknowns Y1 and Y2 may be written 

(S2 + 2k)Yl - kY2 = S + V3i: 

-kYI + (,,2 + 2k)Y2 = s - V3k. 

Elimination (or Cramer's rule in Sec. 7.7) yields the solution, which we can expand in terms of partial fractions. 

(s + V3k)(S2 + 2k) + k(s - V3k) 

(s2 + 2k)2 - k2 

(S2 + 2k)(s - V3k) + k(s + V3k) 

(s2 + 2k)2 - k 2 

Hence the solution of our initial value problem is (Fig. 145) 

s 

S2 + k + s2 + 3k 

s 

Yl(t) = ~-l(Yl) = cos Ykt + sin V3kt 

Y2(t) = ~-I(Y2) = cos Ykt - sin V3kt. 

We see that the motion of each ma,s is harmonic (the system is undamped !), being the superposition of a "slow" 
oscillation and a "rapid" oscillation. • 

0, "1jJ 2, 

-2 

Fig. 145. Solutions in Example 3 

.. -= .. ~ lE5-H 6 7 

11-201 SYSTEMS OF ODES 

Usmg the Laplace transform and showing the details of 
YOUT work, solve the initial value problem: 

1. )'~ = -)'1 - )'2, 

Y1(0) = 0, 

, 
)'2 = )'1 - )'2, 

Y2(0) = I 

2. Y~ = 5Yl + Y2' y~ = Y1 + 5Y2' 
Yl(O) = 1, Y2(0) = -3 

3. Y~ = -6)'1 + 4Y2, 

)'1(0) = -2, 
Y~ = -4Yl + 4V2, 

)'2(0) = -7 

4. y~ + Y2 = 0, 
)"1(0) = 1, 

Yl + y~ = 2 cos T, 

h(O) = 0 

5. y~ = -4Y1 - 2Y2 + t, Y; = 3\'1 + )'2 - t, 

Yl(O) = 5.75, Y2(0) = -6.75 

6. y~ = 4Y2 - 8 cos 4t, y; = -3Yl - 9 sin 4t, 
)'1(0) = 0, Y2(0) = 3 
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7. y~ = 5)'1 - 4)'2 - 9t2 + 2t, 
)'~ = lOy! - 7Y2 - 17t2 - 2t, 

Yl (0) = 2, Y2(0) = 0 

8. y~ = 6Yl + Y2, 
)'1(0) = -3, 

y~ = 9Yl + 6)'2' 

Y2(0) = -3 

9. y~ = 5Yl + 5)'2 - 15 cost + 27 sint, 
y~ = -lOVI - 5Y2 - 150 sin t. 
Yl(O) = 2, Y2(0) = 2 

10. y~ = . 2Yl + 3Y2, y~ = 4)'1 - Y2, 
Yl(O) = 4, Y2(0) = 3 

11. y~ = Y2 + 1 - u(t - I), 
y~ = -)'1 + I - u(t - 1), 
)'2(0) = 0 

YI(O) = 0, 

12. y~ = 2Yl + Y2, 
Yl(O) = 2, 

y~ = 4Yl + 2Y2 + 64tu(t - I), 

Y2(0) = 0 

13. y~ = Yl + 6u(t - 2)e4t
, Y; = )'1 + 2.\'2, 

.\'1(0) = 0, )'2(0) = 1 

14. y~ = -)'2, 

Yl(O) = 1, 
Y; = -Yl + 2[1 - u(t - 217)] cos t, 

Y2(0) = 0 

15. y~ = -3)'1 + Y2 + u(t - 1)et
, 

Y~ = -4Yl + 2Y2 + u(t - l)e t
, 

Yl(O) = 0, Y2(0) = 3 

16. )": = -2YI + 2)'2, Y; = 2.\'1 - 5Y2, 
.\'1(0) = 1, y~(O) = 0, Y2(0) = 3, y;(O) = 0 

17. y~ = 4Yl + 8)'2, Y; = 5Yl + .1'2' 

Yl(O) = 8, )'~(O) = -18, Y2(0) = 5, 
),;(0) = -21 

18. y~ +)'2 = -101 
Yl(O) = 0, 
y~(O) = -6 

sin lOt, Y; + Yl = 101 sin lOt, 
Y~(O) = 6, Y2(0) = 8, 

19. y~ + y~ = 2e t + e- t
, y~ + Y~ = 2 sinh t, 

y~ + y~ = et 

Y1(0) = 0, )'2(0) = 1, ."3(0) = 1 

20. 4y~ + y~ - 2y~ = O. -2y~ + y~ = l. 
2y~ - 4y~ = -I6t 

y](O) = 2, Y2(O) = 0, Y3(0) = 0 

21. TEAM PROJECT. Comparison of Methods for 
Linear Systems of ODEs. 

(a) Models. Solve the models in Examples 1 and 2 of 
Sec. 4.1 by Laplace transfonns and compare the 
amount of work with that in Sec. 4.1. (Show the details 
of your work.) 

(b) Homogeneous Systems. Solve the systems (8), 
(11)-(13) in Sec. 4.3 by Laplace transfonns. (Show the 
details.) 

(c) Nonhomogeneous System. Solve the syslem (3) 
in Sec. 4.6 by Laplace transfonns. (Show the details.) 
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FURTHER APPLICATIONS 

22. (Forced vibrations of two masses) Solve the model in 
Example 3 with k = 4 and initial conditions Yl(O) = 1, 

)'~(O) = 1, Y2(0) = 1, y~(O) = -1 under the assumption 
that the force II sin t is acting on the first body and the 
force -11 sin t on the second. Graph the two curves on 
common axes and explain the motion physically. 

23. CAS Experiment. Effect of Initial Conditions. In 
Prob. 22, vary the initial conditions systematically, 
describe and explain the graphs physically. The great 
variety of curves will surprise you. Are they always 
periodic? Can you find empirical laws for the 
changes in terms of continuous changes of those 
conditions? 

24. (Mixing problem) What will happen in Example I if 
you double all flows (in particular, an increase to 
12 gal/min containing 12 Ib of salt from the outside), 
leaving the size of the tanks and the initial conditions 
as before? First guess, then calculate. Can you relate 
the new solution to the old one? 

25. (Electrical network) Using Laplace transforms, find 
the currents i 1(t) and i2(t) in Fig. 146, where 
u(t) = 390 cos l and i1(0) = 0, i2(0) = O. How 
soon will the currents practically reach their steady 
state? 

2H 4H 

Network 

i(t) 

40 

20 

-20 

-40 

Currents 

Fig. 146. Electrical network and 
currents in Problem 25 

26. (Single cosine wave) Solve Prob. 25 when the EMF 
(electromotive force) is acting from 0 to 217 only. Can 
you do this just by looking at Prob. 25, praclically 
without calculation? 
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6.8 Laplace Transform: General Formulas 

Fonnula Name, Comments Sec. 

x 

F(s) = ~(f(t)} = L e-stf(t) dl Definition of Transfonn 
0 6.1 

f(t) = ~-lIF(s)} Inverse Transform 

~(af(t) + hg(t)} = a~{f(t)} + h~(g(t)} Linearity 6.1 

~{eO'tf(t)} = F(s - a) 
s-Shifting 

:;P-l{F(s - a)} = eatf(t) (First Shifting Theorem) 6.1 

;£(f') = s~(f) - f(O) 

~(f") = s2~(f) - sf(O) - t' (0) Differentiation 

'f(tn) = sn~(f) - s<n-l)f(O) - ... 
of Function 

6.2 

... - tn-0(O) 

~ {{f(T) dT} = ~ ~(f) Integration of Function 

t 

(f * g)tt) = I f( T)g(t - T) dT 
0 
t 

= I f(t - T)R(T) dT Convolution 6.5 
0 

~(f * g) = ~(f)~(g) 

~(f(t - a) u(t - a)} = e-asF(s) t-Shifting 
6.3 

~-l(e-asF(s)} = f(t - a) u(t - (I) (Second Shifting Theorem) 

'f(tf(t)} = -F'(s) Differentiation of Transform 

~ { f~t) } = (0 F{S) di' 
6.6 

Integration of Transform 

1 r 6.4 
~(f) = 1 _ e-Ps e-stf(t) dt f Periodic with Period p Project 

0 16 
I 
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6.9 Table of Laplace Transforms 
For more extensive tables, see Ref. [A9] in Appendix 1. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

F(s) = ~(f(t)} 

lis 

lIs2 

lIs n (n = 1,2, ... ) 

1/V:;: 
lIs3/2 

s - a 

(s - a)2 

1 

(a> 0) 

(s - a)n 

1 

(n=I,2,···) 

(k> 0) 

(s - a)(s - b) (a * b) 

s 

(s - a)(s - b) 
(a * b) 

t 

tn-l/(n - 1)! 

lIYm 
2vthr 
ta-l/f(a) 

f(t) 

1 
--- (aeat - bebt) 
(a - b) 

265 

Sec. 

6.1 

-

6.1 

--+------------~-------------+----

1 
13 

s 
14 

15 

s 
16 

17 

s-a 
18 

19 

20 

21 

1 
- sin wt 
w 

cos wt 

1 
- sinh at 
a 

cosh al 

1 
- eat sin wI 
w 

eat cos wt 

1 
2 (l - cos wt) 
w 

I 
3 (wt - sin wt) 
w 

1 
--3 (sin wt - wt cos wt) 
2w 

6.1 

6.6 

( continued) 
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Table of Laplace Transforms (continued) 

F(s) = !f{f(t)} J(t) Sec. 

s t 

} 66 

22 
(S2 + W 2)2 

- sinwt 
2w 

S2 1 
23 

(S2 + W2)2 
- (sin wt + wt cos wt) 
2w 

s 
(a 2 =t- b2) 

1 
24 

(S2 + £l2)(S2 + b2) 
2 2 (cos at - cos bt) 

b - a 

1 1 
25 

S4 + 4k4 
-3 (sin kt cos kt - cos kt sinh kt) 
4k 

s 1 
26 

S4 + 4k4 2k2 sin kt sinh kt 

1 1 
27 s4 - k4 

-3 (sinh kt - sin kt) 
2k 

s 1 
28 S4 - k4 

-2 (cosh kt - cos kt) 
2k 

~-Vs=b 
1 

29 ___ (ebt _ eat) 
2v:;;(i 

1 (a - b ) 30 
~~ 

e-(a+b)t/21o -2- l 5.6 

1 
31 

VS2 + a2 
Jo(at) 5.5 

s I 
32 

(s - a)3/2 
v:;;t eat(l + 2at) 

7ft 

1 V; ( t r-1
/
2 

33 (k> 0) -- -- 1 at 5.6 
(S2 _ a2)k r(k) 2a k-1/2( ) 

34 e-as/s u(t - a) 6.3 
35 e-as ti(t - a) 6.4 

36 1 -k/s -e fo(2Vkt) 5.5 
s 

1 -kls 1 
37 -e v:;;t cos 2Vkt Vs 7ft 

1 1 
38 _ ekls v:;;:k sinh 2Vkt ~/2 7fk 

39 e-kVs (k> 0) 
k _k2/4t ---e 

2v:;;(i 

1 
40 -Ins -int-I' (1' = 0.5772) 5.6 

S 

(continued) 
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Table of Laplace Transforms (continued) 

F(s) = ~ (f(t)} f(t) Sec 

.\'-a 1 
41 In-- _ (ebt _ eat) 

s-h t 

.1'2 + w2 2 
42 In .\'2 

-(1 
t 

- cos wt) 6.6 

.1'2 - a 2 2 
43 In 

.\'2 
-(1 - cosh at) 
t 

w I 
44 arctan - - sin wt 

.I' t 

I App. 
45 - arccot s Si(t) 

A3.1 .I' 

======-= : .:.'= -= = == :_:=. -£¥IE:--w.::::Q--u::E-"S T ION 5 AND PRO B L EMS 

1. What do we mean by operational calculus? 

2. What are the steps needed in solving an ODE by Laplace 
transform? What is the subsidiary equation? 

3. The Laplace transform is a linear operation. What does 
this mean? Why is it important? 

4. For what problems is the Laplace transform preferable 
over the usual method? Explain. 

5. What are the unit step and Dirac's delta functions"? Give 
examples. 

6. What is the difference between the two shifting 
theorems? When do they apply? 

7. Is .'£[f(t)g(t») = .'£ [f(t)}.'£{g(t))? Explain. 

8. Can a discontinuous function have a Laplace transform? 
Does every continuous function have a Laplace 
transform? Give reasons. 

9. State the transforms of a few simple functions from 
memory. 

10. If two different cuntinuous functions have transforms, 
the latter are different. Why is this practically important? 

111-221 LAPLACE TRANSFORMS 
Find the transform (showing the details of your work and 
indicating the method or formula you are Using): 

11. te 3t 12. e-t sin 2t 

13. sin2 t 14. cos2 4t 

15. tu(t - '17) 16. l/(t - 2'17) sin t 

17. e
t * cos 2t 18. (sin wt) * (cos wt) 

19. sin t + sinh t 20. cosh 1 - cos t 

21. eat _ e bt (a "* h) 22. cosh 2t - cosh t 

INVERSE LAPLACE TRANSFORMS 
Find the inverse transform (showing the details of your work 
and indicating the method or formula used): 

10.1' 15 
23. 

.1'2 + 2 
24 . 

.1'2 - 4 

12 3.1' 
25. 

.1'2 + 4.\' + 20 
26. 

.1'2-2.1'+2 

27. 
5.1' + 4 
--- e-2s 

.1'2 

2.1' - 10 
28. 

.1'3 
e-5s 

2s + 4 .1'2 - 16 
29. 

(S2 + 4.1' + 5)2 30. 
(.1'2 + 16)2 

31. (.~ + 2 ) e-s 
.1'3 

32 . 
180 + 18.1'2 + 3.1'4 

.1'7 

IT 2 
33. 

.1'2(.1'2 + w2) 
34. 

2s2 + 2.1' + I 
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135-501 SINGLE ODEs AND SYSTEMS OF ODEs 

Solve by Laplace transforms. showing the details and 
graphing the solution: 

35. y" + Y = uCt - 1). yeO) = o. 
y' (0) = 20 

36. y" + L6y = 48(r - 'iT), yeO) = -1, 
y'(O) = 0 

37. y" + 4)" = 88(r - 5), yeO) = 10, 
y' (0) = -1 

38. y" + Y = 1I(t - 2). \'(0) = 0, 

/(0) = 0 

39. y" + 2y' + lOy = 0, yeo) = 7, 
/ (0) = -1 

40. y" + 4/ + 5y = SOt. yeo) = 5. 
y'(o) = -5 

41. y" - y' - 2y = 12u(t - 'iT) sin t. 
y(O) = 1, y' (0) = -1 

42. y" - 2/ + y = t8(t - 1), 
yeO) = o. ),'(0) = 0 

43. y" - 4/ + 4y = 8(t - 1) - 8(r - 2). 
yeO) = o. y' (0) = 0 

44. y" + 4y = 8(t - iT) - 8(t - 2 'iT), 

yeO) = I, /(0) = 0 

45. Y~ + Y2 = sin t, y~ + Yl = -sint, 
h(O) = 1, Y2(0) = 0 

46. y~ = -3Yl + Y2 - 12t, y~ = -4YI + 2Y2 + 12t, 
Yl (0) = 0, Y2(0) = 0 

47. y~ = Y2, y~ = -5Yl - 2Y2, 
h (0) = 0, Y2(0) = 1 

48. y~ = J2, )'~ = -4Yl + 8Ct - 'iT). 

h(O) = 0, )'2(0) = 0 

49. y~ = 4Y2 - 4et
. y~ = 3Yl + )"2' 

)'1 (0) = 1. Y ~ (0) = 2. Y2(O) = 2. y~(O) = 3 

50. y~ = L6Y2, 
h(O) = 2. 

}'~ = 16Y1, 
y~(O) = 12, 

MODELS OF CIRCUITS AND NETWORKS 

y~(O) = 4 

51. (RC-circuit) Find and graph the CUlTent i(t) in the RC­
circuit in Fig. 147, where R = 100 n, C = 10-3 F, 
v(t) = 100rV if 0 < t < 2, v(t) = 200 V if t > 2 and 
the initial charge on the capacitor is O. 

R 

~c 
vet) 

Fig. 147. RC-circuit 

52. (LC-circuit) Find and graph the charge q(t) and the 
current i(t) in the LC-circuit in Fig. 148, where 
L = 0.5 H, C = 0.02 F, v(t) = 1425 sin 51 V if 

o < t < 'iT, v(t) = 0 if t > 'iT, and CUlTent and charge at 
t = 0 are O. 

'L L 

vet) 

Fig. 148. LC-circuit 

53. (RLC-circuit) Find and graph the current i(t) in the 
RLC-circuit in Fig. 149, where R = 1 n. L = 0.25 H, 
C = 0.2 F, v(t) = 377 sin 20t V, and CUlTent and charge 
at t = 0 are O. 

vet) 

Fig. 149. RLC-circuit 

54. (Network) Show [har by Kirchhoff's voltage law 
(Sec. 2.9), the CUlTents in the network in Fig. L50 are 
obtained from the system 

Li~ + R(i l - i2 ) = v(t) 

., .f 1. 
R(12 - 11) + C 12 = O. 

Solve this system. where R = 1 n, L = 2 H. C = 0.5 
F. v(t) = 90e-t /4 V. i1(Q) = O. i2(Q) = 2 A. 

L 

w)c:~r oJ 
Fig. 150. Network in Problem 54 

55. (Network) Set up the model of the network in Fig. 151 
and find and graph the CUlTents. assuming that [he 
currents and the charge on the capacitor are 0 when the 
switch is closed at t = O. 

L=lH 

c= 0.01 F 

Switch R2 = 30 n 

Fig. 151. Network in Problem 55 
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Laplace Transforms 

The main purpose of Laplace transforms is the solution of differential equations and 
systems of such equations, as well as corresponding initial value problems. The 
Laplace transform Hs) = :£(f) of a function f(t) is defined by 

(1) F(s) = :£(f) = L'X) e-stf(t) dt 
o 

(Sec. 6.1). 

This definition is motivated by the property that the differentiation of f with respect 
to t corresponds to the multiplication of the transform F by s; more precisely, 

5£(f') = s:£(f) - f(O) 

:£(f") = s2:£(f) - sf(O) - f' (0) 
(Sec. 6.2) (2) 

etc. Hence by taking the transform of a given differential equation 

y" + ay' + by = ret) (a, b constant) 

and writing :£(y) = Yes), we obtain the subsidiary equation 

(4) (S2 + as + b)Y = :£(r) + sf(O) + t' (0) + afCO). 

Here, in obtaining the transform :£(r) we can get help from the small table in 
Sec. 6.1 or the larger table in Sec. 6.9. This is the first step. In the second step we 
solve the subsidiary equation algebraically for Y(s). In the third step we determine 
the inverse transform yet) = :;e-l(y). that is, the solution of the problem. This is 
generally the hardest step. and in it we may again use one of those two tables. Yes) 
will often be a rational function, so that we can obtain the inverse :£-1(Y) by partial 
fraction reduction (Sec. 6.4) if we see no simpler way. 

The Laplace method avoids the determination of a general solution of the 
homogeneous ODE. and we also need not determine values of arbitrary constants 
in a general solution from initial conditions; instead, we can insert the latter directly 
into (4). Two further facts account for the practical importance of the Laplace 
transform. First, it has some basic properties and resulting techniques that simplify 
the determination of transforms and inverses. The most important of these properties 
are listed in Sec. 6.8, together with references to the corresponding sections. More 
on the use of unit step functions and Dirac's delta can be found in Secs. 6.3 and 
6.4, and more on convolution in Sec. 6.5. Second, due to these properties, the present 
method is particularly suitable for handling right sides r(t) given by different 
expressions over different intervals of time, for instance, when ret) is a square wave 
or an impulse or of a form such as ret) = cos t if 0 ~ t ~ 47T and 0 elsewhere. 

The application of the Laplace transform to systems of ODEs is shown in 
Sec. 6.7. (The application to PDEs follows in Sec. 12.11.) 
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CHAPTER 8 

CHAPTER 9 

CHAPTER 10 

PA RT B 

Linear Algebra. 
Vector Calculus 

• 

Linear Algebra: Matrices, Vectors, Determinants. Linear Systems 

Linear Algebra: Matrix Eigenvalue Problems 

Vector Differential Calculus. Grad, Div, Curl 

Vector Integral Calculus. Integral Theorems 

Linear algebra in Chaps. 7 and 8 consists of the theory and application of vectors and 
matrices, mainly related to linear systems of equations, eigenvalue problems, and linear 
transformations. 

Linear algebra is of growing importance in engineering research and teaching because it 
forms a foundation of numeric methods (see Chaps. 20-22), and its main instruments, 
matrices, can hold enormous amounts of data-think of a net of millions of telephone 
connections-in a form readily accessible by the computer. 

Linear analysis in Chaps. 9 and 10. usually called vector calculus, extends differentiation 
of functions of one variable to functions of several variables-this includes the vector 
differential operations grad, div, and curl. And it generalizes integration to integrals over 
curves, surfaces, and solids, with transformations of these integrals into one another, by 
the basic theorems of Gauss, Green, and Stokes (Chap. 10). 

Software suitable for linear algebra (Lapack, Maple, Mathematica, Matlab) can be found 
in the list at the opening of Part E of the book if needed. 

Numeric linear algebra (Chap. 20) can be studied directly after Chap. 7 or 8 because 
Chap. 20 is independent of the other chapters in Part E on numerics. 
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CHAPTER 7 

Linear Algebra: Matrices, 
Vectors, Determinants. 
Linear Systems 

This is the first of two chapters on linear algebra, which concerns mainly systems of 
linear equations and linear transformations (to be discussed in this chapter) and eigenvalue 
problems (to follow in Chap. 8). 

Systems of linear equations, briefly called linear systems, arise in electrical networks, 
mechanical frameworks. economic models_ optimization problems, numerics for 
differential equations, as we shall see in Chaps. 21-23, and so on. 

As main tools. linear algebra uses matrices (rectangular arrays of numbers or functions) 
and vectors. Calculations with matrices handle matrices as single objects, denote them by 
single letters, and calculate with them in a very compact form, almost as with numbers, 
so that matrix calculations constitute a powerful "mathematical shorthand". 

Calculations with matrices and vectors are defined and explained in Secs. 7.1-7.2. 
Sections 7.3-7.8 center around linear systems, with a thorough discussion of Gauss 
elimination, the role of rank. the existence and uniqueness problem for solutions (Sec. 7.5), 
and matrix inversion. This also includes determinants (Cramer's rule) in Sec. 7.6 (for 
quick reference) and Sec. 7.7. Applications are considered throughout this chapter. The 
last section (Sec. 7.9) on vector spaces, inner product spaces, and linear transformations 
is more abstract. Eigenvalue problems follow in Chap. 8. 

COMMENT. Numeric linear algebra (Sees. 20.1-20.5) call be studied immediately 
after this chapter. 

Prerequisite: None. 
Sections thatma)" be omitted in a short course: 7.5, 7.9. 
References lind Answers to Problems: App. I Part B, and App. 2. 

7.1 Matrices, Vectors: 

272 

Addition and Scalar Multiplication 
In this ~ection and the next one we introduce the basic concepts and rules of matrix and 
vector algebra. The main application to linear systems (systems of linear equations) begins 
in Sec. 7.3. 
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A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These 
numbers (or fUnctions) are called the entries (or sometimes the elements) of the matrix. 
For example, 

[0~3 ~:J ' ran a12 a,,] 
a2l a 22 °23 -0.2 

(1) a3l a32 a33 

[e-
x 

2X
2 J, [:J [al a2 a3]' 

e6x 4x 

are matrices. The first matrix has two rows (horizontal lines of entries) and three columns 
(vertical lines). The second and third matrices are square matrices, that is, each has as 
many rows as columns (3 and 2, respectively). The entries of the second matrix have two 
indices giving the location of the entry. The first index is the number of the row and the 
second is the number of the column in which the entry stands. Thus, a23 (read a 111'0 three) 
is in Row 2 and Column 3, etc. This notation is standard, regardless of whether a matrix 
is square or not. 

Matrices having just a single row or column are called vectors. Thus the fourth matrix 
in (l) has just one row and is called a row vector. The last matrix in (1) has just one 
column and is called a column vector. 

We shall see that matrices are practical in various applications for storing and processing 
data. As a first illustration let us consider two simple but typical examples. 

E X AMP L E 1 Linear Systems, a Major Application of Matrices 

In a system of linear equations, briefly called a linear system, such as 

the coefficients of the unknowns Xl, X2, X3 are the entries of the coefficient matrix, call it A, 

6 9 

The matrix o -2 

-8 

is obtained by augmenting A by the right sides of the linear system and is called the augmented matrix of the 
system. In A the coefficients of the system are displayed in the pattern of the equations. That is, their position 
in A corresponds to that in the system when written as shown. The same is true for A. 

We shall see that the augmented matrix A contains all the informatIon about the solutions of a system, 
so that we can solve a system just by calculations on its augmented matrix. We shall discuss this in great 
detail, beginning in Sec. 7.3. Meanwhile you may verify by substitution that the solution is xl = 3, x2 = !, 
X3 = -1. 

The notation Xl, X2, X3 for the unknowns is practical but not essential; we could choose x, y, Z or some other 
letters. • 
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E X AMP L E 2 Sales Figures in Matrix Form 

Sales figures for three products I. II. !II in a store on Monday (M). Tuesday (T). ... may for each week be 
arranged in a matrix 

M T Vv Th F S 

[7 330 810 0 210 470] 
A= 120 780 SOO SOO 960 II 

100 0 0 270 430 780 III 

If the company has ten stoTes. we can set up ten such matrices, one for each store. Then by adding corresponding 
entries of these mmrices we can get a mmrix ,howing the IOtal sale~ of each product on each day. Can you think 
of other data for which matrices are feasible? FOT instance. in transportation or storage problems? Or in recoTding 
phone calls. or in li,ting distances in a network of roads? • 

General Concepts and Notations 
We shall denote matrices by capital boldface letters A, B, C. ... ,or by writing the general 
entry in brackets; thus A = [ajk], and so on. By an m x 11 matrix (read 171 by n matrix) 
we mean a matrix with m rows and n columns-rows come always first! m X 11 is called 
the size of the matrix. Thus an 17l X 11 matrix is of the form 

(2) 

The matrices in (I) are of sizes 2 X 3.3 X 3,2 X 2, I X 3. and 2 X l. respectively. 
Each entry in (2) has two subscripts. The first is the row number and the second is the 

column number. Thus (/21 is the entry in Row 2 and Column I. 
If m = n, we call A an n X n square matrix. Then its diagonal containing the emries 

a11, a22, ... , ann is called the main diagonal of A. Thus the main diagonals of the two 
square matrices in (1) are an, (/22' a33 and e-x

, 4x, respectively. 
Square matrices are particularly important. as we shall see. A matrix that is not square 

is called a rectangular matrix. 

Vectors 
A vector is a matrix with only one row or column. Its entries are called the components 
of the vector. We shall denote veCIOrs by lowercase boldface letters a, b, ... or by its 
general component in brackets, a = [OJ], and so on. Our special vectors in (I) suggest 
that a (general) row vector is of the form 

For instance, a = [-2 5 0.8 0 1]. 
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A column vector is of the form 

b= For instance, 

Matrix Addition and Scalar Multiplication 
What makes matrices and vectors really useful and particularly suitable for computers is 
the fact that we can calculate with them almost as easily as with numbers. Indeed, we 
now introduce rules for addition and for scalar multiplication (multiplication by numbers) 
that were suggested by practical applications. (Multiplication of matrices by matrices 
follows in the next section.) We first need the concept of equality. 

D E FIN I T ION Equality of Matrices 

Two matrices A = [ajk] and B = [bjk ] are equal, written A = B, if and only if they 
have the same size and the corresponding entries are equal, that is. 
a11 = b11 , a12 = b12, and so on. Matrices that are not equal are called different. 
Thus, matrices of different sizes are always different. 

E X AMP L E 3 Equality of Matrices 

DEFINITION 

Let 

and [4 OJ B= 
3 -1 

Then 
all = 4. 

A=B if and only if 

The following matrices aTe all different. Explain! 

[~ ~J [~ 

Addition of Matrices 

3 

2 

a12 = o. 

~J [~ 4 

The sum of two matrices A = [ajk] and B = [bjkJ of the same size is written 
A + B and has the entries ajk + bjk obtained by adding the corresponding entries 
of A and B. Matrices of different sizes cannot be added. 

As a special case, the sum a + b of two row vectors or two column vectors, which must 
have the same number of components, is obtained by adding the corresponding 
components. 
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E X AMP L E 4 Addition of Matrices and Vectors 

DEFINITION 

If 
[

-4 
.\ = 

o 

6 ~J and B = [: -I °oJ· then A + B = [~ 5 

2 

A in Example 3 and our present A cannot be added. If a = [5 7 21 and b = [-6 2 OJ. then 
a+b=[-I 9 21. 

An application of matrix addition was suggested in Example 2. Many others will follow. 

Scalar Multiplication (Multiplication by a Number) 

The product of any /1l X 1l matrix A = [ajk] and any scalar c (number c) is written 
cA and is the I1l X 11 matrix cA = [cajk] obtained by mUltiplying each entry of A 
by c. 

• 

Here (-I)A is simply written -A and is called the negative of A. Similarly, (-k)A is 
written - kA. Also, A + (- B) is written A - B and is called the difference of A and B 
(which must have the same size!). 

E X AMP L E 5 Scalar Multiplication 

[
2.7 -1.8] 

If A = 0 0.9 

9.0 -4.5 
[

-2.7 
then -A = 0 

-9.0 

1.8] 
-0.9 

4.5 
[ 
3 -2] [0 0] ~OA= 0 1,OA=0 O. 

10 -5 0 0 

If a matrix B shows the distances between some cities in miles. 1.60,)B gives these distances in kilometers .• 

Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the 
addition of numbers we obtain similar laws for the addition of matrices of the same size 
111 X 11, namely, 

(3) 

(a) 

(b) 

A+B=B+A 

(A + B) + C = A + (B + C) 

(c) A + 0 = A 

(d) A+(-A)=O. 

(written A + B + C) 

Here 0 denotes the zero matrix (of size 111 X 11), that is. the III X 11 matrix with all entries 
zero. (The last matrix in Example 5 is a zero matrix.) 

Hence matrix addition is commutative and associative [by (3a) and (3b)]. 
Similarly, for scalar multiplication we obtain the rules 

(a) c(A + B) = cA + cB 

(b) 
(4) 

(c + k)A = cA + kA 

(c) c(kA) = (ck)A (written ckA) 

(d) IA = A. 
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. 1fD=B""l £:M::::S E T 7 ~] 

11-81 ADDITION AND SCALAR MULTIPLICATION 
OF MATRICES AND VECTORS 

Let 

A = [-~ ~ :l, B = [-~ -: -:l, 
6 5 -4J -3 4 oj 

C = [: ~l. D = [-~ ~ l 
1 3J -8 3J 

u~ []. F [-~1 
Find the following expressions or give reasons why they 
are undefined. 

1. C + D, D + C, 6(D - C), 6C - 6D 

2. 4C, 2D, 4C + 2D, 8C - OD 

3. A + C - D, C - D, D - C, B + 2C + 4D 

4. 2(A + B), 2A + 2B, 5A - ~B, A + B + C 

5. 3C 8D, 4(3A). (4' 3)A, B - fDA 

6.5A 3C, A - B + D, 4(B - 6A), 4B - 24A 

7. 33u, 4v + 9u, 4(v + 2.25u), u - v 

8. A + u, 12u + lOy, O(B - v), OB + u 

9. (Linear system) Write down a linear system (as in 
Example I) whose augmented matrix is the matrix B 
in this problem set. 

10. (Scalar multiplication) The matrix A in Example 2 
shows the numbers of items sold. Find the matrix 
showing the number of units sold if a unit consists of 
(a) 5 items, (b) 10 items? 

11. (Double subscript notation) Write the entries of A in 
Example 2 in the general notation shown in (2). 

12. (Sizes, diagonal) What sizes do A, B, C, D, u, v in 
this problem set have? What are the main diagonals of 
A and B, and what about C? 

13. (Equality) Give reasons why the five matrices in 
Example 3 are different. 

14. (Addition of vectors) Can you add (a) row vectors 
whose numbers of components are different, (b) a row 
and a column vectOr with the same number of 
components, (c) a vector and a scalar? 

15. (General rules) Prove (3) and (4) for general 3 X 2 
matrices and scalars c and k. 

16. TEAM PROJECT. Matrices in Modeling Networks. 
Matrices have various applications, as we shall see, 
m a form that the~e problems can be efficiently 
handled on the computer. For instance, they can be 
used to characterize connections in electrical 
networks, in nets of roads, in production processes, 
etc., as follows. 

(a) Nodal incidence matrix. The network in Fig. 152 
consists of 5 branches or edges (connections, numbered 
1, 2, .. ·,5) and 4 nodes (points where two or more 
branches come together), with one node being 
grounded. We number the nodes and branches and give 
each branch a direction shown by an arrow. This we 
do arbitrarily. The network can now be described by a 
"nodal incidence matrix" A = [ajk], where 

{ 

+ 1 if branch k leaves node (J) 
Gjk = - 1 if branch k enters node (j) 

o if branch k does not touch (J). 

Show that for the network in Fig. 152 the matrix A has 
the given form 

Branch 1 2 3 4 5 

Node CD 

[-~ 
-1 -1 0 

-~l Node ® 1 0 1 

Node ® 0 1 0 

Node@ 0 0 -1 

Fig. 152. Network and nodal incidence 
matrix in Team Project 16(a) 

(b) Find the nodal incidence matrices of the networks 
in Fig. 153. 
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Fig. 153. Networks in Team Project 16{b) 

(c) Graph the three networks corresponding to the 
nodal incidence matrices 

-I 

o -I 

o 

o -1 

-1 o 

-I] 
I , 

o 

o 
o 

o 

o 0 

o -I 

-I o 
o 0-1 

o o 
o -1 

o o -1 -I 

o 

o -1 

(d) Mesh incidence matrix. A network can also be 
characterized by the mesh incidence matrix M = [mjkl. 

where 

+ 1 if branch k is in mesh [2J 
and has the same orientation 

11Ijk ~ - 1 if branch k is in mesh [2J 
and has the opposite orientation 

o if branch k is not in mesh [2J 
and a mesh is a loop with no branch in its interior (or 
in its exterior). Here, the meshes are numbered and 
directed (oriented) in an arbitrary fashion. Show that 
in Fig. 154 the matrix M corresponds to the given 
figure, where Row I corresponds to mesh I, etc. 

M~ [~ 
1 0 -1 0 

~l 0 0 1 -1 

-1 1 0 1 

0 1 0 0 

Fig. 154. Network and matrix M in 
Team Project 16{d) 

(e) Number the nodes in Fig. 154 from left to right I, 
2, 3 and the low node by 4. Find the corresponding 
nodal incidence matrix. 

7.2 Matrix Multiplication 
Matrix mUltiplication means multiplication of matrices by matrices. This is the last 
algebraic operation to be defined (except for transposition, which is of lesser importance). 
Now matrices are added by adding corresponding entries. In multiplication, do we multiply 
corresponding entries? The answer is no. Why not? Such an operation would not be of 
much use in applications. The standard definition of multiplication looks artificial, but 
will be fully motivated later in this section by the use of matrices in "linear 
transformations," by which this multiplication is suggested. 
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DEFINITION Multiplication of a Matrix by a Matrix 

The product C = AB (in this order) of an 111 X 11 matrix A = [Gjk] times an r X p 
matrix B = [bjk] is defined if and only if r = 11 and is then the 111 X P matrix 
C = [Cjk] with entries 

(1) 

n 

Cjk = L Gjtb/k = Gjlb lk + Gj2b 2k + ... + Gjnbnk 

t~l 

j = 1.···. m 

k = L··· .p. 

The condition r = n means that the second factor, B, must have as many rows as the first 
factor has columns, namely n. As a diagram of sizes (denoted as shown): 

A B C 
[m X 11] [n X r] = [111 X r]. 

Cjk in (1) is obtained by multiplying each entry in thejth row of A by the corresponding 
entry in the kth column of B and then adding these 11 products. For instance, 
C21 = G21bl1 + G22b21 + ... + G2nbnl, and so on. One calls this briefly a 
"multiplicatioll of rows into columlls." See the illustration in Fig. 155, where 11 = 3. 

Fig. 155. Notations in a product AB = C 

E X AMP L E 1 Matrix Multiplication 

AB = [: : -:] [: -: 

-6 -3 2 9-4 

3 1] [22 
8 = 26 

1 -9 

-2 43 42] 
6 

- 28 

7 -16 14 

4 -37 

Here ell = 3 . 2 + 5 . 5 + (- I) . 9 = 22, and '0 on. The entry in the box is ("23 = 4' 3 + O· 7 + 2 . 1 = 14. 
The product BA is not defined. • 

E X AMP L E 2 Multiplication of a Matrix and a Vector 

2J [3J = [4'3 + 2'5J = [22J 
8 5 I . 3 + 8· 5 43 

E X AMP L E 3 Products of Rowand Column Vectors 

[3 6 

whereas 

6 

12 

24 

is undefined. • 

• 
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E X AMP L E 4 CAUTION! Matrix Multiplication Is Not Commutative, AB '* BA in General 

This is illustrated by Examples I and 2. where one of the two products is not even defined. and by Example 3. 
where the two products have different sizes. But it also holds for square matrices. For instance. 

but I] [99 99J 
100 = -<)<) -99 . 

It is interesting that this also shows that AB = 0 does 1101 necessarily imply BA = 0 or A = 0 or B = O. We 
shall discuss this further in Sec. 7.8. along with reasons when this happens. • 

Our examples show that the order offactors in matrix products must always be obse",ed 
vel)' carefully. Otherwise matrix multiplication satisfies rules similar to those for numbers, 
namely. 

(a) (kA)B = k(AB) = A(kB) written kAB or AkB 

(b) A(BC) = (AB)C written ABC 
(2) 

(c) (A + mc = AC + BC 

(d) C(A + B) = CA + CB 

provided A, B, and C are such that the expressions on the left are defined; here, k is any 
scalar. (2b) is called the associative law. l2c) and (2d) are called the distributive laws. 

Since matrix mUltiplication is a multiplication of rows into columns. we can write the 
defining formula (1) more compactly as 

(3) j = 1. .... 111: k = 1. .... p. 

where aJ is the jth row vector of A and bk is the hh column vector of B, so that in 
agreement with (1), 

[
b

ll

'] aJn] : = aj1b1k + aj2b2k + ... + aj"bnk. 

bnk 

E X AMP L E 5 Product in Terms of Rowand Column Vectors 

If A = [ajkl is of si/e 3 x 3 and B = [bjkl is of size 3 x 4. then 

(4) 
[

alb l 

AB = a2bl 

a3bl 

Taking al = [3 5 -11. a2 = [4 0 2]. etc .. verify (4) for the product in Example I. • 
Parallel processing of products on the computer is facilitated by a variant of (3) for 
computing C = AB, which is used by standard algorithms (such as in Lapack). In this 
method, A is used as given. B is taken in terms of its column vectors, and the product is 
compUled columnwise: thus, 

(5) 
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Columns of B are then assigned to different processors (individually or several IO each 
processor), which simultaneously compute the columns of the product matrix Abl , Ab2, etc. 

E X AMP L E 6 Computing Products Columnwise by (5) 

To obtain 

AB = [ 4 
-5 

from (5), calculate the columns 

o 

4 

7J [11 
6 - -17 

4 34J 
8 -23 

of AB and theu wnte them as a single matrix, as shown in the first formula ou the right. • 
Motivation of Multiplication by Linear Transformations 
LeL us now motivate the "unnatural" matrix multiplication by its use in linear 
transformations. For II = 2 variables these transformations are of the form 

(6*) 

and suffice to explain the idea. (For general n they will be discussed in Sec. 7.9.) For 
instance, (6*) may relate an xlx2-coordinate system to a YIY2-coordinate system in the 
plane. In vectorial form we can write (6*) as 

(6) 
[

YI] [au y- -Ax-
.\'2 1121 

Now suppose further that the xlx2-system is related to a wlw2-system by another linear 
transformation, say, 

(7) 

Then the )'IY2-system is related to the ~1'lw2-system indirectly via the x1x2-system, and we 
wish to express this relation directly. Substitution will show that this direct relation is a 
linear transformation, too, say, 

(8) 
[

e 11 
y = Cw = 

C21 

Indeed, substituting (7) into (6), we obtain 

Y1 = all(b11H."1 + b 12W 2) + a12(b21W I + b 22 W 2) 

= (allhll + a12h21)wI + (a11hI2 + a12b22)W2 

Y2 = a21(bllw l + b 12W 2) + a22(b21WI + b22W2) 

= (a2I b 11 + a22 b21)WI + (a21b I2 + a22 b 22)W2' 
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Comparing this with (8), we see that 

C12 = anb12 + a12b22 

C22 = a21b12 + a22b22' 

This proves that C = AB with the product defined as in (I). For larger matrix sizes the 
idea and result are exactly the same. Only the number of variables changes. We then have 
III variables y and n variables x and p variables w. The matrices A, B, and C = AB then 
have sizes III X Il, 11 X p. and m X p. respectively. And the requirement that C be the 
product AB leads to formula (1) in its general form. This motivates matrix multiplication 
completely. 

Transposition 
Transposition provides a transition from row vectors to column vectors and conversely. 
More generally, it gives us a choice to work either with a matrix or with its transpose. 
whatever will be more practical in a specific situation. 

Transposition of Matrices and Vectors 

The transpose of an III X /I matrix A = [ajk] is the 11 X m matrix AT (read A transpose) 
that has the rust row of A as its first column, the second row of A as its second 
column. and so on. Thus the transpose of A in (2) is AT = [a/<J], written out 

(9) 

As a special case, transposition converts row vectors to column vectors and 
conversely. 

E X AMP L E 7 Transposition of Matrices and Vectors 

If [

5 -8 
A= 

4 0 
then 

A little more compactly, we can write 

[: 
-8 J+: :l [3 or [3 8J 0 8 -1 = 0 -1 

[6 2 
3]T ~ [:l [:r" 2 3]. 

Note that for a square matrix. the transpose is obtained by interchanging entries that are symmetrically positioned 
with respect to the main diagonal, e.g., a12 and a21. and so on. • 
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Rules for transposition are 

(a) (AT)T = A 

(b) (A + B)T = AT + BT 
(10) 

(c) (CA)T = CAT 

(d) (AB)T = BTAT. 

CAUTION! Note that in (lOd) the transposed matrices are ill reversed order. We leave 
the proofs to the student. (See Prob. 22.) 

Special Matrices 
Certain kinds of matrices will occur quite frequently in our work, and we now list the 
most important ones of them. 

Symmetric and Skew-Symmetric Matrices. Transposition gives rise to two useful 
classes of matrices, as follows. Symmetric matrices and skew-symmetric matrices are 
square matrices whose transpose equals the matrix itself or minus the matrix, respectively: 

(11) (thus akj = -ajk, hence ajj = 0). 

Svmllletric Matri ... Ske\\ oS) mmetric M.ltrix 

E X AMP L E 8 Symmetric and Skew-Symmetric Matrices 

EXAMPLE 9 

120 
10 

150 

200] 
150 

30 

is symmetric. and is skew-symmetric. 

For instance, if a company has three building supply centers C1 , C2 , C3, then A could show costs, say, ajj for 
handling 1000 bags of cement on ceoter Cj , and ajl, (j "* k) the cost of shipping 1000 bags from Cj to Ck . 

Clearly. ajk = lI~j because shipping in the opposite direction will usually cost the same. 
Symmetric matrices have several general pmperties which make them importaot. This will be seen as we 

proceed. • 

Triangular Matrices. Upper triangular matrices are square matrices that can have 
nonzero entries only on and above the main diagonal, whereas any entry below the diagonal 
must be zero. Similarly, lower triangular matrices can have nonzero entries only on and 
below the main diagonaL Any entry on the main diagonal of a triangular matrix may be 
zero or not. 

Upper and Lower Triangular Matrices 

[~ 
0 0 

~l [: 

4 

:l [: 

() 

:l [~ :J. -3 0 
3 -I • 0 2 
0 6 

9 3 

LIpper triangular Lo\\ er Irian!!ul"r 
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Diagonal Matrices. These are square matrices that can have nonzero entries only on 
the main diagonal. Any entry above or below the main diagonal must be zero. 

If all the diagonal entries of a diagonal matrix S are equal. say, c, we call S a scalar 
matrix because mUltiplication of any square matrix A of the same size by S has the same 
effect as the multiplication by a scalar, that is, 

(12) AS = SA = cA. 

In particular, a scalar matrix whose entries on the main diagonal are all 1 is called a 
unit matrix (or identity matrix) and is denoted by In or simply by I. For I, formula (12) 

becomes 

(13) AI = IA = A. 

E X AMP L E 1 0 Diagonal Matrix D. Scalar Matrix S. Unit Matrix I 

• 

Applications of Matrix Multiplication 
Matrix multiplication will play a crucial role in connection with linear systems of 
equations, beginning in the next section. For the time being we mention some other simple 
applications that need no lengthy explanations. 

E X AMP L E 11 Computer Production. Matrix Times Matrix 

Supercomp Ltd produces two computer models PC I 086 and PC 1186. The matrix A shows the cost per computer 
(in thollsands of dollars) and B the production figures for the year 2005 (in multiples of 10000 units.) Find a 
mutrix C that shows the shareholders the cost per quarter (in millions of dollars) for raw muterial. labor. and 
miscellaneous. 

PCIOH6 PCIIH6 

[

1.2 
A = 0.3 

0.5 

Solutioll. 

1.6] Raw Components 

0.4 Labor 

0.6 Miscellaneous 

Quarter 

2 3 

[132 12.8 13.6 

C =AB = 3.3 3.2 3.4 

5.1 5.2 5.-l-

4 

156] 
3.9 

6.3 

Quarter 
2 3 

8 6 

2 4 

4 

Raw Components 

Labor 

Miscellaneous 

PCI086 

PCI186 

Since cost b given io multiples of $1000 aod production in multiples of 10 000 units the eotries of Care 
multiples of $10 millioos; thus ell = 13.2 means $132 miUion. etc. • 
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E X AMP L E 12 Weight Watching. Matrix Times Vector 

EXAMPLE 13 

Suppose that in a weight-watching program. a person of 1851b burns 350 callhr in walking (3 mph). 500 in 
bycycling (13 mph) and 950 in jogging (5.5 mph). Bill. v.eighing 185 lb. plans to exercise according to lhe 
matrix shown. Verify the calculmions (W = Walking. B = Bicycling. J = Jogging). 

W B J 

MON 

[ LO 

0 

::] [=] ~ [I::] 
MON 

WED l.0 1.0 WED 

FRI 1.5 0 U.5 1000 FRl 
950 

SAT 2.0 1.5 1.0 2400 SAT • 
Markov Process. Powers of a Matrix. Stochastic Matrix 

Suppose that the 2004 state of land use in a city of 60 mi2 of built-up area i~ 

C: Commercially Used 25<lc I: Industrially Used 20% R: Residentially Used 55%. 

Find the stales in 2009, 2014. and 2019, assuming that the transition probabilitie~ for 5-year intervals are given 
by the matrix A and remain practically the same over the time considered. 

From C From [ FTomR 

[0' 
0.[ 

0°, ] 
ToC 

A = 0.2 0.9 To I 

0.[ 0 0.8 ToR 

A is a stochastic matrix, that is, a square matrix with all entries nonnegative and all column sums equal to I. 
Our example concerns a Markov process1

, that is. a process for which thc probability of entering a certain state 
depends only 00 the last state occupied (and the matrix A), not on any earlier state. 

Solutioll. From the matrix A and the 2004 state we can compute the 2009 state. 

C 

R 
[

0.7'25 + 0.[ ·20 + 0,55] [0.7 

0.2 . 25 + 0.9' 20 + 0.2' 55 = 0.2 

0.1,25 + 0·20 + 0.8,55 0.1 

U.I 

0] [25] [19.5] 0.2 20 34.0. 

0.8 55 46.5 

0.9 

o 

To explain: The 2009 figure for C equals 25o/c times the probability 0.7 that C goes into C, plus 20'7< time~ the 
probability 0.1 that I goes into C, plus 55% times the probability U that R goes into C. Together, 

25· 0.7 + 20· 0.1 + 55' 0 = 19.5 ['k]. Also 25' 0.2 + 20' 0.9 + 55· 0.2 = 34 [%]. 

Similarly. the new R is 46.5%. We see that the 200!) state vector is the column vector 

y = [19.5 34.0 46.5]T = Ax = A [25 20 55]T 

where the column ~ector X = [25 20 55] T is the given 2004 state vector. Note that the ~um of the entries of 
y is 100 ['7<]. Similarly. you may verify that for 2014 and 20[9 we get the state vectors 

z = Ay = A(Ax) = A2x = [17.05 43.80 39.15]T 

u = Az = A~' = A3x = [16.315 50.660 33.025]T. 

lANDREI ANDREJEVITCH MARKOV (1856-1922), Russian mathematician, known for his work in 
probability theory. 
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Answer. In 2009 the commercial area will be 19.5% (11.7 mi2
). the industrial 34% (20.4 mi2

) and the 
residential 46.5% (27.9 mi2

). For 2014 the conesponding figures are 17.05%.43.80%. 39.15o/r. For 2019 they 
are 16.315%. 50.660%. 33.0:!5o/c. (In Sec. 8.2 we shall see what happens in the limit. assuming that those 
probabilities remain the same. In the meantime. can you experiment or guess?) • 

•... -.•. -- ..... -.... ::-~ __ .............. ,J __ • ___ ..., 

11-141 MULTIPLICATION, ADDITION, AND 
TRANSPOSITION OF MATRICES AND 
VECTORS 

Let 

A = l L~ =: -~J. B = l: : -~J' 
-10 5 1 -4 0 11 

C ~ l: -~l· ~ [l b ~ [3 0 81· 

Calculate the following products and sums or give reasons 
why they are not defined. (Show all intermediate results.) 
1. Aa. Ab, Ab T, AB 

2. AbT + BbT• (A + B)bT. bA. B - BT 
3. AB, BA, AAT, ATA 
4. A2. B2, (AT)2, (A2)T 

5. aT A, bA, 5B(3a + 2b T). 15Ba + lOBb T 
6. ATb, bTB, (3A - 2B)Ta, a T(3A - 28) 

7. ab, ba, (ab)A, a(bA) 
8. ab - ba, -(4b)(7a), -28ba, 5abB 
9. (A + B)2, A2 + AB + BA + B2, A2 + 2AB + B2 

10. (A + Bj(A - B). A2 - AB + BA - B2, A2 - B2 
11. A2B, A3. (AB)2. A2B2 

12. B3 , BC, (BC)2. (BC)(BC)T 
13. aTAa, aT(A + AT)a, bBbT. b(B - BT)b r 

14. aTCCTa, aTC2a. bCTCbT. bCCTbT 

15. (General rules) Prove (2) for 2 X 2 matrices A = [ajk]. 

B = [bjk]. C = [Cjk] and a general scalar. 
16. (Corrunutativity) Find all 2 x 2 matrices A = [ajk] 

that commute with B = [bjk]. where bjk = j + k. 

17. (Product) Write AB in Probs. 1-14 in terms of row 
and column vectors. 

18. (Product) Calculate AB in Prob. 1 column wise. (See 
Example 6.) 

19. TEAM PROJECT. Symmetric and Skew­
Symmetric J\;latrices. These matrices occur quite 
frequently in applications. so it is worthwhile to study 
some of their most important properties. 

(a) Verify the claims in (11) that (/kj = ajk for a 
symmetric matrix. and akj = -ajk for a skew-symmetric 
matrix. Give examples. 

20. 

21. 

(b) Show that for every square matrix C the matrix 
C + CT is symmetric and C - CT is skew-symmetric. 
Write C in the form C = S + T, where S is symmetric 
and T is skew-symmetric and find Sand T in terms of 
C. Represent A and B in Probs. 1-14 in this form. 

(c) A linear combination of matrices A, B, C, ... , 
M of the same size is an expression of the form 

(14) aA + bB + cC + ... + 111M. 

where a . ... , III are any scalars. Shuw that if these 
matrices are square and symmetric, so is (14): 
similarly, if they are skew-symmetric. so is (14). 

(d) Shuw that AB with symmetric A and B is 
symmetric if and only if A and B commute, that is. 
AB = BA. 

(e) Under what condition is the product of skew­
symmetric matrices skew-symmetric? 

(Idempotent and nilpotent matrices) By definition, 
A is idempotent if A2 = A, and B is nilpotent if 
Bm = 0 for some positive integer 111. Give examples 
(different from 0 or I). Also give examples such that 
A2 = I (the unit matrix). 

(Triangular matrices) Let VI' V 2 be upper triangular 
and L1. L2 lower triangular. Which of the following 
are triangular? Give examples. How can you save half 
of your work by transposition? 

U1 + U2, V\V2 , V12. VI + L1. U1L1, L1 + L2. 

L 1L2, L12 

22. (Transposition of products) Prove (lOa)-(lOc). 
lllustrate the basic formula (lOd) by examples of your 
own. Then prove it. 

APPLICATIONS 

23. (Markov process) If the transition matrix A has the 
entries all = 0.5, a12 = 0.3, a21 = 0.5, (/22 = 0.7 and 
the initial state is [1 1] T, what will the next three 
states be? 

24. (Concert subscription) In a community of 300000 
adults, subscribers to a concert se1ies tend to renew their 
SUbSCliption with probability 90% and persons presently 
not SUbsClibing will subscribe for the next season with 
probability 0.1 %. If the present number of subscribers 
is 2000, can one predict an increase, denease, or no 
change over each of the next three seasons? 
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25. CAS Experiment. Markov Process. Write a program 
for a Markov process. Use it to calculate further steps in 
Example 13 of the text. Experiment with other stochastic 
3 X 3 matlices, also using different starting values. 

26. (Production) In a production process, let N mean "no 
trouble" and r'trouble." Let the transition probabilities 
from one day to the next be 0.9 for N --> N, hence 0.1 
for N --> T, and 0.5 for T --> N, hence 0.5 for T --> T. 

If today there is no trouble, what is the probability of 
N two days after today? Three days after today? 

27. (Profit vector) Two factory outlets Fl and F2 in New 
York and Los Angeles sell sofas (S), chairs (C). and 
tables (T) with a profit of $110, $45, and $80, 
respectively. Let the sales in a certain week be given by 
the matrix 

S 

A = [600 

300 

c 
400 

820 

T 

100J 
205 

Introduce a "profit vector" p such that the components 
of v = Ap give the total profits of Fl and F 2 . 

28. TEAM PROJECT. Special Linear Transformations. 
Rotations have various applications. We show in this 
project how they can be handled by matrices. 

(a) Rotation in the plane. Show that the linear 
transformation y = Ax with matrix 

A = [COS 8 

sin 8 

-sin 8] 
cos 8 

and 

y= [J 
is a counterclockwi~e rotation of the Cartesian XIX2-

coordinate system in the plane about the origin. where 
8 is the angle of rotation. 
(b) Rotation through nO. Show that in (a) 

[

COS 11f1 
An = 

sin 1If1 

- sin I1f1J 

cos 118 

Is this plausible? Explain this in words. 
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(c) Addition formulas for cosine and sine. By 
geometry we should have 

[c~s a 

sm a 

-sin a] 
cos a [

COS f3 

sin f3 
-sin f3] 

cos f3 

= [cos (a + m 
sin (a + (3) 

-sin (a + m] . 
cos (a + (3) 

Del;ve from this the addition formulas (6) in App. A3.1. 

(d) Computer graphics. To visualize a three­
dimensional object with plane faces (e.g., a cube), we 
may store the position vectors of the vertices with 
respect to a suitable XIX2x3-coordinate system (and a 
list of the connecting edges) and then obtain a two­
dimensional image on a video screen by projecting 
the object onto a coordinate plane, for instance, onto 
the xlx2-plane by setting -'"3 = O. To change the 
appearance of the image. we can impose a linear 
transformation on the position vectors stored. Show 
that a diagonal matrix D with main diagonal entries 
3, 1, ~ gives from an x = [Xj] the new position vector 
y = Dx, where Yl = 3Xl (stretch in the Xl-direction 
by a factor 3), Y2 = X2 (unchanged), }"3 = ~X3 
(contraction in the x3-direction). What effect would a 
scalar matrix have? 

(e) Rotations in space. Explain y = Ax geometrically 
when A is one of the three matrices 

l: 

0 

-'~n' 1 cos fI 

sin 8 cos fI 

lOO' · 
0 -,m.] l'~· 

-sin '" ] Si~ cp 

o . sin '" cos '" 

0 cos cp . 0 0 

What effect would these transformations have in 
situations such as that described in (d)? 

7.3 Linear Systems of Equations. 
Gauss Elimination 

The most important use of matrices occurs in the solution of systems of linear equations, 
briefly called linear systems. Such systems model various problems, for instance, in 
frameworks, electrical networks, traffic flow, economics, statistics, and many others. In 
this section we show an important solution method, the Gauss elimination. General 
properties of solutions will be discllssed in the next sections. 



288 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems 

Linear System, Coefficient Matrix, Augmented Matrix 
A linear system of m equations in 11 unknowns"\ b ... 'Xn is a set of equations of the form 

(1) 

The system is called linear because each variable Xj appears in the first power only, just 
as in the equation of a straight line. alb"', amn are given numbers, called the 
coefficients of the system. b I , ... , bm on the right are also given numbers. [f all the bj 

are zero, then (1) is called a homogeneous system. If at least one bj is not zero, then (1) 

is called a nonhomogeneous system. 
A solution of (1) is a set of numbers Xl' •.•• Xn that satisfies all the m equations. 

A solution vector of (1) is a vector x whose components form a solution of (1). If the 
system (1) is homogeneous. it has at least the trivial solution Xl = 0, .... Xn = O. 

Matrix Form of the Linear System (1). From the definition of matrix multiplication 
we see that the m equations of (1) may be written as a single vector equation 

(2) Ax = b 

where the coefficient matrix A = [ajk] is the In x n matrix 

au ([12 a1n 

(/21 a22 a2n 
A= and x= and b= 

amI a m2 Q·'tnn 

Xn 

are column vectors. We assume that the coefficients (/jk are not all zero, so that A is not 
a zero matrix. Note that x has 11 components, whereas b has III components. The matrix 

A= 

is called the augmented matrix of the system (1). The dashed vertical line could be 
omitted (as we shall do later); it is merely a reminder that the last column of A does not 
belong to A. 

The uugmellted mutrix A determines the system (1) completely becam,e it contains all 
the given numbers appearing in (1). 
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E X AMP L E 1 Geometric Interpretation. Existence and Uniqueness of Solutions 

Unique solution 

Infinitely 
many solutions 

No solution 

Fig. 156. Three 
equations in 

three unknowns 
interpreted as 

planes in space 

If m = 11 = 2. we have two equations in two unknowns Xl, X2 

If we interpret Xl, X2 as coordinates in the xlx2-plane. then each of the two equations represems a slraight line. 
and (Xl. -'"2) is a solution if and only if the point P with coordinates Xl' X2 lies on both lines. Hence there are 
three possible cases: 

(aJ Precisely one solution if the lines intersect. 

(b) Infinitely many solutions if the lines coincide. 

(c) No solution if the lines are parallel 

For instance, 

Xl +X2 = 1 

2xl-x2 = 0 
Case (a) 

x2 

/ 
~ .p 

/ 
I 

/ 
:I xl 

Xl +X2 = 1 

2xl + 2x2 = 2 
Case (b) 

Xl +X2 = 1 

xl +X2 = 0 
Case (c) 

If the system is homogenous, Case (c) cannot happen. because then those two straight lines pass through the 
origin. whose coordinates O. 0 constitute the trivial solution. If you wish, consider three equations in three 
unknowns as representations of three planes in space and discuss the various possible cases in a similar fashion. 
See Fig. 156. • 

Our simple example illustrates that a system (I) may perhaps have no solution. This poses 
the following problem. Does a given system (1) have a solution? Under what conditions 
does it have precisely one solution? If it has more than one solution, how can we 
characterize the set of all solutions? How can we actually obtain the solutions? Perhaps 
the last question is the most immediate one from a practical viewpoint. We shall answer 
it first and discuss the other questions in Sec. 7.5. 

Gauss Elimination and Back Substitution 
This is a standard elimination method for solving linear systems that proceeds 
systematically irrespective of particular features of the coefficients. It is a method of great 
practical importance and is reasonable with respect to computing time and storage demand 
(two aspects we shall consider in Sec. 20.1 in the chapter on numeric linear algebra). We 
begin by motivating the method. If a system is in "triangular form," say, 

2Xl + 5X2 = 2 

13x2 = -26 

we can solve it by "back substitution," that is, solve the last equation for the variable. 
X2 = -26113 = -2, and then work backward, substituting X2 = -2 into the fIrst equation 
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and solve it for Xl' obtaining Xl = ~(2 - 5x2 ) = ~(2 - 5· (-2» = 6. This gives us the idea 
of fIrst reducing a general system to triangular form. For instance, let the given system be 

5 

-3~J . Its augmented matrix is 
-4Xl + 3x2 = - 30. 3 

We leave the fust equation as it is. We eliminate Xl from the second equation. to get a triangular 
system. For this we add twice the fIrst equation to the second, and we do the same operation 
on the rows of the augmented matrix. This gives -4Xl + 4Xl + 3X2 + 10x2 = -30 + 2· 2, 
that is, 

2 

Row :2 + 2 Row I [~ 
5 

-26 13 

where Row :2 + :2 Row I means "Add twice Row 1 to Row T in the original matrix. 
This is the Gauss elimination (for 2 equations in 2 unknowns) giving the triangular form, 
from which back substitution now yields X2 = - 2 and Xl = 6, as before. 

Since a linear system is completely determined by its augmented matrix, Gauss 
elimination call be dOlle by merely considering the matrices, as we have just indicated. 
We do this again in the next example. emphasizing the matrices by writing them first and 
the equations behind them. just as a help in order not to lose track. 

E X AMP L E 2 Gauss Elimination. Electrical Network 

Solve the linear system 

Derivation from the circuit ill Fig. 157 (Optional). This is the ~ystem for the unknown currellIs 
Xl = i l . x2 = i2• x3 = i3 in the electrical network in Fig. 157. To obtain it. we label the currents as shown. 
choosing directions arbitrarily: if a current will come out negative. this will simply mean that the current flows 
against the direction of our arrow. The current entering each battery will be the same as the current leaving it. 
The equations for the CUlTents result from Kirchhoff's laws: 

Kirchhoff's currellt law (KCL). At allY poim of a circuit. rhe sum of the illf/owillg Cl/rrems equals the Sll111 

of fhe olltf/oll"illg ("lIrrellTs. 

Kirclzhoff's I'oltage law (KVL). 111 allY closed loop. the slim of all I'Olrage drops eqllals rhe impressed 
electromotil'e force. 

Node P gives the first equation, node Q the second, the right loop the third. and the left loop the fourth, as 
indicated in the figure. 

rtJ fWV 

NodeP: i1 - i2 + i3 = 0 

80 v~ 
NodeQ: -ir + i

2
- 13 = 0 

Right loop: 1Oi2 + 25i3 = 90 

P 15Q Left loop: 20;1 + lOi2 =80 

Fig. 157. Network in Example 2 and equations relating the currents 
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Solution by Gauss Elimination. This system could be solved rather quickly by noticing its particular 
form. But this is not the point. The point is that the Gauss elimination is systematic and will work in general, 
also for large systems. We apply it to our system and then do back substitution. As indicated let us write the 
augmented matrix of the system first and then the system itself: 

Augmented Matrix A Equations 

Pi"" '-'f CD-I 
9:] 

Pivotl~~- X2 + X3 = 0 

Flimi",'e~ I; I 
-I 

Cl 
'\2 - x3 = 0 

I 

10 25 I Elimlllate ~ lOx2 + 25x3 = 90 
I 
I 

10 0 I 80 20xl + IOx2 = 80 

Step 1. Elimination of Xl 

Call the first row of A the pivot row and the first equation the pivot equation. Call the coefficient I of its 
xrterm the pivot in this step. Use this equation to eliminate Xl (get rid ot xl) in the other equations. For this, do: 

Add I times the pivot equation to the second equation. 

Add -20 times the pivot equation to the fourth equation. 

This corresponds to row operations on the augmented matrix as indicated in BLUI behind the new matrix in 
(3). So the operations are performed on the preceding matrix. The result is 

[; 
-I 

i] 

Xl - X2 + X3 = 0 

0 0 Row 2.L Row I 0= 0 
(3) 

to 25 IOx2 + 25x3 = 90 

30 -20 80 Row 4 - 20 Row I 30x2 - 20x3 = 80. 

Step 2. Elimination of X2 
The first equation remains as it is. We want the new second equation to serve as the next pivot equation. But 
since it has no x2-term (in fact, it is 0 = 0), we mllst first change the order of the equations and the corresponding 
rows of the new mauix. We put 0 = 0 at the end and move the third equation and rhe fourth equation one place 
up. This is called partial pivoting (as opposed to the rarely used total pivoting, in which also the order of the 
unknowns is changed). It gives 

r

l -I 

;] Pivotlt~ 0 @ 25 

Eliminate 3,,~ : ~ -20 80 

0 0 0 

Xl - X2 + X3 = 0 

Pivot It ,@;)+ 25x3 = 90 

Eliminate 30-'2 ~ 130x21- 2o.r3 = 80 

0 = 0 

To eliminate X2' do: 

Add -3 times the pivot equation to the third equation. 
The result is 

r~ 
-I 

I' 0] 
Xl - X2 + X3 = 0 

I 

to 25: 90 IOx2 + 25x3 = 90 
(4) 

-95 i -190 0 Row 3 - 3 Row 2 - 9SX3 = -190 

0 01 0 0= 0 

Back Substitution. Determination ofx3' x2' Xl (in this order) 
Working backward from the last to the first equation of this "triangular" system (4), we can now readily find 
x3, then .\'2, and then xl: 

-95x3 = -190 

90 

o 

X3 =;3 = 2lAJ 

X2 = fo(90 - 25x3) = i2 = 4 [AJ 

where A stands for "amperes." This is the answer to our problem. The solution is unique. • 
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Elementary Row Operations. Row-Equivalent Systems 
Example 2 illustrates the operations of the Gauss elimination. These are the first two of 
three operations. which are called 

Elementary Row Operations for Matrices: 

Interchange (~f two rows 

Addition of a constant multiple of one row to another row 

Multiplication of a row by a nonzero constant c. 

CAUTION! These operations are for rows, not for columns! They correspond to the 
following 

Elementary Operations for Equations: 

Interchange of two equations 

Addition of a constant multiple of one equation to another equation 

Multiplication of an equation by a nonzero constant c. 

Clearly, the interchange of two equations does not alter the solution set. Neither does that 
addition because we can undo it by a corresponding subtraction. Similarly for that 
multiplication, which we can undo by multiplying the new equation by lIc (since c =1= 0), 
producing the original equation. 

We now call a linear system SI row-equivalent to a linear system S2 if SI can be 
obtained from S2 by (finitely many!) row operations. Thus we have proved the following 
result, which also justifies the Gauss elimination. 

Row-Equivalent Systems 

Row-equivalent linear systems have the same set of solutions. 

Because of this theorem, systems having the same solution sets are often called 
equivalent systems. But note well that we are dealing with row operations. No column 
operations on the augmented matrix are pennitted in this context because they would 
generally alter the solution set. 

A linear system (1) is called overdetermined if it has more equations than unknowns. 
as in Example 2. determined if m = n. as in Example I. and underdetermined if it has 
fewer equations than unknowns. 

Furthermore, a system (1) is called consistent if it has at least one solution (thUS, one 
solution or infinitely many solutions), but inconsistent if it has no solutions at all, as 
Xl + X2 = I, Xl + X2 = 0 in Example l. 

Gauss Elimination: The Three Possible Cases of Systems 
The Gauss elimination can take care of linear systems with a unique solution (see Example 
2), with infinitely many solutions (Example 3, below), and without solutions (inconsistent 
systems; see Example 4). 
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E X AMP L E 3 Gauss Elimination if Infinitely Many Solutions Exist 

Solve the following linear systems of three equatIons in four unknowns whose augmented matrix is 

[3U 2.0 2.0 -S.O I 

'U] 
~ + 2.0X2 + 2·(l~3 - S.OX4 = 8.0 

I 

(S) 0.6 I.S I.S -S.4 I 2.7 . Thus. 10.6X11: I.SX2: I.Sx3 - S.4x4 : 2.7 I 
I 

1.2 -0.3 -0.3 2.4 I 2.1 1.2Tl 0.3'\2 0.3X3 + 2.4x4 - 2.1. 

Solutioll. As in the previous example. we circle pivots and box terms of equations and corresponding entries 
to be eliminated. We indicate the operations in terms of equations and operate on both equations and matrices. 

Step 1. Elimillation O/Xl from the second and third equations by adding 

- 0.6/3.0 = -0.2 times the first equation to the second equation, 

- 1.2/3.0 ~ -0.4 times the first equation to the third equation. 

This gives the following, in which the pivot of the next step is circled. 

2.0 2.0 -S.O 
8.0] 

3.0Xl + 2.0X2 + 2.Ox3 - S.Ox4 = !l.0 

(6) l.l 1.1 -4.4 1.1 Row 2 - 0.2 Row I ~+ 1.1x3 - 4.4x4 = l.l 

-1.1 -1.1 4.4 -1.1 Row 3 - OA Row I 1-l.1x21- 1.1x3 + 4.4x4 = - l.l 

Step 2. Elimillatioll 0/ x2 from the third equation of (6) by adding 

This gives 

2.0 

(7) 1.1 

o 

1.111.1 = I times the second equation to the third equation. 

2.0 

1.1 

o 

-S.O i 8.0] 

-4.4 I l.l 
I 

010 RO\\ 3 ;- RO\\ 2 

8.0 

1.1 

0= o 

Back Substitution. From the second equation. X2 = 1 - X3 + 4x4' From this and the fIrst equation. 
Xl = 2 - X4' Since x3 and x4 remain arbitrary. we have infinitely many solutions. If we choose a value of 
x3 and a value of X4. then the corresponding values of Xl and x2 are uniquely determined. 

Oil Notation. If unknowns remain arbitrary. it is al~o customary to denote them by other letters 11, 12 •.... 
In this example we may thus write Xl = 2 - X4 = 2 - 12. x2 = I - x3 + 4X4 = I - '1 + 412. x3 = 11 (flrst 
arbitrary unknown), X4 = 12 (second arbitrary unknown). • 

E X AMP L E 4 Gauss Elimination if no Solution Exists 

What will happen if we apply the Gauss elimination to a linear system that has no solution? The answer is that 
in this case the method will show this fact by producing a contradiction. For instance. consider 

@+ 2~2 + X3 = 3 

~+ X2 + X3 = 0 

~+ 2X2 + 4x3 = 6. 
[
3 2 1: 3] 
2 1 : 0 

I 
6 2 4 I 6 

Step 1. Eliminatioll o/x] from the second and third equations by adding 

-~ time, the fIrst equation to the second equation. 

-i = -2 times the first equation to the third equation. 

This give, 

[: 

2 

: 3J 
3xl + 2~2 + x3 = 3 

1 1 :-2 Row ]. - ~ Ron 1 (B+ 1 - -2 -3 3 - 3x2 3x3-
I 

-2 2 I 0 RO\I J - 2 Row I 1- U2/+ U3 = O. 
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Step 2. Elimillatioll of X2 from the third equation gives 

2 1 : 3] 
! :-2 

I 
o I 12 Rm" 3 o 6 Ro\\ 2 0= 12. 

The false statement 0 ~ 12 shows that the system has no ~olution. • 
Row Echelon Form and Information From It 
At the end of the Gauss elimination the form of the coefficient matrix, the augmented 
matrix, and the system itself are called the row echelon form. In it. rows of zeros. if 
present. are the la"t rows. and in each nonzero row the leftmost nonzero entry is farther 
to the right than in the previous row. For instance. in Example 4 the coefficient matrix 
and its augmented in row echelon fonn are 

[: 

2 

:] [: 
2 

-+ 1 and 1 1 -3 -3 3" 

0 0 0 12 

Note that we do not require that the leftmost nonzero entries be I since this would have 
no theoretic or numeric advantage. (The so-called reduced echelon form, in which those 
entries are I, will be discussed in Sec. 7.8.) 

At the end of the Gauss elimination (before the back substitution) the row echelon form 
of the augmented matrix will be 

(8) 

Here, r ~ 111 and (/11 =1= 0, C22 =1= 0, ... , k1T =1= 0, and all the entries in the blue triangle 
as well as in the blue rectangle are zero. From this we see that with respect to solutions 
of the system with augmented matrix (8) (and thus with respect to the originally given 
system) there are three possible cases: 

(a) Exactly one solution if r = 1l and b,,+ .. .... bm' if present. are zero. To get the 
solution. solve the nth equation corresponding to (8) (which is knnxn = bn) for Xn' then 
the (n - l)st equation for Xn-l, and so on up the line. See Example 2, where r = n = :3 
and I7l = 4. 

(b) Infinitely many solutions if r < 11 and b,.+!, .... bm' if present, are zero. To obtain 
any of these solutions, choose values of X r + l , ••• 'Xl1 arbitrarily. Then solve the 7th equation 
for x,., then the (1' - l)st equation for X,._!, and so on up the line. See Example 3. 

(c) No solution if r < 111 and one of the entries br + I' •.. , bm is not zero. See Example 
4, where r = 2 < m = 3 and br + 1 = b3 = 12. 
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11-161 GAUSS ELIMINATION AND BACK 
SUBSTITUTION 

Solve the following systems or indicate the nonexistence of 
solutions. (Show the details of your work.) 

1. 5x - 2y = 20.9 

-x + 4y = -11).3 

2. 3.0x + 6.2y = 0.2 

2.lx + 8.5y = 4.3 

4. 4y - 2;:: = 2 3. 0.5x + 3.5)' = 5.7 

-x + 5.0.1' = 7.8 6x - 2)' + z = 29 

4x + 8y - 4::: = 24 

5. 0.8x + 1.2.1' - 0.6::: = -7.8 

2.6x + 1.7z = 15.3 

4.0x - 7.3y - 1.5::: = l.l 

6. 14x - 2y - 47 = 0 7. 

18x - 2}' - 6;: = 0 

4x + 8)' - J4z = 0 x + 

8. 2x + y - 3: = 8 9. 

5x + 2::: = 3 3x 

8x - y + 7z =0 6x 

10. 0.6x + 0.3)' - 0.4: = -1.9 

-4.6x + 0.5)' + 1.2z = -1.3 

11. 2x - y + 3z = -1 

-4x + 2y - 6z = 2 

12. - 2y - 2: = - 8 

3x + 4y - 5z = 13 

13. x + y - 2: = 0 

-4w - x - y + 2:: = -4 

-2w + 3x + 3y - 62 = -2 

14. IV - 2x + 5y - 3z = 0 

- 31-1' + 6x + v + : = 0 

2w - 4x + 3y - z = 3 

Y + - = -2 

4y + 6;: = -12 

y + <. = 2 

4y + 4::: = 24 

- 11)' - 27 = -6 

- 17y + z = 18 

295 

15. 3x + 7y - 4: = -46 

511' + 4x + 8y + : = 7 

81<' + 4y - 2::: = 0 

-lI' + 6x + 2:: = 13 

16. -211' - 17x + 4y + 3: = 0 

7w + 3y - 2- = 0 

2x + 8y - 6: = -20 

511' - 13x - y + 5.: = 16 

117-191 MODELS OF ELECTRICAL NETWORKS 
Using Kirchhoff's laws (see Example 2), find the currents. 
(Show the details of your work.) 

17.~ 

f3. A :2A I 
~ 1/2 ViC I 
'L~ 

_Eo 

19·~1!;OQ 
~tJ--~3_5_V ___ --, 

5Q 

Wheatstone bridge 

(Prob. 20, next page) 

Net of one-way streets 

(Prob. 21, next page) 
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20. (Wheatstone bridge) Show that if RxlR3 = Rl/R2 in 
the figure. then T = O. (Ro is the resistance of the 
instrument by which I is measured.) This bridge is a 
method for determining R.r . RI • R2• R3 are known. R3 
is variable. To get Rx. make I = 0 by varing R3 . Then 
calculate Rx = R3R I /Rz. 

21. (Traffic flow) Methods of electrical circuit analysis 
have applications to other fields. For instance, applying 
the analog of Kirchhoff's current law, find the traffic 
flow (cars per hour) in the net of one-way streets (in 
the directions indicated by the an'ows) shown in the 
figure. Is the solution unique? 

22. (Model., of markets) Determine the equilibrium 
solution (D 1 = SI, D2 = S2) of the two-commodity 
market with linear model (D, S, P = demand, supply, 
price: index I = first commodity. index 2 = second 
commodity) 

Dl = 60 - 2P I - P 2 • 

D2 = 4Pl - P2 + 10. 

4P l - 2P2 + 14 

5P2 - 2. 

23. (Equiyalence relation) By definition, an equivalence 
relation on a set is a relation satisfying three conditions 
(named as indicated): 

(i) Each element A of the set is equivalent to itself 
( "R~f7exivity"). 

(iil If A is equi\'alent to B. then B is equivalent to A 
("SYlIlllletn- "). 

(iii) If A is equivalent to B and B is equivalent to C, 
then A is equivalent to C ("Transitivity"). 

Show that row equivalence of matrices satisfies these 
three conditions. Him. Show that for each of the three 
elementary row operations these conditions hold. 

24. PROJECT. Elementary Matrices. The idea is that 
elementary operations can be accomplished by matrix 
multiplication. If A is an 111 X Il matrix on which we 
want to do an elementary operation, then there is a 
matrix E such that EA is the new matrix after the 
operation. Such an E is called an elementary matrix. 
This idea can be helpful, for instance. in the design of 
algorithms. (Computationally, it is generally preferable 

to do row operations directly, rather than by 
mUltiplication by E.) 

(a) Show that the following are elementary matrices, 
for interchanging Rows 2 and 3. for adding -5 times 
the first row to the third, and for mUltiplying the fourth 
row by 8. 

o 

o 

o 

o 
-5 

o 

o 

o 
o 

o 
o 

o 
o 

o 

o 
o 

o 

o 

o 
1 

o 

o 
o 
o 

o 
o 
o 

o 

o 

o 
o 

o 

o 
o 

o 

o 
o 

8 

Apply E10 E 2 , E3 to a vector and to a 4 X 3 matrix of 
your choice. Find B = E3E2EIA, where A = [ajk] is 
the general 4 X 2 matrix. Is B equal to C = EIE2E3A? 

(b) Conclude that Eb E2 , E3 are obtained by doing 
the corresponding elementary operations on the 4 X 4 
unit matlix. Prove that if lVl is obTained from A hy an 
elementary rOil' operation. then 

M=EA, 

where E is obtained from the 11 X Il unit matrix In by 
the same row operation. 

25. CAS PROJECT. Gauss Elimination and Back 
Substitution. Write a program for Gauss elimination 
and back substitution (a) that does not include pivoting, 
(b) that does include pivoting. Apply the programs to 
Probs. 13-16 and to some larger systems of your choice. 

7.4 Linear Independence. Rank of a Matrix. 
Vector Space 

In the last section we explained the Gauss elimination with back substitution, the most 

important numeric solution method for linear systems of equations. It appeared that such 

a system may have a unique solution or infinitely many solutions. or it may be inconsistent, 

that is, have no solution at alL Hence we are confronted with the questions of existence 

and uniqueness of solutions. We shall answer these questions in the next section. As the 
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key concept for this (and other questions) we introduce the rallk of a matrix. To define 
rank, we first need the following concepts, which are of general importance. 

Linear Independence and Dependence of Vectors 
Given any set of 111 vectors ~1J' .•• , ~m) (with the same number of components), a linear 
combination of these vectors is an expression of the form 

where Cl' C2, ••• , em are any scalars. Now consider the equation 

(1) 

Clearly, this vector equation (I) holds if we choose all c/s zero, because then it becomes 
o = O. [f this is the only m-tuple of scalars for which (1) holds, then our vectors 
a(1), ... , a('m) are said to fOlm a linearly independent set or, more briefly, we call them 
linearly independent. Otherwise, if (1) also holds with scalars not all zero, we call these 
vectors linearly dependent, because then we can express (at least) one of them as a 
linear combination of the others. For instance, if (l) holds with, say, Cl =1= 0, we can 
solve (I) for a(1): 

(Some k/s may be zero. Or even all of them, namely, if a(1) = 0.) 
Why is this important? Well, in the case of linear dependence we can get rid of some 

of the vectors until we anive at a linearly independent set that is optimal to work with 
because it is smallest possible in the sense that it consists only of the "really essential" 
vectors, which can no longer be expressed linearly in terms of each other. This motivates 
the idea of a "basis" used in various contexts, notably later in our present section. 

E X AMP L E 1 Linear Independence and Dependence 

DEFINITION 

The three vectors 

3{l)=[ 3 0 2 2] 

3(2) = [-6 42 24 54J 

3(3) = [21 -21 o -15] 

are linearly dependent because 

Although this is easily checked (do it!), it is not so ea~y to discover. However. a systematic method for finding 
out about linear independence and dependence follows below. 

The first two of the three vectors are linearly independent because c13m + c23c2) = 0 implies c2 = 0 (from 
the second components) and then C1 = 0 (from any other component ot 3(U)' • 

Rank of a Matrix 

The rank of a matrix A is the maximum number of linearly independent row vectors 
of A. It is denoted by rank A. 
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Our further discussion will show that the rank of a matrix is an important key concept for 
understanding general properties of matrices and linear systems of equations. 

Rank 

The matnx 

[ J 

0 2 '] (2) ~ = ~~ 42 24 54 

-21 0 -15 

has rank 2. because Example 1 shows that the first two TO'" vectors are linearly independent. whereas all three 
row vectors are linearly dependent. 

Note further that rank A = 0 if and only if A - O. This follows directly from the definition. • 

We call a matrix Al row-equivalent to a matrix A2 if Al can be obtained from A2 by 
(finitely many!) elementary row operations. 

Now the maximum number of linearly independent row vectors of a matrix does not 
change if we change the order of rows or multiply a row by an nonzero c or take a linear 
combination by adding a multiple of a row to another row. This proves that rank is 
invariant under elementary row operations: 

Row-Equivalent Matrices 

Row-equivalent matrices hal'e the slime rank. 

Hence we can determine the rank of a matrix by reduction to row-echelon form 
(Sec. 7.3) and then see the rank directly. 

E X AMP L E 3 Determination of Rank 

THEOREM 2 

For the matrix in Example 2 we obtain successively 

A+: 0 2 '] 42 24 54 (given) 

21 -21 0 -IS 

[ 
3 0 2 '] 0 42 28 58 Row 2 + 2 Row I 

0 -21 14 -29 Row 3 - 7 Row I 

[ 
3 0 2 

':] 
0 42 28 

0 0 0 Row 3 +! Row 2 

Since rank is defined in terms of two vectors, we immediately have the useful 

Linear Independence and Dependence of Vectors 

p vectors with 11 components each are linearly i1ldependent if the matrix with these 
vectors as row vectors has rank p, but they are linearly dependent if that rank is 
less than p. 

• 
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THEOREM 3 

Further impOltant properties will result from the basic 

Rank in Terms of Column Vectors 

The rank r of a matrix A equals the maximum number of linearly independent 
column vectors of A. 

Hence A alld its transpose AT have the same rallk. 

PROOF In this proof we write simply "rows" and "columns" for row and column vectors. Let 
A be an 171 X n malIu of rank A = r. Then by definition of rank, A has r Linearly 
independent rows which we denote by v(1), ... , V(T) (regardless of their position in A), 
and all the rows a(l), •.• , a(m) of A are linear combinations of those, say, 

(3) 

These are vector equations for rows. To switch to columns, we write (3) in terms of 
components as n such systems, with k = ], ... , n, 

alk = cnulk + Cl2 U2k + ... + CITUTk 

a2k = C21U lIc + C22 U 2k + ... + C2T UTk 

(4) 

({mk = CmlUlk + c'm2 u 2k 
+ ... + CmTUTk 

and collect components in columns. Indeed. we can write (4) as 

({Ik cn C12 cIT 

({2k C21 C22 C2T 

(5) = U 1k + U2k + ... + UTk 

({mk C",I Cm.2 C.n~T 

where k = I,· .. , n. Now the vector on the left is the hh column vector of A. We see 
that each of these n columns is a linear combination of the same r columns on the right. 
Hence A cannot have more Linearly independent columns than rows, whose number is 
rank A = r. Now rows of A are columns of the transpose AT. For AT our conclusion is 
that AT cannot have more linearly independent columns than rows, so that A cannot have 
more linearly independent rows than columns. Together, the number of Linearly 
independent columns of A must be r, the rank of A. This completes the proof. • 

E X AMP L E 4 Illustration of Theorem 3 

The matrix in (2) has rank 2. From Example 3 we see that the first two row vectors are linearly independent 
and by "working backward" we can verify that Row 3 = 6 Row I -i Row 2. Similarly, the first two columns 
are linearly independem. and by reducing the last matnx in Example 3 by columns we find that 

Column 3 = ~ Column I + ~ Column 2 and Column 4 = ~ Column I + ~ Column 2. • 
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Combining Theorems 2 and 3 we obtain 

THEOREM 4 Linear Dependence of Vectors 

p vectors witll n < p components are always linearly dependent. 

PROOF The matrix A with those p vectors as row vectors has p rows and 11 < P columns; hence by 
Theorem 3 it has rank A ~ II < p, which implies linear dependence by Theorem 2. • 

Vector Space 
The following related concepts are of general interest in linear algebra. In the present 
context they provide a clarification of essential properties of matrices and their role in 
connection with linear systems. 

A vector space is a (nonempty) set V of vectors such that with any two vectors a and 
b in Vall their linear combinations aa + f3b (a, f3 any real numbers) are elements of V, 
and these vectors satisfy the laws (3) and (4) in Sec. 7.1 (written in lowercase letters a, 
b, u, ... , which is our notation for vectors). (This definition is pre~ently sufficient. 
General vector spaces will be discussed in Sec. 7.9.) 

The maximum number of linearly independent vectors in V is called the dimension of 
Vand is denoted by dim V. Here we assume the dimension to be finite; infinite dimension 
will be defined in Sec. 7.9. 

A linearly independent set in V consisting of a maximum possible number of vectors 
in V is called a basis for V. Thus the number of vectors of a basis for V equals dim V. 

The set of all linear combinations of given vectors a(l), ... , alP) with the same 
number of components is called the span of these vectors. Obviously, a span is a vector 
space. 

By a subspace of a vector space V we mean a nonempty subset of V (including V itself) 
that forms itself a vector space with respect to the two algebraic operations (addition and 
scalar multiplication) defined for the vectors of V. 

E X AMP L E 5 Vector Space, Dimension, Basis 

THEOREM 5 

The span of the three vecrors in Example I is a vector space of dimension 2, and a basis is 3(1), 3(2), for instance, 
or 3(l). 3(3), etc. • 

We further note the simple 

Vector Space R" 

Tile vector space Rn consisting of all vectors with n cOlllpOnel1lS (11 real numbers) 
has dimension 11. 

PROOF A basis of 11 vectors is aU) [1 0 [0 o 0], ... , 

• 3cn) = [0 0 1]. 

In the case of a matrix A we call the span of the row vectors the row space of A and the 
span of the column vectors the column space of A. 
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Now, Theorem 3 shows that a matrix A has as many linearly independent rows as 
columns. By the definition of dimension, their number is the dimension of the row space 
or the column space of A. This proves 

THEOREM 6 Row Space and Column Space 

The row space and the column space ofa matrix A have the same dimension, equal 
to rank A. 

Finally, for a given matrix A the solution set of the homogeneous system Ax = 0 is a 
vector space, called the null space of A, and its dimension is called the nullity of A. In 
the next section we motivate and prove the basic relation 

(6) rank A + nullity A = Number of columns of A. 

11-121 RANK, ROW SPACE, COLUMN SPACE 2 3 4 

5 Find the rank and a basis for the row space and for the 
column space. Hint. Row-reduce the matrix and its 
transpose. (You may omit obvious factors from the vectors 
of these bases.) 

7. 

9. 

8 o 

o 2 

4 0 

o 4 

o 

o 5 

3 8 

o -37 

4 

o 

2 

o 

3 0 

8 -37 

7 0 

o 37 

4. [: 

8. 

-2 

2 -3 

3 -4 

4 -[ 

b 

a ~J 

3 -4 

4 -1 

-2 

2 -3 

10. 

11. 

12. 

2 

3 

4 

2 

16 

4 

2 

o 

o 
-7 

3 

4 

5 

4 

5 

6 

6 

7 

4 8 16 

842 

8 16 2 

16 8 4 

o 7 

o 5 0 

5 0 :2 

o :2 0 

113--20 I LINEAR INDEPENDENCE 

Are the following sets of vectors linearly independent? 
(Show the details.) 

13. [3 -2 0 4], [5 0 0 1], L -6 [ 0 I], 
[2 0 0 3] 

14. [1 0], [1 0 0]. [1 1] 

15. [6 0 3 1 4 2], [0 -1 2 7 0 5], 
[12 3 0 -19 8 -11] 

16. [3 4 7], [2 0 3], [8 2 3], [5 5 6] 

17. [0.2 1.2 5.3 2.8 1.6], 
[4.3 3.4 0.9 2.0 -4.3] 
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18. [3 

19. [ I 

[! 

2 
I 
2 
~ 
5 

I]. [0 0 0]. [4 3 61 

! !]. [~ ! ! H [! ! ! !]. 
! t] 

20. [I 2 3 4], [2 3 4 5]. [3 4 5 6], 
6 7] [4 5 

21. CAS Experiment. Rank. (a) Show experimentally 
that the 11 X II matrix A = [ajk] with lIjk = j + k - I 
has rank 2 for any 11. (Problem 20 shows 11 = 4.) Try 
to prove it. 

(b) Do the same when lIjk = j + k + c. where c is 
any positi ve integer. 

(c) What is rank A if ajk = 2 j + k
-

2? Try to find other 
large matrices of low rank independent of 11. 

122-261 PROPERTIES OF RANK 
AND CONSEQUENCES 

Show the following. 

22. rank BT AT = rank AB. (Note the order!) 

23. rank A = rank B does lIot imply rank A2 = rank B2. 
(Give a counterexample.) 

24. If A is not square, either the row vectors or the column 
vectors of A are linearly dependent. 

25. If the row vectors of a square matrix are linearly 
independent. so are the column vectors. and 
conversely. 

26. Give examples showing that the rank of a product of 
matrices cannot exceed the rank of either factor 

127-361 VECTOR SPACES 

Is the given set of vectors a vector space? (Give reason.) If 
your answer is yes, determine the dimension and find a 
basis. (Vb V2, •.. denote components.) 

27. All vectors in R3 such that VI + V2 = 0 

28. All vectors in R4 such that 2V2 - 3v4 = k 

29. All vectors in R3 with VI ~ O. V2 = -4V3 

30. All vectors in R2 with VI ~ V2 

31. All vecrors in R3 with 4VI + V3 = O. 3v2 = V3 

32. All vectors in R4 with VI - V2 = 0, V3 = 5v I • v 4 = 0 

33. All vectors in Rn with IvA ~ I for j = I, ... ,11 

34. All ordered quadruples of positive real numbers 

35. All vectors in R
5 with VI = 2V2 = 3V3 = 4V4 = 5v5 

36. All vectors in R4 with 
3VI - V3 = O. 2VI + 3v2 - 4V4 = 0 

7.5 Solutions of Linear Systems: 
Existence, Uniqueness 

THEOREM 1 

Rank as just defined gives complete information about existence, uniqueness, and general 
structure of the solution set of linear systems as follows. 

A linear system of equations in 11 unknowns has a unique solution if the coefficient matrix 
and the augmented matrix have the same rank 11, and infinitely many solution ifthat common 
rank is less than 11. The system has no solution if those two matrices have different rank. 

To state this precisely and prove it. we shall use the (generally important) concept of 
a submatrix of A. By this we mean any matrix obtained from A by omitting some rows 
or columns (or both). By definition this inclUdes A itself (as the matrix obtained by omitting 
no rows or columns); this is practical. 

Fundamental Theorem for Linear Systems 

(a) Existence. A linear SYSTem of m equaTions ill n unknowlls Xl' ... , Xn 

(1) 
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is consistent, that is, has solutions, !f and only (f the coefficient matrix A and the 
augmented matrix A have the same rallk. Here, 

A= and A = 

Q rnn 

(b) Uniqueness. The system (l) has precisely one solution ~f and only !f this 
common rank r of A and A equals n. 

(c) Infinitely many solutions. {f this commOn rank r is less thann, the system 
(l) has infinitely mallY solutions. All of these solutions are obtained by determining 
r suitable unlmowns (whose submatrix of coefficients must have rank r) in tenl1S of 
the remaining n - r unknowns, to which arbitrary values can be assigned. (See 
Example 3 in Sec. 7.3.) 

(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by 
the Gauss elimination. (This method will automatically reveal whether or not 
solutions exist; see Sec. 7.3.) 

PROOF (a) We can write the system (I) in vector form Ax = b or in terms of column vectors 
c(l), ••• , c(n) of A: 

(2) 

A is obtained by augmenting A by a single column b. Hence, by Theorem 3 in Sec. 7.4, 
rank A equals rank A or rank A + 1. Now if (1) has a solution x, then (2) shows that b 
must be a linear combination of those column vectors, so that A and A have the same 
maximum number of linearly independent column vectors and thus the same rank. 

Conversely, if rank A = rank A, then b must be a linear combination of the column 
vectors of A, say, 

(2*) 

since otherwise rank A = rank A + 1. But (2*) means that (1) ha<; a solution. namely, 
Xl = 0'1' ...• Xn = an, as can be seen by comparing (2*) and (2). 

(b) If rank A = n. the n column vectors in (2) are linearly independent by Theorem 3 
in Sec. 7.4. We claim that then the representation (2) of b is unique because otherwise 

This would imply (take all terms to the left, with a minus sign) 

and Xl - Xl 0, ... , Xn - xn = 0 by linear independence. But this means that the 
scalars Xl, ... , Xn in (2) are uniquely determined, that is, the solution of (l) is unique. 



304 

THEOREM 2 

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems 

(c) If rank A = rank A = I' < Il, then by Theorem 3 in Sec. 7.4 there is a linearly 
independent set K of I' column vectors of A such that the other n - I' column vectors of 
A are linear combinations of those vectors. We renumber the columns and unknowns, 
denoting the renumbered quantities by A, so that (C(1), ... , c(r)} is that linearly independent 
set K. Then (2) becomes 

CCr+l)' ... , c(n) are linear combinations of the vectors of K, and so are the vectors 
Xr+IC(r+U' •..• xnc(n)' Expressing these vectors in terms of the vectors of K and collecting 
terms, we can thus write the system in the form 

(3) 

with Xi = Xj + {3j, where {3j resulls from the 11 - I' terms c(r+UXr+b ••. , c(n)xn ; here, 
j = 1, ... , r. Since the system has a solution, there are Yt> ... , Yr satisfying (3). These 
scalars are unique since K is linearly independent. Choosing xr+l> ... , xn fixes the {3j 
and corresponding Xj = )J - {3j, where j = I,' .. , r. 

(d) This was discussed in Sec. 7.3 and is restated here as a reminder. • 

The theorem is illustrated in Sec. 7.3. In Example 2 there is a unique solution since 
rank A = rank A = n = 3 (as can be seen from the last matrix in the example). In Example 
3 we have rank A = rank A = 2 < n = 4 and can choose X3 and X4 arbitrarily. In Example 
4 there is no solution because rank A = 2 < rank A = 3. 

Homogeneous Linear System 
Recall from Sec. 7.3 that a linear system (I) is called homogeneous if all the b/ s are 
zero, and nonhomogeneous if one or several b/ s are not zero. For the homogeneous 
system we obtain from the Fundamental Theorem the following results. 

Homogeneous Linear System 

A homogeneolls linear system 

(4) 

always hm the trivial solution Xl = 0, ... , Xn = O. Nontrivial solutions exist ~f and 
ollly if rallk A < 11. ff rank A = I' < n, these solutions. together with x = 0, form a 
vector :;pace (5ee Sec. 7.4) of dimension n - 1', called the solution space of (4). 

III particular, !fXcl) and x(2) are solution vectors qf(4), then x = clx(1) + C2Xc2) 
with any sC(llars CI and C2 is a solution vector qf (4). (This does not hold for 
nonhomogeneous systems. Also, the term solution space is used for homogeneous 
systems only.) 
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PROOF The first proposition can be seen directly from the system. It agrees with the fact that 
b = 0 implies that rank A = rank A, so that a homogeneous system is always consistent. 
If rank A = n, the trivial solution is the unique solution according to (b) in Theorem l. 
If rank A < n, there are nontrivial solutions according to (c) in Theorem 1. The solutions 
form a vector space because if x(l) and Xt.2) are any of them, then AX(1) = 0, AXt.2) = 0, 
and this implies A(x(1) + X(2) = AX(l) + AX(2) = 0 as well as A(cx(1) = cAx(1) = 0, 
where c is arbitrary. If rank A = r < n, Theorem I (c) implies that we can choose 
n - r suitable unknowns. call them Xr+ 10 ••• , Xn , in an arbitrary fashion, and every 
solution is obtained in this way. Hence a basis for the solution space, briefly called a basis 
of solutions of (4), is Y(1), •.• , Y(n-r), where the basis vector Y(j) is obtained by choosing 
xr+j = 1 and the other xr+ 1, ... , xn zero; the corresponding first I' components of this 
solution vector are then determined. Thus the solution space of (4) has dimension n - r. 
This proves Theorem 2. • 

THEOREM 3 

THEOREM 4 

The solution space of (4) is also called the null space of A because Ax = ° for every x 

in the solution space of (4). Its dimension is called the nullity of A. Hence Theorem 2 
states that 

(5) rank A + nullity A = n 

where n is the number of unknowns (number of columns of A). 
Furthermore, by the definition of rank we have rank A ~ min (4). Hence if m < n, 

then rank A < 11. By Theorem 2 this gives the practically important 

Homogeneous Linear System with Fewer Equations Than Unknowns 

A homogeneous linear system with fewer equations than unknowns has always 
nontrivial solutions. 

Nonhomogeneous Linear Systems 
The characterization of all solutions of the linear system (I) is now quite simple. as follows. 

Nonhomogeneous Linear System 

!f a nonhomogeneous linear system (l) is consistent. then all of its solutions are 
obtained as 

(6) 

where Xo is any (fixed) solution Qf (l) and Xh runs through all the solutions Qf the 
corresponding homogeneous system (4). 

PROOF The difference Xh = x - Xo of any two solutions of (1) is a solution of (4) because 
AXh = A(x - xo) = Ax - Axo = b - b = 0. Since x is any solution of (1), we get all 
the solutions of (l) if in (6) we take any solution Xo of (l) and let Xh vary throughout the 
solution space of (4). • 
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7.6 For Reference: 
Second- and Third-Order Determinants 

We explain these determinants separately from the general theory in Sec. 7.7 because they 
will be sufficient for many of our examples and problems. Since this section is for 
reference, go on to the Ilext sectioll, consulting this material ollly when needed. 

A determinant of second order is denoted and defined by 

(1) 

I 
{/ll 

D = det A = 
a21 

So here we have bars (whereas a matrix has brackets). 
Cramer's rule for solving linear systems of two equations in two unknowns 

(2) 

is 

Ihl 
b2 

{/121 

{/22 b1{/22 - (/12b2 Xl = 
D D 

(3) 

lall 

a21 

bll 
b2 l/llb2 - b1{/21 

X2 = 
D D 

with D as in (l), provided 

D"*O. 

The value D = ° appears for inconsistent nonhomogeneous systems and for homogeneous 
systems with nontrivial solutions. 

PRO 0 F We prove (3). To eliminate X2' multiply (2a) by {/22 and (2b) by -a12 and add, 

Similarly, to eliminate Xl' multiply (2a) by -a21 and (2b) by all and add. 

Assuming that D = all{/22 - {/12{/21 "* 0, dividing, and writing the right sides of these 
two equations as detelminants, we obtain (3). • 
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E X AMP L E 1 Cramer's Rule for Two Equations 

112 
:1 4XI + 3.\"2 = 12 -8 84 

If then xl = = - =6 X2 = 
2~1 + 5x2 = -8 

1 
4 

:1 
14 ' 

2 

Third-Order Determinants 
A determinant of third order can be defined by 

(4) a231_ la
12 

a21 
a33 a32 

I: 121 
8 

---

I: :1 

-56 

14 

a131 la
12 

+ a31 
a33 a22 

307 

-4. • 

Note the following. The signs on the right are + - +. Each of the three terms on the 
right is an entry in the first column of D times its minor, that is, the second-order 
determinant obtained from D by deleting the row and column of that entry; thus. for all 
delete the first row and first column, and so on. 

If we write out the minors in (4), we obtain 

Cramer's Rule for Linear Systems of Three Equations 

(5) 

IS 

(6) (D *- 0) 

with the determinant D afthe system given by (4) and 

hi a12 al3 all hI al3 all al2 hI 

DI = h2 a22 a23 , D2 = a2i h2 a23 , D3 = a21 a22 h2 

h3 a32 a33 a31 h3 a33 a3i a32 h3 

Note that D], D 2 , D3 are obtained by replacing Columns 1, 2, 3, respectively, by the 
column of the right sides of (5). 

Cramer's rule (6) can be derived by eliminations similar to those for (3), but it also 
follows from the general case (Theorem 4) in the next section. 
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7.7 Determinants. Cramer's Rule 
Determinants were originally introduced for solving linear systems. Although impractical 
in computations, they have important engineering applications in eigenvalue problems 
(Sec. 8.1), differential equations, vector algebra (Sec. 9.3), and so on. They can be 
introduced in several equivalent ways. Our definition is particularly practical in connection 
with linear systems. 

A determinant of order n is a scalar associated with an 11 X 11 (hence square!) matrix 
A = [ajk]' which is written 

(1) D=detA= 

and is defined for n = I by 

(2) D = au 

and for n ~ 2 by 

(3a) (j = 1. 2 ..... or n) 

or 

(3b) 

Here, 

and Mjk is a determinant of order n - I. namely, the determinant of the submatrix of A 
obtained from A by omitting the row and column of the entry ajb that is, the jth row and 
the kth column. 

In this way, D is defined in terms of n determinants of order n - 1, each of which is, 
in turn, defined in terms of n - I determinants of order n - 2, and so on; we finally 
arrive at second-order determinants, in which those submatrices consist of single entries 
whose determinant is defined to be the entry itself. 

From the definition it follows that we may expand D by any row or column, that is, 
choose in (3) the entries in any row or column, similarly when expanding the Cjk's in (3), 
and so on. 

This definition is unambiguous, that is, yields the same value for D no matter which 
columns or rows we choose in expanding. A proof is given in App. 4. 
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Terms used in connection with determinants are taken from matrices. In D we have n2 

entries ajk, also n rows and n columns, and a main diagonal on which all, a22, ... , ann 

stand. Two terms are new: 

Mjk is called the minor of ajk in D, and Cjk the cofactor of ajk in D. 
For later use we note that (3) may also be written in terms of minors 

n 

(4a) D = 2: (- L)j+kajkMjk 

k~l 

(j = 1, 2, ... , or n) 

n 

(4b) D = 2: (-l)j+kajkMjk 

j~l 

(k = 1, 2, ... , or n). 

E X AMP L E 1 Minors and Cofactors of a Third-Order Determinant 

In (4) of the previous section the minors and cofactors of the entries in the first column can be seen directly. 
For the entries in the second row the minors are 

and the cofactors are C21 = -M2b C22 = +M22, and C23 = -M23. Similarly for the third row-write these 
down yourself. And verify that the signs in Cjk fonn a checkerboard pattern 

+ + 

+ 

+ + 

E X AMP L E 2 Expansions of a Third-Order Determinant 

3 0 

D= 2 6 

-1 o 
= 1(12 - 0) - 3(4 + 4) + 0(0 + 6) = -12. 

This is the expansion by the first row. The expansion by the third colmlll is 

D = 0 I 2 
-I 

: I = 0 - 12 + 0 = -12, 

Verify that the other four expansions also give the value -12. 

E X AMP L E 3 Determinant of a Triangular Matrix 

-3 

6 

-1 

o 
4 

2 

: I = - 3· 4 . 5 = -60. 

• 

• 

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal 
matrices? • 
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General Properties of Determinants 
To obtain the value of a determinant (1), we can first simplify it systematically by 
elementary row operations. similar to those for matrices in Sec. 7.3. as follows. 

Behavior of an nth-Order Determinant under Elementary Row Operations 

(a) Interchange of two rows multiplies the value (~f the determinant by -1. 

(b) Addition of a multiple of a row to another roH' does not alter the value of the 
determinant. 

(e) Multiplication of a row by a IlOn;:.ero constant c multiplies the I'aille of the 
detenninant by c. (This holds also when c = 0, but gives no longer an elementary 
row operation.) 

PROOF (a) By induction. The statement holds for n = 2 because 

I: bl d = ad - bc, but dl = bc _ ad. 
b 

We now make the induction hypothesis that (a) holds for detenninants of order n - I ~ 2 
and show that it then holds for determinants of order 11. Let D be of order n. Let E be 
obtained from D by the interchange of two rows. Expand D and E by a row that is not 
one of those interchanged. call it the jth row. Then by (4a). 

(5) 

n 

D = L (-I)j+kajkMjk' 

k=l 

E = L (-l)j+kajkNjk 

k=l 

where Njk is obtained ti'om the minor Mjk of ajk in D by the interchange of those two 
rows which have been interchanged in D (and which Njk must both contain because we 
expand by another row!). Now these minors are of order 11 - I. Hence the induction 
hypothesis applies and gives Njk = -Mjk. Thus E = -D by (5). 

(b) Add c times Row i to Row j. Let i5 be the new determinant. Its entries in Row j are 
ajk + CGik- If we expand i5 by this Row j, we see that we can write it as i5 = DI + cD2 , 

where DI = D has in Row j the ajk, whereas D2 has in that Row j the (/ik from the addition. 
Hence D2 has aik in both Row i and Row j. Interchanging these two rows gives D2 back. 
but on the other hand it gives -D2 by (a). Together D2 = -D2 = O. so that i5 = DI = D. 

(e) Expand the determinant by the row that has been multiplied. 

CAUTION! det (cA) = c n det A (not c det A). Explain why. • 
E X AMP L E 4 Evaluation of Determinants by Reduction to Triangular Form 

Because of Theorem 1 we may evaluate determinants by reduction to triangular form. as in the Gauss elimination 
for a matrix. For instance (with the blue explanations always referring to the precedillg determinallt) 

D= 

2 

4 

o 
-3 

o 

5 

2 

8 

6 

9 

6 

o 

-I 
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2 0 -4 6 

0 5 9 -12 Row 2 2 Row I 

0 2 6 -1 

0 8 3 10 Rov. -l 1.5 Rov. I 

2 0 -4 6 

0 5 9 -12 

0 0 2.4 3.8 R"v. 3 - 004 Row 2 

0 0 -11.4 29.2 R"v. 4 - 1.6 Rov. 2 

2 0 -4 6 

0 5 9 12 

0 0 2.4 3.8 

0 0 -0 47.25 Row 4 + 4.75 Row 3 

= 2·5·2.4· 47.25 = 1134. 

Further Properties of nth-Order Determinants 

(a)-(c) ill Theorem I hoLd also for coLumlls. 

(d) Trallsposition leaves the value of a detenninanl unaLtered. 

(e) A zero row or columll renders the value of a detennillant ~ero. 

(f) Proportional rows or columlls render the value of a determinant ::.ero. In 
particular, a detemlil1ant with two identical rows or columlls has the I'aille ~ero. 

• 

PROOF (a)-(e) follow directly from the fact that a determinant can be expanded by any row 
column. In (d), transposition is defined as for matrices, that is, the jth row becomes the 
jth column of the transpose. 

THEOREM 3 

(f) If Row j = c times Row i, then D = CDb where Dl has Row j = Row i. Hence an 
interchange of these rows reproduces Db but it also gives -D1 by Theorem l(a). Hence 
Dl = 0 and D = cDl = O. Similarly for columns. • 

It is quite remarkable that the important L:oncept of the rank of a matrix A, which is the 
maximum number of linearly independent row or column vectors of A (see Sec. 7.4), can 
be related to determinants. Here we may assume that rank A > 0 because the only matrices 
with rank 0 are the zero matrices (see Sec. 7.4). 

Rank in Terms of Determinants 

All 111 X n matrix A = [ajk] has rank I' ~ I ~f and only if A has all I' X rSlliJ111atrix 
with non::.ero detel71zinant, ~l'hereas eve0' square suiJmatrix with more than I' rows 
that A has (or does IlOt have!) has determinant equal to zero. 

In particular, if A is square, n X n, it has rank 11 if and ol1ly if 

detA "* O. 
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PROOF The key idea is that elementary row operations (Sec. 7.3) alter neither rank (by Theorem 
1 in Sec. 7.4) nor the property of a determinant being nonzero (by Theorem 1 in this 
section). The echelon fonn A of A (see Sec. 7.3) has r nonzero row vectors (which are 
the first r row vectors) if and only if rank A = r. Let R be the r X r submatrix in the left 
upper corner of A (so that the entries of R are in both the first r rows and r columns of A). 
Now R is triangular, with all diagonal entries l'Jj nonzero. Thus, det R = r11 ... Ir,. =I=- O. 
Also det R =I=- 0 for the corresponding r X r submatrix R of A because R results from R 
by elementary row operations. Similarly, det S = 0 for any square submatrix S of r + I 
or more rows perhaps contained in A because the corresponding submatrix S of A must 
contain a row of zeros (otherwise we would have rank A ~ r + I), so that det S = 0 by 
Theorem 2. This proves the theorem for an m X n matrix. 

THEOREM 4 

In particular. if A is square. n X n. then rank A = n if and only if A contains an 11 X n 
submatrix with nonzero determinant. But the only such submatrix can be A itself. hence 
detA =I=- O. • 

Cramer's Rule 
Theorem 3 opens the way to the classical solution formula for linear systems known as 
Cramer's rule2

, which gives solutions as quotients of determinants. Cramer's rule is not 
practical ill computations (for which the methods in Secs. 7.3 and 20.1-20.3 are suitable), 
but is of theoretical interest in differential equations (Secs. 2.10, 3.3) and other theories 
that have engineering applications. 

Cramer's Theorem (Solution of Linear Systems by Determinants) 

(a) If a linear system qf n equatio/lS in the same /lumber of unknow/lS x I, •.. , Xn 

(6) 

has a nonzero coefficient determinant D = det A, the system has precisely one 
solution. This solution is given by the f017nulas 

(7) x = n (Cramer's rule) 

where Dk is the determinant obtained from D by replacing in D the kth columll by 
the column with the entries bI , ... ,bn-

(b) Hence if the SYSTem (6) is homogeneous and D =I=- 0, it has only The Trivial 
soluTion Xl = 0, X2 = 0, ... , Xn = O. If D = 0, the homogeneous system also has 
nontrivial solutions. 

20ABRIEL CRAMER (1704--1752), Swiss mathematician. 
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PROOF The augmented matrix A of the system (6) is of size n X (n + 1). Hence its rank can be 
at most n. Now if 

(8) D=detA= 

then rank A = n by Theorem 3. Thus rank A = rank A. Hence. by the Fundamental 
Theorem in Sec. 7.5, the system (6) has a unique solution. 

Let us now prove (7). Expanding D by its kth column, we obtain 

(9) 

where Cik is the cofactor of entry (lik in D. If we replace the entries in the kth column of 
D by any other numbers, we obtain a new determinant, say, D. Clearly, its expansion by 
the kth column will be of the form (9), with alk, ... , (Ink replaced by those new numbers 
and the cofactors Cik as before. In particular, if we choose as new numbers the entries 
(Ill, •.• , (lnl of the lth column of D (where I *' k), we have a new determinant D which 
has twice the column [all (lnzl

T
• once as its lth column. and once as its kth 

because of the replacement. Hence D = 0 by Theorem 2(f). [f we now expand b by the 
column that has been replaced (the kth column). we thus obtain 

(10) (l *' k). 

We now multiply the first equation in (6) by Clk on both sides. the second by C 2k, ••.• 

the last by Cnk, and add the resulting equations. This gives 

(11) 

Collecting terms with the same Xj' we can write the left side as 

From this we see that Xk is multiplied by 

Equation (9) shows that this equals D. Similarly, Xl is multiplied by 

Equation (10) shows that this is zero when I *' k. Accordingly, the left side of (11) equals 
simply xkD, so that (11) becomes 
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Now the right side of this is Dk as defined in the theorem. expanded by its kth column. 
so that division by D gives 0). This proves Cramer's rule. 

If (6) is homogeneous and D "* 0, then each Dk has a column of zeros, so that Dk = 0 
by Theorem 2(e). and (7) gives the trivial solution. 

Finally, if (6) is homogeneous and D = 0, then rank A < 11 by Theorem 3, so that 
nontrivial solutions exist by Theorem 2 in Sec. 7.5. • 

Illustrations of Theorem ..J. for 11 = 2 and 3 are given in Sec. 7.6. and an important 
application of the present formulas will follow in the next section. 

--PJlOBLEM3£T~ 

1. (Second-order detenninant) Expand a general second­
order determinant in four possible ways and show that 
the results agree. 

2. (Minors, cofactors) Complete the list of minors and 
cofactors in Example 1. 

3. (Third-order detenninant) Do the task indicated in 
Example 2. Also evaluate D by reduction to triangular 
form. 

4. (Scalar multiplication) Show that det (kA) = k n det A 
(not k det A), where A is any 11 X 11 matrix. Give an 
example. 

15-161 EVALUATION OF DETERMINANTS 
Evaluate, showing the details of your work. 

5.113 81 
-2 7 

Icos a sin al 
7. 

sin f3 cos f3 

70.4 0.3 0.8 

9. 0 0.5 2.6 

0 0 -1.9 

0 3 -1 

11. -3 0 -4 

4 0 

l/ U w 

13. w l/ U 

U W l/ 

I 
cos 118 

6. 
-sin 118 

sin 11 81 
cos 118 

14 

8. 2 

2 

o 

5 

8 

5 8-2 

2 2 

10. -2 2 

2 -2 

0 a b 

12. -a 0 c 

-b -c 0 

-2 0 

4 3 5 
14. 

0 2 7 

0 0 2 

0 

0 

5 

4 

15. 
3 

o 
o 

2 

4 

o 

o 

o 

o 

5 

7 

o 

o 

6 

8 

16. 

o -2 o 

2 0-2 4 

-I 2 0 

o -4 -1 o 

17. (Expansion numericallJ impractical) Show that the 
computation of an nth-order determinant by expansion 
involves n! multiplications, which if a multiplication 
takes 10-9 sec would take these times: 

11 10 15 

0.004 22 
Time 

min sec 

118-201 CRAMER'S RULE 

20 

77 
years 

25 

0.5' 109 

years 

Solve by Cramer's rule and check by Gauss elimination and 
back substitution. (Show details.) 

18. 2x - 5y = 23 

4x + 6y = -2 

19. 3y + 4::: = 14.8 

4x + 2y - 7 = -6.3 

x - y + 5z = 13.5 

20. w +2x - 3::: = 30 

4x - 5)" + 2::: = 13 

2w + 8x - 4y + z = 42 

3w + y - 5;: = 35 

121-231 RANK BY DETERMINANTS 
Find the rank by Theorem 3 (which is not a very practical 
way) and check by row reduction. (Show details.) 
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21. [-: -:J 

22.ll~ -13 1:] 
l-3 5 -4 

[

0.4 

23. 1.2 

o 

o 

0.6 

1.2 

-2.4 

o 

1.2 

3.0] 
0.3 
o 

24. TEAM PROJECT. Geometrical Applications: 
Curves and Surfaces Through Given Points. The 
idea is to get an equation from the vanishing of 
the detenninant of a homogeneous linear system as the 
condition for a nontrivial solution in Cramer's theorem. 
We explain the trick for obtaining such a system for 
the case of a line L through two given points PI: (x 1> Y 1) 
and P2 : (X2, )'2)· The unknown line is ax + by = -c, 
say. We write it as ax + by + c· I = O. To get a 
nontrivial solution a, b, c, the determinant of the 
"coefficients" x, y, I must be zero. The system is 

ax + by + c· I o (Line L) 

(2) aXI + bYI + c· o (PIon L) 

o (P2 on L). 

7.8 Inverse of a Matrix. 
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(a) Line through two points. Derive from D = 0 in 
(12) the familiar fonnula 

y - Yl 

(b) Plane. Find the analog of (12) for a plane through 
three given points. Apply it when the points are (I, I, I), 
(3, 2, 6), (5, 0, 5). 

(c) Circle. Find a similar formula for a circle in the 
plane through three given points. Find and sketch the 
circle through (2. 6). (6. 4). (7. I). 

(d) Sphere. Find the analog of the formula in (c) for 
a sphere through four given points. Find the sphere 
through (0, 0, 5), (4, 0, I), (0,4, I), (0, 0, 3) by this 
formula or by inspection. 

(e) General conic section. Find a fonnula for a 
general conic section (the vanishing of a detenninant 
of 6th order). Try it out for a quadratic parabola and 
for a more general conic section of your own choice. 

25. WRITING PROJECT. General Properties of 
Determinants. Illustrate each statement in Theorems 
I and :2 with an example of your choice. 

26. CAS EXPERIMENT. Determinant of Zeros and 
Ones. Find the value of the determinant of the n X n 
matrix An with main diagonal entries all 0 and all others 
I. Try to find a formula for this. Try to prove it by 
induction. Interpret A3 and ~ as "incidence lI1i1frices" 
(as in Problem Set 7.1 but without the minuses) of a 
triangle and a tetrahedron, respectively; similarly for 
an un-simplex". havingn vertices andn(n- l)/2edges 
(and spanning R"-I, 11 = 5,6, ... ). 

Gauss-Jordan Elimination 
In this section we consider square matrices exclusively. 

The inverse of an n X n matrix A = [ajk] is denoted by A -1 and is an 11 X n matrix 
such that 

(1) 

where I is the n X 11 unit matrix (see Sec. 7.2). 
If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then 

A is called a singular matrix. 
If A has an inverse, the inverse is unique. 
Indeed, if both Band C are inverses of A, then AB = I and CA = I, so that we obtain 

the uniqueness from 

B = IE = (CA)B = CCAB) = CI = C. 
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We prove next that A has an inverse (is nonsingular) if and only if it has maximum 
possible rank n. The proof will also show that Ax = b implies x = A -lb provided A-] 
exists. and will thus give a motivation for the inverse as well as a relation to linear systems 
(But this willilot give a good method of solving Ax = b Illlmerically because the Gauss 
elimination in Sec. 7.3 requires fewer computations.) 

Existence of the Inverse 

The inverse A-I of an n X n matrix A exists if and only if rank A = n, thus (by 
Theorem 3, Sec. 7.7) if and onZy if det A "* O. Hence A is nonsingular if rank A = n, 
and is singular if rank A < n. 

PROOF Let A be a given /1 X n matrix and consider the linear system 

(2) Ax = h. 

If the inverse A-I exists, then multiplication from the left on both sides and use of (1) 

gives 

A-lAx = x = A-lb. 

This shows that (2) has a unique solution x. Hence A must have rank /1 by the Fundanlental 
Theorem in Sec. 7.5. 

Conversely, let rank A = n. Then by the same theorem, the system (2) has a unique 
solution x for any b. Now the back substitution following the Gauss elimination (Sec. 7.3) 
shows that the components Xj of x are linear combinations of those of b. Hence we can 
write 

(3) x = Bb 

with B to be determined. Substitution into (2) gives 

Ax = A(Bb) = (AB)b = Cb = b (C = AB) 

for any b. Hence C = AB = I, the unit matrix. Similarly, if we substitute (2) into (3) we 
get 

x = Bb = B(Ax) = (BA)x 

for any x (and b = Ax). Hence BA = I. Together, B = A-I exists. • 
3WILHELM JORDAN (IR42-1899), German mathematician and geodesist. [See American Mathematical 

Monthly 94 (1987). 130-142.] 
We do not recommend it as a method for solving sy~tems of linear equations, since the number of operations 

in addition to those of the Gauss elimination is larger than that for back substitution, which the Gauss-Jordan 
elimination aVOlds. See also Sec. 20.1. 
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Determination of the Inverse 
by the Gauss-Jordan Method 
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For the practical determination of the inverse A-I of a nonsingular n X 11 matrix A we 
can use the Gauss elimination (Sec. 7.3), actually a variant of it, called the Gauss-Jordan 
elimination3 (footnote of p. 316). The idea of the method is as follows. 

Using A, we form n linear systems 

where eel), e(n) are the columns of the 11 X n unit matrix I; thus, 
em = [\ 0 O]T, e(2) = [0 I 0 OlT, etc. These are 11 vector equations 
in the unknown vectors xm, ... , x(n)' We combine them into a single matrix equation 
AX = I, with the unknown matrix X having the columns xm'···. x(n)' 

Correspondingly, we combine the n augmented matrices [A em],"', [A e(n)] into 
one n X 2n "augmented matrix" A = [A I]. Now multiplication of AX = I by A-1 

from the left gives X = A -II = A -1. Hence, to solve AX = I for X, we can apply the 
Gauss elimination to A = [A I]. This gives a matrix of the form [U H] with upper 
triangular U because the Gauss elimination triangularizes systems. The Gauss-Jordan 
method reduces U by further elementary row operations to diagonal form, in fact to the 
unit matrix I. This is done by eliminating the ennies of U above the main diagonal and 
making the diagonal entries all 1 by multiplication (see the example below). Of course, 
the method operates on the entire matrix rU Hl, transforming H into some matrix K, 
hence the entire [U H] to [I K]. This is the "augmented matrix" of IX = K. Now 
IX = X = A -t, as shown before. By comparison. K = A -t, so that we can read A- J 

directly from [I K]. 
The following example illustrates the practical details of the method. 

E X AMP L E 1 Inverse of a Matrix. Gauss-Jordan Elimination 

Determine the inverse A-I of 

A = [-~ -1 ~l 
-1 3 4 

Solution. We apply the Gauss elimination (Sec. 7.3) to the following n X 2n = 3 X n matrix, where BLUE 
always refers to the previous matrix. 

2 

4 

2 

7 

2 

2 

7 

-5 

o 

o 

o 0 

o 

3 Row 2 + 3 Row] 

-] 0 Row 3 - Row] 

o 

3 

-4 -I Row 3 - Row 2 
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This is IV H] as produced by the Gauss elimination. Now follow the additional Gauss-Jordan steps. reducing 
U to I, that is. to diagonal form with entries I on the main diagonal. 

[~ 
-I -2 -I 0 

-0:] 
Row I 

3.5 1.5 0.5 0.5 Row 2 

0 0.8 O.:! -0.2 Row 3 

[: 

-I 0 0.6 0.4 

-0'] 
Rov, I 2 Rov, 3 

0 1.3 -0.2 0.7 Rov, 2 - 3.5 Row .3 

0 0.8 0.2 -0.2 

[: 

0 0 -0.7 0.2 03] Rov, I + Row 2 

0 -1.3 -0.2 0.7 

0 0.8 0.2 -0.2 

The last three columns constitute A -1. Check: 

[ -; 2] [-07 0.2 03] [' 0 

:l -I L -1.3 -0.2 0.7 = 0 

-) .3 4 0.8 0.2 -0.2 0 0 

Hence AA-1 = I. Similarly, A-1A = I. • 
Useful Formulas for Inverses 
The explicit formula (4) in the following theorem is often useful in theoretical studies (as 
opposed to computing inverses). In fact, the special case 11 = 2 occurs quite frequently in 
geometrical and other applications. 

Inverse of a Matrix 

The inverse of a 110nsi11gular n X 11 matrix A = [ajk] is given by 

Cll C21 Cnl 

A-I = I T _ I Cl2 C22 Cn2 
(4) -- [Cd ---

det A J detA 

C1n C2n Cnn 

where Cjk is the cofactor of ajk in det A (see Sec. 7.7). (CAUTION! Note well that 
in A -\ the cofactor Cjk occupies the same place as alrj (not ajk) does in A.) 

III particular. the inverse of 

A-I = (4*) is 
detA 
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PROOF We denote the right side of (4) by B and show that BA = I. We first write 

(5) 

and then show that G = I. Now by the definition of matrix multiplication and because of 
the form of B in (4), we obtain (r AUTION! Csb not Cks) 

(6) 

Now (9) and (l0) in Sec. 7.7 show that the sum ( ... ) on the right is D = det A when 
I = k, and is zero when I =1= k. Hence 

1 
gkk = -- detA = 1, 

detA 

gkZ = 0 (I =I=- k), 

In particular, for n = 2 we have in (4) in the first row Cll = a22, C21 = -a12 and in 
the second row C12 = -a2b C22 = all' This gives (4*). • 

E X AMP L E 2 Inverse of a 2 x 2 Matrix 

A-I _ ~ [ 4 -IJ = [ 0.4 -O.IJ 
10 -2 3 -0.2 0.3 • 

E X AMP L E 3 Further Illustration of Theorem 2 

Using (4), find the inverse of 

A = [-: -1 :] 

-1 3 4 

Solution. We obtain detA = -1(-7) - 1'13 + 2·8 = 10, and in (4), 

I-I Cll = 3 :1 = -7, C2I = -I~ :1 = 2, C31 = I 1 -1 :1 = 3, 

C
I2 

= _I 3 :1 = -13, 1-1 :1 = -2, 1-1 :1 = 7, C22 = C32 = - 3 -1 -1 

CI3 = I 3 -'I 1-1 ~I = 2, 
1-1 11 = -2, = 8, C23 =- C33 = 3 -1 3 -1 -1 

so that by (4), in agreement with Example 1, 

[

-0.7 

A-I = -1.3 

0.8 

0.2 0.3] 

-0.2 0.7. 

0.2 -0.2 
• 
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Diagonal matrices A = [ajk]' (/jk = 0 when j =I=- k. have an inverse if and only if all 
Ojj =I=- O. Then A-I is diagonal, too, with entries 1/(/11' •.. , l/onn. 

PROOF For a diagonal matrix we have in (4) 

ell 
D 

etc. • 
E X AMP L E 4 Inverse of a Diagonal Matrix 

Let 

[

-0.5 0 OJ 
A= 0 4 O. 

° 0 I 

Then the inverse is 

o 

0.25 • 
o 

Products can be inverted by taking the inverse of each factor and mUltiplying these 
inverses in reverse order, 

(7) 

Hence for more than two factors, 

(8) 

PROOF The idea is to start from (I) for AC instead of A, that is, AC(Aq-1 = I, and mUltiply 
it on both sides from the left, first by A -t, which because of A -IA = I gives 

A-1AC(Aq-1 = C(Aq-1 

= A-II = A-I, 

and then multiplying this on both sides from the left, this time by C- l and by using 
C-1C = I, 

This proves (7). and from it. (8) follows by induction. • 
We also note that the inverse of the inverse is the given matrix, as you may prove, 

(9) 
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THEOREM 3 

Unusual Properties of Matrix Multiplication. 
Cancellation Laws 
Section 7.2 contains warnings that some properties of matrix multiplication deviate from 
those for numbers, and we are now able to explain the restricted validity of the so-called 
cancellation laws [2.] and [3.] below, using rank and inverse, concepts that were not yet 
available in Sec. 7.2. The deviations from the usual are of great practical importance and 
must be carefully observed. They are as follows. 

[1.] Matrix multiplication is not commutative, that is, in general we have 

AB =1= BA. 

[2.] AB = 0 does not generally imply A = 0 or B = 0 (or BA = 0); for example, 

[~ 
[3.] AC = AD does not generally imply C = D (even when A =1= 0). 

Complete answers to [2.] and [3.] are contained in the following theorem. 

Cancellation Laws 

Let A, B, C be n X n matrices. Then: 

(a) If rank A = nand AB = AC, then B = C. 

(b) lfrank A = n, then AB = 0 implies B = O. Hence if AB = 0, but A =1= 0 
as well as B =1= 0, then rank A < n and rank B < n. 

(c) If A is singular, so are BA and AB. 

PROOF (a) The inverse of A exists by Theorem 1. Multiplication by A-I from the left gives 
A -lAB = A -lAC, hence B = C. 

(b) Let rank A = n. Then A -1 exists, and AB = 0 implies A -lAB = B = O. Similarly 
when rank B = n. This implies the second statement in (b). 

(cl ) Rank A < n by Theorem 1. Hence Ax = 0 has nontrivial solutions by Theorem 2 
in Sec. 7.5. Multiplication by B shows that these solutions are also solutions of BAx = 0, 
so thaI rank (BA) < n by Theorem 2 in Sec. 7.5 and BA is singular by Theorem 1. 

( c2 ) AT is singular by Theorem 2( d) in Sec. 7.7. Hence B TAT is singular by part (c1), 

and is equal to (AB)T by (lOd) in Sec. 7.2. Hence AB is singular by Theorem 2(d) in 
Sec. 7.7. • 

Determinants of Matrix Products 
The detelminant of a matrix product AB or BA can be written as the product of the 
determinants of the factors, and it is interesting that det AB = det BA, although AB =1= BA 
in general. The corresponding formula (10) is needed occasionally and can be obtained 
by Gauss-Jordan elimination (see Example 1) and from the theorem just proved. 



311 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems 

THE 0 REM 4 Determinant of a Product of Matrices 

For am: n X n matrices A and B, 

(10) det (AB) = del (BA) = det A det B. 

PROOF If A or B is singular. so are AB and BA by Theorem 3( c), and (10) reduces to 0 = 0 by 
Theorem 3 in Sec. 7.7. 

~-=-12! INVERSE 

• . ~ 

Now let A and B be nonsingular. Then we can reduce A to a diagonal matrix A = [ajk] 
by Gauss-Jordan steps. Under these operations, det A retains its value, by Theorem I in 
Sec. 7.7, (a) and (b) [not (c)] except perhaps for a sign reversal in row interchanging when 
pivoting. But the same operations reduce AB to AB with the same effect on det (AB). 
Hence it remains to prove (10) for AB; written out, 

all 0 0 bll b I2 bIn 

0 a22 0 b 2I b 22 b 2n 
AB= 

0 0 ann b nl b n2 b nn 

al1b l1 al1b I2 allbin 

a22b 2I a22b 22 a22b 2n 

annbnl a nnb n2 annbnn 

We now take the determinant det (AB). On the right we can take out a factor all from 
the first row, a22 from the second, ... , ann from the nth. But this product all ~2 ... ann 

equals det A because A is diagonal. The remaining determinant is det B. This proves (10) 
for det (AB), and the proof for det (BA) follows by the same idea. • 

This completes our discussion of linear systems (Secs. 7.3-7.8). Section 7.9 on vector 
spaces and linear transformations is optional. Numeric methods are discussed in Secs. 
20.1-20.4, which are independent of other sections on numerics . 

....... ..-._ . ... -.-.. . 
Fmd the inverse by Gauss-Jordan [or by (4*) if 11 = 2] or 
state that it does not exist. Check by using (1). 

3. [ cos 28 sin 28] 

-sin 28 cos 28 [

1.20 
1. 

0.50 

4.64J 
3.60 

2. [
0.6 

0.8 

0.8J 

-0.6 
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[-I; 
-I 

-:] S. 6 

-2 

[: 
0 

] 7. 

4 

[ J 9. 0 

0 

11. [: 

2 

1:] -1 

4 

[ 29 

-11 

10] 6. -160 61 -55 

55 -21 19 

[: 
2 

1] 8. -I 

4 

[ 
8 

:] 10. 0 

0 

[-; 
2 -9] 

12. -4 19 

-1 2 

13. (Triangular matrix) Is the inver~e of a triangular 
matrix always triangular (as in Prob. 7)? Give reason. 

14. (Rotation) Give an application of the matrix in Prob. 
3 that makes the form of its inverse obvious. 

15. (Inverse of the square) Verify (A2r 1 = (A-If for 
A in Prob. 5. 

16. Prove the formula in Prob. 15. 

17. (Inverse of the transpose) Verify (AT) -1 = (A _1)T 

for A in Prob. 5. 

18. Prove the formula in Prob. 17. 
19. (Inverse of the inverse) Prove that (A -1)-1 = A. 

20. (Row interchange) Same question as in Prob. 14 for 
the matrix in Prob. 9. 

[ 1-231 EXPLICIT FORMULA (4) FOR THE 
INVERSE 

Formula (4) is generally not very practical. To understand 
its use, apply it: 
21. To Prob. 9. 22. To Prob. 4. 23. To Prob. 7. 

7.9 Vector Spaces, Inner Product Spaces, 
Linear Transformations Optional 

In Sec. 7.4 we have Seen that special vector spaces arise quite naturally in connection 
with matrices and linear systems, that their elements, called vectors, satisfy rules quite 
similar to those for numbers [(3) and (4) in Sec. 7.1], and that they are often obtained as 
spans (sets of linear combinations) of finitely many given vectors. Each such vector has 
n real numbers as its compollents. Look this up before going on. 

Now if we take all vectors with II real numbers as components ("real vectors"), we 
obtain the very important realll-dimensional vector space Rn. This is a standard name 
and notation. Thus, each vector in R n is an ordered n-tuple of real numbers. 

Pat1icular cases are R2, the space of all ordered pairs (""vectors in the plane") and R 3, 
the space of all ordered triples ("vectors in 3-space"). These vectors have wide applications 
in mechanics, geometry, and calculus that are basic to the engineer and physicist. 

Similarly, if we take all ordered n-tuples of complex numbers as vectors and complex 
numbers as scalars, we obtain the compleJ!: vector space en, which we shall consider in 
Sec. 8.5. 

This is not alL There are other sets of practical interest (sets of matrices, functions, 
transformations, etc.) for which addition and scalar multiplication can be defined in a 
natural way so that they foml a "vector space". This suggests to create from the "COil crete 
model" R n the "abstract cOllcept" of a "real vector space" V by taking the basic properties 
(3) and (4) in Sec. 7.1 as axioms. These axioms guarantee that one obtains a useful and 
applicable theory of those more general situations. Note that each axiom expresses a simple 
property of R n or, as a matter of fact. of R3. Selecting good axioms needs experience and 
is a process of trial and error that often extends over a long period of time. 
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Real Vector Space 

A nonempty set V of elements a, b, ... is called a real vector space (or real linear 
space), and these elements are called vectors (regardless of their nature, which will 
come out from the context or will be left arbitrary) if in V there are defined two 
algebraic operations (called vector addition and scalar multiplication) as follows. 

I. Vector addition associates with every pair of vectors a and b of V a unique 
vector of V, called the sum of a and b and denoted by a + b, such that the following 
axioms are satisfied. 

1.1 Commutativity. For any two vectors a and b of V, 

a+b=b+a. 

1.2 Associativity. For any three vectors u. v. w of V, 

(u + v) + w = u + (v + w) (written u + v + w). 

1.3 There is a unique vector in V, called the zero vector and denoted by 0, such 
that for every a in V, 

a+O=a. 

1.4 For every a in V there is a unique vector in V that is denoted by -a and is 
such that 

a + (-a) = O. 

II. Scalar multiplication. The real numbers are called scalars. Scalar 
multiplication associates with every a in V and every scalar c a unique vector of V, 
called the product of c and a and denoted by ca (or ac) such that the following 
axioms are satisfied. 

11.1 Distributivity. For every scalar c and vectors a and b in V, 

c(a + b) = ca + cb. 

11.2 Distributivity. For all scalars c and k and every a in V, 

(c + k)a = ca + ka. 

11.3 Associativity. For all scalars c and k and every a in V, 

c(ka) = (ck)a (written cka). 

11.4 For every a in V, 

la = a. 

A complex vector space is obtained if, instead of real numbers, we take complex numbers 
as scalars. 
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Basic concepts related to the concept of a vector space are defined as in Sec. 7.4. 
A linear combination of vectors a(l),"', a(m) III a vector space V is an 

expression 
(C1, .•. , Cm any scalars). 

These vectors form a linearly independent set (briefly, they are called linearly 
independent) if 

(1) 

implies that C1 = 0, ... , Cm = O. Otherwise, if (1) also holds with scalars not all zero, 
the vectors are called linearly dependent. 

Note that (1) with 11l = I is ca = 0 and shows that a single vector a is linearly 
independent if and only if a =F O. 

V has dimension n, or is n-dimensional, if it contains a linearly independent set of n 
vectors, whereas any set of more than n vectors in V is linearly dependent. That set of n 
linearly independent vectors is called a basis for V. Then every vector in V can be written 
as a linear combination of the basis vectors; for a given basis, this representation is unique 
(see Prob. 14). 

E X AMP L E 1 Vector Space of Matrices 

The real 2 X 2 matrice, form a four-dimensional real vector space. A ba~is is 

~J ~J 
because any 2 X 2 matrix A = [ajkJ has a unique representation A = allB11 + 012B12 + 021B21 + 022B22' 

Similarly. the real 111 X II matrices with fixed 111 and n form an mil-dimensional vector space. What is the 
dimension of the vector space of all 3 X 3 skew-symmetric matrices'! Can you find a basis? • 

E X AMP L E 2 Vector Space of Polynomials 

The set of all constant, linear, and quadratic polynomials in x together is a vector space of dimension 3 with 
basis {I. x, .r2

} under the usual addition and multiplication by real numbers because these two operations give 
polynomials not exceeding degree 2. What is the dimension of the vector space of all polynomials of degree 
not exceeding a given fixed n'! Can you find a basis? • 

If a vector space V contains a linearly independent set of 11 vectors for every n, no matter 
how large, then V is called infinite dimensional, as opposed to a finite dimensional 
(n-dimensional) vector space just defined. An example of an infinite dimensional vector 
space is the space of all continuous functions on some interval [ll, b J of the x-axis, as we 
mention without proof. 

Inner Product Spaces 
If a and b are vectors in Rn, regarded as column vectors, we can form the product a Tb. 
This is a 1 X 1 matrix, which we can identify with its single entry, that is, with a number. 
This product is called the inner product or dot product of a and b. Other notations for 

it are (a, b) and a·b. Thus [~1] n 

aTb = (a, b) = a·b = [al' .. an] : = ~ albl = albl + ... + anbn-
l=l 

bn 
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We now extend this concept to general real vector spaces by taking basic properties of 
(a, b) as axioms for an "abstract inner product'" (a, b) as follows. 

Real Inner Product Space 

A real vector space V is called a real inner product space (or real pre-Hilbert4 

space) if it has the following property. With every pair of vectors a and b in V there 
is associated a real number, which is denoted by (a, b) and is called the inner 
product of a and b, such that the following axioms are satisfied. 

I. For all scalars ql and q2 and all vectors a, b, c in V, 

(Linearity). 

II. For all vectors a and b in V. 

(a, b) = (b, a) (Symmetry). 

III. For every a in V, 

(a, a) ~ 0, 
(Positive-definiteness). 

(a, a) = 0 if and only if 

Vectors whose inner product is zero are called orthogonal. 
The length or norm of a vector in V is defined by 

(2) lIall = Yea, a) (~ 0). 

A vector of norm 1 is called a unit vector. 
From these axioms and from (2) one can derive the basic inequality 

(3) (Callchy-Schwarz5 inequality). 

From this follows 

(4) (Triangle inequality). 

A simple direct calculation gives 

(5) lIa + bll 2 + lIa - bll 2 = 2( lIall 2 + lib II 2) (Parallelogram equality). 

4DA VID HILBERT (1862-1943), great Gennan mathematician, taught at Konigsberg and Gottingen and was 
the creator of the famous Gottingen mathematical schooL He is known for his basic work in algebra. the calculus 
of variations. integral equations, functional analysis, and mathematical logic. His "Foundations of Geometry" 
helped the axiomatic method to gain general recognition. His famous 23 problems (presented in 1900 at the 
International Congress of Mathematicians in Paris) considerably influenced the development of modem 
mathematics. 

If V b finite dimensional. it is actually a so-called Hilbert :lpace; see Ref. [GR7], p. 73, listed in App. L 
5HERMANN AMANDUS SCHWARZ (1843-1921). Gennan mathematician, known by his work in complex 

analysis (confonnal mapping) and differential geometry. For Cauchy see Sec. 2.5. 
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E X AMP L E 3 n-Dimensional Euclidean Space 

R n with the inner product 

(6) 

(where both a and b are column vectors) is called the n-dimensional Euclidean space and is denoted by En 
or again simply by Rn. Axioms I-III hold, as direct calculation shows. Equation (2) gives the "Euclidean norm" 

(7) • 
E X AMP L E 4 An Inner Product for Functions. Function Space 

The set of all reaT-valued continuous functions I(x), g(x), ... on a given interval a ::'" x ::'" f3 is a real vector 
space under the usual addition of functions and multiplication by scalars (real numbers). On this "function 
space" we can define an inner product by the integral 

(8) 

{3 

(f, g) = {I(X) g(x) ,ll-. 

Axioms I-ITT can be verified by direct calculation. Equation (2) gives the norm 

(9) 

(3 

IIIII = Y(f, I) = {f"(X)2 d". • 
Our examples give a first impression of the great generality of the abstract concepts of 
vector spaces and inner product spaces. Further details belong to more advanced courses 
(on functional analysis. meaning abstract modern analysis; see Ref. [OR7] listed in App. 1) 
and cannot be discussed here. Instead we now take up a related topic where matrices play 
a central role. 

Linear Transformations 
Let X and Y be any vector spaces. To each vector x in X we assign a unique vector y in 
y. Then we say that a mapping (or transformation or operator) of X into Y is given. 
Such a mapping is denoted by a capital letter, say F. The vector y in Yassigned to a vector 
x in X is called the image of x under F and is denoted by F(x) [or Fx, without parentheses J. 

F is called a linear mapping or linear transformation if for all vectors v and x in X 
and scalars c, 

(10) 
F(v + x) = F(v) + F(x) 

F(cx) = cF(x). 

Linear Transformation of Space Rn into Space Rm 

From now on we let X = Rri and Y = RIn. Then any real m X n matrix A = [ajk] gives 
a transformation of R n into Rnl, 

(11) y = Ax. 

Since A(u + x) = Au + Ax and A(cx) = cAx, this transformation is linear. 

We show that, conversely, every linear transformation F of R" into R'm can be given 
in terms of an 111 X n matrix A, after a basis for R n and a basis for R m have been chosen. 
This can be proved as follows. 
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Let em, .... e(n) be any basis for Rn. Then every x in Rn has a unique representation 

Since F is linear, this representation implies for the image F(x): 

Hence F is uniquely determined by the images of the vectors of a basis for R". We now 
choose for R n the "standard basis" 

o o 
o o 

(12) 

o o 

where e(j) has its jth component equal to 1 and all others O. We show that we can now 
determine an I1l X n matrix A = [~jk] such that for every x in R n and image y = F(x) in Rm

, 

y = F(x) = Ax. 

Indeed, from the image y(1) = F(e(1) of e(n we get the condition 

\" 0) 
.m 

o 

o 

from which we can determine the first column of A, namely lIll = yill. (/21 = y~l), ... , 
amI = Y1~1)· Similarly, from the image of e(2) we get the second column of A, and so on. 
This completes the proof. • 

We say that A represents F, or is a representation of F, with respect to the bases for R'n 
and Rm. Quite generally, the purpose of a "representation" is the replacement of one 
object of study by another object whose properties are more readily apparent. 

In three-dimensional Euclidean space £3 the standard basis is usually written eO) = i, 
e(2) = j, e(3) = k. Thus. 

(13) j 



SEC. 7.9 Vector Spaces, Inner Product Spaces, Linear Transformations Optional 329 

These are the three unit vectors in the positive directions of the axes of the Cartesian 
coordinate system in space, that is, the usual coordinate system with the same scale of 
measurement on the three mutually perpendicular coordinate axes. 

E X AMP L E 5 Linear Transformations 

Interpreted as transformations of Cartesian coordinates in the plane, the matrices 

[0 1 J [ 1 OJ [ . 1 OJ [a OJ 
I 0' ° -I' ° -I' ° I 

represent a reflection in the line x2 = Xl, a reflection in the xraxis, a reflection in the origin. and a stretch 
(when a> 1, or a contraction when ° < a < 1) in the xrdirection, respectively. • 

E X AMP L E 6 Linear Transformations 

Our discussion preceding Example 5 is simpler than it may look at first sight. To see this, find A representing 
the linear transfonnation that maps (Xl, X2) onto (~XI - 5X2' 3XI + 4X2)' 

Solution. Obviously, the transfonnation is 

From this we can directly see that the matrix is 

Check: [ YIJ = [2 -5J [XIJ • Y2 3 4 X2 

If A in (11) is square, 11 X 11, then (11) maps R'n into Rn. If this A is nonsingular, so that 
A -1 exists (see Sec. 7.8), then multiplication of (11) by A -I from the left and use of 
A -lA = I gives the inverse transformation 

(14) x = A-1y. 

It maps every y = Yo onto that x, which by (11) is mapped onto Yo. The inverse of a linear 
transformation is itself linear. because it is given by a matrix, as (14) shows . 

. .R 0 B L E M. 5.£"E7.:~'F 

r =uJ VECTOR SPACES 

(Additional problems in Problem Set 7.4.) 

Is the given set (taken with the usual addition and scalar 
multiplication) a vector space? (Give a reason.) If your 
answer is yes. find the dimension and a basis. 

1. All vectors in R3 satisfying 5VI - 3v2 + 2V3 = 0 
2. All vectors in R3 satisfying 2VI + 3V2 - V3 0, 

VI - 4V2 + V3 = 0 

3. All 2 X 3 matrices with all entries nonnegative 

4. All symmetric 3 x 3 matrices 

S. All vectors in R5 with the first three components 0 

6. All vectors in R4 with VI + V2 = 0, V3 - V4 = I 

7. All skew-symmetric 2 X 2 matrices 

8. All n X n matrices A with fixed n and det A = 0 

9. All polynomials with positive coefficients and degree 
3 or less 

10. All functions f(x) = a cos x + h sin x with any 
constants a and b 

11. All functions I(x) = (ax + b)e-X with any constants 
a and b 

12. All 2 X 3 matrices with the second row any multiple 
of [4 0 -9] 
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13. (Different bases) Find three bases for R2. 

14. (Uniqueness) Show that the representation 
v = c1a(1) + ... + cna(n) of any given vector in 
an n-dimensional vector space V in terms of a given 
basis a(1)' ... , a(n) for V is unique. 

[IS-20 1 LINEAR TRANSFORMATIONS 

Find the inverse transformation. (Show the details of your 
work.) 

17. Y1 = 3X1 - X2 

19. h = 

.. ---. ..... --. -. ... 

16. Y1 = 5X1 - X2 

Y2 = 3X1 - x2 

18. Y1 = 0.25x1 

Y2 = 

20. Y1 = 

)'2 = 

121-261 INNER PRODUCT. ORTHOGONALITY 

Find the Euclidean nonn of the vectors 

21. [4 2 -6]T 

22. [0 -3 3 0 5 I]T 

23. [16 -32 O]T 

24. [~ I ! 2f 
2S. [0 1 0 0 -1 -l]T 

26. [~ -~ if 
27. (Orthogonality) Show that the vectors in Probs. 21 

and 23 are orthogonaL 

28. Find all vectors v in R3 orthogonal to [2 0 I]T. 

29. (Unit vectors) Find all unit vectors orthogonal to 
[4 -3]T. Make a ~ketch. 

30. (Triangle inequality) Verify (4) for the vectors in 
Probs. 21 and 23. 

TIONS AND PROBLEMS 

1. What properties of matrix multiplication differ from 11. 9x - 3y = 15 
those of the multiplication of numbers? What about 
division of matrices? 5x + 4y = 48 

2. Let A be a 50 x 50 matrix and B a 50 X 20 matrix. 12. -2x - 4y + 7z = -6 
Are the following expressions defined or not? A + B, 
A2, B2, AB. BA. AAT. BTA. BTB, BBT, BTAB. (Give 
reasons.) 

3. How is matrix mUltiplication motivated? 

4. Are there any linear systems without solutions? With 
one solution? With more than one solution? Give simple 
examples. 

S. How can you give the rank of a matrix in tenns of row 

x + 2y + 16:;: = 3 

13. 3x + 5y - 8z = ] R 

x + 2}' - 3z = 6 

vectors? Of column vectors? Of determinants? 15. - 8 x + 2z = 

6. What is the role of rank in connection with solving 
linear systems? 

7. What is the row space of a matrix? The column space? 
The null space? 

8. What is the idea of Gauss elimination and back 
substitution? 

9. What is the inverse of a matrix? When does it exist? 
How would you determine it? 

10. What is Cramer's rule? When would you apply it? 

IU-191 LINEAR SYSTEMS 

Find all solution~ or indicate that no solution exists. (Show 
the details of your work.) 

6y + 4z = 3 

12x + 2y = 2 

17. 3x + 7y = 0 

5x - 4)' = 47 

6x + 9y = 15 

19. 7 x + 9)' - 14z = 36 

-x - 3y + 2z = -12 

2x + Y - 4z = 4 

14. 5x - lOy = 2 

16. 

3x + v = 13 

-x + 6y = 6 

2y + z = -] 

2x+3y- z=-12 

5x - 4)" + 3z = 32 

18. -x + 4y - 2z = 

3x + 4)" + 6z = 

x - 2y + 2z = 
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137-@ INVERSE 120-301 CALCULATIONS WITH MATRICES AND 
VECTORS Find the inverse or state why it does not exist. (Show details.) 

Calculate the following expressions (showing the details of 
your work) or indicate why they do not exist, when 

37. Of the coefficient matrix in Prob. 11 

38. Of the coefficient matrix in Prob. 15 

2 

A ~ r: 18 

10 

20. AB, BA 

22. A2 + B2 

24. AAT, ATA 

a= 

IT 
15 

[l 
r-: 

2 -J B= 0 

-6 3 

b~ [] 

21. A - AT 

23. det A, det B, det AB 

25. O.2BBT 

39. Of the coefficient matrix in Prob. 16 

40. Of the coefficient matrix in Prob. 18 

41. Of the augmented matrix in Prob. 14 

42. Of the diagonal matrix with entries 3, -1, 5 

143--451 NETWORKS 
Find the currents in the following networks. 

43. lOQ 44. 3800 V 
- ---

13 

12 20U 
II 

26. Aa, aTA, aTAa 27. aTb, bTa, abT 

28. bTBb 29. aTB, ETa 220V 3400 V 40 Q 

30. O.I(A + AT)(B - BT) 45. 100Q 

131-361 RANK 
Determine the ranks of the coefficient matrix and the 
augmented matrix and state how many solutions the linear 
system will have. 

~1020 V 

~540V 
31. In Frob. 13 

34. In Prob. 14 

32. In Frob. 12 

35. In Prob. 19 

33. In Prob. 17 

36. In Prob. 18 
20Q 

Linear Algebra: Matrices, Vectors, Determinants 
Linear Systems of Equations 

An m X n matrix A = [ajk] is a rectangular array of numbers or functions ("entries", 
"elements") arranged in 111 horizontal rows and n vertical columns. If 111 = n, the 
matrix is called square. A 1 X 11 matrix is called a row vector and an m X 1 matrix 
a column vector (Sec. 7.1). 

The sum A + B of matrices of the same size (i.e., both m X n) is obtained by 
adding corresponding entries. The product of A by a scalar c is obtained by 
multiplying each ajk by c (Sec. 7.1). 

The product C = AB of an m X n matrix A by an r X p matrix B = [bjk] is 
defined only when r = n, and is the 111 X P matrix C = [Cjk] with entries 

(1) 
(row j of A times 

column k of B). 
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This multiplication is motivated by the composItIOn of linear transfonnations 
(Secs. 7.2, 7.9). It is associative, but is 1I0t commutative: if AB is defined, BA may 
not be defined, but even if BA is defined, AB =t- BA in general. Also AB = 0 may 
not imply A = 0 or B = 0 or BA = 0 (Secs. 7.2, 7.8). Illustrations: 

[~ ~J [-: -:J = [~ ~J 
[-1 IJ [I 

J -1 2 ~J = [-: -:J 
[l 2] [:J = [11], [:J [I 2] = [: :J. 

The transpose AT of a matrix A = [ajk] is AT = [akj]; rows become columns and 
conversely (Sec. 7.2t Here. A need not be square. If it is and A = AT, then A is called 
symmetric; if A = _AT, it is called skew-symmetric. For a product. (AB)T = BTAT 
(Sec. 7.2). 

A main application of matrices concerns linear systems of equations 

(2) Ax = b (Sec. 7.3) 

(m equations in n unknowns Xl' ... ,xn ; A and b given). The most important method 
of solution is the Gauss elimination (Sec. 7.3), which reduces the system to 
"triangular" form by elementary row operations. which leave the set of solutions 
unchanged. (Numeric aspects and variants. such as Doolittle's and Cholesky's 
methods. are discussed in Secs. 20.1 and 20.2) 

Cramer's rule (Sees. 7.6, 7.7) represents the unknowns in a system (2) of n 
equations in Il unknowns as quotients of determinants; for numeric work it is 
impractical. Determinants (Sec. 7.7) have decreased in importance, but will retain 
their place in eigenvalue problems, elementary geometry, etc. 

The inverse A -I of a square matrix satisfies AA -I = A -IA = I. It exists if and 
only if det A =t- O. It can be computed by the Gauss-Jordan elimination (Sec. 7.8). 

The rank r of a matrix A is the maximum number of linearly independent rows 
or columns of A or, equivalently, the number of rows of the largest square submatrix 
of A with nonzero determinant (Secs. 7.4. 7.7). 

The system (2) has solutions if and only if rank A = rank [A b], where [A b] 
is the augmented matrix (Fundamental Theorem, Sec. 7.5). 

The homogeneous system 

(3) Ax = 0 

has solutions x =t- 0 ("nontrivial solutions") if and only if rank A < 11, in the case 
m = n equivalently if and only if det A = 0 (Secs. 7.6. 7.7). 

Vector spaces, inner product spaces, and linear transformations are discus'ied in 
Sec. 7.9. See also Sec. 7.4. 
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Linear Algebra: 
Matrix Eigenvalue Problems 

Matrix eigenvalue problems concern the solutions of vector equations 

(1) Ax = AX 

where A is a given square matrix and vector x and scalar A are unknown. Clearly, x = 0 
is a solution of (I), giving 0 = O. But this of no interest, and we want to find solution 
vectors x*-O of (l), called eigenvectors of A. We shall see that eigenvectors can be 
found only for certain values of the scalar A: these values A for which an eigenvector 
exists are called the eigenvalues of A. Geometrically, solving (1) in this way means that 
we are looking for vectors x for which the multiplication of x by the matrix A has the 
same effect as the multiplication of x by a scalar A, giving a vector Ax with components 
proportional to those of x, and A as the factor of proportionality. 

Eigenvalue problems are of greatest practical interest to the engineer, physicist, and 
mathematician, and we shall see that their theory makes up a beautiful chapter in linear 
algebra that has found numerous applications. 

We shall explain how to solve that vector equation (1) in Sec. 8.1, show a few typical 
applications in Sec. 8.2, and then discuss eigenvalue problems for symmetric, 
skew-symmetric. and orthogonal matrices in Sec. 8.3. In Sec. 8.4 we show how to obtain 
eigenvalues by diagonalization of a matrix. We also consider the complex counterparts of 
those matrices (Hermitian. skew-Hermitian. and unitary matrices, Sec. 8.5). which playa 
role in modern physics. 

COMMENT. Numerics for eigenvalues (Sees. 20.6-20.9) can be studied immediately 
after this chapter. 

Prerequisite: Chap. 7. 
Sections that may be omitted il1 a shorter course: 8.4, 8.5 
References and Answers to Problems: App. I Part B, App. 2. 

333 
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8.1 Eigenvalues, Eigenvectors 
From the viewpoint of engineering applications, eigenvalue problems are among the most 
important problems in connection with matrices, and the student should follow the present 
discussion with particular attention. We begin by defining the basic concepts and show how 
to solve these problems, by examples as well as in general. Then we shall turn to applications. 

Let A = [ajk] be a given Il X 11 matrix and consider the vector equation 

(1) Ax = AX. 

Here x is an unknown vector and A an unknown scalar. Our task is to determine x's and 
A's that satisfy (I). Geometrically, we are looking for vectors x for which the multiplication 
by A has the same effect as the multiplication by a scalar A; in other words, Ax should 
be proportional to x. 

Clearly. the zero vector x = 0 is a solution of (I) for any value of A. because AO = O. 
This is of no interest. A value of A for which (I) has a solution x =1= 0 is called an eigenvalue 
or characteristic value (or latent root) of the matrix A. ("Eigen" is German and means 
"proper" or "characteristic.") The corresponding solutions x =1= 0 of (l) are called the 
eigenvectors or characteristic vectors of A corresponding to that eigenvalue A. The set 
of all the eigenvalues of A is called the spectrum of A. We shall see that the spectrum 
consists of at least one eigenvalue and at most of n numerically different eigenvalues. The 
largest of the absolute values of the eigenvalues of A is called the spectral radius of A, 
a name to be motivated later. 

How to Find Eigenvalues and Eigenvectors 
The problem of determining the eigenvalues and eigenvectors of a matrix is called an 
eigenvalue problem. (More precisely: an algebraic eigenvalue problem, as opposed to 
an eigenvalue problem involving an ODE, POE (see Sees. 5.7 and 12.3) or integral 
equation.) Such problems occur in physical, technical, geometric, and other applications, 
as we shall see. We show how to solve them, first by an example and then in general. 
Some typical applications will follow afterwards. 

E X AMP L E 1 Determination of Eigenvalues and Eigenvectors 

We illustrate all the steps in terms of the matrix 

A = [-5 2J. 
2 -2 

Soluti01l. tal Eige1lvalues. These must be determined first. Equation (1) is 

Ax = [5 2J [X1J = A [X1J ; 
2 -2 -"2 X2 

in components. 

Transferring the term~ on the right to the left. we get 

(-5 - A)xl + =0 
(2*) 

2X1 + (-2 - A)X2 = O. 

This can be written in matrix notation 
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(3*) (A - AI)x = 0 

because (1) is Ax - Ax = Ax - Alx = (A - M)x = 0, which gives (3*). We see that this is a homogeneous 
linear system. By Cramer's theorem in Sec. 7.7 it has a nontrivial solution x '* 0 (an eigenvector of A we are 
looking for) if and only if its coefficient determinant is zero, that is, 

(4*) D(A)=detCA-AI)=I-S-A 2 1=(-5-,\)(-2-A)-4=A2+7,\+6=0. 
2 -2 - A 

We call D(A) the characteristic detenninant or, if expanded, the characteristic polynomial, and D(A) = 0 
the characteristic equation of A. The solutions of this quadratic equation are Al = -I and A2 = -6. These 
are the eigenvalues of A. 

(hI) Eigellvector of A correspollding to AI' This vector is obtained from (2*) with A = Al = -I, that is, 

A solution is x2 = 2~'1> as we see from either of the two equations, so that we need only one of them. ThIs 
detennines an eigenvector corresponding to Al = -I up to a scalar multiple. If we choose Xl = 1. we obtain 
the eigenvector 

Check: [-5 2J [IJ [-IJ AXI = 2 -2 2 -2 = (-I1xI = Alxl' 

(b2) Eigenvector of A correspollding to A2• For A = A2 = -6. equation (2*) becomes 

Xl + 2x2 = 0 

2xI + 4x2 = O. 

A solution is x2 = -xI I2 with arbitrary Xl' If we choose Xl = 2, we get X2 = -1. Thus an eigenvector of A 
corresponding to A2 = - 6 is 

Check: 

This example illustrates the general ca'ie as follows. Equation (I) written in components is 

Transferring the tenns on the right side to the left side, we have 

+ ... + =0 

(2) 
+ (a22 - A)X2 + ... + =0 

+ + ... + (ann - A)Xn = O. 

In matrix notation, 

(3) (A - AI)x = o. 
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By Cramer's theorem in Sec. 7.7, this homogeneous linear system of equations has a 
nontrivial solution if and only if the corresponding determinant of the coefficients is zero: 

all - A a l 2 aln 

a21 a22 - A a2n 
(4) D(A) = det (A - AI) = = O. 

anI an2 ann - A 

A - AI is called the characteristic matrix and D( A) the characteristic determinant of 
A. Equation (4) is called the characteristic equation of A. By developing D(A) we obtain 
a polynomial of nth degree in A. This is called the characteristic polynomial of A. 

This proves the following important theorem. 

Eigenvalues 

The eif;envalues of a square matrix A are the roots of the characteristic equatioll 
(4) of A. 

Hence an Il X n matrix has at least one eigellvalue and at most Il numerically 
different eigellvalues. 

For larger Il. the actual computation of eigenvalues will in general require the use 
of Newton' s method (Sec. 19.2) or another numeric approximation method in 
Secs. 20.7-20.9. 

The eigenValues must be determined first. Once these are known, corresponding 
eigenvectors are obtained from the system (2), for instance, by the Gauss elimination. 
where A is the eigenvalue for which an eigenvector is wanted. This is what we did in 
Example I and shall do again in the examples below. (To prevent misunderstandings: 
numeric approximation methods (Sec. 20.8) may determine eigenvectors first.) 

Eigenvectors have the following properties. 

Eigenvectors, Eigenspace 

Jfw and x are eigenvectors of a matrix A corresponding to the same eigenvalue A, 
so are w + x (provided x * -w) and kxfor allY k * O. 

Hence the eigenvectors correspollding to one and the same eigenvalue A of A, 
together with 0, fOl1n a !'ector space (cf. Sec. 7.4), called the eigenspace of A 
corresponding to that A. 

PROOF Aw = Aw and Ax = Ax imply A(w + x) = Aw + Ax = Aw + Ax = A(w + x) and 
A(kw) = k(Aw) = k(Aw) = A(kw); hence A(kw + ex) = A(kw + .fx). • 

In particular. an eigenvector x is detel1nined only up to a constant factor. Hence we can 
normalize x, that is. multiply it by a scalar to get a unit vector (see Sec. 7.9). For 

instance, Xl = [I 2JT in Example I has the length "Xl" = V 12 + 22 = vS; hence 

[lIvS 21vSf is a normalized eigenvector (a unit eigenvector). 
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Examples 2 and 3 will illustrate that an n X n matrix may have n linearly independent 
eigenvectors. or it may have fewer than n. In Example 4 we shall see that a real matrix 
may have complex eigenvalues and eigenvectors. 

E X AMP L E 2 Multiple Eigenvalues 

Find the eigenvalues and eigenvectors of 

A = [-~ 2 =:]. 
-1 -2 0 

Solutioll. For our matrix, the characteristic determinant gives the characteristic equation 

-A
g 

- A2 + 21A + 45 = O. 

The roots (eigenvalues of A) are Al = 5, A2 = Ag = -3. To find eigenvectors, we apply the Gauss e1immation 
(Sec. 7.3) to the system (A - Al)x = O. first with A = 5 and then with A = -3. For A = 5 the characteristic 
matrix is 

[

-7 

A - AI = A-51 = 2 

-1 

It row-reduces to 

Hence it has rank 2. Choosing Xg = -1 we have x2 = 2 from -¥X2 - ~Xg = 0 and then xl = I from 

-7xI + 2X2 - 3xg = O. Hence an eigenvector of A coresponding to A = 5 is Xl = [I 2 _I]T. 

For A = - 3 the characteristic matrix 

A - AI = A + 31 = [ 2 

-I 

: =:] 
-2 3 

row-reduce, to 

Hence it has rank I. From Xl + 2Y2 - 3xg = 0 we have Xl = -il2 + 3xg. Choosing x2 = 1. Xg = 0 and 
x2 = 0, Xg = 1, we obtain two linearly independent eigenvectors of A corresponding to A = -3 [as they must 
exist by (5), Sec. 7.5. with rank = 1 and /I = 3], 

~ ~ [ :] 
and 

x,~ [:1 • 

The order M). of an eigenvalue A as a root of the characteristic polynomial is called the 
algebraic multiplicity of A. The number 11l}. of linearly independent eigenvectors 
corresponding to A is called the geometric multiplicity of A. Thus In}. is the dimension of 
the eigenspace corresponding to this A. Since the characteristic polynomial has degree n, 
the sum of all the algebraic multiplicities must equal n. In Example 2 for A = - 3 we have 
111)0. = M)o. = 2. In general, 111)0. ~ MAo as can be shown. The difference 6..}. = M)o. - 11l}. is 
called the defect of A. Thus 6..-3 = 0 in Example 2, but positive defects 6..}. can easily occur: 
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E X AMP L E 3 Algebraic Multiplicity, Geometric Multiplicity. Positive Defect 

The characteristic equation of the matrix 

is 

Hence A = 0 is an eigenvalue of algebraic multiplicity Mo = 2. But its geometric multiplicity is only tno = I, 
since eigenvectors result from -Oxl + x2 = 0, hence x2 = 0, in the form [Xl 0] T. Hence for A = 0 the defect 
is 6.0 = 1. 

Similarly, the characteristic equation of the matrix 

is det(A _ AI) = 1
3 

- A 2 1 = (3 - A)2 = O. 
o 3 - A 

Hence A = 3 is an eigenvalue of algebraic multiplicity M3 = 2. but its geometric multiplicity is only tn3 = I, 
since eigenvectors result from OXI + 2x2 = 0 in the form [Xl OlT. • 

E X AMP L E 4 Real Matrices with Complex Eigenvalues and Eigenvectors 

THEOREM 3 

Since real polynomials may have complex roots (which then occur in conjugate pairs), a real matrix may have 
complex eigenvalues and eigenvectors. For instance. the characteristic equation of the skew-symmetric matrix 

is det(A-AI) = I-A II=A2 +1=0. 
-I -A 

It gives the eigenvalues Al = i (=v=I), A2 = -i. Eigenvectors are obtained from -ixl + X2 = 0 and 
iXl + x2 = 0, respectively, and we can choose Xl = I to get 

[J and • 
In the next section we shall need the following simple theorem. 

Eigenvalues of the Transpose 

The transpose AT of a square matrix A has the same eigenvalues as A. 

PROOF Transposition does not change the value of the characteristic determinant, as follows from 
Theorem 2d in Sec. 7.7. • 

Having gained a first impression of matrix eigenvalue problems, in the next section we 
illustrate their importance with some typical applications. 

11-251 EIGENVALUES AND EIGENVECTORS 
Fmd the eigenvalues and eigenvectors of the following 
matrices. (Use the given A or factors.) 

1. [-2 0 ] 
o 0.4 

4. [~ ~J 

S. [5 -2J 
9 -6 
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[
o.s 

7. 
0.6 

17. 

18. 

19. 

-0.6J 

O.S 

0.2 

1.0 

o 

o 
3 

6 

0.1] 
1.5 

3.5 

8. [~ ~J 

[

COS e -sin eJ 
10. 

sin e cos e 

12] 
: ,A = 9 

20. 

21. 

22. 

23. 

24. 

25. 

[: : -~ -:] 
o 0 19 -1 

o 0 -1 19 

o -2 2 o 
-4 2 -2 4 

o 
o 

2 2 -4 

2 -6 4 

,A = 4 

o 

~] , (A - 3)2 
-2 

3 

4 

-2 

4 -1 

2 -2 

0] 12 
, (A + 1)2 

-4 

-1 
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26. (Multiple eigenvalues) Find further 2 X 2 and 3 X 3 
matrices with multiple eigenvalues. (See Example 2.) 

27. (Nonzero defect) Find further 2 X 2 and 3 X 3 
matrices with positive defect. (See Example 3.) 

28. (Transpose) Illustrate Theorem 3 with examples of 
your own. 

29. (Complex eigenvalues) Show that the eigenvalues of 
a real matrix are real or complex conjugate in pairs. 

30. (Inverse) Show that the inverse A -1 exists if and only 
if none of the eigenvalues AI, ... , An of A is zero, and 
then A-I has the eigenvalues lIAl>' .. , lIAn-
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8.2 Some Applications of Eigenvalue Problems 
In this section we discuss a few typical examples from the range of applications of matrix 
eigenvalue problems, which is incredibly large. Chapter 4 shows matrix eigenvalue 
problems related to ODEs governing mechanical systems and electrical networks. To keep 
our present discussion independent of Chap. 4, we include a typical application of that 
kind as our last example. 

E X AMP L E 1 Stretching of an Elastic Membrane 

An elastic membrane in the Xlx2-plane with boundary circle X1
2 + X2

2 

point P: (Xl, X2) goes over into the point Q: (Y1, Y2) given by 
I (Fig. 158) is stretched so that a 

(I) y = [Y1J = Ax = [5 3J [XIJ ; 
Y2 3 5 x2 

in components. 

Find the prinCipal directions, that is, the directions of the position vector x of P for which the direction of the 
position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this 
deformation? 

Solutioll. We are looking for vectors x ~uch that y = Ax. Since y = Ax, this gives Ax = Ax, the equation 
of an eigenvalue problem. In components, Ax = Ax IS 

(2) 
5X1 + 3x2 = '\'\:1 

3x 1 + 5x2 = A.\:2 

The characteristic equation is 

(3) 

(5 - A)X1 + =0 
or 

+ (5 - A)X2 = O. 

3 I = (5 - A)2 - 9 = O. 
5-A 

Its solutions are Al = 8 and '\'2 = 2. These are the eigenvalues of our problem. For A = Al = 8, our system 
(2) becomes 

Solution.\"2 = Xl' Xl arbitrary, 

for instance, Xl = X2 = I. 

For A2 = 2, our system (2) becomes 

Solution X2 = -Xl. Xl arbitrary, 

for instance. Xl = 1, x2 = -1. 

We thus obtain as eigenvectors of A, for instance, [1 I]T corresponding to Al and [I I]T corresponding to 
A2 (or a nonzero scalar multiple of these). These vectors make 45° and 1350 angles with the positive Xl-direction. 
They give the principal directions. the answer to our problem. The eigenvalues show that in the principal 
directions the membrane is stretched by factors 8 and 2, respectively; see Fig. 158. 

Accordingly. if we choose the principal directions as directions of a new Cartesian "1"2-coordinate system. 
say, with the positive lll-semi-axis in the first quadrant and the positive 112-senu-axis in the second quadrant of 
the xlx2-system. and if we set III = rcos cP. "2 = rsin cP. then a boundary point of the unstretched circular 
membrane has coordinates cos cP, sin cP. Hence. after the stretch we have 

21 = 8 cos cP. :2 = 2 sin cb. 

Since cos2 cP + sin2 cP = I. this shows that the deformed boundary is an ellipse (Fig. 158) 

(4) 1. • 
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/ 

/ 

Fig. 158. Undeformed and deformed membrane in Example 1 
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Markov processes as considered in Example 13 of Sec. 7.2 lead to eigenvalue problems if we ask for the limit 
state of the precess in which the stale vecmr x is reproduced under the multiplication by the smchastic marrix 
A governing the process. that is, Ax = x. Hence A should have the eigenvalue I, and x should be a corresponding 
eigenvector. This is of practical interest because it shows the long-term tendency of the development modeled 
by the process. 

In that example, 

[

0.7 

A = 0.2 

0.1 

0.1 

0.9 

° 
For the transpose, 

[

0.7 

0.1 

° 

0.2 

0.9 

0.2 

Hence AT has the eigenvalue I, and the same is true for A by Theorem 3 in Sec. 8.1. An eigenvector x of A 
for A = I is obtained from 

A ~ I = [~::: 
U.l 

0.1 

~O.I 

o 
:.2] , 

~0.2 

1110 

row-reduced to ~1I30 

° 
Taking x3 = 1, we get x2 = 6 from ~x2/30 + x3/5 = 0 and then Xl = 2 frem ~3XI/1O + x2/1O = O. This 
gives x = [2 6 I]T It means that in the long run. the ratio Commercial: Industrial: Residential will approach 
2:6: I, provided that the probabilities given by A remain (about) the same. (We switched to ordinary fractions 
to avoid rounding errors.) • 

E X AMP L E 3 Eigenvalue Problems Arising from Population Models. Leslie Model 

The Leslie model describes age-specified population growth, as follows. Let the oldest age attained by the 
females in some animal population be 9 years. Divide the population into three age classes of 3 years each. Let 
the "Leslie matrix" be 

2.3 

(5) ° 
0.3 

where i llc is the average number of daughters born to a single female during the time she is in age class k, and 
lj,j_l (j = 2, 3) is the fraction of females in age class j ~ I that will survive and pass into class j. (a) What is 
the number of females in each cia" after 3, 6, 9 years if each class initially consists of 400 females? (b) For 
what initial distribution will the number of females in each class change by the same proportion? What is this 
rate of change? 
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Solution. (a) Initially, x;o) = [400 400 400]. After 3 years, 

[0:' 
2.3 

04] n [1000] ~3) = L,,<O) = 0 o 400 = 240. 

0.3 o 400 120 

Similarly. after 6 years the number of females in each class is given by X;6) = (LX(3»T = [600 648 72]. and 
after 9 years we have X;9) = (LX(6»T = [1519.2 360 194.4]. 

(b) Proportional change means that we are looking for a distribution vector x such thai Lx = Ax, where A 
is the rate of change (growth if A > I, decrease if A < I). The characteristic equation is (develop the characteristic 
determinant by the first column) 

det (L - AI) = - A3 - 0.6( -2.3A - 0.3·0.4) = - A3 + 1.38A + 0.072 = O. 

A positive root is found to be (for instance. by Newton's method. Sec. 19.2) A = 1.2. A corresponding eigenvector 
x can be detennined from the characteristic matrix 

2.3 

-1.2 

0.3 

0.4] 
o . 

-\.2 

say, X=[0.5] 

0.125 

where x3 = 0.125 is chosen, X2 0.5 then follows from 0.3x2 - 1.2<3 = 0, and Xl = 1 from 
-1.2<1 + 2.3x2 + 0.4x3 = O. To get an initial population of 1200 as before, we multiply x by 
1200/(1 + 0.5 + 0.125) = 738. Answer: Proportional growth of the numbers of females in the three classes 
will occur if the initial values are 738, 369, 92 in classes I, 2, 3, respectively. The growth rate will be 1.2 per 
3~ • 

E X AMP L E 4 Vibrating System of Two Masses on Two Springs (Fig. 159) 

Mass-spring systems involving several masses and springs can be treated as eigenvalue problems. For instance, 
the mechanical system in Fig. 159 is governed by the system of ODEs 

(6) 

where Yl and Y2 are the displacements of the masses from rest. as shown in the figure, and primes denote 
derivatives with respect to time t. In vector form, this becomes 

(7) y" = [Y~J = Ay = [-5 2J [YlJ. 
Y2 2 -2 Y2 

Y2 

System in 
static 

equilibrium 

(Net change in 
spring length 
=Y2 -Y1) 

System in 
motion 

Fig. 159. Masses on springs in Example 4 
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We try a vector solution of the form 

(8) 

This is suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion IS given by 
exponential functions (and sines and cosines). Substitution into (7) gives 

Dividing by ewt and writing w2 
= A, we see that our mechanical system leads to the eigenvalue problem 

(9) Ax = Ax 

From Example I in Sec. 8.1 we see that A has the eigenvalues Al = -I and A2 
w = V=! = -::'::.i and Y=6 = -::'::.iV6, respectively. COlTesponding eigenvectors are 

(10) and 

From (8) we thus obtain the four complex solutions [see (10), Sec. 2.21 

Xle±it = Xl(cost -::'::. isint), 

X2e±iV6t = x2 (cos V6 t -::'::. i sin V6 t). 

By addition and subtraction (see Sec. 2.2) we get the four real solutions 

Xl co~ t. Xl sin t. X2 cos V6 t, x2 sin V6 t. 

A general solution is obtained by taking a linear combination of these. 

-6. Consequently, 

with arbitrary constants aI, bl , a2. b 2 (to which values can be assigned by prescribing initial displacement and 
initial velocity of each of the two masses). By (10), the components of yare 

Yl = al cos t + bl sin t + 2a2 cos V6 t + 2b2 sin V6 t 

Y2 = 2al cos t + 2bl sin t - a2 cos V6 t - b2 sm V6 t. 

These functions describe harmonic oscillations of the two masses. Physically, this had to be expected because 
we have neglected damping. • 

••• -
11-61 LINEAR TRANSFORMATIONS 

Find the matrix A in the indicated linear transformation 

y = Ax. Explain the geometric significance of the 

eigenvalues and eigenvectors of A. Show the details. 

1. Reflection about the y-axis in R2 

2. Reflection about the xy-plane in R3 

3. Orthogonal projection (perpendicular projection) of R2 
onto the x-axis 

4. Orthogonal projection of R3 onto the plane y = x 

5. Dilatation (uniform stretching) in R2 by a factor S 

6. Counterclockwise rotation through the angle 7r12 about 
the origin in R2 

17-141 ELASTIC DEFORMATIONS 

Given A in a deformation y = Ax, find the principal 
directions and corresponding factors of extension or 
contraction. Show the details. 

[: :J 
[0.4 0.8J 7. 8. 0.8 0.4 

[2.S 1.SJ [: I;J 9. 10. 
I.S 6.S 

11. [~ V:J 12. [S l~J 2 
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13. [-2 3J 
3 -2 [

10.5 
14. 

lfY2 
1IY2] 
10.0 

15. (Leontief1 input-output model) Suppose that three 
industries are interrelated so that their outputs are used 
as inputs by themselves, according to the 3 X 3 
consumption matrix 

[

0.2 

A = [ajk] = 0.6 

0.2 

0.5 

° 
0.5 

where ajk is the fraction of the output of industry k 
consumed (purchased) by industry j. Let Pj be the price 
charged by industry.i for its total output. A problem is 
to find prices so that for each industry, total 
expenditures equal total income. Show that this leads 
to Ap = p, where p = [PI PZ P3]T, and find a 
solution p with nonnegative PI, Pz, P3' 

16. Show that a consumption matrix as considered in Prob. 
15 must have column sums 1 and always has the 
eigenvalue I. 

17. (Open Leontief input-output model) If not the whole 
output but only a portion of it is consumed by the 
industries themselves, then instead of Ax = x (as in 
Prob. 15), we have x - Ax = y, where x = [Xl Xz X3]T 
is produced, Ax is consumed by the industries, and, thus, 
y is the net production available for other consumers. 
Find for what production x a given demand vector 
y = [0.136 0.272 0.136]T can be achieved if the 
consumption matrix is 

[

0.2 
A = 0.3 

0.2 

0.4 

° 
U.4 

118-201 MARKOV PROCESSES 

0.2] 
0.1 . 

0.5 

Find limit states of the Markov processes modeled by the 
following matrices. (Show the details.) 

[0.1 O.4J 18. 
0.9 0.6 

[05 0.3 02] 
19. 0.3 U.5 0.2 

0.2 0.2 0.6 

[

0.6 

20. 0~4 

0.1 

0.1 

0.8 

0.2] 
0.4 

0.4 

POPULATION MODEL WITH AGE 
SPECIFICATION 

Find the growth rate in the Leslie model (see Example 3) 
with the matrix as given. (Show details.) 

21. [0: 

n. [0:5 

U [0:60 

3.45 

° 
0.45 

12.0 

° 
0.30 

7.280 

° 
0.420 

24. TEAM PROJECT. General Properties of 
Eigenvalues and Eigenvectors. Prove the following 
statements and illustrate them with examples of your 
own choice. Here, A]o ... , An are the (not necessarily 
distinct) eigenvalues of a given /J X 11 matrix A = [ajk]. 
(a) Trace. The sum of the main diagonal entries is called 
the trace of A. It equals the sum of the eigenvalues. 

(b) "Spectral shift." A - kI has the eigenvalues 
Al - k, ... , An - k and the same eigenvectors as A. 

(c) Scalar multiples, powers. kA has the eigenvalues 
I..A1, ...• kA.,. Am (Ill = I. 2 .... ) has the eigenvalues 
At'. .... k,,"'. The eigenvectors are those of A. 

(d) Spectral mapping theorem. The ''polynomial 
matrix" 

has the eigenvalues 

p(Aj ) = kmA/" + k",_IA/n -
1 + ... + k1Aj + ko 

where.i = I,' .. , 11, and the same eigenvectors as A. 

(e) Perron's theorem. Show that a Leslie matrix L with 
positive lIZ' 113, Iz]o 13z has a positive eigenvalue. (This 
is a special case of the famous Perron-Frobenius theorem 
in Sec. 20.7, which is difficult to prove in its general form.) 

lWASSILY LEONTIEF (1906-1999). American economist at New York University. For his input-output 
analysis he was awarded the Nobel Prize in 1973. 
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8.3 Symmetric, Skew-Symmetric, 
and Orthogonal Matrices 

DEFINITIONS 

We consider three classes of real square matrices that occur quite frequently in applications 
because they have several remarkable properties which we shall now discuss. The first 
two of these classes have already been mentioned in Sec. 7.2. 

Symmetric, Skew-Symmetric, and Orthogonal Matrices 

A real square matrix A = [ajk] is called 
symmetric if transposition leaves it unchanged, 

(1) AT = A, thus 

skew-symmetric if transposition gives the negative of A, 

(2) AT = -A, thus 

orthogonal if transposition gives the inverse of A, 

(3) 

E X AMP L E 1 Symmetric, Skew-Symmetric, and Orthogonal Matrices 

EXAMPLE 1 

The matrices 

~ -::]. 
-20 0 

are symmetric, skew-symmetric, and orthogonal, respectively, as you should verify. Every skew-synuuetric 
matrix has all main diagonal entries zero. (Can you prove this?) • 

Any real square matrix A may be written as the sum of a symmetric matrix R and a 
skew-symmetric matrix S, where 

(4) and 

Illustration of Formula (4) 

A ~ [; 
5 

'] [9C 
3.5 

35] [ 0 
1.5 -15] 

3 -8 = R + S = 3.5 3.0 -~.O + -1.5 0 -6.0 

4 3 3.5 -2.0 3.0 1.5 6.0 0 
• 
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THEOREM 1 Eigenvalues of Symmetric and Skew-Symmetric Matrices 

(a) The eigenvalues of a symmetric matrix are real. 

(b) The eigenvalues of a skew-symmetric matrix are pure imaginal}' or zero. 

This basic theorem (and an extension of it) will be proved in Sec. 8.5. 

E X AMP L E 3 Eigenvalues of Symmetric and Skew-Symmetric Matrices 

THEOREM 2 

The matrices in (1) and (7) of Sec. 8.2 are symmetric and have real eigenvalues. The skew-symmetric matrix 
in Example 1 has the eigenvalues O. -25 i, and 25 i. (Verify this.) The following matrix has the real eigenvalues 
1 and 5 but is not symmetric. Does this contradict Theorem I? 

• 

Orthogonal Transformations and Orthogonal Matrices 
OrthogonaJ transformations are transformations 

(5) y = Ax where A is an orthogonal matrix. 

With each vector x in R n such a transformation assigns a vector y in Rn. For instance, 
the plane rotation through an angle 0 

(6) y = [Yl] = [C~s 0 
Y2 sm e 

-sin 0] [Xl] 
cos e X2 

is an orthogonal transformation. It can be shown that any orthogonal transformation in 
the plane or in three-dimensional space is a rotation (possibly combined with a reflection 
in a straight line or a plane. respectively). 

The main reason for the importance of orthogonal matrices is as follows. 

In variance of Inner Product 

An orthogonal transfonnation preserves the value of the inner product of vectors 
a and bin Rn. defined by 

(7) 

That is, for any a and b in R n , orthogonaln X 11 matrix A, and u = Aa, v = Ab 
we have u·v = a·b. 

Hence the tra11Sfonnation also preserves the length or norm of any vector a in 
Rn given by 

(8) II a II = v'a.3 = Wa. 
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PROOF Let A be orthogonal. Let u = Aa and v = Ab. We must show that u· v = a· b. Now 
(Aa)T = a TAT by (lOd) in Sec. 7.2 and AT A = A-I A = [by (3). Hence 

THEOREM 3 

(9) 

From this the invariance of II a II follows if we set b = a. 

Orthogonal matrices have further interesting properties as follows. 

Orthonormality of Column and Row Vectors 

A real square matrix is orthogonal if and only if its column vectors a1> ... , an (and 
also its row vectors) form an orthonormal system, that is, 

(10) 
if j = k. 

• 

PROOF (a) Let A be orthogonal. Then A-I A = AT A = I, in tenns of colullUl vectors a1> ... , an' 

THEOREM 4 

(11) 

l

a
1T

] lalTal 
I=A-1A=A

T
A= :T [al···a,.,]= ~ 

an an~ 

T T ] al . a2 : : : a
1 

. an . 

an
Ta2' .. anTan 

The last equality implies (0), by the definition of the n X n unit matrix I. From (3) it 
follows that the inverse of an orthogonal matrix is orthogonal (see CAS Experiment 20). 
Now the column vectors of A-I (= AT) are the row vectors of A. Hence the row vectors 
of A also form an orthonormal system. 
(b) Conversely, if the column vectors of A satisfy (10), the off-diagonal entries in (11) 
must be 0 and the diagonal entries 1. Hence AT A = I, as (11) shows. Similarly, AA T = I. 
This implies AT = A-I because also A-1A = AA -1 = I and the inverse is unique. Hence 
A is orthogonal. Similarly when the row vectors of A form an orthonormal system, by 
what has been said at the end of part (a). • 

Determinant of an Orthogonal Matrix 

The detenninant of an orthogonal matrix has the value + 1 or -1. 

PROOF From det AB = det A det B (Sec. 7.8, Theorem 4) and det AT = det A (Sec. 7.7, Theorem 
2d), we get for an orthogonal matrix 

I = det I = det (AA -1) = det (AA T) = det A det AT = (det A)2. • 

E X AMP L E 4 Illustration of Theorems 3 and 4 

The last matrix in Example I and the matrix in (6) illustrare Theorems 3 and 4 because their determinants are 
-1 and + 1. as you should verify. • 
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THEOREM 5 Eigenvalues of an Orthogonal Matrix 

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs 
and have absolute value I. 

PROOF The first part of the statement holds for any real matrix A because its characteristic 
polynomial has real coefficients. so that its zeros (the eigenvalues of A) must be as 
indicated. The claim that IAI = 1 will be proved in Sec. 8.5. • 

E X AMP L E 5 Eigenvalues of an Orthogonal Matrix 

The orthogonal matrix in Example 1 has the characteristic equation 

Now one of the eigenvalues must be real (why?). hence + I or -1. Trying. we find -1. Division by A + I 
gives _(A2 

- 5Al3 + 1) = 0 and the two eigenvalues (5 + iVll)/6 and (5 - iVll)/6. which have absolute 
value I. Verify all of this. • 

Looking back at this section. you will find that the numerous basic results it contains have 
relatively short, straightforward proofs. This is typical of large portions of matrix 
eigenvalue theory . 

. . 08 LE~--S-EI-83" 

1. (Verification) Verify the statements in Example 1. 

2. Verify the statements in Examples 3 and 4. 

3. Are the eigenvalues of A + B of the form Aj + Mj. 
where A.i and p; are the eigenvalues of A and B, 
respecti vely? 

4. (Orthogonality) Prove that eigenvectors of a 
symmetric matrix corresponding to different 
eigenvalues are orthogonal. Give an example. 

5. (Skew-symmetric matrix) Show that the inverse of a 
skew-symmetric matrix is skew-symmetric. 

6. Do there exist nonsingular skew-symmetric 11 X 11 

matrices with odd II? 

7. (Orthogonal matrix) Do there exist skew-symmetric 
orthogonal 3 X 3 matrices? 

8. (Symmetric matrix) Do there exist nondiagonal 
symmetric 3 X 3 matrices that are orthogonal? 

19-171 EIGENVALUES OF SYMMETRIC, SKEW­
SYMMETRIC, AND ORTHOGONAL 
MATRICES 

Are the following matrices symmetric, skew-~ymmetric, or 
orthogonal? Find their spectrum (thereby illustrating 
Theorems 1 and 5). (Show the details of your work.) 

9. [0.96 -0.28J 10. [a bJ 
0.28 0.96 -b a 

11. 
[

COS e 

sin e 

° ° 

-sin e 
12. cos e 

13. 

15. 

17. 

18. (Rotation in space) Give a geometric interpretation of 
the transformation y = Ax with A as in Prob. 12 and 
x and y referred to a Cartesian coordinate system. 

19. WRITING PROJECT. Section Summary. 
Summarize the main concepts and facts in this section, 
with illustrative examples of your own. 
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20. CAS EXPERIMENT. Orthogonal Matrices. spectra. Apply it to the matrix in Prob. 9 (call it A). To 
what rotation does A correspond? Do the eigenvalues 
of Am have a limit as 111 _ x? 

(a) Products. Inverse. Prove that the product of two 
orthogonal matrices is orthogonaL and so is the inverse 
of an orthogonal matrix. What does this mean in terms 
of rotations? 

(d) Compute the eigenvalues of (O.9A)"'. where A is 
the matrix in Prob. 9. Plot them as points. What is their 
limit? Along what kind of curve do these points 
approach the limit? 

(b) Rotation. Show that (6) is an orthogonal 
transformation. Verify that it satisfies Theorem 3. Find 
the inverse transformation. (e) Find A such that y = Ax is a counterclockwise 

rotation through 30° in the plane. (e) Powers. Write a program for computing powers 
Am (17l = 1. 2 .... ) of a 2 X 2 matrix A and their 

8.4 Eigenbases. Diagonalization. 
Quadratic Forms 

THEOREM 1 

So far we have emphasized properties of eigenvalues. We now turn to general properties 
of eigenl'ectors. Eigenvectors of an n X n matrix A may (or may not!) form a basis for 
Rn. If we are interested in a transformation y = Ax, such an "eigenbasis" (basis of 
eigenvectors)-if it exists-is of great advantage because then we can represent any x in 
R n uniquely as a linear combination of the eigenvectors Xl' •.. , Xn , say, 

And, denoting the corresponding (not necessarily distinct) eigenvalues of the matrix A by 
AI' ... , An. we have AXj = A:iXj, so that we simply obtain 

y = Ax = A(clX I + ... + cnxn) 

(I) = ciAxi + ... + cnAx" 

= cIAlxI + ... + cnAnxn· 

This shows that we have decomposed the complicated action of A on an arbitrary vector 
x into a sum of simple actions (multiplication by scalars) on the eigenvectors of A. This 
is the point of an eigenbasis. 

Now if the n eigenvalues are all different, we do ohtain a hasis: 

Basis of Eigenvectors 

If an n X n matrix A has 11 distillct eigenvalues, then A has a basis of eigenvectors 
Xl •...• xnfor Rn. 

PROOF All we have to show is that Xl' .••• Xn are linearly independent. Suppose they are not. 
Let r be the largest integer such that {Xl> .••• x,.} is a linearly independent set. Then 
r < n and the set {Xl.' ••• Xn xr+d is linearly dependent. Thus there are scalars 
CI> ••• , Cr+I, not all zero, such that 

(2) 

(see Sec. 7.4). Multiplying both side~ by A and using AXj = AjXj. we obtain 

(3) 
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To get rid of the last term, we subtract Ar+l times (2) from this, obtaining 

Here cl(Al - Ar+l) = O ..... c,·(Ar - A,-+l) = 0 since {Xl' ... ,xrl is linearly independent. 
Hence Cl = ... = cr = 0, since all the eigenvalues are distinct. But with this, (2) reduces 
to cr+lxr+l = 0, hence Cr +l = 0, since xr+l 1:- 0 (an eigenvector!). This contradicts the fact 
that not all scalars in (2) are zero. Hence the conclusion of the theorem must hold. • 

E X AMP L E 1 Eigenbasis. Nondistinct Eigenvalues. Nonexistence 

THEOREM 2 

The matrix A = [: :J has a ba~is of eigenvectors [: J ' [-:J corresponding to the eigenvalues 

Al = 8. A2 = 2. (See Example I in Sec. 8.2.) 
Even if not all n eigenvalues are different, a matrix A may still provide an eigenbasis for RTl. See Example 

2 in Sec. 8.1, where n = 3. 
On the other hand, A may not have enough linearly independent eigenvectors to make up a basis. For 

instance, A in Example 3 of Sec. 8.1 is 

~J and has only one eigenvector (k *- O. arbitrary). • 

Actually, eigenbases exist under much more general cunditions than those in Theorem L. 
An important case is the following. 

Symmetric Matrices 

A symmetric matrix has all ortllOno1711al basis of eigellvectors for Rn. 

For a proof (which is involved) see Ref. [B3], vol. I, pp. 270-272. 

E X AMP L E 2 Orthonormal Basis of Eigenvectors 

DEFINITION 

The first matrix in Example I i~ symmetric, and an orthonormal basis of eigenvectors is [IIV:>: 

[1IV2 -ltif2:r 

Diagonalization of Matrices 
Eigenbases also playa role in reducing a matrix A to a diagonal matrix whose entries are 
the eigenvalues of A. This is done by a "similarity transformation." which is defined as 
follow,> (and will have various applications in numerics in Chap. 20). 

Similar Matrices. Similarity Transformation 

An n X 11 matrix A is called similar to an 11 X 11 matrix A if 

(4) 

for some (nonsinguiar!) 11 X n matrix P. Thi~ transformation. which gives A from 
A. is called a similarity transformation. 
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THEOREM) 

The key property of this transformation is that it preserves the eigenvalues of A: 

Eigenvalues and Eigenvectors of Similar Matrices 

If A is similar to A, then A !las the same eigenvalues as A. 
Furthennore, {f x is all eigenvector of A, then y = p-1x is an eigenvector of A 

corresponding to the same eigenvalue. 

PROOF From Ax = Ax (A an eigenvalue, x *- 0) we get P-1Ax = AP-1x. Now 1= pp-l. By 
this "identity trick" the previous equation gives 

Hence A is an eigenvalue of A and p-1x a corresponding eigenvector. Indeed, p-1x = 0 
would give x = Ix = pp-1x = PO = 0, contradicting x *- O. • 

E X AMP L E) Eigenvalues and Vectors of Similar Matrices 

THEOREM 4 

Let A= [6 -3J and p= [I 3J 
4 -I I 4 

A= [ 4 -3J [Ii -3J [I 3J [3 OJ. 
-I I 4 -I 1 4 0 2 

Then 

Here p-l was obtained from (4*) in Sec. 7.8 with det P = 1. We see that A has the eigenvalues Al = 3, 
A2 = 2. The characteristic equation of A is l6 - A)( -1 - A) + 12 = A2 - 5A + 6 = O. It has the roots (the 
eigenvalues of A) Al = 3, A2 = 2, confirming the first part of Theorem 3. 

We confirm the second part. From the first component of (A - AI)x = 0 we have (6 - A)XI - 3"2 = O. 
For A = 3 this gives 3.'1 - 3X2 = O. say. Xl = [1 l]T. For A = 2 it gives 4xl - 3X2 = O. say. X2 = [3 4]T. 

In Theorem 3 we thus have 

Indeed. these are eigenvectors of the diagonal matrix A. 
Perhaps we see that Xl and x2 are the columns of P. This suggests the general method of transforming a 

matrix A to diagonal form D by using P = X, the matrix with eigenvectors as columns: • 

Diagonalization of a Matrix 

If an n X 11 matrix A has a basis of eigenvectors, then 

(5) 

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X 
is the matrix H·ith these eigenvectors as colu11ln vectors. Also, 

(5*) Dm = X-1A"'X (/11 = 2,3,' . '). 
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PROOF Let Xb ... , Xn constitute a basis of eigenvectors of A for Rn. Let the corresponding 
eigenvalues of A be Ab ... , An' respectively, so that Ax] = A1Xb· .. ,AXn = Anx". 
Then X = [Xl x.,] has rank n, by Theorem 3 in Sec. 7.4. Hence X-I exists by 
Theorem 1 in Sec. 7.8. We claim that 

(6) AX = A[X1 

where D is the diagonal matrix as in (5). The fourth equality in (6) follows by direct 
calculation. (Try it for n = 2 and then for general n.) The third equality uses AXk = Akxk. 
The second equality results if we note that the first column of AX is A times the first 
column of X, and so on. For instance. when n = 2 and we write Xl = [XU X21]T, 
X2 = [X12 X22]T, we have 

[(/11 (/12] [X11 X12 ] 
AX = A[X1 X2] 

(/21 (/22 X 21 X22 

[(/l1X 11 + (/12X 21 (/l1X 12 + (/12X 22 ] 
= [AX1 Ax2]. 

(/21X 11 + (/22 X 21 (/21X 12 + (/22X 22 

Column I Column 2 

If we multiply (6) by X-I from the left, we obtain (5). Since (5) is a similarity 
transformation, Theorem 3 implies that D has the same eigenvalues as A. Equation (5*) 
follows if we note that 

etc. • 
E X AMP L E 4 Diagonalization 

Diagonalize 

[ 

7.3 
A = -11.5 

17.7 

0.2 
1.0 

1.8 

-3.7] 
5.5 . 

-9.3 

Solution. The characteristic determinant gives the characteristic equation -A3 - A2 + 12A = O. The roots 
(eigenvalues of A) are Al = 3, A2 = -4, A3 = O. By the Gauss elimination applied to (A - AI)x = 0 with 
A = A]. A2• A3 we find eigenvectors and then X-I by the Gauss-Jordan elimination (Sec. 7.8. Example 1). The 
results are 

0.2 0.3] 
-0.2 0.7. 

0.2 -0.2 

Calculating AX and multiplying by X-I from the left, we thus obtain 

[-0' 0.2 0'][-3 -4 

:] ~ [: 
0 

:1 D = X-lAX = -1.3 -0.2 0.7 9 4 -4 • 
0.8 0.2 -0.2 -3 -12 0 
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Quadratic Forms. Transformation to Principal Axes 
By definition, a quadratic form Q in the components Xl, ... , Xn of a vector x is a sum 
of n2 terms, namely, 

(7) 

n n 

Q = xT Ax = 2. 2. ajkxjxk 
j~l k~l 

+ ........................ . 

A = [ajk] is called the coefficient matrix of the fmID. We may assume that A is symmetric, 
because we can take off-diagonal telIDS together in pairs and write the result as a sum of 
two equal terms; see the following example. 

E X AMP L E 5 Quadratic Form. Symmetric Coefficient Matrix 

Let 

Here 4 t- 6 = 10 = 5 -t 5. From the corresponding symmetric matrix C = [Cjk], where Cjk = ~(ajk + aid)' 

thus Cll = 3, C12 = C21 = 5, C22 = 2, we get the same result; indeed, 

• 
Quadratic forms occur in physics and geometry. for instance. in connection with conic 
sections (ellipses X12/a

2 + X22/b
2 = 1, etc.) and quadratic surfaces (cones, etc.). Their 

transformation to principal axes is an important practical task related to the diagonalization 
of matrices, as follows. 

By Theorem 2 the symmetric coefficient matrix A of (7) has an orthonormal basis of 
eigenvectors. Hence if we take these as column vectors, we obtain a matrix X that is 
orthogonal, so that X-l = XT. From (5) we thus have A = XDX-1 = XDXT. Substitution 
into (7) gives 

(8) 

If we set XTx = y, then, since XT = x-I, we get 

(9) x = Xy. 

Furthermore, in (8) we have xTX = (XTX)T = yT and XTx = y, so that Q becomes simply 

(10) 
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THEOREM 5 
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This proves the following basic theorem. 

Principal Axes Theorem 

The substitution (9) transforms a quadratic form 

n n 

Q = xTAx = 2. 2. ajkXjXk 

j=l k=I 

to the principal axes form or canonical form (10), where Ab ...• An are the (not 
necessarily distinct) eigenvalues of the (s)"lnmetric!) matrix A, and X is an 
orthogonal matrix with corresponding eigenvectors Xl' ... , xn , respectively, as 
colu11ln vectors. 

E X AMP L E 6 Transformation to Principal Axes. Conic Sections 

Find out what type of conic section the following quadratic form represents and transform it to principal 
axes: 

Solution. We have Q = x TAx. where 

A=[ I7 -15J. 
-15 I7 

This gives the characteristic equation 07 - A)2 - 152 = O. It has the roots A1 = 2. A2 = 32. Hence (10) 
becomes 

We see that Q = 128 represents the ellipse 2.1'/ + 32yl = 128. that is. 

If we want to kno" the direction of the principal axes in the Xlx2-coordinates. we have to determine normalized 
eigenvectors from (A - AI)x = 0 with A = Al = 2 and A = A2 = 32 and then use (9). We get 

[ I/V~. ] 
II\., 2 

and 

hence 

x = XJ' = [ IIVz -IIVz J [YIJ 
IIVz 1IV2 .1'2' 

[-IIVzJ. IIVz 

Xl = yI/Vz - Y2 /Vz 

X2 = y1/V2 + Y2/V2. 

This is a 45° rotation. Our results agree with those in Sec. 8,2, Example I, except for the notations. See also 
Fig. 158 in that example. • 
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----- .. • .... __ r-- ~-------." ; ... = ;... ... r ~ ====-_ 
11-91 DIAGONALIZATION OF MATRICES 
Find an eigenbasis (a basis of eigenvectors) and 
diagonalize. (Show the details.) 

1. [: :J 2. [~ I~J 

3. [~ ~J 4. [-: -~J 
[1.0 6.0J 

[: -:J 5. 6. 1.5 1.0 

[ 
0 

:1 
l-' 

-6 

1:1 7. 3 8. -5 -5 
0 -9 -9 13 

l-1: 

10 
-1:1 9. 39 

-24 40 -15 
10. (Orthonormal basis) Illustrate Theorem 2 with further 

examples. 

11. (No basis) Find further 2 X 2 and 3 X 3 matrices 
without eigenbases. 

12. PROJECT. Similarity of Matrices. Similarity is 
basic, for instance in designing numeric methods. 

(a) Trace. By definition, the trace of an 11 X 11 matrix 
A = [ajk] is the sum of the diagonal entries, 

trace A = all + a22 + ... + ann' 

Show that the trace equals the sum of the eigenvalues, 
each counted as often as its algebraic multiplicity 
indicates. Illustrate this with the matrices in Probs. 1. 3,5.7,9. 
(b) Trace of product. Let B = [bjk} be 11 X n. Show 
that similar matrices have equal traces, by first 
proving 

n n 

trace AB = ~ ~ ailbli = trace BA. 
i~ll~l 

(c) Find a reiationship between A in (4) and A = PAP-I. 

355 

(d) Diagonalization. What can you do in (5) if you 
want to change the order of the eigenvalues in D, for 
instance. interchange dll = Aland d22 = A2? 

113-181 SIMILAR MATRICES HAVE EQUAL 
SPECTRA 

Verify this for A and A = P-lAP. Find eigenvectors y of 
A. Show that x = Py are eigenvectors of A. (Show the 
details of your work.) 

13. A = [-5 OJ ' P = [ 4 -2J 
o 2 -3 I 

14. A = 
[4

3 

15. A = [ 4 
-4 

2J [1 P= 
-2 3 

17. A = ll: -~ ~] , P = l~ ~ ~] 
2] -6 1 6 0 10 

18. A = l-~ ~ ~:1· P = l~ 0 ~1 
-5 0 15 0 0 1 

119-281 TRANSFORMATION TO PRINCIPAL AXES. 
CONIC SECTIONS 

What kind of conic section (or pair of straightlines) is given 
by the quadratic form? Transform it to principal axes. 
Express x T = [Xl X2] in terms of the new coordinate vector 
y T = [Yl ."2]' as in Example 6. 

19. X12 + 24xlX2 - 6X22 = 5 

20. 3X12 + 4V3xl X2 + 7X 2
2 

= 9 

21. 3-'"12 - 8XlX2 - 3-'"22 = 0 

22. 6X12 + 16-'"1-'"2 - 6X22 = 20 
23. 4X12 + 2V3xlX2 + 2X22 = 10 

24. 7X12 - 24xlX2 = 144 

25. X 1
2 

- 12xl-'"2 + X2
2 = 35 
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26. 3X]2 + 22xIX2 + 3X22 = 0 

27. 12xI2 + 32xIX2 + 12x22 = 112 

28. 6.5xI2 + 5.0X]x2 + 6.5x22 = 36 

29. (Definiteness) A quadratic fonn Q(x) = x T Ax and its 
(symmetric!) matrix A are called (a) positive definite 
if Q(x) > 0 for all x "* 0, (b) negative definite if 
Q(x) < 0 for all x "* O. (e) indefinite if Q(x) takes 
both positive and negative values. (See Fig. 160.) [Q(x) 
and A are called positive semidefinite (negative 
semidefinite) if Q(x) ~ 0 (Q(x) ~ 0) for all x.J A 
necessary and sufficient condition for positive 
definiteness is that all the "principal minors" are 
positive (see Ref. [B3]. vol. 1. p. 306), that is. 

lall aI21 all> 0, >0, 
(/]2 a22 

all aI2 a]3 

a I2 a22 a23 >0, detA > O. 

a]3 a23 a33 

Show that the form in Prob. 23 is positive definite, 
whereas that in Prob. 19 is indefinite. 

Q(x) 

.1:2 

(a) PosItIve defimte form 

Q(x) 

(b) Negative defm Ite form 

Q(x) 

(c) Indefinite form 

30. (Definiteness) Show that necessary and sufficient for 
(a), (b), (c) in Prob. 29 is that the eigenvalues of A are 
(a) all positive, (b) all negative, tc) both positive and 
negative. Hint. Use Theorem 5. Fig. 160. QuadratiC forms in two variables 

8.5 Complex Matrices and Forms. Optional 
The three classes of real matrices in Sec. 8.3 have complex counterparts that are of practical 
interest in certain applications, mainly because of their spectra (see Theorem 1 in this 
section), for instance, in quantum mechanics. To define these classes, we need the 
following standard 

Notations 

A = [ajk] is obtained from A = [lljk] by replacing each entry lljk = a + i{3 

(a,.!! real) with its complex conjugate ajk = 0'- i{3. Also, AT = [al0] is the transpose 

of A, hence the conjugate transpose of A. 

E X AMP L E 1 Notations 

[

3 + 4i 
If A = 

6 
1 - i J, then A = [3 - 4i 
:>. - 5i 6 

1 + i ] -T [3 - 4; 
and A = 

2+5; 1+; 
6 ] •• 2 + 5; 
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DEFINITION Hermitian, Skew-Hermitian, and Unitary Matrices 

A square matrix A = [aid] is called 

Hermitian if r=A , 

skew-Hermitian if AT =-A , 

unitary if AT = A-I. 

that is, akj = ajk 

that is, akj = -ajk 

The first two classes are named after Hermite (see footnote 13 in Problem Set 5.8). 
From the definitions we see the following. If A is Hermitian. the entries on the main 

diagonal must satisfy ajj = ajj; that is, they are rea1. Similarly, if A is skew-Hermitian, 
then ajj = -aii' If we set aij = 0' + i{3, this becomes 0' - i{3 = -(0' + i(3). Hence 
0' = 0, so that aji must be pure imaginary or O. 

E X AMP L E 2 Hermitian, Skew-Hermitian, and Unitary Matrices 

[ 

4 
A= 

1+ 3i 
B= [ 

3i 

-2 t- i [

1, 
2' c= 
!V3 

are Hennitian, skew-Hennitian, and unitary matrices, respectively, as you may verify by using the definitions. 

If a Hermitian matrix is real, then AT = AT = A. Hence a real Hermitian matrix is a 
symmetric matrix (Sec. 8.3.). 

Similarly, if a skew-Hermitian matrix is real, then AT = AT = -A. Hence a real 
skew-Hermitian matrix is a skew-symmetric matrix. 

Finally, if a unitary matrix is real, then AT = AT = A -1. Hence a real unitary matrix 
is an orthogonal matrix. 

This shows that Hennitian, skew-HeI7l1itian, and unitary matrices generalize symmetric, 
skew-symmetric, and orthogonal matrices, respectively. 

Eigenvalues 
It is quite remarkable that the matrices under consideration have spectra (sets of eigenvalues; 
see Sec. 8.1) that can be characterized in a general way as follows (see Fig. 161). 

1m A I Skew-Hermitian (skew-symmetric) 

Unitary (orthogonal) 

Hermitian (symmetric) 

ReA 

Fig. 161. Location of the eigenvalues of Hermitian, 
skew-Hermitian, and unitary matrices in the complex A-plane 
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THEOREM 1 Eigenvalues 

(a) The eigenvalues qf a Hermitian matrix tand tllUS of a symmetric matrix) are 
real. 

(b) The eigenvalues (~f a skew-Hermitial1 matrix (and thus qf a skew-symmetric 
matrix) are plIre imaginwy or ::,ero. 

(e) The eigenvalues of a unitary matrix (and thus of an orthogonal matrix) have 
absolute FaIlle L 

E X AMP L E 3 Illustration of Theorem 1 

For the matrices in Example 2 we find by direct calculation 

Matrix Charactenstic Equation Eigenvalues 

9, 2 

4i, -2i 

A 

B 

C 

Hermitian 
Skew-Hennitian 
Unitary 

A2 - llA + I~ = 0 
A2 - liA + 8 = 0 

A2 - iA - 1 = 0 ~V3 + ii. -iV3 + ~i 

• 
PROOF We prove Theorem L Let A be an eigenvalue and x an eigenvector of A. Multiply Ax = 

Ax from the left by xT. thus xTAx = AXTX. and divide by xTx = XIXI + ... + xnxn = 

IXll2 + ... + IXnI2, which is real and not 0 because x *- O. This gives 

(1) A= 

(a) If A is Hennitian, AT = A or AT = A and we show that then the numerator in (l) is 
real, which makes A reaL xT Ax is a scalar; hence taking the transpose has no effect. Thus 

(2) 

Hence, xT Ax equals its complex conjugate, so that it must be reaL (a + ib 
implies b = 0.) 

(b) If A is skew-Hermitian, AT = -A and instead of (2) we obtain 

(3) 

a - ib 

so that x T Ax equals mmus its complex conjugate and is pure imaginary or O. 
(a + ib = -(a - ib) implies a = 0.) 

(e) Let A be unitary. We take Ax = Ax and its conjugate transpose 

- T - T -
(AX) = (Ax) = AXT 

and multiply the two left sides and the two right sides, 
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But A is unitary. AT = A -I, so that on the left we obtain 

Together, "TX = IAI2"Tx. We now divide by "TX (* 0) to get IAI2 = 1. Hence IAI 1. 
This proves Theorem 1 as well as Theorems I and 5 in Sec. 8.3. • 

Key properties of orthogonal matrices (invariance of the inner product, orthonormality of 
rows and columns; see Sec. 8.3) generalize to unitary matrices in a remarkable way. 

To see this, instead of R n we now use the complex vector space en of all complex 
vectors with 11 complex numbers as ~omponents, and complex numbers as scalars. For 
such ,complex vectors the inner product is defined by (note the overbar for the complex 
conjugate) 

(4) 

The length or norm of such a complex vector is a real number defined by 

THE 0 REM 2 Invariance of Inner Product 

A unitary transformation, that is, y = Ax with a unitaJ:': matrix A, preserves the 
value of the inner product (4), hence also the norm (5). 

PROOF The proof is the same as that of Theorem 2 in Sec. 8.3, which the theorem generalizes. 

DEFINITION 

THEOREM 3 

In the analog of (9), Sec. 8.3, we now have bars, 

T -- T _T-T _ _ 
u·v = fi v = (Aa) Ab = a A Ab = aTlb = aTb = a·b. • 

The complex analog of an orthonormal systems of real vectors (see Sec. 8.3) is defined 
as follows. 

Unitary System 

A unitary system is a set of complex vectors satisfying the relationships 

(6) 
if j * k 

if j = k. 

Theorem 3 in Sec. 8.3 extends to complex as follows. 

Unitary Systems of Column and Row Vectors 

A complex square matrix is unitary if and only if its column vectors (and also its 
row vectors) fOl71l a unitary system. 
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PROOF The proof is the same as that of Theorem 3 in Sec. 8.3. except for the bars required in 
AT = A -1 and in (4) and (6) of the present section. • 

THE 0 REM 4 Determinant of a Unitary Matrix 

Let A be a unitary Inarrix. Then iTS determinanT has absolute m/ue one, that is, 
Idet AI = 1. 

PROOF Similarly as in Sec. 8.3 we obtain 

I = det (AA -1) = det (AAT) = det A det AT = det A det A 

= det A det A = Idet A12. 

Hence Idet AI = 1 (where det A may now be complex). • 
E X AMP L E 4 Unitary Matrix Illustrating Theorems lc and 2-4 

THEOREM 5 

For the vectors 3
T = [2 -il and bT = [I + i 4i] we get aT = [2 i]T amlaTb = 2(1 + i) - 4 = -2 + 2i 

and with 

[

0.8i 
A= 

0.6 

0.6 J 
0.8i 

also A3 = [:J and [
-0.8 + 3.2;J 

<\b = , 
-2.6 + 0.6i 

as one can readily verify. This gives (Aa)TAb = -2 + 2i. illustrating Theorem 2. The matrix is unitary. Its 
columns form a unitary system. 

a}T3} = -0.8i· 0.8i + 0.62 = I. a} T 32 = -0.8i· 0.6 + 0.6' 0.8i = O. 

~ T 32 = 0.62 + (-0.8i)0.8i = I 

and so do its rows. Also. det A = -1. The eigenvalues are 0.6 + O.Si and -U.6 + O.Si, with eigenvectors 
[I I]T and [I _I]T. respectively. • 

Theorem 2 in Sec. 8.4 on the existence of an eigenbasis extends to complex mahices as 
follows. 

Basis of Eigenvectors 

A Hen71itian, skew-Hemzitian, or unitGl)' matrix has a basis of eigenvectors for en 
that is a unitary system. 

For a proof see Ref. [B3], vol. 1, pp. 270-272 and p. 244 (Definition 2). 

E X AMP L E 5 Unitary Eigenbases 

The matrices A, E, C in Example 2 have the following unitary systems of eigenvectors, as you should verify. 

I 
5]T 

I 
-2]T A: ---r= [I - 3i (A = 9), --fl - 3i (A = 2) 

\. 35 Vi4 
I 

-5]T I 
1 + 2i]T E: --[1-2; (A = -2i), vTo[5 (A = 4i) 

vTo 

I 
I]T (A = ~(i + V3», C: -[I 

V2 
I 

-[I 
V2 

-I]T (A = !(i - V3». • 
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Hermitian and Skew-Hermitian Forms 
The concept of a quadratic form (Sec. 8.4) can be extended to complex. We call the 
numerator "TAx in (1) a form in the components Xl> •.• , Xn of x, which may now be 
complex. This form is again a sum of n2 terms 

(7) 

n n 

"TAx = 2. 2. ajkXjXk 

j~l k~l 

+ ................. . 

A is called its coefficient matrix. The fOlTn is called a Hermitian or skew-Hermitian 
form if A is Hermitian or skew-Hermitian, respectively. The value qf a Hermitianfonn 
is real. and that of a skew-Hennitiall form is pllre imaginw}' or z.ero. This can be seen 
directly from (2) and (3) and accounts for the importance of these forms in physics. Note 
that (2) and (3) are valid for any vectors because in the proof of (2) and (3) we did not 
use that x is an eigenvector but only that "TX is real and not O. 

E X AMP L E 6 Hermitian Form 

For A in Example 2 and, say, x = [I + i SilT we get 

xTAx=[l-i -SiJ [ 4 
1 + 3; 

1 - 3iJ [1 + iJ .. [4(1 + i) + (I - 3i)' Si] _ 
= [I - I -SI] - 223. • 

7 Si (l + 3;)(1 t- i) + 7· S; 

Clearly, if A and x in (4) are real, then (7) reduces to a quadratic form, as discussed in 
the last section . 

... -.... 
1. (Verification) Verify the statements in Examples 2 

and 3. 

2. (Product) Show (BA{ = - AB for A and B in 
Example 2. For any n X n Hermitian A and 
skew-Hermitian B. 

3. Show that (ABC{ = -C-1BA for any n X n 
Hermitian A, skew-Hermitian B, and unitary C. 

4. (Eigenvectors) Find eigenvectors of A, B, C in 
Examples 2 and 3. 

15-111 EIGENVALUES AND EIGENVECTORS 

Are the matrices in Probs. 5-11 Hermitian? Skew­
Hermitian? Unitary? Find their eigenvalues (thereby 
verifying Theorem 1) and eigenvectors. 

5. [4 iJ 
-i 2 

6. [0 
2i 

2~J 

7. 

9. 

10. 

r-: -~:J 8. [~ ~J 

[5: 
0 

s] 0 

5i 

[I : i 
I + i 

: i] 0 

1 - i 
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12. PROJECT. Complex Matrices 

(a) Decomposition. Show (hat any square matrix may 
be written as the sum of a Hermitian and a 
skew-Hermitian matrix. Give examples. 

(b) Normal matrix. This important concept denotes 
a matrix that commutes with its conjugate transpose, 

AAT = AT A. Prove that Hermitian, skew-Hermitian. 

and unitary matrices are normal. Give corresponding 
examples of your own. 

(c) Normality criterion. Prove (hat A is normal if and 
only if the Hermitian and skew-Hermitian matrices in 
(a) commute. 

(d) Find a simple matrix that is nol normal. Find a 
nOimal matrix that is not Hermitian, skew-Hermitian. 
or unitary. 
(e) Unitary matrices. Prove that the product of two 
unitary 11 X 11 mau'ices and the inverse of a unitary 
matrix are unitary. Give examples. 

(f) Powers of unitary matrices in applications may 
sometimes be very simple. Show that C12 = I in 
Example 2. Find further examples. 

113-151 COMPLEX FORMS 

Is the given matrix lcall itA) Hermitian or skew-Hermitian? 
Find x:T Ax. (Show all (he details.) a, b, e, k are reaL 

13. [ O. - 3; J . x = [4 + ~J 
-31 0 3 - I 

14. [
a. h + ; CJ ' X = [Xl] 

b - Ie k X2 

15. 

16. (Pauli spin matrices) Find the eigenvalues and 
eigenvectors of the so-called Palll i Spill111afriees and show 
that SxSy = is,, SySX = -iSz, Sx2 = Sy2 = S/ = I, 
where 

[
0 -iJ 

Sy = i 0' 

[I OJ S = 
z 0-1 

C H A-P T E R-8::: R £ V-I E W-=Q U EST ION 5 AND PRO B L EMS 

1. In solving an eigenvalue problem. what is given and 
what is sought? 

2. Do there exist square matrices without eigenvalues? 
Eigenvectors corresponding to more than one 
eigenvalue of a given matrix? 

3. What is the defect? Why is it important? Give examples. 

4. Can a complex matrix have real eigenvalues? Real 
eigenvectors? Gi\'e reasons. 

5. What is diagonalization of a matrix? Transformation of 
a form to principal axes? 

6. What is an eigenbasis'? When does it exist? Why is it 
important? 

7. Does a 3 X 3 matrix always have a real eigenvalue? 

8. Give a few typical applications in which eigenvalue 
problems occur. 

~-:BJ DIAGONALIZATION 
Find an eigenbasis and diagonalize. (Show the details.) 

[ 
101 

9. 
-144 

72J 
-103 

[ 

14.4 
10. 

-11.2 

11. [-14 
-10 

-11.2J 

102.6 

10J 
11 

12. 

r 
I: I: -:], 11. = 18 

-12 -2 -7 

13. 

r
: : -:] 

-4 -~ -~ 

r
-: 
-4 

11 

14. 

10 
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~ ~-iil SIMILARITY 
Verify that A and A = P-1AP have the same spectrum. 

17. [~ 2 =~], [~ ~ :] Here, A, Pare: 

[

3.8 
15. 

2.4 

I -1 -1 3 2 4 

~J 

16. [-~: ~~ ~~], [~ : ~] 
28 -14 29 2 8 0 

Transformation to Canonical Form. Reduce the quadratic 
form to principal axes. 

18. 11.56x12 + 20.16x1-'2 + 17 .44x22 = 100 

19. 1.09x/ - 0.06X1X2 + \.0\ xl = 1 

20. 14x12 + 24xIX2 - 4X22 = 20 

-5l:r ,. 1FEIJF~-HA-p..T£R-8:= 
Linear Algebra: Matrix Eigenvalue Problems 

The practical importance of matrix eigenvalue problems can hardly be overrated. 
The problems are defined by the vector equation 

(I) Ax = Ax. 

A is a given square matrix. All matrices in this chapter are square. 11. is a scalar. To 
solve the problem (1) means to determine values of A, called eigenvalues (or 
characteristic values) of A, such that (I) has a nontrivial solution x (that is, 
x =1= 0), called an eigenvector of A corresponding to that A. An 11 X 11 matrix has 
at least one and at most 11 numerically different eigenvalues. These are the solutions 
of the characteristic equation (Sec. 8.1) 

all - A a12 ain 

a21 a22 - A a2n 

(2) D(A) = det (A - AI) = = O. 

anI a n 2 ann - A 

D(A) is called the characteristic determinant of A. By expanding it we get the 
characteristic polynomial of A, which is of degree n in A. Some typical applications 
are shown in Sec. 8.2. 

Section 8.3 is devoted to eigenvalue problems for symmetric (AT = A), 
skew-symmetric (AT = -A), and orthogonal matrices (AT = A-I). Section 8.4 
concerns the diagonalization of matrices and the transformation of quadratic forms 
to principal axes and its relation to eigenvalues. 

Section 8.5 extends Sec. 8.3 to the complex analogs of those real matrices, 
called Hermitian (AT = A). skew-Hermitian (AT = -At and unitary matrices 
(AT = A-I). All the eigenvalues of a Hermitian matrix (and a symmetric one) are 
real. For a skew-Hermitian (and a skew-symmetric) matrix they are pure imaginary 
or zero. For a unitary (and an orthogonal) matrix they have absolute value l. 
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CHAPTER 9 

Vector Differential Calculus. 
Grad, Div, Curl 

This chapter deals with vectors and vector functions in 3-space, the space of three 
dimensions with the usual measurement of distance (given by the Pythagorean theorem). 
This includes 2-space (the plane) as a special case. It extends the differential calculus to 
those vector functions and the vector fields they represent. Forces, velocities, and various 
other quantities are vectors. This makes the algebra, geometry, and calculus of these vector 
functions the natural instrument for the engineer and physicist in solid mechanics. fluid 
flow, heat flow, electrostatics, and so on. The engineer must understand these vector 
functions and fields as the basis of the design and consuuction of systems, such as 
airplanes, laser generators, and robots. 

In Secs. 9.1-9.3 we explain the basic algebraic operations with vectors in 3-space. 
Calculus begins in Sec. 9.4 with the extension of differentiation to vector functions in a 
simple and natural fashion. Application to curves and their use in mechanics follows in 
Sec. 9.5. 

We finally discuss three physically important concepts related to scalar and vector fields, 
namely, the gradient (Sec. 9.7), divergence (Sec. 9.8), and curl (Sec. 9.9). (The use of 
these concepts in integral theorems follows in the next chapter. Their form in cunilinear 
coordinates is given in App. A3.4.) 

We shall keep this chapter independe1lt of Chaps. 7 alld 8. Our present approach is in 
harmony with Chap. 7, with the restriction to two and three dimensions providing for a 
richer theory with basic physical, engineering, and geometric applications. 

Prerequisite: Elementary use of second- and third-order determinants in Sec. 9.3. 
Sections that may be omitted in a shorter course: 9.5, 9.6. 
References and Answers to Problems: App. I Part B, App. 2. 

9.1 Vectors in 2-Space and 3-Space 

364 

In physics and geometry and its engineering applications we use two kinds of quantities: 
scalars and vectors. A scalar is a quantity that is determined by its magnitude; this is the 
number of units measured on a suitable scale. For instance, length. voltage. and temperature 
are scalars. 

A vector is a quantity that is determined by both its magnitude and its direction. Thus 
it is an arrow or directed line segment. For instance, a force is a vector, and so is a 
velocity, giving the speed and direction of motion (Fig. 162). 
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DEFINITION 

We denote vectors by lowercase boldface letters a, b. v, etc. In handwriting you may 
use arrows, for instance ii (in place of a), b, etc. 

A vecror (arrow) has a tail, called its initial point, and a tip, called its terminal point. 
This is motivated in the translation (displacement without rotation) of the triangle in Fig. 
163, where the initial point P of the vector a is the original position of a point, and the 
terminal point Q is the terminal position of that point, its position after the translation. 
The length of the arrow equals the distance between P and Q This is called the length 
(or magnitude) of the vector a and is denoted by lal. Another name for length is norm 
(or Euclidean nonn). 

A vector of length 1 is called a unit vector. 

Velocity 

--~Earth 

I 
I 

I 

I " 
I " 

I \ 
I Force \ 

I \ 

Sun 

Fig. 162. Force and velocity Fig. 163. Translation 

Of course, we would like to calculate with vectors. For instance, we want to find the 
resultant of forces or compare parallel forces of different magnitude. This motivates our 
next ideas: to define compollents of a vector. and then the two basic algebraic operations 
of vector addition and scalar multiplication. 

For this we must first define equality of vectors in a way that is practical in connection 
with forces and other applications. 

Equality of Vectors 

Two vectors a and b are equal, written a = b, if they have the same length and the 
same direction [as explained in Fig. 164; in particular, note (B)l- Hence a vector 
can be arbitrarily translated; that is, its initial point can be chosen arbitrarily_ 

//: 
Equal vectors, 

a=b 

(Al 

\~ 
~ 

7/ b 

Vectors having Vectors having 
the same length the same direction 
but different but different 
direction length 

eE) (e) 

Fig. 164. (A) Equal vectors. (B)-(D) Different vectors 

Vectors having 
different length 
and different 
direction 

(D) 
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Components of a Vector 
We choose an xyz Cartesian coordinate system l in space (Fig. 165). that is, a usual 
rectangular coordinate system with the same scale of measurement on the three mutually 
perpendicular coordinate axes. Let a be a given vector with initial point P: (xl' YI, ZI) and 
tenninal point Q: (X2' Y2, Z2)' Then the three coordinate differences 

(1) 

are called the components of the vector a with respect to that coordinate system, and we 
write simply a = [at> a2, a3]. See Fig. 166. 

The length lal of a can now readily be expressed in tenns of components because from 
(l) and the Pythagorean theorem we have 

(2) 

E X AMP L E 1 Components and Length of a Vector 

The vector a with initial point P: (4, 0, 2) and terminal point Q: (6, -1. 2) ha, the "omponents 

al = 6 - 4 = 2, az = -1 - 0 = - I , {l3 = 2 - 2 = O. 

Hence a = [2. -I. OJ. (Can you sketch a, as in Fig. 166'!) Equation (2) gives the length 

If we "hoose (-I, 5, 8) as the initial point of a, the corresponding terminal point is (I, 4, 8). 
If we choose the origin (0. O. 0) as the initial point of a, the conesponding terminal point is (2, - I, 0); its 

coordinate, equal the components of a. This suggests that we can determine each point in space by a vector, 
called the positiol! I'ector of the point. as follows. • 

A Cartesian coordinate system being given, the position vector r of a point A: (x. y, z) 
is the vector with the origin (0, 0, 0) as the initial point and A as the terminal point (see 
Fig. 167). Thus in components, r = [x, y, z]. This can be seen directly from (1) with 
Xl = .\'1 = ;::1 = O. 

x 

z 

Fig. 165. Cartesian 
coordinate system 

y 

Fig. 166. Components 
of a vector 

, , , , 

I( 
1 

r 1 
1 
1 

\ 1""'-----
/" -_ \ 1 ::> ___ 

---x --_ \1" -"""y -.... " 
Fig. 167. Position vector r 

of a point A: (x, y, z) 

INamed after the French philosopher and mathematician RENA TUS CARTESIUS. latinized for RENE 
DESCARTES (1596--1650), who invented analytic geometry. His basic work Geometrie appeared in 1637. as 
an appendix to his Discours de fa mitftode. 
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THEOREM 1 

DEFINITION 

Fig. 168. Vector 
addition 

Furthennore, if we translate a vector a, with initial point P and terminal point Q, then 
corresponding coordinates of P and Q change by the same amount, so that the differences 
in (1) remain unchanged. This proves 

Vectors as Ordered Triples of Real Numbers 

A fixed Cartesian coordinate system being given, each vector is uniquely determined 
by its ordered triple of corresponding components. Conversely, to each ordered triple 
of real numbers (ab a2, a3) there corresponds precisely one vector a = [aI' a2, a3], 
with (0, 0, 0) corresponding to the zero vector 0, which has length 0 and no direction. 

Hence a vector equation a = b is equivalent to the three equations al = bl , 
a2 = b2, a3 = b3 for the components. 

We now see that from our "geometric" definition of a vector as an arrow we have arrived 
at an "algebraic" characterization of a vector by Theorem 1. We could have started from 
the latter and reversed our process. This shows that the two approaches are equivalent. 

Vector Addition, Scalar Multiplication 
Applications suggest calculation with vectors that are practically useful and are almost as 
simple as the arithmetics for real numbers. The first is addition and the second is 
multiplication by a number. 

Addition of Vectors 

The sum a + b of two vectors a = [ab a2, a3J and b = [bI> b2, b3J is obtained by 
adding the corresponding components, 

(3) 

Geometrically, place the vectors as in Fig. 168 (the initial point of b at the terminal 
point of a); then a + b is the vector drawn from the initial point of a to the terminal 
point of b. 

For forces, this addition is the parallelogram law by which we obtain the resultant of two 
forces in mechanics. See Fig. 169. 

Figure 170 shows (for the plane) that the "algebraic" way and the "geometric way" of 
vector addition give the same vector. 

Fig. 169. Resultant of two forces (parallelogram law) 
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DEFINITION 

I 
a 2a -a -.! a 

2 

Fig. 173. Scalar 
multiplication 

[multiplication of 
vectors by scalars 

(numbers)] 

CHAP.9 Vector Differential Calculus. Grad, Div, Curl 

Basic Properties of Vector Addition. Familiar laws for real numbers give immediately 
(see also Figs. 171 and 172) 

(a) a+b=b+a ( COllllllutativity) 

(b) tu + v) + w = u + (v + w) (Associativity) 
(4) 

(C) a+O=O+a=a 

(d) a + (-a) = O. 

Here -a denotes the vector having the length lal and the direction opposite to that of a. 
In (4b) we may simply write u + v + w, and similarly for sums of more than three 

vectors. Instead of a + a we also write 2a, and so on. This (and the notation -a used 
just before) motivates defining the second algebraic operation for vectors as follows. 

YI 

r~-----------­

C
2 ru:--:- : 

---- I 

L:~ ___ b!...l __ 

Fig. 170. Vector addition 

x 

Fig. 171. Cummutativity 
of vector addition 

Scalar Multiplication (Multiplication by a Number) 

Fig. 172. Associativity 
of vector addition 

The product ca of any vector a = [aI, {/2' a3] and any scalar c (real number c) is 
the vector obtained by multiplying each component of a by c, 

(5) 

Geometrically, if a *" 0, then ca with c > 0 has the direction of a and with c < 0 
the direction opposite to a. In any case, the length of ca is leal = lellal, and ca = 0 
if a = 0 or c = 0 (or both). (See Fig. 173.) 

Basic Properties of Scalar Multiplication. From the definitions we obtain directly 

(a) c(a + b) = ca + cb 

(b) (c + k)a = ca + ka 
(6) 

(c) c(ka) = (ck)a (written cka) 

(d) la = a. 
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You may prove that (4) and (6) imply for any vector a 

(a) Oa = 0 
(7) 

(b) (-I)a = -a. 

Instead of b + (-a) we simply write b - a (Fig. 174). 

E X AMP L E 2 Vector Addition. Multiplication by Scalars 

With respect to a given coordinate system. let 

a = [4. O. I] and b = [2. 5. n 
Then -a = [-4, o. -I]. 7a = [28,0,71, a + b = [6, -5. nand 

2(a - b) = 2[2, 5, ~l = [4, 10. ~l = 2a - 2b. • 
Unit Vectors i, j, k. Besides a = lab a2, a3] another popular way of writing vectors is 

In this representation, i, j, k are the unit vectors in the positive directions of the axes of 
a Cartesian coordinate system (Fig. 175). Hence, in components, 

(9) i = [1, 0, 0], j = [0, l. 0], k = [0, o. 1] 

and the right side of (8) is a sum of three vectors parallel to the three axes. 

E X AMP L E 3 i j k Notation for Vectors 

In Example 2 we have a = 4i + k, b = 2i - 5j + ~k, and so on. • 
All the vectors a = [aI, lI2, a3] = ali + a2j + a3k (with real numbers as components) 
form the real vector space R3 with the two algebraic operations of vector addition and 
scalar multiplication as just defined. R3 has dimension 3. The triple of vectors i, j, k is 
called a standard basis of R3. A Cartesian coordinate system being given. the 
representation (8) of a given vector is unique. 

Vector space R3 is a model of a general vector space, as discussed in Sec. 7.9, but is 
not needed in this chapter. 

a/ 
-a/< b ~ 

".... ",-a ,r ''l~ 

Fig. 174. Difference 
of vectors 

ZI 

,kl , 
/~ x y 

Fig. 175. The unit vectors i, j, k 
and the representation (8) 
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:u -.--
11-61 COMPONENTS AND LENGTH 

Find the components of the vector v with given initial point 
P and terminal point Q. Find Ivl. Sketch Ivl. Find the unit 
vector in the direction of v. 

1. P: (3, 2, 0), 

2. P: (1. I, 1). 

3. P: (1. 0, 1.2), 

4. P: (2, -2,0), 

5. P: (4, 3, 2), 

6. P: (0, O. 0). 

Q: (5, -2,0) 

Q: (-4, -4. -4) 

Q: (0, 0, 6.2) 

Q: (0,4,6) 

Q: (-4, -3,2) 

Q: (6, 8, 10) 

L -~2J Given the components vI> V2, V3 of a vector v 
and a particular initial point P, find the corresponding 
terminal point Q and the length of v. 

7. 3, -1,0; P: (4.6,0) 

8. 8,4, -2; 

9. !, 2,~; 
10. 3,2.6; 

11. 4,~, -~; 
12. 3, -3,3; 

P: (-8, -4,2) 

P: (0. -~. ~); 
P: (0. O. 0) 

P: (-4,~, 2) 

P: (1,3, -3) 

~ 3-20 I VECTOR ADDITION AND 
SCALAR MULTIPLICATION 

Let a = [2, - I, 0] = 2i - j, 
b = [-4, 2, 5] = -4i + 2j + 5k, c = [0,0, 3J = 3k. 
Find: 

13. 2a, -a, -~a 14. a + 2b, 2b + a 

15. 5(a - c). 5a - 5c 

16. (3a - 5b) + 2c, 3a + (-5b + 2c) 

17. 6a - 4b + 2c, 2(3a - 2b + c) 

18. (lIla l)a, (1IIcl)c 

19. a + b + c, -3a - 3b - 3e 

20. la + hi, lal + lb: 

21. What laws do Probs. 14-17 illustrate? 

22. Prove (4) and (6). 

23. Find the midpoint of the segment PQ in Probs. 7 and 9. 

= -1-281 FORCES 
Find the resultant (in components) and its magnitude. 

24. p = [1,2,0]. q = [0,4, -I], U = [4.0, -3], 
v = [6,2,4] 

25. P = [2,2,2], q = [-4, -4,0], U = [2,2,7] 

26. P = [-I, -3, -5]. q = [6.4, 2J, u = [-5, -1. 3] 

27. P = [8,2. -4], q = 3p, U = -5p 

28. P = [3.0, -2], q = [2,5, I], u = 4q 

29. Find v so that v, p, q. U in Prob. 25 are in equilibrium. 

30. For what c is the resultant of [3, I, 7], [4, 4, 5], and 

[3. 2. c] parallel to the x\"-plane? 

31. Find forces P. q, U in the direction of the coordinate 
axes such that p, q, U, v = [2.3.0], w = [7. -I, 11] 
are in equilibrium. Are p. q, U uniquely determined? 

32. If Ipi = I and Iql = 2, what can be said about the 
magnitude and direction of the resultant? Can you think 
of an application where this matters? 

33. Same question as in Prob. 32 if IPI = 3. Iql = 2, :ul = I. 
34. (Relative velocity) If airplanes A and B are moving 

southwest with speed IVAI = 500 mph and northwest 
with speed IVBI = 400 mph. respectively, what is the 
relative velocity v = VB - VA of B with respect to A? 

35. (Relative velocity) Same question as in Prob. 34 for 
two ships moving northwest with speed IVAI = 20 knots 
and northeast with speed IVBI = 25 knots. 

36. (Reflection) If a ray of light is reflected once in each 
of two mutually perpendicular mirrors, what can you 
say about the reflected ray? 

37. (Rope) Find the magnitude of the force in each rope 
in the figure for any weight wand angle a. 

38. TEAM PROJECT. Geometric Applications. To 
increase your skill in dealing with vectors, use vectors 
to prove the following (see the figures). 

(a) The diagonals of a parallelogram bisect each other. 

(b) The line through the midpoints of adjacent sides 
of a parallelogram bisects one of the diagonals in the 
ratio I: 3. 

(e) Obtain (b) from (a). 

(d) The three medians of a triangle (the segments from 
a vertex to the midpoint of the opposite side) meet at 
a single point, which divides the medians in the ratio 
2:1. 

(e) The quadrilateral whose vertices are the midpoints 
of the sides of an arbitrary quadrilateral is a 
parallelogram. 

(n The four space diagonals of a parallelepiped meet 
and bisect each other. 

(g) The sum of the vectors drawn from the center of 
a regular polygon to its vertices is the zero vector. 

~ w a 

Problem 37 Team Project 38(a) 

o~ 
a 

c C _ b 

D~B 
~ 

A a 

Team Project 38{d) Team Project 38(e) 
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9.2 Inner Product (Dot Product) 

DEFINITION 

THEOREM 1 

We shall now define a multiplication of two vectors that gives a scalar as the product and 
is suggested by various applications. in particular when angles between vectors and lengths 
of vectors are involved. 

Inner Product (Dot Product) of Vectors 

The inner product or dot product a" b (read "a dot b") of two vectors a and b is 
the product of their lengths times the cosine of their angle (see Fig. 176), 

a" b = lallbl cos '}' if a*O,b*O 
(1) 

a"b = 0 if a = 0 or b = O. 

The angle '}', 0 ~ '}' ~ 7T, between a and b is measured when the initial points of the 
vectors coincide, a~ in Fig. 176. In components, a = [a!> a2, ag], b = [bI> b2, bg], 
and 

(2) 

The second line in (l) is needed because '}' is undefined when a 
derivation of (2) from (1) is shown below. 

o or b 

2J(_ 
t a[l -b ~-b b 

a.b>O a.b=O a·b<O 

Fig. 176. Angle between vectors and value of inner product 

O. The 

Orthogonality. Since the cosine in (1) may be positive, 0, or negative. so may be the 
inner product (Fig. 176). The case that the inner product is zero is of particular practical 
interest and suggests the following concept. 

A vector a is called orthogonal to a vector b if a" b = O. Then b is also orthogonal to 
a, and we call a and b orthogonal vectors. Clearly, this happens for nonzero vectors if 
and only if cos '}' = 0; thus '}' = rr/2 (90°). This proves the important 

Orthogonality 

The inner product of two nonzero vectors is 0 if and only if these vectors are 
perpendicular. 
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Length and Angle. Equation (1) with b = a gives a'a = lal2. Hence 

(3) lal = v;;a. 

From (3) and (1) we obtain for the angle 'Y between two nonzero vectors 

(4) cos 'Y = 

E X AMP L E 1 Inner Product. Angle Between Vectors 

Find the inner product and the lengths of a = [I. 2, 0] and b = [3, - 2, I] as well as the angle between these 
vectors. 

Solution. a'b = J ·3 + 2 'l-2) + O· I = -I, lal = Va~ = "\ '5, Ibl = v'b-b = v'J4, and l4) gives 
the angle 

a'b 
y= arccos lallbl = arccos (-0.1 1952) = 1.69061 = 96.865°. • 

From the definition we see that the inner product has the following properties. For any 
vectors a, b, C and scalars ql, q2, 

(a) (qla + q2b)'C = qla'c + q2b ' c (Linearity) 

(5) (b) a'b = b'a (Symmetry) 

a'a ~ 0 
} (Positive-definitelless). (c) 

a'a = 0 if and only if a=O 

Hence dot multiplication is commutative [see (5b)] alld is distributive 'with re.\pect to 
vector addition; in fact, from (Sa) with ql = I and q2 = I we have 

(5a*) (a + b)'c = a'c + b'c (Distributivity). 

Furthermore, from (1) and Icos 'YI 3 I we see that 

(6) la· bl 3 lallbl (Cauchy-Schwarz inequality). 

Using this and (3). you may prove (see Prob. 18) 

(7) la + bl 3 lal + Ibl (Triangle inequality). 

Geometrically, (7) with < says that one side of a triangle must be shorter than the other 
two sides together; this motivates the name of (7). 

A simple direct calculation with inner products shows that 

(8) la + bl2 + la - bl2 = 2(la12 + Ib12) (Parallelogram equality). 

Equations (6)-(8) play a basic role in so-called Hilbert .\paces (abstract inner product 
spaces), which form the basis of quantum mechanics (see Ref. [GR7] listed in App. I). 
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Derivation of (2) from (1). We write a = ali + a2j + ({3k and b = bli + b2 j + b3k, 
as in (8) of Sec. 9.1. If we substitute thi~ into a-b and use (5a*), we first have a ~um of 
3 X 3 = 9 products 

Now i, j, k are unit vectors, so that i- i = j -j = k - k = I by (3). Since the coordinate 
axes are perpendicular, so are j, j, k, and Theorem I implies that the other six of those 
nine products are 0, namely, j-j = j-j = j-k = k-j = k-j = j-k = O. But this reduces 
our sum for a-b to (2). • 

Applications of Inner Products 
Typical applications of inner products are shown in the following examples and in Problem 
Set 9.2. 

E X AMP L E 2 Work Done by a Force Expressed as an Inner Product 

This is a major application. It concerns a body on which a cO/lSlOl/l force p acts. (For a l'C/r;able force. 
see Sec. 10.1.) Let the body be given a displacement d. Then the work done by p in the displacement is defined as 

(9) W = ipiidi cos a = pod, 

that is. magnitude ipi of the force times length idi of the displacement times the cosine of the angle a between 
p and d (Fig. 177). If a < 90°. as in Fig. 177. then W> O. If P and d arc orthogonal, then the work is zero 
(why'!). If a> 90°. then W < O. which means that in the displacement one has to do work against the force. 
(Think of swimming across a river at some angle a against the current.) • 

d 

Fig. 177. Work done by a force Fig. 178. Example 3 

E X AMP L E 3 Component of a Force in a Given Direction 

y 

~/~ 
I 

I 
• I 

'",8 

What force in the rope in Fig. 178 will hold a car of 5000 lb in equilibrium if the ramp makes an angle of 25° 
with the hori70ntal? 

Solutioll. Introducing coordinates as shown. the weight is a = [0. -5000] because this force points 
downward. in the negative .,·-direction. We have to represent a as a sum (resultant) of two forces. a = c + p, 
where c is the force the car exerts on the ramp. which is of no interest to us. and p is parallel to the rope. of 
magnimde (see Fig. 178) 

ipl = lal cos l' = 5000 cos 65° = 2113 [Ib) 

and direction of the unit vector U opposite to the direction of the rope; here l' = 90° - 25° = 65° is the angle 
between a and p. Now a vector in the direction of the rope is 

b = [-I. tan 25°] = [-I. 0.466311, thus ,bl = 1.10338. 
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so that 

1 
U = - Tbf b = [0.90631, -0.42262]. 

Since lUI = I and cos y > 0, we see that we can also write our result as 

a' b 5000·0.46631 
Ipi = (Ial co, y)lul = a'u = -lbi = 1.l0338 = 2113 [Ib]. 

Answer: AbDUl 2100 lb. • 

Example 3 is typical of applications in which one uses the concept of the component or 
projection of a vector a in the direction of a vector b (*- 0), defined by (see Fig. 179) 

(10) p = lal cos y. 

Thus p is the length of the orthogonal projection of a on a straight line I parallel to b, 
taken with the plus sign if pb has the direction of b and with the minus sign if pb has the 
direction opposite to b; see Fig. 179. 

a~ 
l~~-: 

b 
'-----v--------

P 

(p>O) (p=O) (p<O) 

Fig. 179. Component of a vector a in the direction of a vector b 

Multiplying (10) by Ibi/lbi = I, we have a-b in the numerator and thus 

(11) p= (b *- 0). 

If b is a unit vector, as it is often used for fixing a direction, then (11) simply gives 

(12) p = a-b (Ibl = 1). 

Figure 180 shows the projection p of a in the direction of b las in Fig. 179) and the 
projection q = Ibl cos 'Y of b in the direction of a. 

a 
q ..-/"i 
rZ\ : 
~ 

p 

Fig. 180. Projections p of a on band q of b on a 
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E X AMP L E 4 Orthonormal Basis 

By definition. an orthonormal basis for 3-space is a basis (a. b. c) consisting of orthogonal unit vectors. It has 
the great advantage that the determination of the coefficients in representations v = 11a + 12b + '3c of a given 
vector v is very simple. We claim that '1 = a 0 v. 12 = b 0 V, 13 = Co v. Indeed. this follows simply by taking 
the inner products of the representation with a, b, c, respectively, and using the orthononnality of the basis, 
aov = Ilaoa + '2a ob + '3aoc = II, etc. 

For example, the unit vectors i. j. k in (8), Sec. 9.1, associated with a Cartesian coordinate system form an 
orthonormal basis. called the standard basis with respect to the given coordinate system. • 

E X AMP L E 5 Orthogonal Straight Lines in the Plane 

Find the straight line LI through the point P: O. 3) in the -":I'-plane and perpendicular to the straight line 
Lz: x - 2y + 2 = 0; see Fig. 181. 

Solution. The idea is to write a general straight line LI : alx + a2.\" = c as a 0 r = c with a = [aI, a2] "" 0 
and r = [x. y]. according to (2). Now the line Ll * through the origin and parallel to Ll is a 0 r = O. Hence, by 
Theorem I, the vector a is perpendicular to r. Hence it is perpendicular to L J* and also to LI because LI and 
Ll l' are parallel. a is called a nOl'mal vector of LI (and of Ll *). 

Now a nonnal vector of the given line x - 2y + 2 = 0 is b = [I, -2]. Thus LJ is perpendicular (0 L2 if 
boa = al - 2a2 = 0, for instance, if a = [2, I]. Hence LJ is given by 2x + Y = c. It passes through P: (I, 3) 
when 2· I + 3 = c = 5. Answer: y = -2x + 5. Show that the point of intersection is (x • .1') = (1.6, 1.8) .• 

E X AMP L E 6 Normal Vector to a Plane 

Find a unit vector perpendicular to the plane 4x + 2y + 4;:: = -7. 

Solutioll. Using (2). we may write an) plane in space as 

where a = [al' a2. a31 "" 0 and r = [x. y, z]. The unit vector in the direction of a is (Fig. IS2) 

I 
n = Iaf a. 

Dividing by lal. we obtain from (13) 

(14) nor = p where 

From (12) we see that p is the projection of r in the direction of n. This projection ha~ the same constant value 
ellal for the position vec(Or I' of any point in the plane. Clearly this holds if and only if n is perpendicular to 
the plane. n is called a unit nonnal vector of the plane (the other bcing - nl. 

Furthermore. from this and the definition of projection it follows that Ipl is the distance of the plane from the 
origin. Representation 04) is called Hesse's2 nonnal form of a plane. In our case, a = [4, 2, 41. 
c = -7, lal = 6. n = ~a = [~. !. n and the plane has the distance 7/6 frum the origin. • 

n 

2 3 x 

Fig. 181. Example 5 Fig. 182. Normal vector to a plane 

2 
LUDWIG OTTO HESSE (1811-1874), Gennan mathematician who contributed to the theory of curves and 

surfaces. 
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11-121 INNER PRODUCT 

Let a = [2. I. 4]. b = [-4, 0.3], c = [3, -2, 1]. Find 

1. aob,boa 

3. 13a - 2bl, 12b - 3al 

5. (aoblc, a(b·c) 

7. (a - bloc, a·c - boc 

9. ao(b - c), ao(c - b) 

11. 6(a + b) • (a - b) 

2. lal, Ibl, Icl 

4. ao(b + c), aob + aoc 

6. aob + boc + coa 

8. 4a 0 3c, 12a 0 c 

10. Ib + cl, Ibl + Icl 

12. la 0 cl, lallcl 

13. What laws do Probs. I. 3.4, 7, 8 illustrate? 

14. Does uov = uow with u 0/= 0 imply that v = w? 

IS. Prove the Cauchy-Schwarz inequality. 

16. Verify the Cauchy-Schwarz inequality, the triangle 
inequality. and the parallelogram equality for the above 
a and b. 

17. Prove the parallelogram equality. 

18. (Triangle inequality) Prove (7). Hint. Use (3) for 
la + bl and (6) to prove the square of (7). then take 
roots. 

119-221 WORK 

Find the work done by a force p acting on a body if the 
body is displaced from a point A to a point B along the 
straight segment AB. Sketch p and AB. (Show the details 
of your work.) 

19. p = [8. -4. 11], A: (I. 2. 0). B: (3, 6. 0) 

20. p = [2. 7. -4], A: (3. I. m. B: (0. 2, 0) 

21. p = [5, -2, I], A: (4, 0, 3), B: (6, 0, 8) 

22. p = [4.3. 6J, A: (5. 2. 10). B: (1, 3. l) 

23. Why is the work in Prob. 19 zero? Can work be 
negative? Explain. 

24. Show that the work done by the resultant of p and q 
in a displacement from A to B is the sum of the work 
done by each force in that displacement. 

25. Find the work W = pod if d = 2i and p = i, i + j, 
j, -i + j and sketch a figure similar to Fig. 177. 

126--30 I ANGLE BETWEEN VECTORS. 
ORTHOGONALITY 

Let a = ll, I, I], b = [2.3.1], c = [-I, 1,0]. Find the 
angle between: 

26. a, b 27. b, c 

29. a + b, c 

18. a-c,b-c 

30. a, h + C 

31. (Planes) Find the angle between the planes 
x + y + .;; = 1 and 2x - J + 2;: = O. 

32. (Cosine law) Deduce the law of cosines by using 
vectors a, b, and a-b. 

33. (Triangle) Find the angles of the triangle with vertices 
[0, 0, 0], [1, 2, 3], [4, -1, 3]. 

34. (Addition law) Obtain 

cos (a - (3) = cos a cos {3 + sin a sin {3 

by using a = [cos a, sin a]. b = [cos {3, sin {3]. where 
o ~ a ~ (3 = 27f. 

35. (Parallelogram) Find the angles if the sides are [5, 0] 
and [I. 21-

36. (Distance) Find the distance of the plane 
5x + 2y + z = 10 from the origin. 

13740 I COMPONENTS IN THE DIRECTION 
OF A VECTOR 

Find the component of a in the direction of b. 

37. a = [I. 1,3]. b = [0, O. 5] 

38. a = [2. O. 6], b = [3. 4, - 11 

39. a = [0.4, -3]. b = [0.4,3] 

40. a = [-1,2,0]. b = [1, -2,0] 

41. Cnder what condition will the projection of a in the 
direction of b equal the projection of b in the direction 
of a? 

42. TEAM PROJECT. Orthogonality is particularly 
important. mainly because of the use of orthogonal 
coordinates. such as Cartesian coordinates, whose 
"natural basis" (9). Sec. 9.1. consists of three 
0l1hogonal unit vectors. 

(a) Show that a = [2. -2.4]. b = [0.8.4], 
c = [-20. -4. 8] are orthogonaL 

(b) For what values of al are a = [aI- 2, 0] and 
b = [3.4, -IJ 0l1hogonal? 

(c) Show that the straight lines 4x + 2y = 1 and 
5x - 10)" = 7 are orthogonaL 

(d) Find all unit vectors a = [a lo a2] in the plane 
orthogonal to [4, 31. 

(e) Find all vectors orthogonal to a = [2. l. 0]. Do 
they fonn a vector space? 

(I) For what c are the plane!> 4x - 2)" + 3.;; = 6 and 
2x - cy + 5::: = 1 orthogonal? 

(g) Under what condition will the diagonals of a 
parallelogram be orthogonal? (Prove your answer.) 

(h) What is the angle between a light ray and its 
reflection in three orthogonal plane minors (known as 
a "corner reflector")"? 

(i) Discuss further applications in physics and 
geometry in which orthogonality plays a role. 
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9.3 Vector Product (Cross Product) 

DEFINITION 

The dot product in Sec. 9.2 is a scalar. We shall see that in some applications, for instance, 
in connection with rotations, we shall need a product that is again a vector: 

Vector Product (Cross Product, Outer Product) of Vectors 

The vector product (also called cross product or outer product) a x b (read "a 
crOss b"') of two vectors a and b is the vector 

v=axb 

as follows. If a and b have the same or opposite direction, or if a = 0 or b = 0, 
then v = a x b = O. In any other case v = a x b ha~ the length 

(1) Ivl = la x bl = lallbl sin 'Y. 

This is the area of the blue parallelogram in Fig. 183. 'Y is the angle between a and 
b (as in Sec. 9.2). The direction of v = a x b is perpendicular to both a and band 
such that a, b, v, in this order, form a right-hallded triple as in Figs. 183-185 
(explanation below). 

In components, let a = [aI' a2' a3] and b = [b1, b2, b3]. Then v = [Vb V2, V3] = a x b 
has the components 

(2) 

Here the Cartesian coordinate system is right-handed, as explained below (see also 
Fig. 186). (For a left-handed system, each component of v must be multiplied by -1. 
Derivation of (2) in App. 4.) 

Right-Handed Triple. A triple of vectors a, b, v is right-handed if the vectors in the 
given order assume the same sort of orientation as the thumb, index finger, and middle 
finger of the right hand when these are held as in Fig. 184. We may also say that if a is 
rotated into the direction of b through the angle 'Y « 'IT), then v advances in the same 
direction as a right-handed screw would if turned in the same way (Fig. 185). 

a 

Fig. 183. Vector product 
-a 

Fig. 184. Right-handed 
triple of vectors a, b, v 

Fig. 185. Right-handed 
screw 
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z 

k 

~j 

/ :k ~ 
x y x y 

z 

(a) Right-handed (b) Left-handed 

Fig. 186. The two types of Cartesian coordinate systems 

Right-Handed Cartesian Coordinate System. The system is called right-handed if 
the corresponding unit vectors i, j, k in the positive directions of the axes (see Sec. 9.1) 
form a right-handed triple as in Fig. 186a. The system is called left-handed if the sense 
of k is reversed, as in Fig. 186b. In applications, we prefer right-handed systems. 

How to Memorize (2). If you know second- and third-order determinants, you see that 
(2) can be written 

(2*) 

and v = [VI, V2 , V3] = VIi + V~ + V3k is the expansion of the following symbolic 
determinant by its first row. (We call the determinant "symbolic" because the first row 
consists of vectors rather than of numbers.) 

j k 

(2**) v = a x b = a} 

For a left-handed system the determinant has a minus sign in front. 

E X AMP L E 1 Vector Product 

For the vector product v = a x b of a = [I, I, OJ and b = [3, 0, 0] in right-handed coordinates we obtain 
from (2) 

VI = 0, V3 = I ·0 - 1·3 = -3. 

We confirm this by (2**): 

j k 

v=axb= ~I k = -3k = [0,0, -3]. 

3 o o 

To check the result in this simple case, sketch a, b, and v. Can you see that two vectors in the .xy-plane must 
always have their vector product parallel to the z-axis (or equal to the zero vector)? • 
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E X AMP l E 2 Vector Products of the Standard Basis Vectors 

THEOREM 1 

I 
bXRf 

Fig. 187. 

a 

Anticommutativity 

of cross 
multiplication 

PROOF 

i x j = k, jxk=i, k x i = j 
(3) 

j x i = - k, k x j = -i, i x k = -j. 

We shall use this in the next proof. 

General Properties of Vector Products 

(a) For every scalar I, 

(4) (fa) x b = lea x b) = a x (fb). 

(b) Cross multiplication is distributive with respect to vector addition; that is. 

(5) 
(0') a x (b + c) = (a x b) + (a x c), 

({3) (a + b) x c = (a x c) + (b x c). 

(c) Cross multiplication is not cOllllllutative bllt alltico11l11lutative; that is, 

(6) b x a = -l3 x b) (Fig. 187). 

(d) Cross multiplication is not associative; that is, in general, 

(7) a x (b x C) "* (a x b) x c 

so that the parentheses cannot be omitted. 

• 

(4) follows directly from the definition. In (50'), formula (2*) gives for the first component 
on the left 

a3 I = a2(b3 + C3) - a3(b2 + C2) 
b3 + C3 

By (2*) the sum of the two determinants is the fIrst component of (a x b) + (a x C), the 
right side of (Sa). For the other components in (50') and in (5{3), equality follows by the 
same idea. 

Anticommutativity (6) follows from (2**) by noting that the interchange of Rows 2 
and 3 multiplies the determinant by -I. We can confirm this geometrically if we set 
a x b = v and b x a = w; then Ivl = Iwl by (1), and for b, a, w to form a right-handed 
triple, we must have w = -v. 

Finally. i X (i x j) = i x k = -j, whereas (i x i) x j = 0 X j = 0 (see Example 
2). This proves (7). .. 



380 CHAP. 9 Vector Differential Calculus. Grad, Div, Curl 

Typical Applications of Vector Products 

E X AMP L E 3 Moment of a Force 

In mechanics the moment III of a force p about a point Q is defined as the product III = Ipld, where d is the 
(perpendicular) distance between Q and the line of action L of p (Fig. 188). If r is the vector from Q to any 
point A on L, then d = 11'1 sin l' (Fig. 188) and 

111 = Irllpl sin 1'. 

Since 1'is the angle between I' and p, we see from (I) that III = Ir x pI. The vector 

(8) m = I' X P 

is called the moment \'ector or "ector moment of p about Q. Its magnitude is 111. If m * 0, its direction is 
that of the axis of the rotation about Q that p has the tendency to produce. This axis i~ perpendicular to both 
I' and p. • 

L 

Qy-__ l' p~ 

E X AMP L E 4 Moment of a Force 

\ 
d \ 

\ 

Fig. 188. 

y 

Moment of a force p 

Find the moment of the force p in Fig. 189 about the center Q of the wheel. 

Solutioll. Introducing coordinates as shown in Fig. 18<), we have 

p = [1000 cos 30°, 1000 sin 30°, 0] = [866, 500, 0], r = [0, 1.5, 0]. 

(Note that the center of the wheel is at y = -1.5 on the y-axis.) Hence (8) and (2**) give 

j k 

18~6 1.
5 1 m=rxp= 0 1.5 0 = Oi - OJ + k = [0,0, -1299]. 

500 
866 SOU 0 

This moment vector is normal (perpendicular) to the plane of the wheel; hence it has the direction of the axis 
of rotation about the center of the wheel that the fon;e has the tendency to produce. m points in the negative 
;:-direction, the direction in which a right-handed screw would advance if turned in that way. • 

y Ipl = 1000 Ib 

x 

Q 

Fig. 189. Moment of a force p 
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E X AMP L E 5 Velocity of a Rotating Body 

A rotation of a rigid body B In space can be simply and uniquely described by a vector w as follows. The 
direction of w i, that of the axis of rotation and such that the rotation appears clockwise if one looks from the 
initial point of w to its terminal point. The length of w is equal to the angular speed w (> 0) of the rotation. 
thai is. the linear (or tangential) speed of a point of B divided by its dislance from the axis of rotation. 

Let P be any point of Band d its distance from the axis. Then P has the speed wd. Let r be the position 
vector of P referred to a coordinate system with origin 0 on the axis of rotation. Then d = Irl sin 'Y. where 'Y is 
the angle between wand r. Therefore. 

wd = Iwllrl sin 'Y = Iw x rl. 

From this and the definition of vector product we see that the velocity vector v of P can be represented in the 
form (Fig. 190) 

(9) v = w x r. 

This simple formula is useful for determining v at any point of B. • 
d 

Fig. 190. Rotation of a rigid body 

Scalar Triple Product 
The most important product of vectors with more than two factors is the scalar triple 
product or mixed triple product of three vectors a. b, c. It is denoted by (a b c) and 
defined by 

(10*) \a b c) = ao(b x c). 

Because of the dot product it is a scalar. In terms of components a = [at. {/2, l/3]. 
b = [b1• b2 , b3 ]. C = [Cb c2, C3] we can write it as a third-order detenninant. For this we 
set b x c = v = [VI. V 2, V3]' Then from the dot product in components [formula (2) in 
Sec. 9.2] and from (2*) with band c instead of a and b we first obtain 

The sum on the right is the expansion of a third-order determinant by its first row. Thus 

(10) (a b c) = ao(b x c) = b1 



382 

THEOREM 2 

CHAP. 9 Vector Differential Calculus. Grad, Div, Curl 

The most important properties of the scalar triple product are as follows. 

Properties and Applications of Scalar Triple Products 

(a) In (10) the dot and cross can be interchanged: 

(11) (a b c) = ao(b x c) = (a x b)oc. 

(b) Geometric interpretation. The absolute value I(a b c)1 of (10) is the 
volume of the parallelepiped (oblique box) with a, b. c as edge vectors (Fig. 191). 

(c) Linear independence. Three vectors in R3 are linearly independent if and 
only ~f their scalar triple product is not zero. 

PROOF (a) Dot multiplication is commutative. so that by (10) 

(a x b)oc = coCa x b) = al a2 a3 

b1 b2 b3 

From this we obtain the determinant in (10) by interchanging Rows 1 and 2 and in the 
result Rows 2 and 3. But this does not change the value of the determinant because each 
interchange produces a factor - I, and (- 1)( -}) = 1. This proves (11). 

(b) The volume of that box equals the height h = lallcos 'YI (Fig. 191) times the area 
of the base, which is the area Ib x cl of the parallelogram with sides b and c. Hence the 
volume is 

lallb X cllcos 'YI = lao (b x c)1 (Fig. 191) 

as given by the absolute value of (II). 

(c) Three nonzero vectors, if we let their initial points coincide, are linearly independent 
if and only if they do not lie in the same plane (or do not lie on the same straight line). 
This happens if and only if the triple product in (b) is not zero, so that the independence 
criterion follows. (The case that one of the vectors is the zero vector is trivial.) • 

E X AMP L E 6 Tetrahedron 

bxc 
I 

1 I 

I 
I 

I 

:h/~------
/ 

/1 
// 1 b 

Fig. 191. Geometric interpretation of a scalar triple product 

A tetrahedron is determined by three edge vectors a, b, c, as indicated in Fig. 192. Find its volume when 
a = [2. O. 3]. b = [0.4. I]. c = [5.6. OJ. 

Soilltioll. The volume Vof the parallelepiped with these vectors as edge vectors is the absolute value of the 
scular triple product 
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SEC. 9.3 Vector Product (Cross Product) 

2 

(a b c) = 0 

5 

o 

4 

6 

383 

3 

:1 = -12 - 60 = -72. 

o 

b 

Fig. 192. 
Hence V = 72. The minus sign indicates that if the coordinates are right-handed, the triple a, b, c is left-handed. 
The volume of a tetrahedron is ~ of that of the parallelepiped (can you prove it?). hence 12. 

Tetrahedron Can you sketch the tetrahedron, choosing the origin as the common initial point of the vectors? What are the 
coordinates of the four vertices? • 

This is the end of vector algebra (in space R3 and in the plane). Vector calculus 
(differentiation) begins in the next section. 

[ 1-20 1 VECTOR PRODUCT, SCALAR TRIPLE 
PRODUCT 

With respect to right-handed Cartesian coordinates, let 
a = [1. 2. 0]. b = [3. -4,0], c = [3.5.2]. d = [6,2, -3]. 
Showing details. find: 

1. a x b, b x a 2. a x c, la xci, aoc 

3. (a + b) x c, a x c + b x c 

4. (c + d) x d, c x d 

5. 2a x 3b, 3a x 2b, 6a x b 

6.bxc+cxb 

7. ao(b x c), (a x bloc 

8. (a + b) x (b + a) 

9. (a x b)o(c x d). (b x a)o(d x c) 

10. (a x b) x c, a x (b x c) 

11. d x c, Id x cI. IC x dl 

12. (a + b) x (c + d) 

13. a x (b + c - dl 

14. (i j k), (i k j) 

15. (i + j j + k k + i) 

each side of (13) then equals [-b2C2dl' b1C2dl' 0]. and 
give reasons why the two sides are then equal in any 
Cartesian coordinate system. For (14) and (15) use (13). 

Formula (15) is called Lagrange's identity. 

(12) la x bl = Y(aoa)(bob) - (a ob)2 

(13) b x (c x d) = (bod)c - (boc)d 

(14) (a x b) x (c x d) 

= (a b d)c - (a b c)d 

(15) (a x b)o(c x d) = (aoc)(bod) - (aod)(boc) 

(a b c) = (b c a) = (c a b) 
(16) 

= -(c b a) = -(a c b) 

[25-281 MOMENT OF A FORCE 

Find the moment vector m and the moment 111 of a force p 
about a point Q when p ads on a line through A. 

25. P = L4, 4, 0], Q: (2, 1,0), A: (0.3,0) 

26. P = [0. O. 5]. Q: (3. 3. 0), A: (0, O. 0) 
16. (b x Clod, bo(c x d) 

.. :1'\1 fL ~ 

27. P = [1,2,3]. Q: (0, I, 1), A: (1. 0, 3) 

.n 28. p = [4. 12.8]. Q: (3.0,5). A: (4. 3. 7) 
18. (a + b b + c c + d) 

19. (a - c b - c c). (a b c) 

20. (4a 3b lc). 24(b c a) 

21. What properties of cross multiplication do Probs. I, 3, 
8, 10 illustrate? 

22. Give the details of the proofs of (4) and (5). 

23. Give the details of the proofs of (6) and (11). 

24. TEAM PROJECT. Useful Fonnulas for Two and 
More Vectors. Prove (12)-06). which are often useful 
in practical work. and illustrate each formula with two 
examples. Hillts. For (13) choose Cartesian coordinates 
such that d = [c11, 0, 0] and c = [Cl, C2. 0]. Show that 

29. (Rotation) A wheel is rotating about the y-axis with 
angular speed w = 10 sec-I. The rotation appears 
clockwise if one looks from the origin in the positive 
y-direction. Find the velocity and speed at the point 
(4, 3, 0). 

30. (Rotation) What are the velocity and speed in Prob. 
29 at the point (4. 2. -2) if the wheel rotates about the 
line y = x, Z = 0 with w = 5 sec-I. 

GEOMETRIC APPLICATIONS 

31. (Parallelogram) Find the area if the vertices are (2, 2), 
(9. 2), (10, 3), (3, 3). 
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32. (Parallelogram) Find the area if the vertices are (3, 9, 8), 
(0, 5, 1), (-1, -3, -3), (2, 1, 4). 

37. (Parallelepiped) Find the volume of the parallelepiped 
detennined by the vertices (1, 1, 1), (4, 7, 2). (3, 2, 1), 
(5, 4, 3). 33. (Triangle) Find the area if the vertices are (1, 0, 0). 

(0. 1. 0), (0. O. 1). 

34. (Triangle) Find the area if the vertices are (4. 6. 5). 
(4. 9, 5), (8.6. 7). 

35. (Plane) Find a nonnal vector and a representation of the 
plane through the points (4, 8, 0), (0, 2, 6), (3, 0, 5). 

36. (Plane) Find the plane through (2, I, 3), (4, 4. 5), 
(I, 6, 0). 

38. (Tetrahedron) Find the volume of the tetrahedron with 
vertices lO, 2, 1), (4, 3, 0), (6, 6, 5), (4, 7, 8). 

39. (Linear dependence) For what c are the vectors [9, 1, 2J. 
[-I, c, 5]. [4, c. 5] linearly dependent? 

40. WRITING PROJECT. Applications of Cross 
Products. Summarize the most important applications 
we have discussed in this section and give a few simple 
examples. No proofs. 

9.4 Vector and Scalar Functions and Fields. 
Derivatives 

We now begin with vector calculus. This calculus concerns two kinds offunctions, namely, 
vector functions, whose values are vectors 

depending on the points P in space, and scalar functions, whose values are scalars 

f = f(P) 

depending on P. Here, P is a point in the domain of definition, which in applications is 
a (three-dimensional) domain or a surface or a curve in space. We say that a vector function 
defines a vector field, and a scalar function defines a scalar field in that domain or on 
that surface or curve. Examples of vector functions are shown in Figs. 193-196. Examples 
of scalar fields are the temperature field in a body or the pressure field of the air in the 
earth's atmosphere. Vector and scalar functions may also depend on time t or on some 
other parameters. 

Notation. If we introduce Cartesian coordinates x, y. z, then instead of v(P) we can also 
write 

"-
Fig. 193. Field of tangent 

vectors of a curve 
Fig. 194. Field of normal 

vectors of a surface 
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but we keep in mind that components depend on the choice of a coordinate system, whereas 
a vector field that has a physical or a geometric meaning should have magnitude and 
direction depending only on P, not on that choice. Similarly for the value of a scalar field 
f(P) = f(x, y, z). 

E X AMP L E 1 Scalar Function (Euclidean Distance in Space) 

The distance f(P) of any point P from a fixed point Po in space is a scalar function whose domain of definition 
is the whole space. f(P) defines a scalar field in space. If we introduce a Cartesian coordinate system and Po 

has the coordinates xo, Yo, Zo, then f is given by the well-known formula 

f(P) = f(x, y, z) = Vex - .\'0)2 + (y - YO)2 + (z - -::.0)2 

where x, y, z are the coordinates of P. If we replace the given Cartesian coordinate system with another such 
system by translating and rotating the given system, then the values of the coordinates of P and Po will in general 
change, but J(P) will have the same value as before. Hence f(P) is a scalar function. The direction cosines of 
the straight line through P and Po are not scalars because their values depend on the choice of the coordinate 
system. • 

E X AMP L E 2 Vector Field (Velocity Field) 

At any instant the velocity vectors v(P) of a rotating body B constitute a vector field, called the velocity field 
of the rotation. If we introduce a Cartesian coordinate system having the origin on the axis of rotation, then (see 
Example 5 in Sec. 9.3) 

(1) vex, y, z) = w x r = w X [x, y, zl = w x (xi + yj + zk) 

where x, y, z are the coordinates of any point P of B at the instant under consideration. If the coordinates are 
such that the z-axis is the axis of rotation and w points in the positive z-direction, then w = wk and 

k 

v = 0 o w = w[ -y, x, 0] = w(-yi + xj). 

x y z 

An example of a rotating body and the corresponding velocity field are shown in Fig. 195. 

I 
I 
I 
I 
I 

--~-=~-1~ 

K =-=~~ 
I 
I 

c0 

Fig. 195. Velocity field of a rotating body 

E X AMP L E 3 Vector Field (Field of Force, Gravitational Field) 

• 

Let a particle A of mass M be fixed at a point Po and let a particle B of mass m be free to take up various 
positions P in space. Then A attracts B. According to Newton's law of gravitation the corresponding gravitational 
force p is directed from P to Po, and its magnitude is proportional to IIr2, where r is the distance between 
P and Po, say, 

(2) c= GMIIl. 
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Here G = 6.67' 10-8 cm3/(gm· sec2
) is the gravitational constant. Hence p defines a vector field in space. If 

we introduce Cartesian coordinates such that Po has the coordinates xo. Yo. Zo and P has the coordinate~ x. y. z. 
then by the Pythagorean theorem. 

(~ 0). 

Assuming that r > 0 and introducing the vector 

r = [x - xo, Y - .1'0' :: - ::01 = Ix - xo)i + {y - yo)j + {z - :::o)k. 

we have Irl = ,.. and {- IIrjr is a unit vector in the direction of p; the minus sign indicates that p is directed 
from P to Po (Fig. 196). From this and (2) we obtain 

(3) 
( I) c [ x-xo p = Ipl - - r = - - r = -c--

,. r3 r3 

y - Yo 
-c --3-' ,. 

x - xo . y - Yo . ::: - :::0 
= -c --3-) - c --3-J - c --3- b.. 

r r r 

This vector function describes the gravitational force acting on B 

~p 

--- t 00.....-. 

t 
Fig. 196. Gravitational field in Example 3 

Vector Calculus 

• 

We show next that the basic concepts of calculus, namely. convergence. continuity. and 
differentiability, can be defined for vector functions in a simple and natural way. Most 
imp0l1ant here is the derivative. 

Convergence. An infinite sequence of vectors 3(n)' n = L 2 ..... is said to converge 
if there is a vector a such that 

(4) lim la(n) - al = O. 
n_x 

a is called the limit vector of that sequence. and we write 

(5) lim a(n) = a. 
n~oo 

Cartesian coordinates being given, this sequence of vectors converges to a if and only 
if the three sequences of components of the vectors converge to the corresponding 
components of a. We leave the simple proof to the student. 
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DEFINITION 

Similarly, a vector function v(t) of a real variable t is said to have the limit 1 as t 

approaches to, if vet) is defined in some neighborhood of to (possibly except at to) and 

(6) lim Iv(t) - 11 = o. 
t--.+to 

Then we write 

(7) lim v(t) = L 
t---+to 

Here, a neighborhood of to is an interval (segment) on the t-axis containing to as an interior 
point (not as an endpoint). 

Continuity. A vector function v(t) is said to be continuous at t = to if it is defined in 
some neighborhood of to (including at to itself!) and 

(8) lim vet) = veto). 
t---+to 

If we introduce a Cartesian coordinate system, we may write 

Then v(t) is continuous at to if and only if its three components are continuous at to. 
We now state the most important of these definitions. 

Derivative of a Vector Function 

A vector function v(t) is said to be differentiable at a point t if the following limit 
exists: 

(9) 
, . v(t + t1t) - v(t) 

v (t) = hm A 
At~O ut 

This vector v'(t) is called the derivative of v(t). See Fig. 197. 

Fig. 197. Derivative of a vector function 

In components with respect to a given Cartesian coordinate system. 

(10) v' (t) = [v~(t), v~(t), v~(t)]. 

Hence the derivative v' (t) is obtained by differentiating each component separately. For 
instance, if v = [t, t2

, 0], then v' = [1, 2t, 0]. 
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Equation (10) follows from (9) and conversely because (9) is a "vector form" of the 
usual formula of calculus by which the derivative of a function of a single variable is 
defined. [The curve in Fig. 197 is the locus of the terminal points representing v(t) for 
values of the independent variable in some interval containing 1 and 1 + At in (9)]. It 
follows that the familiar differentiation rules continue to hold for differentiating vector 
functions, for instance, 

and in particular 

(11) 

(12) 

(cv)' = cv' 

(0 + v)' = 0' + v' 

(O'v)' = u'·v + u'v' 

(0 X v)' = u' x v + 0 X v' 

(13) (0 v w)' = (0' v w) + (0 v' w) + (0 v w'). 

(c constant). 

The simple proofs are left to the student. In (12), note the order of the vectors carefully 
because cross multiplication is not commutative. 

E X AMP L E 4 Derivative of a Vector Function of Constant Length 

Let vet) be a vector function whose length is constant. say, Iv(t)1 = c. Then Ivl2 = v·v = c2
, and 

(v· v)' = 2v· v' = 0, by differentiation [see (11)]. This yields the following result. The derivative of a vector 
function vet) of constant length is either the zero vector or is perpendicular to vet). • 

Partial Derivatives of a Vector Function 
Our present discussion shows that partial differentiation of vector functions of two or more 
variables can be introduced as follows. Suppose that the components of a vector function 

are differentiable functions of n variables tlo ... , tn' Then the partial derivative of v 
with respect to 1m is denoted by av/atm and is defined as the vector function 

av 

Similarly. second partial derivatives are 

and so on. 

E X AMP L E 5 Partial Derivatives 

ilr 
- = -a sin t1 i + a cos t1 j and 
ilt1 

ilr 
-=k. • ilt2 

Various physical and geometric applications of derivatives of vector functions will be 
discussed in the next sections and in Chap. 10. 
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~1~ SCALAR FIELDS 

Determine the isotherms (curves of constant temperature 
T) of the temperature fields in the plane given by the 
following scalar functions. Sketch some isotherms. 

1. T = xy 2. T = 4x - 3) 
3. T = y2 - x 2 4. T = x/(x2 + ."2) 

5. T = y/(x2 + y2) 6. T = x 2 - y2 + 8y 

7. (Isobars) For the pressure field f(x. y) = 9x2 + 16y2 
find the isobars f(x, y) = const, the pressure at (4, 3), 
(-2, 2), (I, 5), and the regIOn in which the pressure is 
between 4 and 16. 

S. CAS PROJECT. Scalar Fields in the Plane. Sketch 
or graph isotherms of the following fields and describe 
what they look like. 
(a) x 2 - 4x - y2 (b) x 2y - y3/3 

(c) cos x sinh) 
(e) eX sin y 

(g) x4 _ 6x2y2 + )'4 

(d) sin x sinh y 

(f) e 2x cos 2)' 
(h) x 2 - 2x _ y2 

9-1.::' I SCALAR FIELDS IN SPACE 

What kind of surfaces are the level surfaces f(x,)" z) = cOllst? 
9. f = x 2 + )"2 + 4~2 10. f = x 2 + 4y2 

11. f = z; - V x 2 + y2 

13. f = 4x + 3)' - 5z 

115-201 VECTOR FIELDS 

12. f = 4.\'2 - Z 

Sketch figures similar to Fig. 196. 

15. v = i - j 16. v = yi + xj 

17. v = i + x 2j IS. v = xi + yj 

19. v = yi - xj 

20. v = (x - y)i + (x + v)j 

121-251 DIFFERENTIATION 

389 

21. Prove (11)-(13). Give two examples for each formula. 

22. Find the first and second derivatives of 
[4 cos t, 4 sin t, 2tl 

23. Find the first partial derivatives of [4x2, 9z2, xyz] and 
[yz, zx, .I.}']. 

24. Find the first partial derivatives of 
[sin x cosh y, cos x sinh yJ and [eX cos)" eX sin y]. 

25. WRITING PROJECT. Differentiation of Vector 
Functions. Summarize the essential ideas and facts and 
gi ve examples of your own. 

9.5 Curves. Arc Length. Curvature. Torsion 
A major application of vector calculus concerns curves (this section) and surfaces (Sec. 
10.5) and their use in physics and geometry. This field is called differential geometry. 
It plays a role in mechanics, computer-aided and traditional engineering design, geodesy 
and geography, space travel, and relativity theory (see Refs. [GR8], [GR9] in App. I). 

Curves C in space may occur as paths of moving bodies. This and other applications 
motivate parametric representations with parameter t, which may be time or something 
else (see Fig. 198) 

(1) r(t) = [x(t), y(t), z(t)] = x(t)i + y(t)j + z(t)k. 

Fig. 198. Parametric representation of a curve 
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Here x, y, z are Cartesian coordinates (the usual rectangular coordinates; see Sec. 9.1). 
To each value t = to there corresponds a point of C with position vector r(to), that is, 
with coordinates x(to), y(to). :(to). 

Parametric representations (1) have a key advantage over representations of a curve C 
in terms of its projections into the x:v-plane and into the xz-plane, that is, 

(2) y = f(x). z = g(x) 

(or by a pair of equations with y or with z as the independent variable). The advantage is 
that in (I) the coordinates x, y, : play the same role: all three are dependent variables. 
Moreover, the sense of increasing t, called the positive sense on C, induces an orientation 
of C, a direction of travel along C. The sense of decreasing t is then called the negative 
sense on C, given by (I). 

EXAMPLE 1 Circle 

The circle.£2 + ... 2 = 4, ;: = 0 in the :\~\'-plane with center 0 and radius 2 can be represented parametrically by 

r(t) = [2 cos t. 2 sin t, 0] or simply by r(t) = [2 cos t. 2 sin t] (Fig. 199) 

where 0 ;;; t ;;; 21T. Indeed. x 2 + y2 = (2 co, 1)2 + (2 sin t)2 = 4(cos2 t + sin2 t) = 4. For t = 0 we have 
r(O) = [2, 0], for t = ~1T we get r(~1T) = [0. 2]. and so on. The positive sense induced by this representation 
is the counterclockwise sense. 

if we replace t with t* = t, we have t = -t* and get 

r*(t*) = [2 cos (-t*). 2 sin (-t*)) = [2 cos t*, -2 sin t*]. 

This has reversed the orientation. and the circle is now oriented clockwise. • 
E X AMP L E 2 Ellipse 

The vector function 

(3) r(t) = [a cos t. bsint, 0] = acost i + bsint j (Fig. 200) 

represents an ellipse in the \}'-plane with center at the origin and principal axes in the direction of the x and y 

axes. In fact, since cos2 t + sin2 t = 1, we obtain from (3) 

z = O. 

If b = a, then (3) represents a circle of radius a. • 

"~\~~ 
-~y\ 

(t = ~1I)1 (t = 0) (t= ~1I)T 

Fig. 199. Circle in Example 1 Fig. 200. Ellipse in Example 2 
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E X AMP L E 3 Straight Line 

A straight line L through a point A with position vector a in the direction of a constant vector b (,ee Fig. 201) 
can be represented parametrically in the form 

(4) 

If b is a unit vector. its components are the direction cosines of L. In this case. It I mea,ures the distance of the 
points of L from A. For instance. the straight line in the xv-plane through A: (3, 2) having slope l is (sketch it) 

r(t) ~ [3, 2, 0] + t[l, 1, 0] ~ [3 + t, 2 + t, 0]. • 

A 

------z 
a 

/ 
X y 

Fig. 201. Parametric representation of a straight line 

A plane curve is a curve that lies in a plane in space. A curve that is not plane is called 
a twisted curve. A standard example of a twisted curve is the following. 

E X AMP L E 4 Circular Helix 

The twisted curve C represented by the vector function 

(5) r(t) ~ [a cos t. a sin t. etl ~ a cos t i + a sin t j + et k (c'* 0) 

is called a circlilar helix. It lies on the cylinder x 2 + y2 = a2
. If c > O. the helix is shaped like a right-handed 

screw (Fig. 202). If c < 0, it looks like a left-handed screw (Fig. 203). If c = 0, then (5) is a circle. • 

/ 
../ 

/ x 

I 
I 
I 

.P--
y 

Fig. 201. Right-handed circular helix 

y 

Fig. 203. Left-handed Circular helix 

A simple curve is a curve without multiple points, that is, without points at which the 
curve intersects or touches itself. Circle and helix are simple. Figure 204 shows curves 
that are not simple. An example is [sin 2t, cos t, 0]. Can you sketch it? 

An arc of a curve is the portion between any two points of the curve. For simplicity, 
we say "curve" for curves as well as for arcs. 
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Fig. 204. Curves with multiple points 

Tangent to a Curve 
The next idea is the approximation of a curve by straight lines, leading to tangents and 
to a definition of length. Tangents are straight lines touching a curve. The tangent to a 
simple curve C at a point P of C is the limiting position of a straight line L through P 
and a point Q of C as Q approaches P along C. See Fig. 205. 

If C is given by ret), and P and Q cOlTespond to T and t + b..t, then a vector in the 
direction of L is 

(6) 
I 

- [ret + Ilt) - r(t)]. 
.:1t 

In the limit this vector becomes the derivative 

(7) 
, I 

r (t) = lim A Ir(t + b..t) - r(t)l, 
:,t~O ul 

provided r(t) is differentiable, as we shall assume from now on. If r' (t) =F 0, we call r' (t) 
a tangent vector of C at P because it has the direction of the tangent. The cOlTesponding 
unit vector is the unit tangent vector (see Fig. 205) 

1 
(8) u= -, !r'! r. 

Note that both r' and u point in the direction of increasing t. Hence their sense depends 
on the orientation of C. It is reversed if we reverse the orientation. 

It is now easy to see that the tangent to C at P is given by 

(9) q(w) = r + wr' (Fig. 206). 

This is the sum of the position vector r of P and a multiple of the tangent vector r' of C 
at P. Both vectors depend on P. The variable w is the parameter in (9). 

L 

o 
Fig. 205. Tangent to a curve Fig. 206. Formula (9) for the tangent to a curve 
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E X AMP L E 5 Tangent to an Ellipse 

Find the tangent to the ellipse ~x2 + y2 = 1 at P: CV2, 11V2). 

Solution. Equation (3) with semi-axes a = 2 and b = 1 gives r(t) = [2 cos t, sin t]. The derivative IS 

r' (t) = [-2 sin t. cos t]. Now P corresponds to t = 7T/4 because 

r(7T/4) = [2 cos (7T/4). sin (7714)] = [V2. 11V2]. 

Hence r' (7T/4) = [-V2, I/V2]. From (9) we thus get the answer 

q(w) = [V2, 11V2] + 1\'[-V2, 11V2] = [V2(1 - 11'), (lNi)(l t- 11')]. 

To check the result, sketch or graph the ellipse and the tangent. • 
Length of a Curve 
We are now ready to define the length I of a curve. I will be the limit of the lengths of 
broken lines of n chords (see Fig. 207, where n = 5) with larger and larger n. For this, 
let ret), a ~ t ~ b, represent C. For each n = I, 2, ... we subdivide ("partition") the 
interval a ~ t ~ b by points 

where 

This gives a broken line of chords with endpoints r(to), ... , r(tn). We do this arbitrarily 
but so that the greatest I Llt.,nl = Itm - tm-ll approaches 0 as n ~ co. The lengths 
II' 12 , • • • of these chords can be obtained from the Pythagorean theorem. If ret) has a 
continuous derivative r' (t), it can be shown that the sequence II' 12 , ••• has a limit, which 
is independent of the particular choice of the representation of C and of the choice of 
subdivisions. This limit is given by the integral 

(10) 

I is called the length of C, and C is called rectifiable. Formula (10) is made plausible in 
calculus for plane curves and is proved for curves in space in [GR8] listed in App. 1. The 
practical evaluation of the integral (10) will be difficult in general. Some simple cases are 
given in the problem set. 

Arc Length 5 of a Curve 
The length (10) of a curve C is a constant, a positive number. But if we replace the fixed 
b in (10) with a variable t, the integral becomes a function of t, denoted by s(t) and called 
the arc length function or simply the arc length of C. Thus 

(11) 
t 

I ~ rtI -s(t) = Vr or dt 
a ~n· 

Fig. 207. Length of a curve 
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Here the variable of integration is denoted by t because t is now used in the upper limit. 
Geometrically, s(to) with some to > a is the length of the arc of C between the points 

with parametric values a and to. The choice of a (the point s = 0) is arbitrary; changing 
a means changing s by a constant. 

Linear Element ds. If we differentiate U 1) and square, we have 

(12) ( 
ds )2 dr dr '2 ( dx )2 ( dy )2 ( d::. )2 - = - • - = Ir (t)1 = - + - + - . 
dt dt dt dt dt dt 

It is customary to write 

(13*) dr = [dx, dy, d;::] = dxi + dyj + d;::k 

and 

(13) 

ds is called the linear element of C. 

Arc Length as Parameter. The use of sin (1) instead of an arbitrary t simplifies various 
formulas. For the unit tangent vector (8) we simply obtain 

(14) U(s) = r' (s). 

Indeed, Ir' (s)1 = (ds/ds) = I in (12) shows that r' (s) is a unit vector. Even greater 
simplifications due to the use of s will occur in curvature and torsion (below). 

E X AMP L E 6 Circular Helix. Circle. Arc Length as Parameter 

The helix r(l) = [a cos I. a sin I. el] in (5) has the derivative r' (I) = [-a sin t. a cos t. d. Hence r' • r' = a 2 + e2• 

a constant. which we denote by K2. Hence the integrand in ( II) is constant. equal to K. and the integral is s = Kt. 
Thus I = 51 K. so that a representation of the helix with the arc length s as parameter is 

(15) ( 
s ) [ 5 r*(s) = r K = a cos K 5 cSJ 

asin K , K' K = Va2 + c2
. 

A circle is obtained if we seI c = O. Then K = a. t = sla. and a representation with arc length s as parameter is 

r*(s) = r( ~) = [a cos ~ a sin ~ J. • 
Curves in Mechanics. Velocity. Acceleration 
Curves playa basic role in mechanics, where they may serve as paths of moving bodies. 
Then such a curve C should be represented by a parametric representation rV) with time 
t as parameter. The tangent vector (7) of C is then called the velocity vector v because, 
being tangent, it points in the instantaneous direction of motion and its length oives the 

speed Ivl = Ir'l = ~ = dsldt; see (2). The second derivative of r(t)~is c':uled the 
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acceleration vector and is denoted by a. Its length lal i<; called the acceleration of the 
motion. Thus 

(16) v(t) = r' (t), aCt) = v' (t) = r" (t). 

Tangential and Normal Acceleration. Whereas the velocity vector is always tangent 
to the path of motion, the acceleration vector will generally have another direction, so that 
it will be of the form 

(17) 

where the tangential acceleration vector atan is tangent to the path (or, sometimes, 0) 
and the normal acceleration vector anorm is normal (perpendicular) to the path (or, 
sometimes, 0). 

Expressions for the vectors in (17) are obtained from (16) by the chain rule. We first 
have 

dr 
vet) = -

dt 

dr ds ds 
- = u(s)-

ds dt dt 

where u(s) is the unit tangent vector (4). Another differentiation gives 

(18) dv d ( ds ) du (ds)2 d
2
s aCt) = - = - U(s) - = - - + u(s) -

dt dt dt ds dt dt2 

Since the tangent vector u(s) has constant length (one), its derivative du/ds is perpendicular 
to u(s) (by Example 4 in Sec. 9.4). Hence the first term on the right of (18) is the normal 
acceleration vector, and the second term on the right is the tangential acceleration vector, 
so that (18) is of the form (17). 

Now the length of a tan is the projection of a in the direction of v, given by (II) in 
Sec. 9.2 with b = v; that is, latanl = a·v/lvl. Hence atan is this expression times the unit 
vector (1IIvl)v in the direction of v; that is, 

(18*) 
a·v 

atan = -- v. 
v·V 

Also. anorm = a - a tan. 

Let us consider two basic examples, involving centripetal and centrifugal accelerations 
and Corio lis acceleration, as it occurs. for instance. in space travel. 

E X AMP L E 7 Centripetal Acceleration. Centrifugal Force 

The vector function 

ret) = [R cos wt. R sin wtj = R cos wt i + R sin wt j (Fig. 208) 

(with fixed i and j) represents a circle C of radIUS R with center at the origm of the .\)"-plane and describes the 
motion of a small body B counterclockwise around the circle. Differenriarion gives the velocity vector 

v = r' = [-Rw sin wt. Rw cos wt] = - Rw sin wt i T Rw cm, wt .i (Fig. 208). 

v is tangent to C. It~ magnitude, the speed. i~ 

Ivl = Ir'l = w-:-;:' = Rw. 
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y 

x 

Fig. 208. Centripetal acceleration a 

Hence it is constant. The speed divided by the distance R from the center is called the angular speed. It equals 
w, so that it is constant. too. Differentiating the velocity vector, we obtatn the acceleration vector 

(19) a = v' = [-Rw2 cos wt, -Rw2 sin wt] = -Rw2 cos wt i - Rw2 sin wt j. 

Thi~ shows that a = _w2 r (Fig. 208). so that there is an acceleration IOwatd the center. called the centripetal 
acceleration of the motion. It occurs because the velocity vector is changing direction at a constant rate. Its 
magnitude is constant, lal = w2 1rl = w2R. Multiplying a by the mass m of B, we get the centripetal force ma. 
The oppo,ite vector -ilia is called the centrifugal force. At each instant these two forces are in equilibrium. 

We see that in this motion the acceleration vector is normal (perpendicular) to C; hence there is no tangential 
acceleration. • 

E X AMP L E 8 Superposition of Rotations. Coriolis Acceleration 

A projectile IS moving with constant speed along a meridian of the rotating eatth in Fig. 209. Find its acceleration. 

a 

~ ~"\ p , 
--- ------ , 

--\. 

I', 
1 
J 
1 

Fig. 209. Example 8. Superposition of two rotations 

Solution. Let x. y, :: be a tixed Cartesian coordinate system in space. with unit vectors i, j, k in the directiuns 
of the axes. Let the earth, together with a unit vector b, be rotating about the z-axis with angulat· speed w > 0 
(see Example 7). Since b is rotaing together with the earth. it is of the form 

b(t) = cos wt i + sin WI j. 

Let the projectile be moving on the meridian whose plane is spanned by band k (Fig. 209) with constant angular 
speed y > O. Then its position vector in terms of band k IS 

r(l) = R cos yt btl) + R sin yl k (R = Radius of the earth). 
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This is the modeL The rest is calculation. The result will be unexpected and highly relevant for air and space 
travel. The first and second derivatives of b with respect to 1 are 

b ' (tl = -w sin wt i + w cos wt j 
(20) 

The first and second derivatives of rtt) with re<;pect to tare 

v = r'(t) = R cos ')'t b ' - ')'R sin ')'t b + ')'R cos ')'t k 

(21) a = v' = R cos ')'t b" - 2')'R sin ')'t b ' - ')'2R cos ')'t b - ')'2R sin ')'t k 

= R cos ')'t bIt - 2')'R SIn ')'t b I - ')'2r. 

By analogy with Example 7 and because of bIt = - w2 b in (20) we conclude that the first term in a (involving 
win bIt!) is the centripetal acceleration due to the rotation of the earth. Similarly, the third term in the last line 
(involving ')'!) i, the centripetal acceleratiun due to the motion of the projectile un the meridian M of the rotating 
earth. 

The second, unexpected term -2')'R sin ')'t b ' in a is called the Coriolis acceleration3 (Fig. 209) and is due 
to the interaction of the two rotations. On the Northern Hemisphere, sin ')'t > 0 (for 1 > 0; also ')' > 0 by 
assumption), so that acor has the direction of - b I. that is, opposite to the rotation ufthe earth. lacorl is maximum 
at the North Pole and zero at the equator. The projectile B of mass 1Il0 experiences a force -Illoacor opposite 
to 1I10 acol"' which tends to let B deviate from M to the right (and in the Southern Hemisphere, where sin ')'1 < 
O. to the left). This deviation has been observed for missiles. rockets. shells. and atmospheric air flow. • 

Curvature and Torsion. Optional 
This optional portion of the section completes our discussion of curves from the viewpoint 
of vector calculus. 

The curvature K(S) of a curve C: rts) (s the arc length) at a point P of C measures the 
rate of change lu' (s)1 of the unit tangent vector u(s) at P. Hence K(S) measures the deviation 
of C at P from a straight line (its tangent at P). Since u(s) = r' (s). the definition is 

(22) K(S) = lu' (s)1 = Ir"(s)1 (' = d/ds). 

The torsion res) of C at P measures the rate of change of the osculating plane 0 (the 
plane spanned by u and u'. see Fig. 210) of C at P. Hence res) measures the deviation 

Rectifying plane 

rn 
E 
5 
c 
co 

b Normal plane 

PrinCipal 

p _n()fl7Jal -
Osculating plane 

Fig. 210. Trihedron. Unit vectors u, p, b and planes 

3GUSTAVE GASPARD CORIOLIS (1792-1843), French engineer who did research in mechanics. 
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of C at P from a plane (from 0 at Pl. Now the rate of change is also measured by the 
derivative b' of a normal vector bat 0. By the definition of vector product, a unit normal 
vector of 0 is b = u X (I/K)U' = U x p, where p = (IIK)U' is called the unit principal 
normal vector and b is called the unit binormal vector of C at P; see Fig. 210. Here we 
must assume that K =1= 0; hence K > O. The absolute value of the torsion is now defined by 

(23*) 

Whereas K(S) is nonnegative. It IS practical to give the torsion a sign. motivated by 
"right-handed" and "left-handed" (see Figs. 202. 203). This needs a little further 
calculation. Since b is a unit vector, it has constant length. Hence b' is perpendicular to 
b (see Example 4 in Sec. 9.4). Now b' is also perpendicular to U because by the definition 
of vector product we have bou = 0, bou' = O. This implies 

(bou)' = 0; that is, b'ou + bou' = b ' °U + 0 = O. 

Hence if b' "* 0 at P, it must have the direction of p or -p, so that it must be of the form 
b' = -7p. Taking the dot product of this by p and using pop = I gives 

(23) 7(S) = -p(s)ob'(s). 

The minus sign is chosen to make the torsion of a right-handed helix positive and that of 
a left-handed helix negative (Figs. 202, 203). The orthonormal vector triple u, p, b is 
called the trihedron of C. Figure 210 also shows the names of the three straight lines in 
the directions of u, p, b, which are the intersections of the osculating plane, the normal 
plane. and the rectifying plane. 

11-101 PARAMETRIC REPRESENTATIONS 15. [\!CoSt, Vsin t, oj ("Lame ClI/Te
n

) 

Find a parametric representation of the following curves. 

1. Circle of radius 3, center (4, 6) 

2. Straight line through (5. 1. 2) and (11, 3. 0) 

3. Straight line through (2, O. 4) and (-3. O. 9) 

4. Straight line y = 2x + 3, :;; = 7x 

5. Circle y2 + 4y + Z2 = 5, x = 3 

6. Ellipse x 2 + y2 = I. z = y 

7. Straight line through ta, b, c) and (a + 3, b - 2. C + 5) 

8. Intersection of x + y - ::: = 2, 1x - 5y + z = 3 

9. Circle ~x2 + y2 = 1.::: = y 

10. Helix x 2 + y2 = 9, ::: = 4 arctan tylx) 

111-181 What curves are represented as tollows? 

11. [2 + r cos 4t. 6 + r sin 4t, 2t] 

12. [4 - 2t, 8t, -3 + 5t] 

13. [2 + cos 3t, - 2 + sin 3t, 5] 

14. [t, t 2
, t 3

] 

16. [cosh t, sinh t. 0] 

17. [t, lit, 0] 

18. [1,5 + t, -5 + lit] 

19. Show that setting t = -t* reverses the orientation of 
[a cos t. a sin t. 0]. 

20. If we set t = et in Prob. 12, do we get the entire line? 
Explain. 

21. CAS PROJECT. Curves. Graph the following more 
complicated curves. 

(a) r(t) = [2 cos t + cos 2t, 2 sin t - sin 2t] 
(Steiner's hypocycloid) 

(b) r(t) = [cos t + k cos 2t. sin t - k sin 2t] with 
k = 10,2. 1,~, O. -~, -) 

(c) r(t) = [cos t. sin 5t] (a Lissajolls cline) 

(d) r(t) = [cos t, sin kt]. For what k's will it be 
closed? 

(e) r(t) = [R sin wt + wRt, R cos wt + R] (cycloid). 
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122-251 TANGENT 
Given a curve C: r(t), find a tangent vector r' (t), a unit 
tangent vector u' (t), and the tangent of C at P. Sketch the 
curve and the tangent. 

22. ret) = [t, t2, 0], P: (2,4,0) 

23. ret) = [5 cos t, 5 sin t, 0], P: (4, 3, 0) 

24. ret) = [3 cos t, 3 sin t, 4t], P: (3, 0, 87T) 

25. r(t) = [cosh t, sinh t], P: (~, ~) 

126-281 LENGTH 
Find the length and sketch the curve. 

26. Circular helix r(t) = [2 cos t, 2 sin t, 6t] from 
(2, 0, 0) to (2, 0, 247T) 

27. Catenary ret) = [t, cosh t] from t = 0 to t = 1 

28. Hypocycloid ret) = la cos3 t. a sin3 t]. total length 

b 

29. Show that (10) implies € = I ~ cir for the 
a 

length of a plane curve C: y = f(x), z = 0, a ~ x ~ b. 

30. Polar coordinates p = Yr + y2, e = arctan (ylx) 
13 

give€ = I V p2 + p'2 de, where p' = dplde. Derive 
ex 

this. Use it to find the total length of the cardioid 
p = a(l - cos e). Sketch this curve. Hint. Use (10) 
in App. 3.l. 

31. CAS PROJECT. Polar Representations. Use your 
CAS to graph the following famous curves4 and 
investigate their form depending on parameters a and b. 

p = ae Spiral of Archimedes 

p = aebe Logarithmic spiral 

2a sin2 e 
p= 

cos e Cissoid of Diocles 

a 
p = -- + b Conchoid of Nic011ledes 

cos e 
p = ale Hyperbolic spiral 

3a sin 2e 
p = Folium of Descartes 

cos3 e + sin3 e 
sin 3e 

p = 2a --- Maclaurin's trisectrix 
sin 2e 

p = 2a cos e + b Pascal's snail 
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132-341 CURVES IN MECHANICS 
Velocity and Acceleration. Forces on moving objects 
(cars, airplanes, etc.) require that the engineer knows 
corresponding tangential and normal accelerations. Find 
them, along with the velocity and speed, for the following 
motions. Sketch the path. 

32. r(t) = [4t, -3t, 0] 

33. ret) = [1. t 2
, 0] 

34. ret) = [cos t, 2 sin t, 0] 

35. (Cycloid) Given 

r{t) = (R sin wt + wRt) i + (R cos wt + R)j. 

This cycloid is the path of a point on the rim of a wheel 
of radius R that rolls without slipping along the x-axis. 
Find v and a at the maximum y-values of the curve. 

36. CAS PROJECT. Paths of Motions. Gear 
transmissions and other engineering constructions 
often involve complicated paths whose study is greatly 
facilitated by the use of a CAS. To grasp the idea, graph 
the following paths and find the velocity, the speed, 
and the tangential and normal accelerations. 

(a) ret) = [2 cos t + cos 2t, 2 sin t - sin 2t] 
(Steiner's hypocycloid) 

(b) ret) = [cos t + cos 2t, sin t - sin 2t] 

(c) ret) = [cos t, sin 2t, cos 2t] 

(d) r(t) = [ct cos t, ct sin t, ct] (c * 0) 

37. (Sun and earth) Find the acceleration of the earth 
toward the sun from (19) and the fact that the earth 
revolves about the sun in a nearly circular orbit with 
an almost constant speed of 30 kmIsec. 

38. (Earth and moon) Find the centripetal acceleration of 
the moon toward the earth, assuming that the orbit 
of the moon is a circle of radius 239,000 miles 
= 3.85· 108 m, and the time for one complete 
revolution is 27.3 days = 2.36· L06 sec. 

39. (Satellite) Find the speed of an artificial earth satellite 
traveling at an altitude of 80 miles above the earth's 
surface, where g = 31 ft/sec2

. (The radius of the earth 
is 3960 miles.) 

40. (Satellite) A satellite moves in a circular orbit 
450 miles above the earth's surface and completes 
I revolution in 100 min. Find the acceleration of 
gravity at the orbit from these data and from the radius 
of the earth (3960 miles). 

4Named after ARCHIMEDES (c. 287-212 B.C.), DESCARTES (Sec. 9.1), DlOCLES (200 B.C.), 

MACLAURIN (Sec. 15.4), NICOMEDES (250? B.C.) ETIENNE PASCAL (1588-1651), father of BLAISE 
PASCAL (1623-1662). 
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141-501 CURVATURE AND TORSION 45. Show that the torsion of a plane curve (with K > 0) is 
identically zero. 41. Show that a circle of radius a has curvature lIa. 

42. Using (22), show that if C is represented by ret) with 
arbitrary t, then 

VCr' 0 r' )(r" 0 r") - (r' 0 r")2 
(22*) K(t) = -'-------'------'-­

(r' 0 r')3/2 

43. Using (22*), show that for a curve y = i{x) in the 
xy-plane. 

(22**) ( 
dr ) y' = -'- , etc. . 
dx 

44. Using b = u x p and (23), show that 

(23**) T(S) = (u p p') = (r' r" r"')/K'-

(K > 0). 

9.6 Calculus Review: 

46. Show that if C is represented by r(t) with arbitrary 
parameter t. then. assuming K > 0 as before. 

(r' r" rIll) 
(23***) T(t) = ---'-----'---­

(r' or' )(r" or") - (r' or")2 

47. Find the torsion of C: r(t) = [t. t2
, t3

] (which looks 
similar to the curve in Fig. 2ID). 

48. (Helix) Show that the helix [Cl cos t. CI sin t, ctl can 
be represented by [a cos (sIK), a sin (sIK), cslKl, 

where K = VCl2 + c2 and .I" is the arc length. Show 
that it has constant curvature K = cd K2 and torsion 
T= dK2. 

49. Obtain K and Tin Prob. 48 from (22*) and (23***) and 
the Oliginal representation in Prob. 48 with parameter t. 

50. (Frenet5 formulas) Show that 
u' = KP, p' = -KU + Tb, b' = -TP. 

Functions of Several Variableso Optional 
Curves required vector functions of a single variable x or s, and we now proceed to 
vector functions of several variables, beginning with a review from calculus. Go on to 
the next section, consulting this material only when needed. (We include this short 
section to keep the book reasonably ~elf-contained. For partial derivatives see 

App. A3.2.) 

Chain Rules 
Figure 211 shows the notations in the following basic theorem. 

" 1 D 

~[X(U'V).Y(u.L').z(u.V)l 
B 

u 

Fig. 211. Notations in Theorem 1 

5JEAN-FREDERIC FRENET (l816-1900), French mathematician. 
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THEOREM 1 Chain Rule 

Let w = f(x, )', z) be continuous and have continuous first partial derivarives in 
a domain D in xy:;:-space. Let x = x(u, v), y = y(u, v), :;: = z(u, v) be funcTions 
that are colltinuous and hal'e first partial derivatives in a domain B in the 
uv-plane, where B is such that for every point (u, v) ill B, the corresponding point 
Ix(u, v), y(u, v), :;:(ll, v)] lies in D. See Fig. 21l. Then the function 

w = f(x(u. v), y(u. v). z(u. v» 

is defined in B, has first partial deril'Otil'es lI'ith respect to u and v in B, and 

(1) 

aw aw ax aw a" aw a­
-=--+--~-+-~ 
Au Ax au ay Au az Au 

aw aw ax away aw az 
-=--+--+-­
av ax av ay av az av 

In this theorem, a domain D is an open connected point set in xyz-space, where "connected" 
means that any two points of D can be joined by a broken line of finitely many linear 
segments all of whose points belong to D. "Open" means that every point P of D has a 
neighborhood (a little ball with center P) all of whose points belong to D. For example. 
the interior of a cube or of an ellipsoid (the solid without the boundary surface) is a domain. 

In calculus, x, y, Z are often called the intermediate variables, in contrast with the 
independent variables u, v and the dependent variable w. 

Special Cases of Practical Interest 
If w = f(x, y) and x = x(u, v), y = y(u, v) as before, then (1) becomes 

(2) 

aw aw ax aw av 
-=--+----
au ax au ay au 

aw aw ax away 
-=--+-­
av ax av ay av 

If no = f(x, y, .:::) and x = xU), y = yet), .::: = z(t), then 1I) gives 

(3) 
dw aw dx aw dy all' dz 
-=--+--+--
dt ax dt ay dt az dt 

If w = f(x, y) and x = x(t), y = y(t), then (3) reduces to 

(4) 
dw aw dx aw dr 
-=--+-_.-
dt ax dt ay dt· 
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Finally, the simplest case w = f(x), x = x(t) gives 

dw dw dx 
(5) 

dt dx dt 

E X AMP L E 1 Chain Rule 

THEOREM 2 

If w = x 2 i and we define polar coordinates r, 8 by x = r cos 8, y = r sin 8, then (2) gives 

~ 2 2 a; = 2xcos 8 - 2ysin 8 = 2rcos 8 - 2rsin 8 = 2rcos28 

aw = 2x(-r sin 8) - 2y(r cos lJ) = -2r2 cos 8 sin lJ - 2r2 sin lJcos 8 = -2r2 sin 28. 
a8 

Mean Value Theorems 

Mean Value Theorem 

Let f(x, y, z) be continuous and have continuous first partial derivatives in a 
domain D in xyz-space. Let Po: (xo, Yo, zo) and P: (xo + h, Yo + k, Zo + l) be 
points in D such that the straight line segment PoP joining these points lies entirely 
in D. Then 

(6) 
af af af 

f(xo + h, Yo + k, Zo + l) - f(xo, Yo, Zo) = h - + k - + l-, 
ax ay az 

the partial derivatives being evaluated at a suitable point of that segment. 

Fig. 212. Mean value theorem for a function of two variables [Formula (7)] 

Special Cases 

• 

For a function f(x, y) of two variables (satisfying assumptions as in the theorem), formula 
(6) reduces to (Fig. 212) 

(7) at at 
f(xo + h, Yo + k) - f(xo, Yo) = h ax + k a; , 



SEC. 9.7 Gradient of a Scalar Field. Directional Derivative 403 

[1-51 DERIVATIVE 

and for a function f(x) of a single variable, (6) becomes 

(8) 
df 

f(xo + 11) - f(xo) = 11-, 
dx 

where in (8), the domain D is a segment of the x-axis and the derivative is taken at a 
suitable point between Xo and Xo + h. 

Find dwldt by (3) or (4). Check the result by substitution 
and differentiation. (Show the details.) 

9. w = 1/(x2 + y2 + Z2), X = u2 + v 2, Y = u2 - v 2, 

Z = 2uv 

10. (Partial derivatives on a surface) Let w = f(x, y, z), 

and let z = g(x, y) represent a surface S in space. Then 
on S, the function becomes 

1. w = V:>? + y2, X = e 2t , y = e-2t 

2. w = ylx, x = g(t), y = h(t) 

3. w = xY, x = cosh t. y = sinh t 

4. w = xy + yz + zx, x = 2 cos t, Y = 2 sin T, z = 5t 

5. w = (x 2 + y2 + Z2)3, X = (2, Y = (4, Z = (2 

/6-91 PARTIAL DERIVATIVES 

Find iJwliJu and iJwlav by (1) and (2). Check the result by 
substitution and differentiation. (Show the details.) 

6. w = 4x 2 - 4y2, X = U + 2v, y = 2u - v 

7. W =x2y2.x= eUcosv.y = eUsinv 

8. w = X4 - 4x2y2 + )'4, X = uv, y = ulv 

w(x, y) = f[x, y, g(x, y)]. 

Show that its partial derivatives are obtained from 

aw af af iJg 
-=-+--
iJx ax az ax' 

aw af af ag 
-=-+--
ay ay az a)' 

[;: = g(x. y)]. 

Apply this to f = x 3 + )'3 + Z2, g = x 2 + y2 and 
check by substitution and direct differentiation. (The 
general formula will be needed in Sec. 10.9.) 

9.7 Gradient of a Scalar Field. 
Directional Derivative 

DEFINITION 1 

We shall see that some of the vector fields in applications-not all of them!---can be 
obtained from scalar fields. This is a considerable advantage because scalar fields can be 
handled more easily. The relation between these two kinds of fields is obtained by the 
"gradient," which is thus of great practical importance. 

Gradient 

The gradient of a given scalar function f(x, y, z) is denoted by grad f or Vf (read 
nabla f) and is the vector function defined by 

ll) [
at at at] at . at. at 

gradf = Vt = -, -, - = -) + -.-J +-k. 
ax ay az ax dy az 

Here x. y, z are Cartesian coordinates in a domain in 3-space in which f is defined 
and differentiable. (For curvilinear coordinates see App. 3.4.) 
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For instance, if f(x, y, z) = 2)'3 + 4xz + 3x, then grad f = [4z + 3, 6)'2, 4x]. 
The notation \' f is suggested by the differential operator V (read nabla) defined by 

a a a 
(1*) V = -j + -j + -k. 

ax ay iJ;:. 

Gradients are useful in several ways, notably in giving the rate of change of f(x. y. ;:.) 
in any direction in space, in obtaining surface normal vectors, and in deriving vector fields 
from scalar fields, as we are going to show in this section. 

Directional Derivative 
From calculus we know that the partial derivatives in (1) give the rates of change of 
f(x. y. z) in the directions of the three coordinate axes. It seems natural to extend this and 
ask for the rate of change of f in an arbitrw:v direction in space. This leads to the following 
concept. 

Directional Derivative 

The directional derivative Dbf or dflds of a function f(x, y, z) at a point P in the 
direction of a vector b is defined by (see Fig. 213) 

(2) 
df . f(Q) - f(P) 

Dbf = - = hm . 
ds s->O S 

Here Q is a variable point on the straight line L in the direction of b, and lsi is the 
distance between P and Q. Also, s > 0 if Q lies in the direction of b (as in 

1_ Fig. 213), s < 0 if Q lies in the direction of -b, and s = 0 if Q = P. 

Fig. 213. Directional derivative 

The next idea is to use Cartesian .x),z-coordinates and for b a unit vector. Then the line L 
is given by 

(3) res) = x(s)i + y(s)j + z(s)k = Po + sb 

where Po the position vector of P. Equation (2) now shows that Dbf dflds is the 
derivative of the function f(x(s), yes), z(s)) with respect to the arc length s of L. Hence. 
assuming that f has continuous partial derivatives and applying the chain rule [formula 
(3) in the previous section], we obtain 

(4) 
df af, af, af, 

Dbf=-=-x +-y +-z 
ds ax ay az 
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where primes denote derivatives with respect to s (which are taken at s = 0). But here, 
differentiating (3) gives r' = x'i + y'j + z'k = b. Hence (4) is simply the inner product 
of grad f and b [see (2), Sec. 9.2]; that is, 

(5) 
df 

Dbf = - = b·grad f 
ds 

(Ibl = 1). 

ATTENTION! If the direction is given by a vector a of any length (oF 0), then 

(5*) 
df 1 

Daf = - = -I I a·gradf· 
ds a 

E X AMP L E 1 Gradient. Directional Derivative 

THEOREM 1 

Find the directional derivative of f(x. y, .:) = 2x2 + 3.1'2 + Z2 at P: (2, L 3) in the direction of a = [1, 0, -2]. 

Solution. grad J = [4x. fl\,. 2.:] gives at P the vector grad J(p) = [8. fl. 6]. From this and (5*) we obtain, 
since lal = Vs. 

1 1 4 
DaJ(PI= V5 [1.0.-2]"[8.6.61= Vs (8+0-12)=- Vs =-1.789. 

The minus sign indicates that at P the function f i~ decreasing in the direction of a. • 
Gradient Is a Vector. Maximum Increase 
grad f in (I) looks like a vector-after all, it has three components! But to prove that it 
actually is a vector. since it is defined in telms of components depending on the Cartesian 
coordinates, we must show that grad f has a length amI direction independent of the choice 
of those coordinates. In contrast, raflax, 2aflay, afli'J:;::] also looks like a vector but 
does not have a length and direction independent of the choice of Cartesian coordinates. 

Incidentally, the direction makes the gradient eminently useful: grad f points in the 
direction of maximum increase of f. 

Vector Character of Gradient. Maximum Increase 

Let f(P) = f(x. y. :;::) be a scalar function having continuous first partial derivatives 
in some domain B in space. Then grad f exists in B and is a vector, that is, its lellgth 
and direction are independent of the particular choice of Cartesian coordinates. {f 
grad f(P) oF 0 at some point P, it has the direction of maximum illcrease of f at P. 

PROOF From (5) and the definition of inner product [(1) in Sec. 9.2] we have 

(6) Dbf = Ibllgrad fl cos l' = Igrad fl cos l' 

where l' is the angle between b and grad f. Now f is a scalar function. Hence its value 
at a point P depends on P but not on the particular choice of coordinates. The same holds 
for the arc length s of the line L in Fig. 213, hence also for Dbf. Now (6) shows that Dbf 
is maximum when cos l' = \, l' = 0, and then Dbf = Igrad fl. It follows that the length 
and direction of grad f are independent of the choice of coordinates. Since l' = 0 if and 
only if b has the direction of grad f, the latter is the direction of maximum increase of 
f at P, provided grad f oF 0 at P. • 
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Gradient as Surface Normal Vector 
Gradients have an important application in connection with surlaces, namely, as surlace 
normal vectors, as follows. Let S be a surlace represented by f(x, y, z) = C = COllst, where 
f is differentiable. Such a surface is called a level surface of f, and for different c we get 
different level surlaces. Now let C be a curve on S through a point P of S. As a curve in 
space, C has a representation ret) = [x(t), yet), z(t)]. For C to lie on the surlace S, the 
components of r(1) must satisfy f(x, y, z) = c, that is, 

(7) f(x(t), y(1), z(t» = c. 

., [ , , '] Now a tangent vector of C IS r (1) = x (1), Y (f), z (f) . And the tangent vectors of all 
curves on S passing through P will generally form a plane, called the tangent plane of S 
at P. (Exceptions occur at edges or cusps of S, for instance, for the cone in Fig. 215 at 
the apex.) The normal of this plane (the straight line through P perpendicular to the tangent 
plane) is called the surface normal to S at P. A vector in the direction of the surface 
normal is called a surface normal vector of Sat P. We can obtain such a vector quite 
simply by differentiating (7) with respect to t. By the chain rule, 

af, af, af, , 
-x + -v + -z = (gradf)or = o. 
ax ay' iJz 

Hence grad f is orthogonal to all the vectors r' in the tangent plane, so that it is a normal 
vector of Sat P. Our result is as follows (see Fig. 214). 

grad~Tangent plane 

~ 

/p 

/ 

f= cons) 

Fig. 214. Gradient as surface normal vector 

Gradient as Surface Normal Vector 

Let f be a differentiable scalar function ill space. Let f(x, y, z) = c = COllst represent 
a surface S. Tlzell if tlze gradient of f at a poim P of 5 is /lOT the zero vector, if is 
a normal vector of 5 at P. 

E X AMP L E 2 Gradient as Surface Normal Vector. Cone 

Find a unit nonnal vector n of the cone of revolution ;:.2 = 4(x2 + y2) at the point P: (I, U, 2). 

Solution. The cone is the level surface I = 0 of I(x, y, z) = 4(x2 + y2) - z2. Thus (Fig. 215), 

grad I ~ [8x, 8y, - 22], grad I(P) = [8, U, -4] 

I [ 2 I ] 
n = Igrad I(P)I grad I(P) = V5' 0, - V5 

n points downward since it has a negalJve z-component. The other unit normal vector of the cone at P is -no • 
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THEOREM 3 

n/: 
p 

I 
I 
I 
I 
I 
I 

~ 
Fig. 215. Cone and unit normal vector n 

Vector Fields That Are Gradients of Scalar Fields 
("Potentials") 
At the beginning of this section we mentioned that some vector fields have the advantage 
that they can be obtained from scalar fields, which can be handled more easily. Such a 
vector field is given by a vector function yep), which is obtained as the gradient of a scalar 
function. say, vW) = grad f(P). The function f(P) is called a potential function or a 
potential of yep). Such a v{P) and the conesponding vector field are called conservative 
because in such a vector field, energy is conserved; that is, no energy is lost (or gained) 
in displacing a body (or a charge in the case of an electrical field) from a point P to another 
point in the field and back to P. We show this in Sec. 10.2. 

Conservative fields playa central role in physics and engineering. A basic application 
concerns the gravitational force (see Example 3 in Sec. 9.4) and we show that it has a 
potential which satisfies Laplace's equation. the most important partial differential 
equation in physics and its applications. 

Gravitational Field. Laplace's Equation 

The force of attraction 

(8) c _c[x - Xo Y - Yo z - zoJ p = --r = 
r3 1'3 . r3 . r3 

between two particles at points Po: (Xo, Yo, zo) and P: (x. y, z) (as given by Newton's 
law of gravitation) has the potellfial f(x. y. z) = clr. where r (> 0) is the distance 
between Po alld P. 

TllllS P = grad f = grad (elr). This potential f is a solution o/Laplace's equation 

(9) 

[v 2f (read nabla squared f) is called the Laplacian of f.] 
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PROOF That distance is r = «x - XO)2 + (Y - .\'0)2 + (z - <:2)2)1/2. The key observation now is 
that for the components of p = [PI' P2. P3] we obtain by partial differentiation 

(lOa) 
x - Xo 

and similarly 

;" (~) Y - Yo 
----

r3 
(lOb) 

:<: (~) = 
z - '::0 

----
,-3 

From this we see that, indeed. p is the gradient of the scalar function f = eI,-. The second 
statement of the theorem follows by partially differentiating (10), that is. 

a~2 (~) I 3(x - xO)2 
--+ r3 r5 

a

2 C) I 3(y - )'0)2 

iJy2 r 
--+ 

r5 r3 

:Z22 (~) = 
I 3(.:: - ZO)2 

--+ 
,-5 r3 

and then adding these three expressions. Their common denominator is r5. Hence the three 
terms -1/,-3 contribute - 3r2 to the numerator, and the three other terms give the sum 

so that the numerator is 0, and we obtain (9). • 
V2f is also denoted by I:::.f. The differential operator 

(11) 

(read "nabla squared" or "delta") is called the Laplace operator. It can be shown that 
the field of force produced by any distribution of masses is given by a vector function 
that is the gradient of a scalar function f. and f satisfies (9) in any region that is free of 
matter. 

The great importance of the Laplace equation also results from the fact that there are 
other laws in physics that are of the same form as Newton's law of gravitation. For instance, 
in electrostatics the force of attraction (or repulsion) between two particles of opposite (or 
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like) charge QI and Q2 is 

(12) 
k 

p=-r 
r3 

409 

(Coulomb's law6
) 

Laplace's equation will be discussed in detail in Chaps. 12 and 18. 

A method for finding out whether a given vector field has a potential will be explained 

in Sec. 9.9. 

11-61 CALCULATION OF GRADIENTS 

Find V f. Graph some level curves f = const. lndicate V f 
by arrows at some points of these curves. 

x 
3. f =­

Y 

5. f = (x - 2)(y + 2) 

6. f = (x - 3)2 + Cr - 1)2 

2. f = x 2 + ty2 

4. I = X4 + )'4 

17-121 USE OF GRADIENTS. VELOCITY FIELDS 

Given the velocity potential f of a flow. find the velocity 
v = v I of the flow and its value at P. Make a sketch of 
v(P). 

7. f = x 2 + )'2 + ;::2, P: (3, 2, 2) 

8. f = In (x2 + y2), P: (4. 3) 

9. f = cos x cosh y. P: (!7T. In 2) 

10. f = x 2 + 4y2 + 9;::2, P: (3, 2. I) 

11. f = eX sin y. P: (I. 7T) 

12. f = (x2 + )'2 + Z2)-I/2, P: (2, 1, 2) 

[13-18] HEAT FLOW 

Experiments show that in a temperature field, heat flows in 
the direction of maximum decrease of temperature T. Find 
this direction in general and at a given point P. Sketch that 
direction at P as an arrow. 

13. T = x 2 
- y2, P: (2, I) 

\. 
14. T = arctan =-- , P: t2, 2) 

x 
15. T = x 3 - 3X)'2, P: ('VB, V2) 
16. T = xl(x2 + )'2), P: (4.0) 

17. T = 3x2
)' - )'3. P: (4, -2) 

18. T = sin x cosh y. P: (~7T. In 5) 

119-241 ELECTRIC FORCE 

The force in an electrostatic field I(x, y, z) has the direction 
of the gradient of f. Find VI and its value at P. 

19. I = (x - 1)2 - (y + 1)2. P: (4, - 3) 

20. I = yl(x2 + )'2), P: (5, 3) 

21. I = x 2 
- 2x - )'2, P: t-2, 6) 

22. f = In (x2 + y2), P: (3, 3) 

23. f = (x2 + y2 + ~2)-1/2, P: (12,0, 16) 

24. I = x 2y - h 3
, P: (2, 3) 

25. (Gradient) What does it mean if Igrad I(p)1 < Igrad I( QJI 
at two points P and Q in a scalar field? 

26. (Landscape) If ;::(x. yl = 2000 - 4x2 - y2 [meters] 
gi ves the elevation of a mountain above sea level. what 
is the direction of steepest ascent at P: (3, -6)? What 
does the mountain look like? 

~7-321 SURFACE NORMAL 

Find a normal vector of the surface at the given point P. 

27. ax + by + cz = d. any P 

28. x 2 + 3y2 + ;::2 = 28, P: (4, 1. 3) 

29. x 2 + y2 = 25, P: (4, 3, 8) 

30. x 2 
- y2 + 4;::2 = 67. P: (-2. 1, 4) 

31. X4 + y4 + Z4 = 243, P: (3, 3, 3) 

32. z = x2 + y2, P: (3, 4. 25) 

133-381 DIRECTIONAL DERIVATIVE 

Find the directional derivative of I at P in the direction 
of a. 

33. I = x 2 + )'2 - z, P: 0, l. -2). a = [I, 1. 2] 

34. I = x 2 +)'2 + .;:2. P: (2, -2, 1), a = [-1, -1. 0] 

35. I = xy.;:, P: (-I, 1,3), a = [I, -2.2] 

6CHARLES AUGUSTIN DE COULOMB (1736--1806), French phYSicist and engineer. Coulomb's law was 
derived by him from his own very precise measurements. 
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36. f = (x2 + y2 + :;,2)-112, P: (4, 2, -4), a = [1,2, -2] each of them two examples showing when they are 
advantageous. 37. f = eX sin y, P: (2, ~'7T, 0), a = [2, 3, 0] 

38. f = 4x2 + y2 + 9:;,2, P: (2.4. 0). a = [-2. -4, 3] v(fg) = fvg + gY'f 

v(f") = nf"-lvf POTENTIALS 
for a given vector field-if they exist!--can be obtained by 
a method to be discussed in Sec. 9.9. In simpler cases. use 
inspection. Find a potential f = grad v for given v(x, y, ;:). 

v{flg) = (Ilg2)(gY'f - f'\g) 

V2(fg) = gV2f + 2vf o vg + fY'2g 

39. v = [3x, 5y, -4z] 
43. CAS PROJECT. Equipotential Curves. Graph some 

isotherms (curves of constant temperature) and 
indicate directions of heat flow by arrows when the 
temperature T(x. y) equals: 

40. v = [yeX, eX, 2;:J 
41. v = [4x3

• 3y2, -6;:] 

42. Project. Useful Formulas for Gradients and 
Laplacians. Prove the following formulas and give for (a) x 3 - 3.\),2 

9.8 Divergence of a Vector Field 

(b) sin x sinh y (c) eX sin y. 

Vector calculus owes much of its importance in engineering and physics to the gradient, 
divergence, and curL From a scalar field we can obtain a vector field by the gradient 
(Sec. 9.7). Conversely, from a vector field we can obtain a scalar field by the divergence, 
or another vector field by the curl (to be discussed in Sec. 9.9). These concepts were 
suggested by basic physical applications, as we shall see. 

To begin, let Vlx, y, z) be a differentiable vector function, where x, y, z are Cartesian 
coordinates, and let vI> V2, V3 be the components of v. Then the function 

(1) 
. aVl aV2 aV3 

dlV v = -- + -- + --
ax ay az 

is called the divergence of v or the divergence of the vector field defined by v. For 
example. if 

v = [3xz 2n' _)'Z2] = 3x.:i + 2.ni - r.:::2k , ~ , .... d ~ , then div v = 3z + 2x - 2yz. 

Another common notation for the divergence is 

[a a a] div v = V· v = - . - . - • [Vb V2' V3] 
ax ay az 

with [he understanding [hat the "product" (alax)v 1 in the dot product means the partial 
derivative av1lax. etc. Thi~ is a convenient notation, but nothing more. Note that V· v 
means the scalar div v, whereas V! means the vector grad! defined in Sec. 9.7. 
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THEOREM 1 

In Example 2 we shall see that the divergence has an important physical meaning. 
Clearly, the values of a function that characterizes a physical or geometric property must 
be independent of the particular choice of coordinates: that is, those values must be 
invariant with respect to coordinate transformations. Accordingly, the following theorem 
should hold. 

Invariance of the Divergence 

The divergence div v is a scalar jimctioll. that is, its mlues depend only on the 
points ill space (and. of course, on v) bllt not on the choice of the coordinates in 
(I). sO that with respect to other Cartesian coordinates x*, y*, z* and corre~ponding 
components Vi *, V2*' V3* of v, 

(2) 

We shall prove this theorem in Sec. 10.7, using integrals. 
Presently, let us mm [0 the more immediare practical task of gaining a feel for the 

significance of the divergence as follows. Let f(x, y, z) be a twice differentiable scalar 
function. Then its gradient exists, 

[
af af af] af. at. at 

v = grad t = -, -.- , - = -.-1 + - J + - k 
ax iI) az ilx a)' az 

and we can differentiate once more, the first component with respect to x, the second with 
respect to y. the third with respect to z, and then form the divergence, 

Hence we have the basic result thal the divergence of the gradient is the Laplacian 
(Sec. 9.7). 

(3) div (grad f) = ",2t. 

E X AMP L E 1 Gravitational Force. Laplace's Equation 

The gravitational force p in Theorem 3 of the last section is the gradient of the scalar function f(x, y, z) = clr, 
which satisfies Laplaces equation V2f = U. According to (3) this implies that div p = 0 (r > 0). • 

The following example from hydrodynamics shows the physical significance of the 
divergence of a vector field. (More physical details on this significance will be added in 
Sec. 10.8.) 
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E X AMP L E 2 Flow of a Compressible Fluid. Physical Meaning of the Divergence 

We consider the motion of a fluid in a region R having no sources or sinks in R, that is, no points at which 
fluid is produced or disappears. The concept of fluid state is meant to cover also gases and vapors. Fluids in 
the restricted sense, or liquids l water or oil, for instance), have very small compressibility, which can be neglected 
in many problems. Gases and vapors have large compressibility; that is, their density p (= mass per unit volume) 
depends on the coordinates x, y, z in space (and may depend on time t). We assume that our t1uid is compressible. 

We consider the flow through a rectangular box B of small edges ax. /:J.y . .. k parallel to the coordinate axes 
(Fig. 216), (/:J. is a standard notation for small quantities; of course, it ha;, nothing to do with the notation for the 
Laplacian in (11) of Sec. 9.7.) The box B has the volume.1V = !:J.x /:J.y.1z. Let v = [VI, V2, V3] = VIi + V2j + V3k 
be the velocity vector of the motion. We set 

(4) 

and assume that u and v are continuously differentiable vector functions of x, y, z, and t (that is, they have first 
partial derivatives which are continuous). Let us calculate the change in the mass included in B by considering 
the flux across the boundary, that is_ the lotal loss of mass leaving B per unit time. Consider the flow through 
the left of the three faces of B that are visible in Fig_ 216, whose area is .1x j,z.. Since the vectors VI i and V3 k 
are parallel to that face, the components V I and V3 of v contribute nothing to this flow. Hence the mass of fluid 
entering through that face during a short time interval 0.t is given approximately by 

where the subscnpt y indicates that this expre%ion refers to the left face_ The mass of fluid leaving the box 
B through the opposite face during the same time interval is approximately (U2)y+.'l.Y /:J.x /:J.z /:J.t_ where the 
subscript y + ~y indicates that this expression refers to the right face (which is not visible in Fig. 216)_ The 
difference 

is the approximate loss of mass. Two similar expressions are obtained by considering the other two pairs of 
parallel faces of B.. If we add these three expressions, we find that the total loss of mass in B during the time 
interval /:J.l is approximately 

where 

and 

This loss of mass in B is caused by the time rate of change of the density and is thus equal to 

up 
~-Ll.VLl.l. 

at 

!1X 

Box B 

Fig. 216. Physical interpretation of the divergence 
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If we equate both expressions. divide the resulting equation by ~ V ::J.t, and let .. h. ~Y • .1::. and .it approach zero. 
then we obtain 

or 

(5) 

fJp 
di, u = div (pv) = - ill 

ap a, + div (pv) = O. 

This important relation is called the condition for the collsermtiolJ of lIIasS or the continuity equation of a 
cOlllpre.u1bie fluid flow. 

If the flow is steady, that b. independent of time. then aplat = 0 and the continuity eljuation is 

(6) div (pv) = o. 

If the density p is constant. so that the t1uid is incompressible, then equation (6) becomes 

(7) divv = O. 

This relation is known as the condition of incompressibility. It expresses the fact that the balance of outtlow 
and inflow for a given volume element is zero at any time. Clearly. the assumption that the tlow has no sources 
or sinks in R is essential to our argument. 

From this discussion you should conclude and remember that. roughly speaking. tile dh'ergellce measures 
outflow millus ;'l!1oW. • 

Comment. The divergence theorem of Gauss, an integral theorem involving the 

divergence, follows in the next chapter (Sec. 10.7). 

P R Olil;£M -S E~~ 

lf7] CALCULATION OF THE DIVERGENCE 

Find the divergence of the following vector functions. 

1. [x 3 + y3, 3xy2, 3<:.\·2] 

2. [e 2x cos 2.\". e2x sin 2y. 5e 2z ] 

3. [x 2 + y2, 2~yz, Z2 + x 2] 

4. (x2 + y2 + ::2)-3/2rx, v, zl 
5. [sin xy. sin xy, Z co~ xyl 

6. [VI(Y, z), V2(Z, x), v 3 (x, y)l 

7. X 2y 2Z2[X, y. zl 

8. Let v = [x, y. V3]. Find a V3 such that (a) div v > 0 
everywhere. (b) div v > 0 if Izl < I and div v < 0 if 

1:::1 > l. 
9. (Incompressible flow) Show that the flow with 

velocity vector v = yi is incompressible. Show that the 
particles that at time t = 0 are in the cube whose faces 
are portions of the planes x = 0, x = I, y = O. Y = I, 
Z = 0, Z = I occupy at t = I the volume 1. 

10. (Compressible flow) Consider the flow with velOCIty 
vector v = xi. Show thm the individual particles have 
the position vectors r( t) = C I et i + c 2j + C3k with 

constant C1, ('2, ('3' Show that the particles that at I = 0 
are in the cube of Prob. 9 at t = I occupy the volume e. 

11. (Rotational flow) The velocity vector vex, y. <:) of an 
incompressible fluid rotating in a cylindrical vessel is of 
the form v = w X r, where w is the (constant) rotation 
vector; see Example 5 in Sec. 9.3. Show that div v = O. 

Is this plausible because of our present Example 27 

12. CAS PROJECT. Visualizing the Divergence. Graph 
the given velocity field v of a fluid flow in a square 
centered at the origin with sides parallel to the coordinate 
axes. Recall that the divergence measures outflow minus 
inflow. By looking at the flow near the sides of the square, 
can you see whether div v must be positive or negative 
or may perhaps be zero? Then calculate div v. First do 
the given flows and then do some of your own. Enjoy it. 

(a) v = i 
(b) v = xi 

(c) v = xi - yj 

(d) v = xi + yj 

(e) v = - ri - yj 

(0 v = (x2 + y2)-I(_yi + xj) 
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13. PROJECT. Useful Formulas for the Divergence. Prove 

(a) div (kv) = k div v (k constant) 
~4.=-20 I CALCULATION OF THE LAPLACIAN BY (3) 
Find "\2f by (3). Check by ditlerentiation. Indicate when 
(3) is simpler. (Show the details of your work.) (b) div(fv) = fdi\'v + vo"\f 

(c) div (f\g) = f\2g + '\fo'\g 

(d) div (f'\ g) - div (gV f) = fV 2g - g,\2f. 

Verify (b) for f = eX1JZ and v = ad + byj + c:::k. 
Obtain the answer to Prob. 4 from (b). Verify (c) for 
f = x 2 

- y2 and g = eX + Y . Give examples of your own 
for which (a)-(d) are advantageous. 

14. f = xyl:::2 

15. f = (y + x)/(y - x) 

16. f =::: - 4Vx2 + )'2 

18. f = arctan (ylx) 

20. f = cos2 
X - sin2

)' 

9.9 Curl of a Vector Field 

17. f = ~2_y2 cos 2xy 

19. f = eXYz 

Gradient (Sec. 9.7), divergence (Sec. 9.8), and curl are basic in connection with fields, 
and we now define and discuss the curl. 

Let vex, y, z) = [Vb V2' V3] = VIi + V2j + vsk be a differentiable vector function of 
the Cartesian coordinates x, y, z. Then the curl of the vector fUllction v or of the vector 
field gil'en by v is defined by the "symbolic" determinant 

j k 

a a a 
curl v = "\ x v = 

ax ay az 
(1) 

VI V2 V3 

(
avs _ aV2)i + (aVI _ avs)j + (aV2 _ aVl)k. 
ay a::; az ax ax ay 

This is the formula when x. J, z are right-handed. If they are left-handed. the determinant 
has a minus sign in front (just as in (2**) in Sec. 9.3). 

Instead of curl v one also uses the notation rot v (suggested by "rotation"; see Example 2). 

E X AMP L E 1 Curl of a Vector Function 

Let v = [yz. 3;:x. zl = yzi + 3zxj + zk with right-handed x, y, z. Then (1) gives 

k 

curl, = alax alay iJIiJ~ = -3xi + yj + (3;: - :)k = -3d + yj + 2zk. • 
3::x 

The curl plays an important role in many applications. Let us illustrate this with a typical 
basic example. More about the nature and significance of the curl will be said in 
Sec. 10.9. 

E X AMP L E 2 Rotation of a Rigid Body. Relation to the Curl 

We have seen in Example 5. Sec. 9.3, thar a rotation of a rigid body B about a fixed axis in space can be 
described by a vector w of magnitude w in the direction of the axis of rotation, where w (> 0) is the angular 
speed of the rotation, and w is directed so that the rotation appears clockwise if we look in the direction of w. 
According to (9), Sec. 9.3, the velocity field of the rotation can be represented in the form 

v = w X r 
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THEOREM 1 

THEOREM 2 

where r is the position vector of a moving point with respect to a Cartesian coordinate system harillg the origill 

on the axis of rotation. Let us choose right-handed Cartesian coordinates such that the axis of rotation is the 
::-axis. Then (see Example 2 in Sec. 9.4) 

w = [0. 0, wI = ivk, 

Hence 

curl v = 
iJ 

ax 

-wy 

This prove~ the following theorem. 

Rotating Body and Curl 

v = w X r = [-iVY, WX, 0] = -Wl"i + ivXj. 

j k 

a 
ay 

WX 

a 
= [0, O. 2wJ = 2wk = 2w. 

iJ:: 

o 

The curl of the velocity field of a mtating rigid hody has the direction of the axis 
of the rotation, and its magnitude equals twice the angular ~peed of the rotation 

• 

The following two relations among grad, div, and curl are basic and shed further light on 
the nature of the curl. 

Grad. Div, Curl 

Gradient fields are irrotational. That is, if a continllol/sly d{fferentiable vector 
function is the gradient of a scalar function f, then its cllrl is the zero vector, 

(2) curl (grad f) = O. 

Furfhel71lOre, the divergence of the cllrl of a t'rvice continllously dijferentiable vector 
function v is :ero, 

(3) div (curl v) = O. 

PROOF Both (2) and (3) follow directly from the definitions by straightforward calculation. In the 
proof of (3) the six terms cancel in pairs. • 

E X AMP L E 3 Rotational and Irrotational Fields 

The field in Example 2 is not motatlOnal. A similar velocity field is obtained by stirring tea or coffee in a cur 
The gravitational field in Theorem 3 of Sec. 9.7 has curl p = O. It is an irrotational gradient field. • 

The term "irrotationar' for curl v = 0 is suggested by the use of the curl for characterizing 
the rotation in a field. If a gradient field occurs elsewhere, not as a velocity field, it is 
usually called conservative (see Sec. 9.7). Relation (3) is plausible because of the 
interpretation of the curl as a rotation and of the divergence as a flux (see Example 2 in 
Sec. 9.8). 

Finally, since the curl is defined in terms of coordinates. we should do what we did for 
the gradient in Sec. 9.7, namely, to find out whether the curl is a vector. This is true, as 
follows. 
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THEOREM 3 Invariance of the Curl 

curl v is a vector. That is, it has a length and direction that are independent of the 
particular choice of a Cartesian coordinate system in space. (Proof in App. 4.) 

11-61 CALCULATION OF CURL 

Find curl v for v given with respect to right-handed 
Cartesian coordinates. Show the details of your work. 

1. [yo 2x2, 0] 
2. [yn, n z , xn] (n > 0, integer) 

3. [ex cos y, eX siny, 0] 
4. (x2 + y2 + Z2)-3/2[X, y, z] 

5. [In (x2 + y2), 2 arctan (y/x), 0] 
6. [sin y. cos Z, -tan x] 

7. What direction does curl v have if v is a vector parallel 
to the xz-plane? 

S. Prove Theorem 2. Give two examples for (2) and (3) 
each. 

19-141 FLUID FLOW 
Let v be the velocity vector of a steady fluid flow. Is the 
flow irrotational? Incompressible? Find the streamlines 
(the paths of the particles). Hint. See the answers to Probs. 
9 and 11 for a determination of a path. 

9. v = [0, Z2, 0] 
10. v = [_y2, 4, 0] 

11. v = [y, -x, 0] 

12. v = [csc x, sec x, 0] 

.. 
• 

1. Why did we discuss vectors in R2 and ~ in a separate 
chapter, in addition to Chap. 7 on R n ? 

2. What are applications that motivate inner products, 
vector products, scalar triple products? 

3. What is wrong with the expression a x b x c? With 
a-b-c? With (a-b) x c? 

4. What are scalar fields? Vector fields? Potentials? Give 
examples. 

5. What is the gradient? How is it related to directional 
derivatives? 

13. v = [x, 

L4. v = [y3, 

L5. WRITING PROJECT. Summary on Grad, Div, 
Curl. List the definition and most important facts and 
formulas for grad, div, curl, and '172

• Use your list to 
write a corresponding essay of 3-4 pages. Include 
typical examples of your own. 

L6. PROJECT. Useful Formulas for the Curl. Assuming 
sufficient differentiability, show that 

(a) curl (u + v) = curl u + curl v 

(b) div (curl v) = 0 

(c) curl (fv) = (grad f) x v + f curl v 

(d) curl (grad f) = 0 

(e) div (u x v) = v-curl u - u-curl v. 

117-~ EXPRESSIONS INVOLVING THE CURL 

With respect to right-handed coordinates, let 
u = [y2, .;:2, x 2], v = [YZ, ;:x, .\)'], f = xyz, and 
g = x + Y + z. Find the following expressions. If one of 
the formulas in Project 16 applies. use it to check your 
result. (Show the details of your work.) 

17. curl v, curl (fv), curl (gv) 

LS. curl (fu), curl (gu) 

L9. u x curl v, v x curl v, u-curl v, v-curl u 

20. curl (u x v), curl (v x u) 

TIONS AND PROBLEMS 

6. Explain "right-handed coordinates," "orthonormal basis," 
"tangential acceleration." 

7. What is the definition of the divergence? Its physical 
meaning? Its relation to the Laplacian? 

8. Granted sufficient differentiability of a scalar function 
f and a vector function v, which of the following make 
sense? gradf, f gradf, v gradf, v-gradf, divf, 
div v, div (fV), curl (fv), curl f, .f curl v, v curl f. 

9. If ret) represents a motion, what is r' (t), Ir' (01, r"(t), 
Ir"(t)I? 
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10. How do you express the resultant of forces, the moment 
of a force, and the work done by a force in terms of 
vectors? 

L 1-201 VECTOR ADDITION, 
SCALAR MULTIPLICATION, PRODUCTS 

In right-handed coordinates let a = [3, 2, 7], 
b = [6, 5, -4], c = [1, 8, 0], d = [9, -2, 0]. 
Find 

11. 4a + b - c - 2d 

12. a·b, a·c, a x c 

13. b x b, a x b, b x a 

14. 3a· 4a, I 2a • a, I21a12
, Ibl2 

15. 2c x 5d, 10c x d 

16. (a x b)·c, a·(b x c), (a b c) 

17. (a x b) x c, a x (b x c) 

18. llllal)a, (lIlcl)c 

19. (a b d), (d a b) 

20. Iial - Ibll, la + bl, lal + Ibl 

417 

29. (Component) When is the component of a in the 
direction of b negative? Zero? 

30. (Moment) Find the moment vector m of p = [4, 2, 01 
about P: (5, 1, 0) if p acts on a line through (1, 4, 0). 
Make a sketch. 

31. (Moment) In what cases is the moment of a force p "" 0 
zero? 

32. (Velocity, acceleration) Find the velocity, speed, and 
acceleration of the motion given by 

ret) = [5 cos t, sin t, 2t] 

at the point P: [5/'\1'2, 1/'\1'2, 7T121 What kind of 
curve is the path? 

33. (Tetrahedron) Find the volume of the tetrahedron with 
vertices (0, 0, 0), (I, 2, 0), (3, -3,0), (I, 1,5). 

34. (Plane) Find an equation of the plane through (1, 0, 2), 
(2, 3, 5), (3, 5, 7). 

35. (Linear dependence) Are [2, -1, 3], [4, 2, -5], 
[-1, 6, 0] linearly dependent? (Give reason.) 

21. (Angle) Find the angle between a and b. Between c and 136-451 
d. Sketch c and d. 

GRAD, DIV, CURL, V2
, 

DIRECTIONAL DERIVATIVE 
22. (Angle) Find the angle between the planes 

4x + 3y - z = 2 and x + y + Z = 1. 

23. In what case is u x v = v x u? u·v = v·u·! 

24. (Resultant) Find u such that a, b, c, d above, and u are 
in equilibrium. 

25. (Resultant) Find the most general v such that the resultant 
of a, b, c, d above, and v is parallel to the .1y-plane. 

26. (Work) Find the work done by q = [5, 1, 0] in the 
displacement from (4, 4, 0) to (6, -1, 0). 

27. (Component) Find thecomponentofu= [-1, 5, 0] 
in the direction of v = [3, 4, 0). 

28. (Component) In what cases is the component of a in 
the direction of b equal to the component of b in the 
direction of a? 

Let f = zy + yx, v = [y, z, 4~ - x], w = b·2
, Z2, x 2

]. 

Find 

36. grad f and f grad f at (3, 4, 0) 

37. (grad f) X grad f, (grad f). grad f 
38. div v, div w 

39. curl v, curl w 

40. curl (grad f), div (grad f), div v 

41. V2(f), V2(f2) 

42. Dwf at (1. 2, 0) 

43. Dvf at (3, 7, 5) 

44. div (v x w) 

45. curl (v x w) + curl (w x v) 

Vector Differential Calculus. Grad, Div, Curl 

All vectors of the form a = [aI' (/2, (13] = (IIi + a2j + (/3k constitute the real 
vector space R3 with componentwise vector addition 

and componentwise scalar multiplication (c a scalar, a real number) 

(2) (Sec. 9,1). 
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For instance, the resultant of forces a and b is the sum a + b. 
The inner product or dot product of two vectors is defmed by 

(3) (Sec. 9.2) 

where'}' is the angle between a and b. This gives for the norm or length lal of a 

(4) 

as well as a formula for '}'. If a- b = O. we call a and b orthogonal. The dot product 
is suggested by the work W = p - d done by a force p in a displacement d. 

The vector product or cross product v = a x b is a vector of length 

(5) la x hi = lallbl sin '}' (Sec. 9.3) 

and perpendicular to both a and b such that a, b, v form a right-handed triple. In 
terms of components with respect to right-handed coordinates, 

j k 

(6) (Sec. 9.3). 

The vector product is suggested, for instance, by moments of forces or by rotations. 
CAUTION! This multiplication is anticommutative, a x b = -b x a, and is not 
associative. 

An (oblique) box with edges a, b, c has volume equal to the absolute value of 
the scalar triple product 

(7) (a b c) = a-(b x c) = (a x b)-c. 

Sections 9.4-9.9 extend differential calculus to vector functions 

and to vector functions of more than one variable (see below). The derivative of 
v(t) is 

(8) 
,dv v(t + !1t) - v(t) [' "] , . , . 'k 

v = - = lim = Vb V2, V3 = VII + V2J + V3 • 
dt .It_O !1t 

Differentiation rules are as in calculus. They imply (Sec. 9.4) 

(u-v)' = u' -v + u-v', (u x v)' = u' x v + u X v'. 

Curves C in space represented by the position vector r(t) have r' (t) as a tangent 
vector (the velocity in mechanics when t is time), r' (s) (s arc length, Sec. 9.5) as the 
unit tangent vector, and Ir"(s)/ = K as the curvature (the acceleration in mechanics). 
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Vector functions vex. y. z) = [UI(X. y. z), U2(x, y. z), U3(X, y, z)] represent vector 
fields in space. Partial derivatives with respect to the Cartesian coordinates x. y. Z 

are obtained componentwise. for instance, 

~ _ [aUI aU2 aU3J aU I . aU2 • aU3 - =-l+-J+-k 
~ fu'~'ili fu ~ ~ 

The gradient of a scalar function f is 

(9) [
af af af] 

grad f = V f = - , - , -.-
ax aJ Clz 

The directional derivative of f in the direction of a vector a is 

(10) 
df I 

D f = - = -a-vf 
a ds lal 

The divergence of a vector function v is 

(11) 
. aU I aU2 aU3 

dlv v = v-v = -- + -- +--
ax ay az' 

The curl of v is 

j k 

a a iJ 
(12) curl v = \" x v = 

ax ay az 

UI U2 u3 

or minus the determinant if the coordinates are left-handed. 
Some basic formulas for grad, div. curl are (Secs. 9.7-9.9) 

(13) 

(14) 

(15) 

(16) 

(17) 

Wfg) = fvg + gVf 

v(f/g) = O/g2)(gVf - fVg) 

div(fv) = fdivv + v-vf 

div (fVg) = fv2g + vf-vg 

v2f = div (\" f) 

\"2(fg) = gv2f + 2vf-vg + fv2g 

curl (fV) = V f x v + f curl v 

div (u x v) = v-curl u - u-curl v 

curl (V' f) = 0 

div (curl v) = o. 

For grad, diy, curl, and v 2 in curvilinear coordinates see App. A3.4. 

(Sec. 9.6). 

(Sec. 9.7). 

(Sec. 9.7). 

(Sec. 9.8). 

(Sec. 9.9) 
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CHAPTER 1 0 

Vector Integral Calculus. 
Integral Theorems 

This chapter is the companion to Chap. 9. Whereas the previous chapter dealt with 
differentiation in vector calculus, this chapter concerns integration. This vector integral 
calculus extends integrals as known from calculus to integrals over curves ("line 
integrals"). surfaces ("surface integrals"). and solids. We shall see that these integrals have 
basic engineering applications in solid mechanics, in fluid flow. and in heat problems. 

These different kinds of integrals can be transformed into one another. This is done to 
simplify evaluations or to gain useful general formulas, for instance, in potential theory 
(see Sec. 10.8). Such transformations are done by the powerful formulas of Green (line 
integrals into double integrals or conversely, Sec. 10.4), Gauss (surface integrals into triple 
integrals or conversely. Sec. 10.7), and Stokes (line integrals into surface integrals or 
conversely, Sec. 10.9). 

The root of these transformations was largely physical intuition. The corresponding 
formulas involve the divergence and the curl and will thus lead to a deeper physical 
understanding of these two operations. 

Prerequisite: Elementary integral calculus, Sees. 9.7-9.9 
Sections that may be omitted in a shorter course: 10.3. 10.5. 10.8 
References and Answers to Problems: App. I Part B. App. 2 

10.1 Line Integrals 

420 

The concept of a line integral is a simple and natural generalization of a definite integral 

(1) 
b J f(x) dx 

a 

known from calculus. [n (I) we integrate the integrand f(x) from x = a along the x-axis 
to x = b. [n a line integral we shall integrate a given function, also called the integrand, 
along a curve C in space (or in the plane). Hence curve integral would be a better name, 
but line integral is standard. 

We represent the curve C by a parametric representation (as in Sec. 9.5) 

(2) ret) = [x(t), yet), z(t)] = x(t)i + y(t)j + z(t)k (a ~ t ~ b). 
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) B 

(C 
(a) (b) 

Fig. 217. Oriented curve 

The curve C is called the path of integration, A: rea) its initial point, and B: reb) its 
terminal point. C is now oriented. The direction from A to B, in which t increases, is called 
the positive direction On C and can be marked by an arrow (as in Fig. 217a). The points 
A and B may coincide (as in Fig. 217b). Then C is called a closed path. 

C is called a smooth curve if it has at each point a unique tangent whose direction varies 
continuously as we move along C. Technically: r(t) in (2) is differentiable and the derivative 
r' (t) = drldt is continuous and different from the zero vector at every point of C. 

General Assumption 

In this book, every path of integration of a line integral is assumed to be piecewise smooth; 
that is, it consists of finitely many smooth curves. 

For example, the boundary curve of a square is piecewise smooth, consisting of four 
smooth curves (segments, the four sides). 

Definition and Evaluation of Line Integrals 
A line integral of a vector function F(r) over a curve C: r(t) [as in (2)] is defined by 

(3) 
b J F(r)edr = J F(r(t)er'(t)dt 

C a 

, 
r 

dr 

dt 

(see Sec. 9.2 for the dot product). In terms of components, with dr = [dx, dy, dz} as 
in Sec. 9.5 and ' = dldt, formula (3) becomes 

J F(r)edr = J (FI dx + F2 dy + F3 dz) 
C C 

(3') 
b 

= J (FIX' + F 2 y' + F3 z') dt. 
a 

If the path of integration C in (3) is a closed curve, then instead of 

we also write f· c 

Note that the integrand in (3) is a scalar, not a vector, because we take the dot product. 
Indeed, Fer'/lr'l is the tangential component of F. (For "component" see (11) in Sec. 9.2.) 
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We see that the integral in (3) on the right is a definite integral of a function of t taken 
over the interval a ~ t ~ b on the t-axis in the positive direction (the direction of increasing 
t). This definite integral exists for continuous F and piecewise smooth C, because this 
makes For' piecewise continuous. 

Line integrals (3) arise naturally in mechanics. where they give the work done by a 
force F in a displacement along C (details and examples below). We may thus call the 
line integral (3) the work integral. Other forms of the line integral will be discussed later 
in this section. 

E X AMP L E 1 Evaluation of a Line Integral in the Plane 

Find the value of the line integral (3) when F(r) = [-y, -xy] = -yi - xyj and C is the circular arc in 
Fig. 218 from A to B. 

Solution. We may represent C by ret) = [cos t. sin t] = cos t i + sin t j, where U :'§ t :'§ 71"/2. Then 
tit) = em. t. yet) = sin t. and YL 

R I ) F(r(t» = -y(tH - x(t)y(t)j = [- ~in t, -cos t sin t] = -sin t i-cos t sin t j. 

By differentiation. r' (t) = [-sin t, cos t] = -sin t i + cos t j, so that by (3) [use (10) in App. 3.1; set 

A 

_cos t = II in the second term] 

_ rr/2 rr/2 f F(r) - dr = f [-sin t. -cos t sin t[ - [-sin t, cos t] dt = f (sin2 t - cos2 t sin t) dt 
coo 

1 x 

Fig. 218. Example 1 

EXAMPLE 2 

z 

Fig. 219. Example 2 

Fig. 220. 

= f~"2 ~ (l - cos 2t) dt - f
I
OI/2(-dl/) = f - 0 - i = 0.4521. • 

Line Integral in Space 

The evaluation of line integrals in space is practically the same as it is in the plane. To see this. find the value 
of (3) when F(r) = [~, x. y] = :::i + xj + yk and C is the helix (Fig. 219) 

(4) r(t) = [cos t. sin t. 3tJ = cos t i + sin t j + 3tk 

Solution. From (4) we have lett) = cos t. y(t) = sin t, :::(t) = 3t. Thus 

F(r(t))-r'(t) = (3ti + costj + sintk)-(-sinti + costj + 3k). 

The dot product is 3t( -sin t) + cos2 t + 3 sin t. Hence (3) gives 

2,,-f F(r)-dr = f (-3tsint + cos2 t + 3sint)dt = 671" + 71" + 0 = 771"= 21.99. • 
c ° 

Simple general properties of the line integral (3) follow directly from corresponding 
properties of the definite integral in calculus, namely, 

(Sa) f kFodr = k f Fodr 
c c 

(k constant) 

(5b) f (F + G)°dr = f Fodr + f Godr 
C C c 

Formula (Sc) (5c) f Fodr = f Fodr + f Fodr (Fig. 220) 
C c, C2 
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THEOREM 1 

where in (Sc) the path C is subdivided into two arcs C1 and C2 that have the same 
orientation as C (Fig. 220). In (Sb) the orientation of C is the same in all three integrals. 
If the sense of integration along C is reversed, the value of the integral is multiplied by 
-1. However, we note the following independence if the sense is preserved. 

Direction-Preserving Parametric Transformations 

Any representations of C that give the same positive direction on C also yield the 
same value of the line integral (3). 

PROOF A proof follows by the chain rule, where ret) is the given representation, t = cp(t*) with 
a positive derivative dtldt* is the transformation, with a* ~ t* ~ b* corresponding to 
a ~ t ~ bin (3), and we write ret) = r(cp(t*» = r*(t*). Then dt = (dtldt*) dt* and 

f f
b* dr dt 

F(r*)odr* = F(r(cp(t*») ° - ~~ dt* 
c u" dt dt* 

fb dr f = F(r(t»° - dt = F(r) ° dr. 
u dt c • 

Motivation of the Line Integral (3): 
Work Done by a Force 
The work W done by a constant force F in the displacement along a straight segment d 
is W = Fod; see Example 2 in Sec. 9.2. This suggests that we define the work W done 
by a variable force F in the displacement along a curve C: ret) a~ the limit of sums of 
works done in displacements along small chords of C. We show that this definition amounts 
to defining W by the line integral (3). 

For this we choose points to (= a) < tl < ... < tn (= b). Then the work LlWm done 
by F(r(tm » in the straight displacement from r(tm} to r(tm.+ 1) is 

The sum ofthese n works is Wn = LlWo + ... + LlWn_1.lfwe choose points and consider 
Wn for every II arbitrarily but so that the greatest Lltl11 approaches zero as n ---? 00, then 
the limit of Wn as n ---700 is the line integral (3). This integral exists because of our general 
assumption that F is continuous and C is piecewise smooth: this makes r' (t) continuous, 
except at finitely many points where C may have comers or cusps. • 

E X AMP L E 3 Work Done by a Variable Force 

IfF in Example I is a force. the work done by F in the displacement along the quarter-circle is 0.4521, measured 
in snitable nnits, say, newton-meters (nt'm, also called joules, abbreviation J; see also front cover). Similarly in 
Example 2. • 
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E X AMP L E 4 Work Done Equals the Gain in Kinetic Energy 

Let F be a force, so that (3) is work. Let t be time, so that dr/dt = v, velocity. Then we can write (3) as 

b 

W= f F·dr = J F(r(t))·v(t)dt. (6) 
C a 

Now by Newton's second law (force = mass X acceleration), 

F = mr"(t) = mv' (t), 

where III is the mass of the body displaced. Substitution into (5) gives [see (11), Sec. 9.4] 

Jb Jb (v.v)' m It~b W = IIlV' • v dt = III -- dt = - Ivl2 
. 

a a 2 2 t~a 

On the right, mlvl2/2 is the kinetic energy. Hence the work done equals the gain in kinetic energy. This is a 
basic law in mechanics. • 

Other Forms of Line Integrals 
The line integrals 

(7) 

are special cases of (3) when F = F1i or F2 j or F3k, respectively. 
Furthermore, without taking a dot product as in (3) we can obtain a line integral whose 

value is a vector rather than a scalar, namely, 

b b 

(8) J F(r) dt = J F(r(t» dt = f [F1(r(t», F2(r(t», F3 (r(t»] dt. 
C a a 

Obviously, a special case of (7) is obtained by taking Fl = f, F2 = F3 = O. Then 

(8*) 
b f fer) dt = f f(r(t» dt 

C a 

with C as in (2). The evaluation is similar to that before. 

E X AMP L E 5 A Line Integral of the Form (8) 

Integrate F(r) = [xy. yz, zJ along the helix in Example 2. 

Solution. F(r(t)) = [cos t sin t, 3t sin t, 3t] integrated with respect to t from 0 to 271" gives 

2-,,- [ 

fo F(rVJJ dt = - ~ cos
2 

t, 3 ] 127T 3 sin t - 3t cos t, "2 t 2 
0 = [0, • 

Path Dependence 
Path dependence of line integrals is practically and theoretically so important that we 
formulate it as a theorem. And a whole section (Sec. 10.2) will be devoted to conditions 
under which path dependence does not occur. 
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THEOREM 2 r Path Dependence 

The line integral (3) generally depends not ollly all F alld all the endpoints A and 
B of the path, but also on the path Use?! along which the integral is taken. 

PROOF Almost any example will show this. Take, for instance. the straight segment 

C1: rl(t) = [t, t, 0] and the parabola C2: r2(t) = [t, t2, 0] with 0 ~ t ~ 1 (Fig. 22]) and 

integrate F = [0, xy, 0]. Then F(r1(t»· rl (t) = t 2, F(r2(t»· r2(t) = 2t4
, so that integration 

gives L/3 and 2/5, respectively. • 

l~B 
1 

Fig. 221. Proof of Theorem 2 

... 
11-121 LINE INTEGRAL. WORK DONE 

BY A FORCE 

Calculate f F(r)· dr for the following data. If F is a force. 
c 

this gives the work done in the displacement along C. 
(Show the details.) 

1. F = [y3, x3], C the parabola y = 5x2 from A: (0, 0) 
to B: (2,20) 

2. F as in Prob. 1, C the shortest path from A to B. Is the 
integral smaller? Give reason. 

3. F as in Prob. 1, C from A straighL to (2. 0). then 
vertically up to B 

4. F = [x2, y2, 0], C the semicircle from (2, 0) to 
(-2.0), y ~ 0 

5. F = [xy2, x~], C: r = [cosh t, sinh t, 0], 
o ~ t ~ 2. Sketch C. 

6. F = [ex, eY ] clockwise along the circle with center 
(0, 0) from (1, 0) to (0, -1) 

7. F = [z, x, y], C: r = [cos t, sin t, t] from (1, 0, 0) 
to (1, 0, 417) 

8. F = [coshx, sinhy. eZ
]. C: r = [t. P, t3 ] from 

(0, 0, 0) to (!, i, ~) 
9. F as in Prob. 8. C the straight segment from (0. O. 0) 

to (!, i, ~) 
10. F = [x, -z, 2y] from (0, 0, 0) straight to (1, 1,0), 

then to (1, 1, 1), back to (0, 0, 0) 

11. F = [ex, eY , eZ
], r = [t, P, t2

] from (0, 0, 0) to 
(2, 4, 4). Sketch C. 

12. F = [y2, x2, cos2 
:::], C as in Prob. 7. Sketch C. 

13. WRITING PROJECT. From Definite Integrals to 
Line Integrals. Write a short report (1-2 pages) with 
examples on line integrals as generalizations of definite 
integrals. The latter give the area under a curve. Explain 
the corresponding geometric interpretation of a line 
integral. 

14. PROJECT. Independence of Representation. 

Dependence on Path. Consider the integral f F(r)· dr, 
where F = [xy, _y2]. C 

(a) One path, several representations. Find the value 
of the integral when r = [cos t, sin t], 0 ~ t ~ 1712. 
Show that the value remains the same if you set t = - p 
or t = p2 or apply two other parametric transformations 
of your own choice. 

(b) Several paths. Evaluate the integral when 
C: y = x n , thus r = [t, t"l, 0 ~ t ~ 1, where 
n = 1,2,3, .... Note that these infinitely many paths 
have the same endpoints. 

(c) Limit. What is the limit in (b) as n --+ oo? Can you 
confirm your result by direct integration without 
referring to (b)? 

(d) Show path dependence with a simple example of 
your choice involving two paths. 
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115-181 INTEGRALS OF THE FORMS (8) AND (8*) 

Evaluate (8) or (8*) with F or f and C as follows. 

19. (ML-Inequality, Estimation of Line Integrals) Let F 
be a vector function defined on a curve C. Let IFI be 
bounded. say. IFI ~ M on C, where M is some positive 
number. Show that 15. f = x2 + y2, c: r = [t, 4t, 0], 0 ~ t ~ 1 

16. f = 1 - sinh2 x, C the catenary r = [t, cosh t], 
0~t32 (9) (L = Length of 0. 

17. F = [y2, Z2, X2], C the helix 
[3 cos t, 3 sin t, 2t], 0 3 t ~ 817 20. Using (9), find a bound for the absolute value of the 

work W done by the force F = [x2
, y] in the 

displacement along the segment from (0. Q) to (3, 4). 
18. F = [(xy)1/3, (y/x)1/3, 0], C the hypocycloid 

r = [cos3 t. sin3 t, 0]. 0 ~ t ~ 17/4 

10.2 Path Independence of Line Integrals 

Fig. 222. Path 
independence 

THEOREM 1 

In this section we consider line integrals 

(1) (dr = [£lx, d.\', dz]) 

as before, and we shall now find conditions under which (I) is path independent in a 
domain D in space. By definition this means that for every pair of endpoints A, B in D 
the integral (1) has the same value for all paths in D that begin at A and end at B. (See 
Fig. 222. See Sec. 9.6 for "domain.") 

Path independence is important. For instance, in mechanics it may mean that we have 
to do the same amount of work regardless of the path to the mountaintop, be it short and 
steep or long and gentle. Or it may mean that in releasing an elastic spring we get back 
the work done in expanding it. Not all forces are of this type-think of swimming in a 
big round pool in which the water is rotating as in a whirlpool. 

We shall follow up three ideas that will give path independence of (1) in a domain D 
if and only if: 

(Theorem]) F = grad j (see Sec. 9.7 for the gradient). 

(Theorem 2) Integration around closed curves C in D always gives O. 

(Theorem 3) curl F = 0 (provided D is simply connected, as defined below). 

Do you see that these theorems can help in understanding the examples and 
counterexample just mentioned? 

Let us begin our discussion with the following very practical criterion for path 
independence. 

Path Independence 

A line integral (1) with continuous Fl , F2 , F3 ill a domain D in space is path 
independent in D if and only ifF = [Flo F2 , F3 ] is the gradient of some function 
jill D, 

(2) F = gradj, thus. 
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PROOF (a) We assume that (2) holds for some function .f in D and show that this implies path 
independence. Let C be any path in D from any point A to any point B in D, given by 
ret) = [x(t), yet), ::(t)], where a ~ t ~ b. Then from (2). the chain rule in Sec. 9.6, and 
(3') in the last section we obtain 

I (F1dx + F2 dy + F3 d::) = I (~f dx + ~f dy + ~f d::) 
c c cJx iJy iJz 

Jb( af dx af dy af dZ) = --+--+-- dt 
a ax dt ay dt aZ. dt 

bdf It=b 
= I -f' dt = f[x(t), yet), z(t)J 

a c.t t=a 

= f(x(b), y(b), z(b)) - .f(x(a), yea), z(a) 

= feB) - f(A). 

(b) The more complicated proof of the converse, that path independence implies (2) 
for some f, is given in App. 4. • 

The last formula in part (a) of the proof, 

(3) 
B J (F] dx + F2 dy + F3 dz) = .f(B) - f(A) 

A 

is the analog of the usual formula for definite integrals in calculus. 

b Ib J g(X) dx = C(x) = G(b) - C(a) 
a a 

[F = grad.f] 

[C'(x) = g(x)]. 

Formula (3) should be applied whenever a line integral is independent of path. 

Potential theory relates to our present discussion if we remember from Sec. 9.7 that f is 
called a potential of F = grad f. Thus the integral (1) is independent of path in D if and 
only if F is the gradient of a potential in D. 

E X AMP L E 1 Path Independence 

Show that the integrdl f F 0 dr = f (2x dx + 2)' dy + 4;: dz) is path independent in any domain in space 
c c 

and find its value in the integration from A: (0, O. 0) to B: (2. 2. 2). 

Solution. F = [2y. 2)" 4;:] = grad i. where i =,\'2 + )'2 + 2;:2 because ai/ax = 2y = FI , ai/ay = 2)' = F2, 

ai/a::. = 4.:: = F3 . Hence the integral is independent of path according to Theorem I, and (3) gives 
I(B) - I(A) = i(l. 1. 1) - ItO. O. 0) = 4 + 4 + 8 = 16. 

If you want to check this. use the most convenient path C: ret) = [I. I, I]. 0 ~ I ~ 1. on which 
F(r(l) = [2/, 21, 411, so that F(r(/j) 0 r'(I) = 21 + 21 + 41 = 8/. and integration ti-om 0 to 2 gives 8.22/2 = 16. 

If you did not see the potential by inspection. use the method in the next example. • 

E X AMP L E 2 Path Independence. Determination of a Potential 

Evaluate the integrall = f (3x
2 

dy + 2)'.:: d)' + y2 d:;;) from A: (0, I, 2) to B: (I, - I, 7) by showing that F 
c 

has a potential and applying (3). 
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THEOREM 2 

PROOF 

B 

Fig. 223. Proof of 
Theorem 2 

CHAP. 10 Vector Integral Calculus. Integral Theorems 

Solution. If F has a potential f. we should have 

I y = F2 = 2yz, 

We show that we can satisfy these conditions. By integration of fx and differentiation, 

I = x 3 + g(y, z), fy = gy = 2y;:, 

hi = 0 

This gives f(x, y, z) = x 3 + y2;: and by (3), 

g = y2Z + h(;:,), I = x 3 + y2Z + h(::.) 

h = 0, say. 

I = 1(1, -1, 7) - f(O, 1, 2) = 1 + 7 - (0 + 2) = 6. 

Path Independence and Integration 
Around Closed Curves 

• 

The simple idea is that two paths with common endpoints (Fig. 223) make up a single 
closed curve. This gives almost immediately 

Path Independence 

The integral (1) is path independent in a domain D if and only if its value around 
ever}' closed path in D is zero. 

If we have path independence, then integration from A to B along C1 and along C2 in 
Fig. 223 gives the same value. Now C1 and C2 together make up a closed curve C, and 
if we integrate from A along C1 to B as before, but then in the opposite sense along C2 

back to A (so that this second integral is multiplied by -]), the sum of the two integrals 
is zero, but this is the integral around the closed curve C. 

Conversely, assume that the integral around any closed path C in D is zero. Given any 
points A and B and any two curves C1 and C2 from A to B in D, we see that C1 with the 
orientation reversed and C2 together form a closed path C. By assumption, the integral 
over C is zero. Hence the integrals over C] and C2 , both taken from A to B, must be equal. 
This proves the theorem. • 

Work. Conservative and Nonconservative (Dissipative) Physical Systems 
Recall from the last section that in mechanics, the integral (1) gives the work done by a 
force F in the displacement of a body along the curve C. Then Theorem 2 states that work 
is path independent in D if and only if its value is zero for displacement around every 
closed path in D. Furthermore, Theorem] tells us that this happens if and only if F is the 
gradient of a potential in D. In this case, F and the vector field defined by F are called 
conservative in D because in this case mechanical energy is conserved; that i!>, no work 
is done in the displacement from a point A and back to A. Similarly for the displacement 
of an electrical charge (an electron, for instance) in a conservative electrostatic field. 

Physically, the kinetic energy of a body can be interpreted as the ability of the body to 
do work by virtue of its motion, and if the body moves in a conservative field of force, 
after the completion of a round trip the body will return to its initial position with the 
same kinetic energy it had originally. For instance, the gravitational force is conservative; 
if we throw a ball vertically up, it will (if we assume air resistance to be negligible) return 
to our hand with the same kinetic energy it had when it left our band. 
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THEOREM 3* 

Friction, air resistance, and water resistance always act against the direction of motion, 
tending to diminish the total mechanical energy of a system (usually converting it into 
heat or mechanical energy of the surrounding medium. or both), and if in the motion of 
a body these forces are so large that they can no longer be neglected, then the resultant 
F of the forces acting on the body is no longer conservative. Quite generally, a physical 
system is called conservative if all the forces acting in it are conservati ve; otherwise it 
is called non conservative or dissipative. 

Path Independence and Exactness 
of Differential Forms 
Theorem I relates path independence of the line integral (I) to the gradient and Theorem 
2 to integration around closed curves. A third idea (leading to Theorems 3* and 3, below) 
relates path independence to the exactness of the differential form (or Pfaff/an f017l11) 

(4) 

under the integral sign in (1). This form (4) is called exact in a domain D in space if it 
is the differential 

af af af 
df = - £Ix + - dv + - d::. = (uradf)-dr 

ax ay' az to 

of a differentiable function f(x, y, z) everywhere in D. that is, if we have 

F-dr = df. 

Comparing these two formulas. we see that the form (4) is exact if and only if there is a 
differentiable function f(x, y, z) in D such that everywhere in D. 

(5) F = gradf, thus, 
af 

Fl = ax ' 

Hence Theorem l implies 

Path Independence 

The integral (1) is path independent in a domain D in :,pace (f and only if the 
d(fferentialfo171l (4) has continuous coefficient functions Flo F2 , F3 and is exact in D. 

This theorem is practically important because there is a useful exactness criterion To 
formulate the criterion, we need the following concept, which is of general interest. 

A domain D is called simply connected if every closed curve in D can be continuously 
shrunk to any point in D without leaving D. 

For example, the interior of a sphere or a cube. the interior of a sphere with finitely 
many points removed. and the domain between two concentric spheres are simply 

IJOHANN FRIEDRICH PFAFF (1765-1825), German mathematician. 
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connected. while the interior of a torus (a doughnut; see Fig. 247 in Sec. 10.6) and the 
interior of a cube with one space diagonal removed are not simply connected. 

The criterion for exactness (and path independence by Theorem 3*) is now as follows. 

THEOREM 3 Criterion for Exactness and Path Independence 

Let F b F 2' F 3 in the line integral (I), 

f F(r)"dr = f (PI dx + F2 d ...... + F3 d::.), 
c c 

be contillllOllS and have cominuous first partial derivatives ill a domain D in space. 
Then: 

(a) lfthe differel1Tialform (4) is eX({Ci ill D-al1d thus (I) is path independent 
by Theorem 3*-, then in D, 

(6) curl F = 0; 

ill components (see Sec. 9.9) 

(6') 

(b) If (6) holds in D and D is simply connected. thell (4) is exact in D-and 
thus (I) is path independent by Theorem :1*. 

PROOF (a) If (4) is exact in D, then F = grad f in D by Theorem 3*, and, furthermore, 
curl F = curl (grad.f) = 0 by (2) in Sec. 9.9, so that (6) holds. 

(b) The proof needs "Stokes's theorem"" and will he given in Sec. 10.9. • 

Line Integral in the Plane. For f F( r) "dr = f (F I dx + F 2 dy) the curl has only one 
c c 

component (the z-component), so that (6') reduces to the single relation 

(6") 

(which also occurs in (5) of Sec. 1.4 on exact ODEs). 

E X AMP L E 3 Exactness and Independence of Path. Determination of a Potential 

Using (6'), show that the differential form under the integral sign of 

is exact, so that we have independence of path in any domain, and find the value of I from A: (0, 0, 1) 
to B: (l, 7r/4, 2). 
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Solution. Exactness follows from (6'), which gives 

(F3)y = 2x2z + cosyz - yzsinyz = (F2)z 

(Fl)z = 4xyz = (F3 )x 

(F2)x = 2xz
2 

= (F1)y' 

431 

To find J, we integrate F2 (which is "long," so that we save work) and then differentiate to compare with Fl 
and F3 , 

fz = 2x2zy + Y cos yz + h' = F3 = 2x2zy + Y cos yz, h' = O. 

h' = 0 implies h = const and we can take h = 0, so that g = 0 in the first line. This gives, by (3), 

f(x, y, z) = x 2
YZ2 -t sin yz, 

7T 7T 
feB) - f(A) = 1 . 4 . 4 + sin 2 - 0 = 7T -t 1. • 

The assumption in Theorem 3 that D is simply connected is essential and cannot be omitted. 
Perhaps the simplest example to see this is the following. 

E X AMP L E 4 On the Assumption of Simple Connectedness in Theorem 3 

Let 

(7) 
Y 

F] = --2--2' 
X + Y 

x 
F2 = -2--2' 

x + Y 
F3 = o. 

Differentiation shows that (6') is satisfied in any domain of the xy-plane not containing the origin. for example, 

in the domain D: ~ < V ~ + ; < ~ shown in Fig. 224. Indeed, Fl and F2 do not depend on z, and F3 = 0, 
so that the first two relations in (6') are trivially true. and the third is verified by differentiation: 

aF2 x 2 +y2-x·2x 2 2 y -x 

ax (x2 + y2)2 (x2 + y2)2 

aFl x 2 + y2 - y-2y 2 - x 2 y 

ay (x2 + V
2

)2 (x2 + y2)2 

Clearly, D in Fig. 224 is not simply connected. If the integral 

f f -ydx + xdy 
1= (Fl dx + F2 dy) = 

c C x 2 + y2 

were independent of path in D, then I = 0 on any closed curve in D, for example, on the circle x 2 + y2 = 1. 
But setting x = r cos 8, y = r sin e and noting that the circle is represented by r = I, we have 

x=cose. dx = -sin ed8, y=sine. dy = cos ede, 

so that -y dx + x dy = sin2 e de + cos2 8 de = de and counterclockwise integration gives 

2.,,-

1= f de = 27T. 

o I 

Since D is not simply connected. we cannot apply Theorem 3 and cannot conclude that I is independent of path 
in D. 

Although F = grad f, where f = arctan (ylx) (verify!), we cannot apply Theorem I either because the polar 
angle f = 8 = arctan (y Ix) is not single-valued, as it is required for a function in calculus. • 
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.... ,,-­- .-. .. -. - .. 
11-81 PATH-INDEPENDENT INTEGRALS 

Show that the fonn under the integral sign is exact in the 
plane (Probs. 1-4) or in space (Probs. 5-8) and evaluate 
the integral. (Show the details of your work.) 

(4."./8) 

1. f (y cosxJ dx + x cosxy dy) 
(0.0> 

(0,5) 

2. f (y 2 e 2x dx + ye2x dy) 
(5.0) 

3. fO,l) e-X2 _ y2(x dx + y dy) 
(-1,-1) 

(6.w) 

4. f (cos2 Y dx - 2x cos y sin y dy) 
(2,0) 

f
(O,1,2) 

5. (z e Xz dx + dy + xexz dz) 
(2,3.0) 

f
O .1 •0 ) 

6. ex2+y2-2z (x dx + y dy - d;:.) 
(0.0.0) 

f
(7.8.0) 

7. (2xy dx + x 2 dy + sinh z £Iz) 
0.0.0) 

f
(4.4,0> 

8. [2X(y3 - Z3) dx + 3x2)'2 dy - 3x2Z2 dz] 
(2.0,1> 

9. Show thar in Example 4 of the text we have 
F = grad (arctan (ylx». Give examples of domains in 
which the integral is path independent. 

10. PROJECT. Path Dependence. (a) Show that 

I = 1 (x\ dx + 2xy2 dy) is path dependent in the 
c 

xy-plane. 

(b) Integrate from (0. 0) along the straight-line 
segment to (1. b). 0 ~ b ~ I, and then vertically up to 
(I, I); see the figure. For which of these paths is I 
maximum? What is its maximum value? 

y 

3 x 
;1 

Fig. 224. Example 4 

(c) Integrate from (0, 0) along the straight-line 
segment to (c, I), 0 ~ c ~ I, and then horizontally to 
(1, I). For c = I, do you get the same value as for 
b = I in (b)? For which c is I maximum? What is its 
maximum value? 

y 

1 
(c,l) 

(1, b) 

<0.0) 1 x 

Project 10. Path Dependence 

111-191 CHECK FOR PATH INDEPENDENCE 
and, if independent, integrare from (0, 0, 0) to (a, b, c). 

11. (cosh x::)(:: dx + t' dz) 

12. (3x 2e 2Y + x) dx + 2x3e 2Y dy 

13. 3x2 y {lY + x 3 dy + Y d: 

14. 2x sin J dx + x 2 cosy dy + y2 dz 

15. (ze X 
- eY) dx - xeY dy + eX dz 

16. eX cos 2.1' dx - 2e x sin 2y dy - xz dz 

17. xy Z2 d.1. + !X2Z2 dy + x 2)'z do;:. 

18. yz cosh x dx + Z sinh x dy + J sinh x dz 

19. Y dt' + (x - 2y) dy + 4x dz 

20. WRITING PROJECT. Ideas on Path Independence. 
Make a list of the main ideas on path independence 
and dependence in this section. Then work this list into 
an essay. including explanations of all definitions and 
on the practical usefulness of the theorems, but no 
proofs. Include illustrating examples of your own. 
Explain what happens in Example 4 if you take the 

domain 0 < V r + y2 < ~. 
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10.3 Calculus Review: Double Integrals. 
Optional 

Students familiar with double integrals from calculus should go on to the next 
section, skipping the present review, which is included to make the book reasonably 
self-contained. 

In a definite integral (1), Sec. 10.1, we integrate a function f(x) over an interval (a 
segment) of the x-axis. In a double integral we integrate a function f(x, y), called the 
integrand, over a closed bounded region2 R in the xy-plane, whose boundary curve has a 
unique tangent at each point, but may perhaps have finitely many cusps (such as the 
vertices of a triangle or rectangle). 

The definition of the double integral is quite similar to that of the definite integral. 
We subdivide the region R by drawing parallels to the x- and y-axes (Fig. 225). We 
number the rectangles that are entirely within R from 1 to n. In each such rectangle we 
choose a point, say, (Xk, Yk) in the kth rectangle, whose area we denote by LlAk. Then 
we form the sum 

n 

in = 2: f(xk, Yk) LlAk-
k~l 

This we do for larger and larger positive integers II in a completely independent manner, 
but so that the length of the maximum diagonal of the rectangles approaches zero as n 
approaches infinity. In this fashion we obtain a sequence of real numbers i

n" 
i n2, .... 

Assuming that f(x, y) is continuous in Rand R is bounded by finitely many smooth 
curves (see Sec. 10.1), one can show (see Ref. [GR4] in App. 1) that this sequence 
converges and its limit is independent of the choice of subdivisions and corresponding 
points (xk, Yk). This limit is called the double integral of f(x, y) over the region R, and 
is denoted by 

f ff(x, y) dxdy 
R 

y 

or f ff(x, y) dA. 
R 

x 

Fig. 225. Subdivision of a region R 

2 A region R is a domain (Sec. 9.6) plus, perhaps, some or all of its boundary points. R is closed if its boundary 
(all its boundary points) are regarded as helonging to R; and R is bounded if it can be enclosed in a circle of 
sufficiently large radius. A boundary point P of R is a point (of R or not) such that every disk with center P 
contains points of R and also points not of R. 
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Double integrals have properties quite similar to those of definite integrals. Indeed, for 
any functions f and g of (x, y), defined and continuous in a region R, 

f f kf dx dy = k f f f dx dy (k constant) 
R R 

(1) ff(f + g)dxdy = fffdxdy+ ffgdxdy 
R R R 

f ffdxdy = f ffdxdy + f ffdxdy (Fig. 226). 
R Rl R2 

Furthermore, if R is simply connected (see Sec. 10.2), then there exists at lea')t one point 
(xo, Yo) in R such that we have 

(2) f f f(x, y) dx dy = f(xo, yo)A· 
R 

where A is the area of R. This is called the mean value theorem for double integrals. 

Fig. n6. Formula (l) 

Evaluation of Double Integrals 
by Two Successive Integrations 
Double integrals over a region R may be evaluated by two successive integrations. We 
may integrate first over y and then over x. Then the formula is 

(3) 
b [ hex) ] 

f f f(x, y) dx dy = f f f(x, y) dy dx 
R a g(x) 

(Fig. 227). 

Here y = g(x) and y = hex) represent the boundary curve of R (see Fig. 227) and, keeping 
x constant, we integrate f(x, y) over y from g(x) to hex). The result is a function of x. and 
we integrate it from x = a to x = b (Fig. 227). 

Similarly, for integrating first over x and then over y the formula is 

(4) d[ q(y) J 
f ff(x,y)dxdy = f f f(x,y)dx dy 
R C p(y) 

(Fig. 228). 
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y y 

h(X)~J 

CR : 
I 

I I 

: ,---: 
I g(x) I 

d ---------7) 
P(y)~ R / 

< ----c ~ '--"y) 
I I 

a b x x 

Fig. 227. Evaluation of a double integral Fig. 228. Evaluation of a double integral 

The boundary curve of R is now represented by x = p(y) and x = q(y). Treating y as a 
constant, we first integrate f(x. y) over x from p(y) to q(y) (see Fig. 228) and then the 
resulting function of y from y = c to y = d. 

In (3) we assumed that R can be given by inequalities a ~ x ~ b and g(x) ~ y ~ hex). 
Similarly in (4) by c ~ y ~ d and p(y) ~ x ~ q(y). If a region R has no such representation, 
then in any practical case it will at least be possible to subdivide R into finitely many 
portions each of which can be given by those inequalities. Then we integrate f(x, y) over 
each portion and take the sum of the results. This will give the value of the integral of 
f(x. y) over the entire region R. 

Applications of Double Integrals 
Double integrals have various physical and geometric applications. For instance. the area 
A of a region R in the xy-plane is given by the double integral 

A = I I dxdy. 
R 

The volume V beneath the surface z = f(x, y) (> 0) and above a region R in the xy-plane 
is (Fig. 229) 

V= f ff(x,y)dxdy 
R 

because the term f(Xk, Yk) ilAk in in at the beginning of this section represents the volume 
of a rectangular box with base of area ilAk and altitude f(xk, Yk)' 

x 

z 

'. 
- y 

Fig. 229. Double integral as volume 
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As another application. let f(x, y) be the density (= mass per unit area) of a distribution 
of mass in the \)·-plane. Then the total mass M in R is 

M = I I f(x. y) dx dy: 
R 

the center of gravity of the mass in R has the coordinates X, y, where 

x = ~ I I xf(x, y) dx dy 
R 

and y = ~ I I yf(x, y) dx dy; 
R 

the moments of inertia Ix and Iy of the mass in R about the x- and y-axes, respectively, are 

Ix = I I y2f(x, y) dx dy, 
R 

Iy = I I x 2 f(x. y) dx dy; 
R 

and the polar moment of inertia 10 about the origin of the mass in R is 

10 = Ix + Iy = I I(x2 + y2)f(x, y) dx dy. 
R 

An example is given below. 

Change of Variables In Double Integrals. Jacobian 
Practical problems often require a change of the variables of integration in double integrals. 
Recall from calculus that for a definite integral the formula for the change from x to u is 

(5) 
I

b 
I/3 dx f(x) dx = f(x(u») _0 duo 

a 0' du 

Here we assume that x = x(u) is continuous and has a continuous derivative in some 
interval a ~ II ~ f3 such that x(a) = G, x(f3) = b [or x(a) = b. x(f3) = G] and X(ll) varies 
between G and b when u varies between a and f3. 

The formula for a change of variables in double integrals from x, y to ll, U is 

(6) 
II II I 

a(x, y) I f(x, y) dx d.\' = f(x(u, u), y(u, u)) --- du du; 
R R* a(u, u) 

that is, the integrand is expressed in terms of u and u, and dx dv is replaced by du du times 
the absolute value of the Jacobian3 

ax ax 

B(x, y) au au ax ay ax ay 
(7) J= ---

a(u. u) ay ay all au iJu au 

au au 

3Named after the German mathematician CARL GUSTAV JACOB JACOBI (1804-1851), known for his 
contributions to elliptic functions. partial differential equations, and mechanics. 
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Here we assume the fol1owing. The functions 

x = .Y(u, u), y = y(u, u) 

effecting the change are continuous and have continuous partial derivatives in some region 
R* in the uu-plane such that for every (u, u) in R* the corresponding point (.Y, y) lies in 
R and, conversely, to every (x, y) in R there corresponds one and only one (u, v) in R*; 
furthermore, the Jacobian J is either positive throughout R* or negative throughout R*. 
For a proof. see Ref. [GR4] in App. 1. 

E X AMP L E 1 Change of Variables in a Double Integral 

Evaluate the following double integral over the square R in Fig. 230. 

Solution. The shape of R suggest~ the transfonnation x + y = ll, X - Y = v. Then x = !lu + v), 
J = !(u - v). The Jacobian is 

J = a(x, y) = I! !I = -!.. . 
a(ll, v) 1 _1 2 

2 2 

R corresponds to the square 0 ~ u ~ 2, 0 ~ v ~ 2. Therefore, 

II 2 2 f2f21 2 2 1 8 
(x -t Y ) dx dy = - (u + v ) - du dv = - . 

R 00 2 2 3 

y 

x 

Fig. 230. Region R in Example 1 

• 

Of pmticular practical interest are polar coordinates r and ti, which can be introduced 
by setting x = r cos ti, y = r sin e. Then 

and 

(8) 

J = a(x, y) = I cos e 

a(r, e) sin e 
-r sin el = r 

r cos e 

J J f(x, y) dx dy = J J fer cos e. r sin e) r dr de 
R R* 

where R* is the region in the re-plane corresponding to R in the xy-plane. 
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EXAMPLE 2 Double Integrals in Polar Coordinates. Center of Gravity. Moments of Inertia 

y~ 
Let f(x, y) == I be the mass density in the region in Fig. 231. Find the total mass, the center of gravity, and the 
moment' of inertia lx, Iy, 10 , 

Solution. We use the polar coordinates just defined and formula (8), This gives the total mass 

1 x 

Fig. 231. 
Example 2 The center of gravity has the coordinares 

4 I7"2fI 4 1.,,/2 1 4 
x = - r cos B r dr dB = - - cos fI dfl = = 0.4244 

71" 0 0 71" 0 3 3..,-

4 
y=-

371" 
for reasons of symmetry. 

The moments of inertia are 

."./2 1 ."./2 

Ix = I I y2 dx dy = I f r2 sin2 B r dr dB = I ~ sin
2 

B dB 
ROO 0 

."./2 

= { i(1- cos28)dB= i (-i -0) = I: = 0.1963 

IT 1T 
1=­

y 16 
for reasons of symmetry, 10 = Ix + ly = "8 = 0.3927. 

Why are x and y less than~? • 
This is the end of our review on double integrals. These integrals will be needed in this 
chapter. beginning in the next section . 

• • w ...... _ ___ _._ 
n ... w,oc:: ,_IiI_ 

1. (Mean value theorem) lllustrate (2) with an example. 

12-91 DOUBLE INTEGRALS 

Describe the region of integration and evaluate. (Show the 
details.) 

1 2x 

2. f f (x + y)2 dy dx 
o x 

1 x 

3. 10 Ix" (1 - 2xy) dy dx 

4. As Prob. 3, order reversed 
3 y 

5. 11 cosh tx + y) dx dy 
o 0 

6. As Prob. 5, order reversed 
4 X 

7. 1 J e x
+

2y dy dx 
o -x 

1 I-x" 

8. f f x
2

)' dy dx 
o I-x 

7T'/2 sin y 

9. I f eX cos y dx dy 
o 0 

10. Integrate xyeX2
_

y2 over the triangular region with 
vertices (0. 0). O. I). (1. 2). 

111-131 VOLUME 

Find the volume of the following regions in space. 

11. The region beneath z = x2 + y2 and above the square 
with vertices (1, I), (-I, 1), (-1, -I), (1, -1) 

12. The tetrahedron cut from the first octant by the plane 
~x + 2)' + z = 6. Check by vector methods. 

13. The first octant section cut from the region inside the 
cylinder r + Z2 = 1 by the planes y = 0, z = 0, x = y. 
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[14-161 CENTER OF GRAVITY engineer is likely to need. along with other profiles listed 
in engineering handbooks). Find the center of gravity (x, y) of a mass of density 

j(x, y) = I in the given region R. 17. R as in Prob. 15. 18. R as in Prob. 16. 

14. R the semi disk x2 + y2 ~ a2
, y ~ 0 

19. y 

15. '~ 
h~ 

h 2+----.. 

x 
b x 

20. y 

h+--..... 

117-201 MOMENTS OF INERTIA 

Find the moments of ineltia Ix, Iy , 10 of a mass of density 
j(x, y) = 1 in the region R shown in the figures (which the 

a 
2 

a x 
2 

o 

10.4 Green's Theorem in the Plane 

THEOREM 1 

Double integrals over a plane region may be transformed into line integrals over the 
boundary of the region and conversely. This is of practical interest because it may simplify 
the evaluation of an integral. It also helps in the theory whenever we want to switch from 
one kind of integral to the other. The transformation can be done by the following theorem. 

Green's Theorem in the Plane4 

(Transformation between Double Integrals and Line Integrals) 

Let R be a closed bounded region tsee Sec. 10.3) in the xy-plane whose boundary 
C consists offinitely many smooth curves (see Sec. 10.1). Let FI(x, y) and F2(x, y) 

befunctions that are continuous and have continuous partial derivatives aFI lay and 
aF2/ax everywhere in some domain containing R. Then 

(1) II ( aF2 aFI ) 1 -- - -- dx:dy = r WI dx + F2 dy). 
R ax ay c 

Here we integrate along the entire boundary C of R il1 such a sense that R is 011 

the left as we advance ill the direction of illlegratioll (see Fig. 232 on p. 440). 

4GEORGE GREEN (1793-1841), English mathematician who was self-educated, started out as a baker, and 
at his death was fellow of Caius College, Cambridge. His work concemed potential theory in connection with 
electricity and magnetism, vibrations, waves, and elasticity theory. It remained almost unknown. even in England. 
until after his death. 

A "domain containing R" in the theorem guarantees that the assumptions about FI and F2 at boundary poims 
of R are the same as at other poims of R. 



440 CHAP. 10 Vector Integral Calculus. Integral Theorems 

y 

x 

Fig. 232. Region R whose boundary C consists of two parts: 
C1 is traversed counterclockwise, while C2 is traversed 

clockwise in such a way that R is on the left for both curves 

Setting F = [Fl' F 2 ] = Fli + F2 j and using (1) in Sec. 9.9, we obtain (1) in vectorial 
form, 

(1') I I (curl F)-k dxdy = f F-dr. 
R C 

The proof follows after the first example. For if> see Sec. 10.1. 

E X AMP L E 1 Verification of Green's Theorem in the Plane 

Green's theorem in the plane will be quite important in our further work. Before proving it. let us get used to 
it by verifying it for Fl = -,,2 - ?y, F2 = 2\")' + 2x and C the circle x2 + .1'2 = l. 

Solutioll. In (1) on the left we get 

II( ilF2 iJFl) II II ~ - ~ dxdy = [(2)' + 2) - (2y - 7)ldxdy = 9 dxdy = 911 
R . R R 

since the circular disk R has area 7r. 
We now show that the line integral in (1) on the right gives the same value, 97r. We must orient C 

counterclockwise, say. ret) = [cos t, sin tl. Then r' (t) = [-sin t, cos tl. and on C, 

F2 = 2xy + 2x = 2 cos t sin t + 2 cos t. 

Hence the line integral in (1) becomes, verifYing Green's theorem, 

2.,,-

~ (FiX' + F 2y') dt = f [(sin2 t - 7 sin t)( -sin t) + 2(cos t sin t + cos t)(cos t)J dt 
c 0 

2.,,-

= f ( -sin3 t + 7 sin2 t + 2 cos2 t sin t + 2 cos2 t) dt 
o 

= 0 + 711 - 0 + 27r = 97r. • 
PROOF We prove Green's theorem in the plane. first for a special region R that can be represented 

in both forms 

a ~ x ~ b, U(x) ~ y ~ vex) (Fig. 233) 
and 

c~)'~d, p(y) ~ x ~ q(y) (Fig. 234). 
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y 

u(x) 

a b x x 

Fig. 233. Example of a special region Fig. 234. Example of a special region 

Using (3) in the last section, we obtain for the second term on the left side of (1) taken without 
the minus sign 

(2) J J-~ dx(~v = J J _1 dy lix 
aF b[ vex) aF ] 

R ay a u(x) ay 
(see Fig. 233). 

(The first term will be considered later.) We integrate the inner integral: 

J - dy = FI(x. y) = FI[X, V(X)] - FI[x, u(x)]. 
vCx) aFt IY=V(Xl 

u(x) ay y=u(xl 

By inserting this into (2) we find (changing a direction of integration) 

J 
aF b b I __ 1 dl: dy = I FI[x. vex)] dx - I F1[x. u(x)] dx 

R ay a a 
a b 

= - f F 1[x, VeX)] lix - J F 1[x, u(x)] lix. 
b a 

Since y = vex) represents the curve C** (Fig. 233) and y = u(x) represents C*, the last 
two integrals may be written as line integrals over C** and C* (oriented as in Fig. 233); 
therefore, 

(3) 

J J aF] dx dy = - f FI(x. y) dx - f FI(x. y) dx 
R ay C** C* 

= -~ FI(x, y) dx. 
c 

This proves (I) in Green's theorem if F2 = O. 
The result remains valid if C has portions parallel to the y-axis (such as C and C in 

Fig. 235). Indeed, the integrals over these portions are zero because in (3) on the right we 
integrate with respect to x. Hence we may add these integrals to the integrals over C* and 
C** to obtain the integral over the whole boundary C in (3). 

We now treat the first term in (I) on the left in the same way. Instead of (3) in the last 
section we use (4), and the second representation of the special region (see Fig. 234). 
Then (again changing a direction of integration) 
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I I_2 dx dy = I I _2 dx dy 
aF d[ q(Y)aF ] 

R ax c p(y) ax 
d c 

= I F2(q(y), y) dy + I F2(P(Y), y) dy 
c d 

y 

y 

x x 

Fig. 235. Proof of Green's theorem Fig. 236. Proof of Green's theorem 

Together with (3) this gives (1) and proves Green's theorem for special regions. 
We now prove the theorem for a region R that itself is not a special region but can be 

subdivided into finitely many special regions (Fig. 236). In this case we apply the theorem 
to each subregion and then add the results; the left-hand members add up to the integral 
over R while the right-hand members add up to the line integral over C plus integrals over 
the curves introduced for subdividing R. The simple key observation now is that each of 
the latter integrals occurs twice. taken once in each direction. Hence they cancel each 
other, leaving us with the line integral over C. 

The proof thus far covers all regions that are of interest in practical problems. To prove 
the theorem for a most general region R satisfying the conditions in the theorem, we must 
approximate R by a region of the type just considered and then use a limiting process. 
For details of this see Ref. [GR4] in App. 1. • 

Some Applications of Green's Theorem 

E X AMP L E 2 Area of a plane Region as a Line Integral Over the Boundary 

In (I) we first choose Fl = 0, F2 = x and then Fl = -y, F2 = O. This gives 

I I dxdy = fXdY 
R C 

and 

respectively. The double integral is the area A of R. By addition we have 

(4) A = 2. f (xdy - ydr;) 
2 c 

where we integrate as indicated in Green's theorem. This interesting formula expresses the area of R in terms 
of a line integral over the boundary. It is used, for instance, in the theory of certain planimeters (mechanical 
instruments for measuring area). See also Prob. 17. 
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For an ellipse x2
/0

2 + y2/b2 = I or x = 0 cos t, Y = b sin t we get x' = -0 sin t,),' = b cos t; thus from 
(4) we obtain the familiar fonnula for the area of the region bounded by an ellipse, 

2w 2'71'" 

If' , If[ 2 2] A = 2 0 (x)' - yx ) dt = 2" 0 ab cos t - (-ob sin t) dt = Trab • 
E X AMP L E 3 Area of a Plane Region in Polar Coordinates 

Let rand e be polar coordinates defined by x = r cos e. y = r sin e. Then 

dx = cos edr - rsin ede, dy = sin edr + rCos ede. 

and (4) becomes a formula that is well known from calculm.. namely, 

(5) A = - r2 de. I f' 
2 c 

As an application of (5), we consider the cardioid r = a(l - cos e), where 0 ~ e ~ 2Tr (Fig. 237). We find 

2 2". 

a f 3Tr 2 A = - (l - cos e)2 de = - 0 
2 0 2 

E X AMP L E 4 Transformation of a Double Integral of the Laplacian of a Function 
into a Line Integral of Its Normal Derivative 

• 

The Laplacian plays an imponanl role in physics and engineering. A first impression of this was obtained in 
Sec. 9.7, and we shall discuss this further in Chap. 12. At present, let us use Green's theorem for deriving a 
basic integral formula involving the Laplacian. 

We take a function w(x. y) that is conti nuous and has continuous first and second partial derivatives in a 
domain of the xy·plane containing a region R of the type indicated in Green's theorem. We set FI = -aw/ay 
and F2 = aw/ax. Then aFI/ay and aF2/ax are continuous in R. and in (I) on the left we obtain 

(6) 

the Laplacian ofw (see Sec. 9.7). Furthermore. using those expressions for FI and F2 • we get in (I) on the right 

(7) f· f' (d.x dl' ) f' ( aw d.x au' dV) WI dx + F2 dy) = FI -d + F2 -d' ds = - -;- - + - --"- ds 
c c sSe ay ds ax ds 

where s is the arc length of C, and C is oriented as shown in Fig. 238. The integrand of the last integral may 
be written as the dot product 

(8) [aw aw] [dV d.x] (grad wJon = -, -;- 0 --"-, - -

ax ay ds ds 

y 

x 

Fig. 237. Cardioid 

y 

aw dy 

ax ds 

aw d.x 
CJy ds' 

Fig. 238. Example 4 

x 
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The vector n IS a untt normal vector to C, because the vector r' (s) = drlds = [dxlds, dvldsl is the unit 

tangent vector of C. and r' • n = O. so that n is perpendicular to r'. Also, n is directed to the exterior of C 

because in Fig. 238 the positive x-component dxlds of r' is the negative y-component of n. and similarly at 
other points. From this and (4) in Sec. 9.7 we see that the left side of (8) is the derivative of u' in the direction 
of the outward normal of C. This derivative is called the normal derivative of w and is denoted by awlall: 
that is. au-Iall = (grad w)· n. Because of (6), (7), and (8). Green's theorem gives the desired formula relating 
the Laplacian to the normal derivative. 

(9) I I V 2 wdxdy = f aw ds. 
R c an 

For instance. \I" = x2 - y2 sati~fies Laplace's equation ,2w = O. Hence its nomml derivative integrated over 

a closed curve must give O. Can you verify this directly by integration. say. for the square 0 -<:: x -<:: 1. 
0-<::)" -<:: I? • 

Green's theorem in the plane may facilitate the evaluation of integrals and can be used in 

both directions, depending on the kind of integral that is simpler in a concrete case. This 
is illustrated further in the problem set. Moreover, and perhaps more fundamentally, 

Green's theorem will be the essential tool in the proof of a very important integral theorem, 
namely, Stokes's theorem in Sec. 10.9. 

• ; ITM'=SE 'F-:)-O _]1-== ___ _ 
11-121 EVALUATION OF LINE INTEGRALS 

BY GREEN'S THEOREM 

Using Green's theorem, evaluate f F(r)-drcounterclockwise 
c 

around the boundary curve C of the region R, where 

1. F = l~XV4, ~x~l. R the rectangle with vertice~ (0. 0). 
(3, 0)' (3, 2), (0. 2) 

2. F = [y sin x. 2x cos y]. R the square with vertices 
(0, 0), (~7T. 0). ~7T, !7T). (0. ~7T) 

3. F = [_y3. x3], C the circle x2 + )"2 = 25 

4. F = [-eY • eX]. R the triangle with vertices (0. 0). 
(2, 0). (2. l) 

5. F = [ex + y• eX
- Y ]. R the triangle with vertices (0. 0). 

0. 1),0.2) 

6. F = [x cosh y. x 2 sinh y]. R: x 2 ~ y ~ x. Sketch R. 

7. F = [x2 + y2. x 2 - )'2], R: 1 ~ Y ~ 2 - x 2. Sketch 
R. 

8. F = [eX cosy. -ex siny]. R the semidisk 
x 2 + y2 ~ a 2• x ~ 0 

9. F = grad (x3 cos2 (xv)), R the region in Prob. 7 

10. F = [x In y. yeo,,]. R the rectangle with vertices (0. I). 
(3. 1), (3. 2). (0. 2) 

11. F = [2\" - 3y. x + 5y]. R: 16x2 + 25."2 ~ 400. y ~ 0 

12. F = [x~,2. -xly2]. R: I ~ x 2 + y2 ~ 4. x ~ 0, 
y ~ x. Sketch R. 

113--161 INTEGRAL OF THE NORMAL DERIVATIVE 

Using (9). evaluate 1, ~w ds counterclockwise over the Jc [In 

boundary curve C of the region R. 

13. w = sinh x, R the triangle with vertices (0, 0), (2, 0), 
(2, 1) 

14. w = t 2 + )'2, C: x 2 + .\'2 = l. Confirm the answer by 
direct integration. 

15. w = 2 In (x2 + y2) + xy3, R: 1 :;S )' ~ 5 - x 2• X ~ 0 

16. w = x 6y + xy6, R: x 2 + y2 ~ 4, " ~ 0 

17. CAS EXPERIMENT. Apply (4) to figures of your 
choice whose area can also be obtained by another 
method and compare the results. 

18. (Laplace's equation) Show that for a solution w(x, y) 

of Laplace's equation \,2U- = 0 in a region R with 
boundary curve C and outer unit normal vector n, 

(10) 
1, dw 

= J
c 

w an ds. 

19. Show that w = 2ex cos)' satisfies Laplace's equation 
V2 w = 0 and. using (0), integrate w(ilwldll) 

counterclockwise around the boundary curve C of the 
square 0 ~ x ~ 2, 0 ~ y ~ 2. 
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20. PROJECT. Other Forms of Green's Theorem in 
the Plane. Let Rand C be as in Green's theorem, r' 
a unit tangent vector. and n the outer unit normal vector 
of C (Fig. 238 in Example 4). Show that (1) may be 
written 

or 

(12) I I(CUrIF)OkdXdy = f For' ds 
R C 

(11) I I div F dx dy = f F 0 n ds 
R C 

where k is a unit vector perpendicular to the xy-plane. 
Velify (11) and (12) for F = [7x, - 3)'] and C the circle 
x2 + )'2 = 4 as well as for an example of your own 
choice. 

10.5 Surfaces for Surface Integrals 
Having introduced dquble integrals over regions in the plane, we turn next to surface 
integrals, in which we integrate over surfaces in space, such as a sphere or a portion of a 
cylinder. For this we must first see how to represent a surface. And we must discuss 
surface normals, since they are also needed in surface integrals. For simplicity we shall 
say "surface" also for a portion of a surface. 

Representation of Surfaces 
Representations of a surface S in xyz-space are 

(1) z = f(x. y) or g(x, y, z) = o. 

For example, z + Va2 
- x 2 

- y2 or x 2 + y2 + Z2 - a 2 = 0 (z ~ 0) represents a 
hemisphere of radius a and center O. 

Now for cun'es C in line integrals. it was more practical and gave greater flexibility to 
use a parametric representation r = r(t). where a ~ t ~ b. This is a mapping of the interval 
a ~ t ~ b, located on the t-axis, onto the curve C (actually a portion of it) in x)'z-space. 
It maps every t in that interval onto the point of C with position vector ret). See Fig. 239A. 

~ec 
~ in space yr(t) 

x y 

/d 
/' SurfaceS 

Z I / r(u,v) in space 

n-
v 

-I 1 

a b 

(t-axis) 

u 

(A) Curve (E) Surface 

Fig. 239. Parametric representations of a curve and a surface 
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Similarly, for surfaces S in surface integrals, it will often be more practical to use a 
parametric representation. Surfaces are two-dimensional. Hence we need two parameters, 
which we call u and v. Thus a parametric representation of a surface S in space is of 
the form 

(2) r(u. v) [x(u, v), y(u, v), .-:(u, v)] = x(u, v)i + y(u, v)j + :::(u, v)k 

where (u, v) varies in some region R of the uv-plane. This mapping (2) maps every point 
(u, v) in R onto the point of S with position vector r(u, v). See Fig. 239B. 

E X AMP L E 1 Parametric Representation of a Cylinder 

The circular cylinder x 2 + y2 = a2
, -) ;a Z "" ), has radius a, height 2, and the ~-axis as axis. A parametric 

representation is 

r(u. v) = [a cos 1/, asinu, vl = acosui + asinuj + vk (Fig. 240). 

The components of r are x = a cos u, y = a sin u, Z = v. The parameters u, v vary in the rectangle 
R: 0 ;a u "" 2'IT, -) ;a v ;a I in the uv-plane. The curves u = COllst are vertical straight lines. The curves 
v = COllst are parallel circles. The point P in Fig. 240 corresponds to 1/ = 'lT13 = 60°, v = 0.7. • 

(v = 1) 

,P 
(v=O) 

x ~ 
(v =-1) 

Fig. 240. Parametric representation 
of a cylinder 

E X AMP L E 2 Parametric Representation of a Sphere 

A sphere x2 + y2 + ~2 = a2 can be represented in the form 

z 

, p 
-------q--
\. 

\. 

Fig. 241. Parametric representation 
of a sphere 

(3) r(u, v) = a cos v cos II i + a cos v sin 11 j + a sin v k 

where the parameters u, v vary in the rectangle R in the uv-plane given by the inequalities 0 ;a u "" 2'IT. 
- 'IT!2 ;a v ;a 'lT12. The components of r are 

x = a cos V cos u. y = a cos v sin u. Z = a sin v. 

The curves u = COllst and v = COllst are the "meridians" and "parallels" on S (see Fig. 241). This represel1lalion 
is used ill geography for measurillg the latitude and longitude of points 011 the globe. 

Another parametric representation of the sphere also used in mathematics is 

(3*) r(u, V) = a cos 1/ sin v i + a sin u sin v j + a cos V k 

where 0 "" 1/ "" 2'IT, 0 "" V "" 'IT. • 



SEC. 10.5 Surfaces for Surface Integrals 447 

E X AMP L E 3 Parametric Representation of a Cone 

A circular cone z = Yx2 + i, 0 ~ t ~ H can be represented by 

r(u, V) = [u cos V, u sin V, u1 = u cos V i + u sin V j + uk, 

in components x = it cos V, y = u sin v,::: = u. The parameters vary in the rectangle R: 0 ~ u ~ H. 0 ~ V :0; 2n. 
Check that x2 + )'2 = Z2, as it should be. What are the curves u = const and V = COllst? • 

Tangent Plane and Surface Normal 
Recall from Sec. 9.7 that the tangent vectors of all the curves on a surface S through a 
point P of S form a plane, called the tangent plane of S at P (Fig. 242). Exceptions are 
points where S has an edge or a cusp (like a cone), so that S cannot have a tangent plane 
at such a point. Furthermore, a vector perpendicular to the tangent plane is called a normal 
vector of S at P. 

Now since S can be given by r = r(u, v) in (2), the new idea is that we get a curve C 
on S by taking a pair of differentiable functions 

u = u(t), v = v(t) 

whose derivatives u' = dll/dt and v' = dv/dt are continuous. Then C has the position 
vector i(t) = r(u(t), vet)). By differentiation and the use of the chain rule (Sec. 9.6) we 
obtain a tangent vector of C on S 

I di 
i (t) = -

dl 

ar I 
-u 
iJu 

ar I + -v av 

Hence the partial derivatives ru and rv at P are tangential to Sat P. We assume that they 
are linearly independent, which geometrically means that the curves u = canst and 
v = canst on S intersect at P at a nonzero angle. Then r u and r v span the tangent plane 
of S at P. Hence their cross product gives a normal vector N of Sat P. 

(4) 

The corresponding unit normal vector n of S at P is (Fig. 242) 

I 1 
(5) n= lNI N = Iru X rvl 

n 

s 

Fig. 242. Tangent plane and normal vector 
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Also, if S is represented by g(x, y, z) = 0, then, by Theorem 2 in Sec. 9.7, 

(5*) n= 
I 

--- gradg. 
Igrad gl 

A surface S is called a smooth surface if its surface normal depends continuously on 
the points of S. 

S is called piecewise smooth if it consists of finitely many smooth portions. 
For instance, a sphere is smooth, and the surface of a cube is piecewise smooth 

(explain!). We can now summarize our discussion as follows. 

THEOREM 1 Tangent Plane and Surface Normal 

If a suiface S is given by (2) with continuous ru = Br/rJu LInd rv = Br/CJv satisfying 
(4) at every point of S, then S has at every point P a unique tangent plane passing 
through P and spanned by ru and rv' and a unique normal whose direction depends 
continuously on the points of S. A /lonnal vector is given by (4) and the 
corresponding unit /lonnal vector by (5). (See Fig. 242.) 

E X AMP L E 4 Unit Normal Vector of a Sphere 

From (5*) we find that the sphere g(x. y. z) = x2 + y2 + Z2 - a2
, 0 ha~ the unit normal vector 

[

X )' z] x y z 
n(x. y. z) = -, - . - = - i + - j + - k. 

a a a a a a 

We see that n has the direction of the position vector [x, y, z] of the corresponding point. Is it obvious that this 

must be the case? • 

E X AMP L E 5 Unit Normal Vector of a Cone 

At the apex of the cone g(x. y, z) = -z + V f + i = 0 in Example 3, the unit nonnal vector n becomes 
undetermined because from (5*) we get 

We are now ready to discuss surface integrals and their applications. beginning in the next 
section . 

... ..-. .. -- . 

11-lOl PREPARATION FOR SURFACE INTEGRALS: 
PARAMETRIC REPRESENTATION, 
NORMAL 

Familiarize yourself with parametric representations of 
important surfaces by deriving a representation (1), by finding 
the parameter curves (curves II = eonst and u = eonst) of 
the surface and a nonmal vector N = r ll x rv of the surface. 
(Show the details of your work.) 

1. xy-plane r(ll, u) = [u, uJ (thus ui + uj; similarly in 
Probs. 2-10) 

2. xy-plane in polar coordinates 
r(u, u) = [u cos u, u sin u] (thus u = r, u = 0) 

3. Elliptic cylinder r(u, u) = [a cos u, b sin u, u] 

4. Paraboloid of revolution 
r(u, u) = [u cos u, u sin u, u2

] 

5. Cone r(u, U) = [au cos u, au sin u. eu] 

6. Hyperbolic paraboloid 
r(u, u) = [4u cosh u. u sinh u, u2J 

7. Elliptic paraboloid r(u, u) = [3u cos u, 4u sin u, u2] 
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8. Helicoid r(u, v) = [1/ cos v, u sin v, v J. Explain the 
nanl.e. 

9. Ellipsoid 
r(u. v) = [2 cos v cos u. 3 co~ v sin Lt. 4 sin vI 

10. Ellipsoid 
r(Lt, v) = [a cos v cos Lt, b cos v sin Lt, c sin vI 

11. CAS EXPERIMENT. Graphing Surfaces, 
Dependence on a, b, c. Graph the surfaces in Probs. 
1-10. In Probs. 6--9 generalize the surfaces by 
introducing parameters a. b. c and then find out in 
Probs. 3-10 how the shape of the surfaces depends on 
a. h. c. 

112-191 DERIVATION OF PARAMETRIC 

REPRESENTATIONS 

Find a parametric representation and a normal vector. (The 
answer gives one of them. There are many.) 

12. Plane 5x + y - 3z = 30 

13. Plane 4x - 2y + 10.;: = 16 

14. Sphere (x - 1)2 + (y + 2)2 + Z2 = 25 

15. Sphere Ix + 2)2 + y2 + (z - 2)2 = I 

16. Elliptic paraboloid.;: = 4x2 + \.2 

17. Parabolic cylinder z = 3)'2 

18. Hyperbolic cylinder 9x2 
- 4.\'2 = 36 

19. Elliptic cone z = V 9x2 + y2 

10.6 Surface Integrals 
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20. (Representation z = f(x,y)) Show that z = f(x, y) or 
g = z - flx, )'J = 0 can be written (f u = ilf/ilu. etc.) 

(6) 
r(Lt, v) = [Lt, v, feLt. v)j and 

N = gradg = I-f,,, -fv, 1]. 

21. (Orthogonal parameters) Show that the parameter 
curves II = const and v = COllst on a surface r(lI, v) 

are orthogonal (intersect at right angles) if and only if 
rU.-rv = o. 

22. (Condition (4)) Find the points in Probs. 2-7 at which 
(4) N * 0 does not hold and state whether this is owing 
to the shape of the surface or to the choice of the 
representation. 

23. (Change of representation) Represent the paraboloid 
in Proh. 4 so that N(O, 0) * 0, and show N. 

24. PROJECT. Tangent Planes T(P) will be less 
important in our work, bur you should know how to 
represent them. 

(a) If S: rILl, V), then T(P): (r* - r ru rv) = 0 
(a scalar triple product) or 

r*(p. q) = rIP) + pr,,(P) + qrvCP). 

lb) If S: g(x, y, z) = 0, then T(P): (r* - rtp) - v g = O. 

(c) If S: z = f(x, y), then 
T(P): z* - z = (x* - x)fx(P) + (y* - y)fY(P)). 

Interpret (a)-(c) geometrically. Give two examples for 
(a), two for (b), and two for (c). 

To define a surface integral, we take a surface 5, given by a parametric representation as 

just discussed, 

(1) r(u, v) = Ix(u, v), y(u, v), z(u, v)] = x(u, v)i + y(u, v)j + z(u, v)k 

where (u. v) varies over a region R in the uv-plane. We assume 5 to be piecewise smooth 

(Sec. 10.5). so that 5 has a normal vector 

(2) and unit normal vector n= 
1 

TNfN 

at every point (except perhaps for some edges or cusps, as for a cube or cone). For a given 
vector function F we can now define the surface integral over 5 by 

(3) J J F-n dA = J J FCrCu, v))-N(u, v) du dv. 
S R 
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Here N = INln by (2), and INI = Iru x rvl is the area of the parallelogram with :-ides ru 
and r L" by the definition of cross product. Hence 

(3*) n dA = n INI dll du = N dll du. 

And we see that dA = INI du du is the element of area of S. 
Also F-n is the normal component of F. This integral arises naturally in flow problems, 

where it gives the flux across S (= mass of fluid crossing S per unit time; see Sec. 9.8) 
when F = pv. Here. p is the density of the fluid and v the velocity vector of the flow 
(example below). We may thus call the surface integral (3) the flux integral. 

We can write (3) in components, using F = [Fb F2 , F3]' N = [Nb N2 , N3]' and 
n = [cos a, cos f3, cos '}']. Here, a, f3, I' are the angles between n and the coordinate axes; 
indeed, for the angle between nand i, formula (4) in Sec. 9.2 gives cos a = noj/lnllil = noi, 
and so on. We thus obtain from (3) 

I I Fon dA = I I (FI cos a + F2 cos f3 + F3 cos '}') dA 
s s 

(4) 

= I I (FIN] + F2N2 + F3N3) du du. 
R 

In (4) we can write cos adA = dy dz, cos f3 dA = dz. dx. cos '}'dA = dx dy. Then (4) 
becomes the following integral for the flux: 

(5) I I Fon dA = I I (F] dy dz. + F2 d::. dx + F3 dx dy). 
s s 

We can use this formula to evaluate surface integrals by converting them to double integrals 
over regions in the coordinate planes of the xy::.-coordinate system. But we must carefull) 
take into account the orientation of S (the choice of n). We explain this for the integrals 
of the F3-terms, 

(5') I I F3 cos '}'dA = I I F3 dx dy. 
s s 

If the surface S is given by z = hex, y) with (x, y) varying in a region R in the xv-plane, 
and if S is oriented so that cos I' > 0, then (5') gives 

(5") I I F3 cos '}'dA = + I I F3(x. y. hex. y) dxdy. 
S R 

But if cos I' < 0. the integral on the right of (5") gets a minus sign in front. This follows 
if we note that the element of area dx d..v in the xy-plane is the projection Icos '}'I dA of 
the element of area dA of S; and we have cos I' = + Icos '}'I when cos I' > 0, but 
cos I' = -leos '}'I when cos I' < O. Similarly for the other two terms in (5). At the same 
time, this justifies the notations in (5). 

Other forms of surface integrals will be discussed later in this section. 
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E X AMP L E 1 Flux Through a Surface 

Compute the flux of water through the parabolic cylinder S: y = x 2
, 0 "'" X "'" 2, 0 "'" ::: "'" 3 (Fig. 243) if the 

velocity vector is v = F = [3,=2, 6, 6x:::], speed being measured in meters/sec. (Generally, F = pv, but water 

has the density p = I gmlcm3 = I ton/m3
.) 

Fig. 243. Surface 5 in Example 1 

Solution. Writing x = [/ and z = v, we have y = x 2 = [/2. Hence a representation of S is 

S: r = [u, r-?, v] (0 "'" [/ "'" 2, 0 "'" v "'" 3). 

By differentiation and by the definition of the cross product, 

N = r-u x rv = [1. 2u. 0] x [0. O. I] = [2u. -1. 0]. 

On S, writing simply F(S) for F[r(u. v)], we have F(S) = [3v2. 6. 6uv]. Hence F(S)' N = 6uv 2 - 6. By 

integration we thus get from (3) the flux 

I I F'n dA = f f (6uv
2 

- 6) du dv = f (3[/2V
2 

- 6[/) dv 
3 2 3 12 

s 0 0 0 U~O 

3 13 
= f (12v2 - 12) dv = (4v3 

- 12v) = 10~ - 36 = 72 [m3/sec] 
o v~O 

or 72 000 liters/sec. Note that the y-component of F is positive (equal to 6), so that in Fig. 243 the flow goes 

from left to right. 
Let us confirm this result by (5). Since 

N = INln = INllcos a, cos {3, cos 'YI = l2u, -I, 0] = [2x, I, 0] 

we see that cos a > 0, cos (3 < 0, and cos 'Y ~ O. Hence the second term of (5) on the right gets a minus sign, 
and the last term is absent. This gives. in agreement with the previous result. 

34 23 3 2 

I IF' n dA = f f 3,=2 dy dz - f f 6 dz ll\- = f 4(3z
2

) dz - f 6· 3 dx = 4' 3
3 

- 6' 3 . 2 = 72. • 
s 00 00 0 0 

E X AMP L E 2 Surface Integral 

Evaluate (3) when F 

(Fig. 244). 

[x2, 0, 3y2] and S is the portion of the plane x + y + z 1 In the first octant 

x 

Fig. 244. Portion of a plane in Example 2 
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Solution. Writing x = " and y = v. we have z = I - x - y = I - II - v. Hence we can represent the plane 
x + y + Z = I in the form r(u. v) = [II, V. I - u - v]. We obtain the first-octdnt portion S of this plane by restricting 
x = II and v = v to the projection R of S in the xy-plane. R is the triangle bounded by the two coordinate axes and 
the straight line x +}' = I, obtained from x + y + Z = I by setting z = O. Thus 0;;;; x;;;; I - y. 0;;;;)';;;; I. 

By inspection or by differentiation. 

N = ru X rv = [I. o. -11 x [0. I, -I] = [I. 1, II. 

Hence F(S)oN = fl? O. 3v2]o[l. I. I] = u2 + 3v2
. By (3). 

1 I-v I I FondA = J Icu2 + 3v
2
)dlldv = f f (u

2 + 3V2)dudv 
S ROO 

1 

= L [+ (I - V)3 + 3v
2
(l - V)] dv = + • 

Orientation of Surfaces 
From (3) or (4) we see that the value of the integral depends on the choice of the unit 
normal vector D. (Instead of D we could choose -D.) We express this by saying that such 
an integral is an integral over an oriented surface S, that is, over a surface S on which 
we have chosen one of the two possible unit normal vectors in a continuous fashion. (For 
a piecewise smooth surface. this needs some further discussion, which we give below.) 
If we change the orientation of S, this means that we replace 0 with -D. Then each 
component of 0 in (4) is multiplied by -I, so that we have 

Change of Orientation in a Surface Integral 

The replacement ofn by -0 (hence ofN by -N) corresponds to the lI1u/tipli("(ltion 
of the integral in (3) or (4) by -1. 

How do we effect such a change of N in practice if S is given in the form (l)? The 
simplest way is to interchange u and v, because then ru becomes rv and conversely, so 
that N = ru X rv becomes rv X ru = -ru X rv = -N, as wanted. Let us illustrate this. 

E X AMP L E 3 Change of Orientation in a Surface Integral 

In Example I we now repre~ent S by r = [v. v2
• 11],0;;;; V ;;;; 2. 0 ;;;; II ;;;; 3. Then 

N = ru x r" = [0,0, I] x [I, 2v, 0] = [-2v, 1,0]. 

For F = [3z2• 6. 6x.::] we now get FCS) = [3u2, 6. 6uv]. Hence FCS) 0 N = -6u2v + 6 and integration gives 
the old result times - I, 

323 I I F(S)'Ndvdu = f f C-6u
2
v + 6)dvd" = f (-1211

2 + 12)du = -72. • 
ROO 0 

Orientation of Smooth Surfaces 
A smooth surface S (see Sec. 10.5) is called orientable if the positive normal direction, 
when given at an arbitrary point Po of S, can be continued in a unique and continuous 
way to the entire surface. For smooth surfaces occurring in applications this is always 
true. 
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s 
c 

n 

(a) Smooth surface 

s 
c 

(b) Piecewise smooth surface 

i' 
I 

L 

Fig. 245. Orientation of a surface 

Orientation of Piecewise Smooth Surfaces 
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Here the following idea will do it. For a smooth orientable smface S with boundary curve 
C we may associate with each of the two possible orientations of S an orientation of C, 
as shown in Fig. 245a. Then a piecewise smooth surface is called orientable if we can 
orient each smooth piece of S so that along each curve C* which is a common boundary 
of two pieces Sl and S2 the positive direction of C* relative to Sl is opposite to the direction 
of C* relative to S2' See Fig. 245b for two adjacent pieces; note the arrows along C*. 

Theory: Nonorientable Surfaces 

A sufficiently small piece of a smooth swface is always orientable. This may not hold for 
entire surfaces. A well-known example is the Mobius strip5, shown in Fig. 246. To make 
a model, take the rectangular paper in Fig. 246. make a half-twist, and join the short sides 
together so that A goes onto A, and B onto B. At Po take a normal vector pointing, say. 
to the left. Displace it along C to the right (in the lower part of the figure) around the strip 
until you return to Po and see that you get a normal vector pointing to the right, opposite 
to the given one. See also Prob. 21. 

B A 

I c 1 
Po 

A B 

Fig. 246. Mobius strip 

5AUGUST FERDINAND MOBIUS (1790-1868). German mathemallcian, srudeI1l of Gauss, known for his 
work in surface theory, geometry, and complex analysis (see Sec. 17.2). 
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Surface Integrals Without Regard to Orientation 
Another type of surface integral is 

(6) f f G(r) dA = f f G(r(u, v))IN(u, v)1 du £Iv. 
S R 

Here dA = INI du dv = Iru x rei du dv is the element of area of the surface S represented 
by (1) and we disregard the orientation. 

We shall need later (in Sec. 10.9) the mean value theorem for surface integrals, which 
state~ that if R in (6) is simply connected (see Sec. 10.2) and G(r) is continuous in a 
domain containing R, then there is a point (uo, vo) in R such that 

(7) f f G(r) dA = G(r(uo, vo»)A 
S 

(A = Area of S). 

As for applications, if G(r) is the mass density of S, then (6) is the total ma'>s of S. If 
G = 1, then (6) gives the area A(S) of S, 

(8) A(S) = f fdA = f fir" x rvl du dv. 
S R 

Examples 4 and 5 show how to apply (8) to a sphere and a torus. The final example, 
Example 6. explains how to calculate moments of inertia for a surface. 

E X AMP L E 4 Area of a Sphere 

For a sphere r(lI. v) = [a cos v cos II, a cos v sin II, a sin v), 0 ~ u ~ 27T, -7T/2 ~ v ~ 7T/2, [see (3) 
in Sec. 10.51 we obtain by direct calculation (verify!) 

2 2 . 
a cos V Sin Ii. {l2 cos V sin uJ. 

Using cus2 
l/ + sin2 

l/ = I and then cos2 v + sm2 
V = 1. we obtain 

With this, (8) gives the familiar formula (note that leos vi = cos v when -7T/2 ~ v ~ 7T/2) 

11"12 211" 11"12 

A(S) = a 2 f f Icos vi dll dv = 27Ta2 f cos v dv = 47Ta2. 
-r./2 0 -.".12 • 

E X AMP L E 5 Torus Surface (Doughnut Surface): Representation and Area 

A torus swface S is obtained by rotating a circle C about a straight line L in space so that C does not intersect 
or touch L but its plane always passes through L. If L is the ~-axis and C has radius b and its center has distance 
a (> b) from L, as in Fig. 247, then S can be represented by 

r(lI. v) = (a + b cos v) cos II i + (a + b cos v) sin uj + b sin v k 

where 0 :;:: u :;:: 27T. 0 :;:: V ~ 27T. Thus 

fu = -(a + bcosv)sinui + (a + hcosv)cosl/j 

fu = -bSinVCOSlli - bsinvsinllj + bcosvk 

ru X ru ~ b(lI + bcosV)(CO~llcosvi + sin llCOS vj + sinvk). 
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Hence Iru x [vi = b(a + b cos v). and (8) gives the total area of the torus. 

(9) 

27T 27T 

A(S) = J J b(a + b cos v) dll dv = 4~ab. 
o 0 

z 
c 

y 

1 1 
~b~ 
1 I: 
1 1 1 

1 1 1 1 
4-ja~ 1\1 
1 1 1 1.1 

1 1 1 1 
1 I 

y 

x 

Fig. 247. Torus in Example 5 

E X AMP L E 6 Moment of Inertia of a Surface 
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• 

Find the moment of inertia / of a spherical lamina S: x2 + )'2 + :2 = a2 of constant mass density and total 
mass M about the .:-axis. 

Solutioll. If a mass is distributed over a surface S and fLeX, y, ;:) is the density of the mass (= mass per unit 
area), then the moment of inertia I of the mass with respect to a given axis L is defined by the surface integral 

(10) /= II fLD
2

dA 
s 

where D(x. y. z) is the distance of the point lx. y. ;:) from L. Since. in the present example. fL is constant and S 
has the area A = -I-7Ta2, we have fL = MIA = MI(47Tc?). 

For S we use the same representation as in Example 4. Then D2 = x2 + y2 = a2 cos2 v. Also, as in that example, 
dA = a2 cos v dll dv. This gives the following result. [Tn the integration, use cos3 v = cos v (1 - sin2 v).l 

II 
M I"'/2 J27r 2 I"'/2 ?Ma2 

/= fLD2 dA = ~ a4cos3vdlldv = M~' cos3 vdv = 
S 47Ta -",/2 0 --../2 3 • 

Representations z = f(x,y). If a surface S is given by z = f(x, y), then setting l/ = x, 
V = y, r = [l/, v, f] gives 

INI = Iru x rvl = 1[I,O.f,,] x [0, 1,fv]1 = I[-fw -fv, 1]1 

and, since fu = fx, fv = fy, formula (6) becomes 

(11) IIc(r)dA= I IC(X,Y,f(X,y)Jl + (ilf)2 + 
S R* ax (

of )2 
- dxdy. 
ay 
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R* 
y 

Fig. 248. Formula (11) 

Here R* is the projection of S into the _\y-plane (Fig. 248) and the normal vector N on S 
points up. If it points down, the integral on the right is preceded by a minus sign. 

From (11) with G = 1 we obtain for the area A(S) of S: z = j(x, y) the formula 

(12) A(S) ~ U JI + (:~)' + (~;.)' dxdJ 

where K:' is the projection of S into the xy-plane, as before. 

11-121 FLUX INTEGRALS (3) f Fon dA 
5 

Evaluate these integrals for the following data. Indicate the 
kind of surface. (Show the details of your work.) 

1. F = [2x, 5-", 0]. s: r = [u, v, 4u + 3v]. 
0~1I~1,-8~v~8 

2. F = [x2, y2, ,:2]. 

S: x + y + Z = 4, x ~ 0, y ~ 0, z ~ 0 

3. F = [x - z. y - x. Z - y]. 

s: r = [u cos V, 1/ sin v, u], 0 ~ II ~ 3. 0 ~ v ~ 71" 

4. F = leY, -eZ
, eX], 

s: x 2 + .1'2 = 9, x ~ O. -" ;;:; O. 0 ~ z ~ 2 

5. F = [x, y, z], S: r = [1/ cos v, II sin v. 11
2
], 

o ~ II ~ 4, -71" ~ V ~ 71" 

6. F = [cosh yz. O. )'4]. 
S: -,,2 + Z2 = 1. 0 ~ x ~ 20. Z ~ 0 

7. F = [1, 1, 1], S the sphere of radius 1 and center 0 

8. F = [tanxy. x2y. -z], S: y2 + ~::2 = I, 1 ~ x ~ 4 

9. F = [0, x, 0], 

s: x 2 + y2 + Z2 = a2, x ~ 0, y ;;:; 0, Z ~ 0 

10. F = [y2, x2, Z4], 

S: z = 4Y ~ + )2, 0 ~ z ~ 8, Y ~ 0 

11. F = [y3, x3, Z3], 

S: x 2 + 4)'2 = 4, x ~ 0, y ~ O. 0 ~ z ~ h 

12. F = [coshy, 0, sinh x], 
~z=x+~O~y~~O~x~1 

13. CAS EXPERIMENT. Write a program for evaluating 
sUiface integrals (3) that prints intennediate results 
(F, F ° N, the integral over one of the two variables). 
Can you experimentally obtain rules on functions and 
surfaces giving integrals that can be evaluated by the 
usual methods of calculus? Make a list of positive and 
negative results. 

1]4-201 SURFACE INTEGRALS (6) I J G(r) dA 

Evaluate these integrals for the following data. Indicate the 
kind of surface. (Show the details.) 

14. G = cosy + sinx, 
~x+y+z=~x~~y;;:;~z~O 

15. G = 5(x + )' + z), 
S: z = x + 2y, 0 ~ y ~ x, 0 ~ x ~ 2 

16. G = .vex + xeY + e', 
S: x 2 + y2 = 16, Y ~ 0, 0 ~ Z ~ 4 

17. G = (x2 + )'2 + z2f, S: Z = Vx2 + y2, y ~ 0, 
0~z~2 

18. G = ax + by + cz, S: x2 + y2 + Z2 = I, y ~ O. z ~ 0 

19. G = arctan (v/x), 

S: z = x 2 + ),2, l ~ z ~ 9, x ~ 0, y ~ 0 

20. G = 3x),. S: z = xy. 0 ~ x ~ 1. 0 ~ y ~ 1 

21. (Fun with Mobius) Make Mobius strips from long 
slim rectangles R of grid paper (graph paper) by pasting 
the short sides together after giving the paper a half­
twist. In each case count the number of parts obtained 
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by cutting along lines parallel to the edge. (a) Make R 

three squares wide and cut until you reach the 
beginning. (b) Make R four squares wide. Begin cutting 
one square away from the edge until you reach the 
beginning. Then cut the portion that is still two squares 
wide. (c) Make R five squares wide and cut similarly. 
(d) Make R six squares wide and cut. Formulate a 
conjecture about the number of parts obtained. 

APPLICATIONS 

22. (Center of gravity) Justity the following formulas for 
the mass M and the center of gravity (x, y, Z) of a lamina 
S of density (mass per unit area) u(x, y, z) in space: 

M= II udA. x= ~ If.rudA , 
s s 

:v = ~ I I yudA, Z = ~ II zudA. 
s s 

23. (Moments of inertia) Justify the following formulas 
for the moments of inertia of the lamina in Prob. 22 
about the x-, y-. and ::;-axes. respectively: 

s s 

I z = II (x2 + y2)udA. 

s 

24. Find a fonnula for the moment of inertia of the lamina 
in Prob. 22 about the line y = x, ::; = O. 

Find the moment of inertia of a lamina S of density 1 
about an axis A, where 

25. S: x2 + y2 = I, 0 ~ z ~ h, A: the z-axis 

26. S as in Prob. 25. A: the line::: = h/2 in the xc-plane 

27. S: x2 + y2 = Z2, 0 ~ Z ~ h, A: the z-axis 

28. (Steiner's theorem6
) If IA is the moment of inertia of 

a mass distribution of total mass M with respect to an 
axis A through the center of gravity, show that its 
moment of inertia IB with respect to an axis E, which 
is parallel to A and has the distance k from it. is 

29. Using Steiner's theorem, find the moment of inertia of 
S in Prob. 26 about the x-axis. 

30. TEAM PROJECT. First Fundamental Form of a 
Surface. Given a surface S: r(lI, v), the corresponding 
quadratic differential fonn 

457 

(13) ds2 = E du2 + 2F du dv + G dv2 

with coefficients 

is called the first fundamental form of S. (E, F, G are 
standard notations that have nothing to do with F and 
G that occur at some other places in this chapter.) The 
first fundamental form is basic in the theory of surfaces, 
since with its help we can determine lengths, angles, 
and areas on S. To show this, prove the following. 

(a) For a curve C: u = u(t), v = vet), a ~ t ~ b, on 
S, formulas (10), Sec. 9.5, and (14) give the length 

(15) 

b 

I = I v'r'(t).r'(t) dt 
a 

b 

= I YEu'2 + 2Fu'v' + Gv'2dt. 
a 

(b) The angle 'Y between two intersecting curves 
Cr: u = gUY, v = h(t) and C2 : u = p(t), v = q(t) on 
S: r(u, v) is obtained from 

(16) cos 'Y = 

where a = rug' + rvh' and b = rup' + rvq' are 
tangent vectors of Cr and C2 . 

(c) The square of the length of the normal vector N 
can be written 

so that formula (8) for the area A(S) of S becomes 

A(S) = I I dA = I I INI du dv 

(18) S R 

= I I Y EG - F2 du dv. 
R 

(d) For polar coordinates u (= r) and v (= 8) defined 
by x = u cos v, y = u sin v we have E = 1, F = O. 
G = u2

, so that 

ds 2 = du2 + u2 dv2 
= dr2 + r2 d82. 

Calculate from this and (18) the area of a disk of 
radius a. 

(e) Find the tirst fundamental fOlm of the torus in 
Example 5. Use it to calculate the area A of the torus. 
Show that A call also be obtained by the theorem of 

6JACOB STEINER (1796-1863), Swiss geometer, born in a small village, learned to write only at age 14, 
became a pupil of Pestalozzi at 18. later studied at Heidelberg and Berlin and, finally, because of his outstanding 
research, was appointed professor at Berlin University. 
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Pappos,7 which states that the area of a surface of 
revolution equals the product of the length of a 
meridian C and the length of the path of the center of 
gravity of C when C is rotated through the angle In. 

(I) Calculate the first fundamental form for the usual 
representations of important surfaces of your own 
choice (cylinder, cone, etc.) and apply them to the 
calculation of length~ and areas on these ~urfaces. 

10.7 Triple Integrals. 
Divergence Theorem of Gauss 

In this section we discuss another "big" integral theorem, the divergence theorem, which 
transforms surface integrals into triple integrals. So let us begin with a review of the latter. 

A triple integral is an integral of a function f(x, y, z) taken over a closed bounded 
(three-dimensional) region T in space (where "clo!o.ed" and "bounded" are defined as in 
footnote 2 of Sec. 10.3, with "sphere" substituted for "circle"). We subdivide T by planes 
parallel to the coordinate planes. Then we consider those boxes of the subdivision 
(rectangular parallelepipeds) that lie entirely inside T, and number them from I to n. In 
each such box we choose an arbitrary point, say, tXk, Yk, z,.J in box k. The volume of box 
k we denote by Ll Vk . We now form the sum 

n 

in = 2: f(xk, Yk, Zk) .1 Vk· 
k~l 

This we do for larger and larger positive integers 11 arbitrarily but so that the maximum 
length of all the edges of those 11 boxes approaches zero as II approaches infinity. This 
gives a sequence of real numbers in}' Jn2, .... We assume that f(x, Y, z) is continuous in 
a domain containing T, and T is bounded by finitely many smooth sU/jaces (see Sec. 10.5). 
Then it can be shown (see Ref. [GR4] in App. I) that the sequence converges to a limit 
that is independent of the choice of subdivisions and corresponding points (Xk, Yk, Zk)' This 
limit is called the triple integral of f(x, y, .;:) orer the region T and is denoted by 

I I I f(x, y, z) dx dy d.;: or by I I I f(x, y, .;:) dV. 
T T 

Triple integrals can be evaluated by three successive integrations. This is similar to the 
evaluation of double integrals by two successive integrations, as discussed in Sec. LO.3. 
An example is shown below (Example 1). 

Divergence Theorem of Gauss 
Triple integrals can be transformed into surface integrals over the boundary surface of a 
region in space and conversely. Such a transformation is of practical interest because one 
of the two kinds of integral is often simpler than the other. It also helps in establishing 
fundamental equations in fluid flow, heat conduction, etc .. as we shaH see. The 
transformation is done by the divergence theorem. which involves the divergence of a 
vector function F = [FI, F2 , F 3 ] = F1i + F2 j + F3k, namely, 

7PAPPUS OF ALEXANDRIA (about A.D. 300), Greek mathematician. The theorem is also called Guldin's 
theorem. HABAKUK GULDIN (1577-1643) was born in St. Gallen, Switzerland. and later became professor 
in Graz and Vienna. 



SEC 10.7 Triple Integrals. Divergence Theorem of Gauss 459 

THEOREM 1 

EXAMPLE 

z 

I 
I 
I 

b 

_----T----, 
....l. - --

x 

Fig. 249. Surface 5 
in Example 1 

(1) (Sec. 9.8). 

Divergence Theorem of Gauss 
(Transformation Between Triple and Surface Integrals) 

Let T be a closed bounded region in space whose bOl/ndary is a piecewise smooth 
orielltable sll1face S. Let F(x, y, ;:) be a vector function that is cOlltinllous and has 
continllolls first partial derivatives ill some domain containing T. Then 

(2) f f f div F dV = f f Fen dA. 
T s 

In components ofF = [Fl , F2 , Fg] and of the (Juter unit 1101711al vector 
n = [cos a, cos f3, cos y] of S (as in Fig. 250), formula (2) becomes 

(2*) 

f f f( aFI + iJ~2 + iJFg
) eLl: d y d::. 

T ax rJy az 

= f I (FI cos a + F2 cos f3 + Fg cos y) dA 
s 

= f f(F1 dy dz + F2 dzdx + Fg dxdy). 
s 

The proof follows after Example 1. "Closed bounded region'" is explained above. 
"piecewise smooth orientable" in Sec. I 0.5, and "domain containing T" in footnote 4, 
Sec. 10.4, for the two-dimensional case. 

Evaluation of a Surface Integral by the Divergence Theorem 

Before we prove the theorem. let us show a typical application. Evaluate 

I = f f (x3 dy dz + x 2y d: ell: + x2
: dt dy) 

S 

where S is the closed surface in Fig. 249 consisting of the cylinder x 2 + )"2 = a2 (0 ~ ~ ~ b) and the circular 
disks::: = 0 and: = b (x2 + y2 ~ a 2

) . 

Solution. F1 = x3
• F2 = x2

)". F3 = .\"2:;:. Hence div F = 3x2 + x2 + x2 = 5x2
. The form of the surface 

suggests that we introduce polar coordinates r. e defined by x = r cos e. y = r sin e fthu~ cylindrical coordinates 
r. e. :). Then the volume element is dl: dy dz = r dr dl:J d:. and we obtain 

b 27T a 

/= fffSX2dXdYdZ= f f f (Sr2 cos2 e)rdrdl:Jdz 
T Z~O 6~O T~O 

• 
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PROOF We prove the divergence theorem, beginning with the first equation in (2*). This equation 
is true if and only if the integrals of each component on both sides are equal; that is, 

(3) IIIo.F1 dxdydz= IIF1 cos adA, 
T ox s 

(4) I I I O~2 dx dy dz = I I F2 cos f3 dA, 
T 0) s 

(5) 
aF 

III 7

3 
dxdydz = II F3cosydA. 

T o~ s 

We first prove (5) for a special region T that is bounded by a piecewise smooth 
orientable surface S and ha~ the property that any straight line parallel to anyone of the 
coordinate axes and intersecting T has at most aile segment (or a single point) in common 
with T. This implies that T can be represemed in the form 

(6) g(x, y) ~ z ~ /z(x, y) 

where (x, y) varies in the orthogonal projection R of T in the xy-plane. Clearly, 
z = R(X, y) represents the "bottom" S2 of S (Fig. 250), whereas z = hex, y) represents the 
"top" Sl of S, and there may be a remaining vertical portion S3 of S. (The portion S3 may 
degenerate into a curve, as for a sphere.) 

To prove (5), we use (6). Since F is continuously differentiable in some domain 
containing T, we have 

(7) I . of [ h<x, y) "JF ] 
I1 --:-::- dxdydz = I I I ~ dz dxdy. 
T 0<0 R g(x, y) OZ 

Integration of the inner integral [ ... ] gives F3 [x, y, hex, y)] - F3 [x, y, glx, y)]. Hence the 
triple integral in (7) equals 

(8) I I F3[x, y, hex, y)] dx dy - I I F3[x, y, g(x, y)] dx dy. 

x 

z 

n'11 
~/Sl 

t fJ 
, Y~~ 
1 n 1 

I~I 1 1 
1 1 1 1 __ 

1 1 Y 
1 

Fig. 250. Example of a special region 
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But the same result is also obtained by evaluating the right side of (5); that is [see also 
the last line of (2*)], 

J J FgcOS ydA = J J Fgdxdy 
s s 

= + J J Fg[x, y, hex, y)] dx dy - J J Fg[x, y. g(x, y)] dx dy, 

where the first integral over R gets a plus sign because cos y> 0 on S1 in Fig. 250 [as 
in (5"), Sec. 10.6], and the second integral gets a minus sign because cos y < 0 on S2' 
This proves (5). 

The relations (3) and (4) now follow by merely relabeling the variables and using the 
fact that, by assumption, T has representations similar to (6). namely, 

g(.\', z) ~ x ~ hey, z) and g(z, x) ~ y ~ h(z, x). 

This proves the first equation in (2*) for special regions. It implies (2) because the left side 
of (2*) is just the definition of the divergence, and the right sides of (2) and of the first 
equation in (2*) are equal, as was shown in the first line of (4) in the last section. Finally, 
equality of the right sides of (2) and (2*), last line, is seen from (5) in the last section. 

ThIS establishes the divergence theorem for special regions. 
For any region T that can be subdivided into finitely many special regions by means of 

auxiliary surfaces. the theorem follows by adding the result for each part separately; this 
procedure is analogous to that in the proof of Green's theorem in Sec. LO.4. The sUlface 
integrals over the auxiliary surfaces cancel in pairs, and the sum of the remaining surface 
integrals is the surface integral over the whole boundary surface S of T; the triple integrab 
over the parts of T add up to the triple integral over T. 

The divergence theorem is now proved for any bounded region that is of interest in 
practical problems. The extension to a most general region T of the type indicated in the 
theorem would require a certain limit process: this is similar to the situation in the case 
of Green's theorem in Sec. 10.4. • 

E X AMP L E 2 Verification of the Divergence Theorem 

Evaluate J J (7xi - ;:k)"n dA over the sphere S: x2 + y2 + Z2 = 4 (a) by (2). (b) directly. 
s 

Solution. (a) div F = div [7x, 0, -z] = div [7xi - zk] = 7 - J = 6. Answer: 6' (4J3)1T' 23 = 641T. 

(b) We can represent S by (3). Sec. 10.5 (with a = 2). and we shall use n dA = N dlt dv [see (3*), Sec. 10.61. 
Accordingly, 

S: r = [2 cos v cos It. 2 cos v sin II. 2 sin v]. 

Then ru= l-2co$vsinll. 2cosvcosu, 0] 

rv = [-2sinvcoslI, - 2sinvsinu. 2 cos v] 

N = r ll x r,. = [4 cos2 v cos II, 4 cos2 v sin II. 4 cos v sin vJ. 

Now on S we have x = 2 cos v cos II, Z = 2 sin v, so that F = [7x. O. -;oj becomes on S 

F(S) = [14cosvco~lI. O. -2 sin v] 

and F(S)"N = (\4 cos v cos 1I)'4cos2 v cos II + (-2 sin v)'4 cos v sin v 

= 56 cos3 v cos2 u - 8 cos v sin2 v. 



462 

THEOREM 2 

CHAP. 10 Vector Integral Calculus. Integral Theorems 

On S we have to integrate over II from 0 to 277". This gives 

77"' 56 cos3 v - 277"' 8 cos v sin2 v. 

The integral of cos v sin2 v equal~ (sin3 v)/3, and that of cos3 v = cos v (I - sin2 v) equals sin v - (sin3 v)13. 
On S we have -77"/2 ;'" v ;'" 77"12, so that by sub~tituting these limits we get 

5677"(2 - 2/3) - ) 677"' 2/3 = 6477" 

a~ hoped for. To see the point of Gauss's theorem, compare the amounts of work. • 
Coordinate Invariance of the Divergence. The divergence (I) is defined in terms of 
coordinates, but we can use the divergence theorem to show that div F has a meaning 
independent of coordinates. 

For this purpose we first note that triple intgrals have properties l/uite similar to thuse 
of double integrals in Sec. 10.3. In particular. the mean value theorem for triple integrals 
asserts that for any continuous function f(x, y, .::) in a bounded and simply connected 
region T there is a point Q: (xo, )'0, <'0) in T such that 

(9) I I I f(x, y, z) dV = f(xo, Yo, '::0)V(T) 
T 

(V(l) = volume of T). 

In this formula we interchange the two sides, divide by veT), and set f = div F. Then by 
(he divergence theorem we obtain for the divergence an integral over the boundary surface 
SeT) of T, 

(10) div F(xo, Yo, '::0) = _1_ I II div F dV = _1_ I I Fon dA. 
veT) T veT) sm 

We now choose a point P: (Xl> ,vI' ZI) in T and let T shrink down onto P so that the 
maximum distance den of the points of T from P goes to zero. Then Q: (xo. )'0' 20) must 
approach P. Hence (10) becomes 

(11) 

This proves 

divF(P)=lim -I-IIFOUdA. 
d(T)->O VeT) SeT) 

Invariance of the Divergence 

The divergence of a vector function F with cOlltinuolls first partial derivatives in a 
region T is independent of the particular choice of Cartesian coordinates. For any 
Pin T it is given by (II). 

Equation (l1) is sometimes used as a definition of the divergence. Then the representation 
(1) in Cartesian coordinates can be derived from (11). 

Further applications of the divergence theorem follow in the problem set and in the 
next section. The examples in the next section will also shed further light on the nature 
of the divergence. 
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C .. C_i, _ --­. ---- • •• 

11-81 APPLICATION OF TRIPLE INTEGRALS: 

MASS DISTRIBUTION 

Find the total mass of a mass distribution of density u in a 
region T in space. (Show the details of your work.) 

1. u = x2y2~2, T the box Ixl ~ a, iYI ~ b, kl ~ c 

2. u = x2 + y2 + ~2, T the box 0 ~ x ~ 4, 0 ~ J ~ 9, 
O~:::~l 

3. u = sin x cos y, T: 0 ~ x ~ ~7T. ~7T - X ~ Y ~ ~7T, 
o ~ ~ ~ 12 

4. u = e-"'-Y-z, Tthe tetrahedron with vertices (0. O. 0). 
(2, O. a), (0, 2. a). (0, 0, 2) 

5. u = ~(X2 + y2)2, T the cylinder x2 + )'2 ~ 4. Izl ~ 2 

6. u = 30::;. T the region in the first octant bounded by 
y = 1 - x 2 and z = x. Sketch it. 

7. u = 1 + Y + ~2, T the cylinder ,,2 + ::.2 ~ 9, 
l~x~9 

8. u = x 2 + y2. T the ball x 2 + y2 + :;2 ~ a2 

19-141 APPLICATION OF TRIPLE INTEGRALS: 
MOMENT OF INERTIA 

Ix = J J J (y2 + z2) dx dy dz of a mass of density 1 in 
T 

a region T about the x-axis. Find Ix when T is as follows. 

9. The cube 0 ~ x ~ a, 0 ~ y ~ a, 0 ~ z ~ a 

10. The box 0 ~ x ~ 1I, -bt2 ~)' ~ bt2. -el2 ~ ~ ~ el2 

11. The cylinder y2 + :;2 ~ c?, 0 ~ x ~ Iz 

12. The ball x 2 + .\'2 + ~2 ~ a2 

13. The cone y2 + ~2 ~ x2
• 0 ~ x ~ Iz 

14. The paraboloid y2 + Z2 ~ X, 0 ~ x ~ h 

1 (h 
15. Show that for a solid of revolution, f" = 27T L r\x) dx. 

U~t: this to solve Probs. 11-14. 0 

16. Why is Tx in Prob. 13 for large h larger than I,,, in Prob. 
14? Why is it smaller for h = I? Give physical reason. 

117-251 APPLICATION OF THE DIVERGENCE 
THEOREM: 

SURFACE INTEGRALS J J F· n dA 
s 

Evaluate this integral by the divergence theorem. (Show the 
details.) 

17. F = [x, y, ;::], S the sphere x 2 + y2 + ::;2 = 9 

18. F = [4x, 3z, 5y]. S the surface of the cone 
x 2 + y2 ~ :;2. 0 ~ ~ ~ 2 

19. F = [z - y y3, 2;::3]. S the surface of y2 + Z2 ~ 4, 
-3 ~x~ 3 

20. F = [3x)' 2, yx2 - y3, 3zx2], S the surface of 
t 2 + y2 ~ 25. 0 ~ Z ~ 2 

21. F = [sin y, cos x. cos ;::], S tile surface of 
x 2 + )'2 ~ 4. Izl ~ 2 

22. F = [x3 
- .\'3, )'3 - Z3, ;::3 - x3 ]. S the surface of 

x 2 + y2 + ;::2 ~ 25, z :0=: 0 

23. F = [4x2
• 2x + y2. x 2 + Z2]. S the surface of the 

tetrahedron in Prob. 4 

24. F = [4x2
• y2. -2 cos m:], S the surface of the 

tetrahedron with vertices (0, O. a). (l. O. a). (0. l. m. 
(0,0, 1) 

25. F = [5x 3. 5y 3, 5;::3], S: x 2 + y2 + Z2 = 4 

10.8 Further Applications of the 
Divergence Theorem 

We show in this section that the divergence theorem has basic applications in fluid flow, 
where it helps characterize sources and sinks of fluid, in /zeat flo~r, where it leads to the 

basic heat equation, and in potential theory, where it gives basic properties of the solutions 

of Laplace's equation. Here the region T and its boundary surface S are assumed to be 

such that the divergence theorem applies. 

E X AMP L E 1 Fluid Flow. Physical Interpretation of the Divergence 

From the divergence theorem wc may obtain an intuitive interpretation of the divergence of a vector. For this 
purpose we consider the flow of an incompressible fluid (see Sec. 9.8) of constant density p = I which is steady. 
that is. does not vary with time. Such a flow is determined by the field of its velocity vector yep} at any 
poimP. 
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Let S be the boundary surface of a region T in space, and let n be the outer unit normal vector of S. Then 
von is the normal component of v in the direction of n, and Ivon dAI is the mass of fluid leaving T (if von> 0 
at some P) or enterillg T (if von < 0 at P) per unit time at some point P of S through a small portion 6.S of S 
of area 6.A. Hence the total mass of fluid that flows across S from T to the outside per unit time is given by the 
surface integral 

I I vondA. 
s 

Division by the volume Vof T give, the average flow out of T: 

(1) 

Since the flow is steady and the fluid is incompressible. the amount of fluid flowing outward must be continuously 
supplied. Hence. if the value of the integral (I) is different from zero, there must be sources (positive sources 
and negat;,'e sources. called sinks) in T. that is, points where fluid is produced or disappears. 

If we let T shrink down to a fixed point P in T, we obtain from (I) the source intensity at P given by the 
right side of (11) in the last section with F 0 n replaced by von, that is, 

(2) div vlP) = lim _1_ IIvon dA. 
d(T)~O V(1) 

SeT) 

Hence the dil'erge1lce of the "e/ocity ,'ector v of a steady incompressible floll' is the source intensit--.- of the flow 
at the correJoponding point. 

There are no sources in T if and only if div v is zero everywhere in T. Then for any closed surface S in T we 
have 

I IvondA = o. 
s • 

E X AMP L E 2 Modeling of Heat Flow. Heat or Diffusion Equation 

Physical experiments show that in a body, heat flows in the direction of decreasing temperature, and the rate of 
flow is proportional to the gradient of the temperature. This means that the velocity v of the heat flow in a body 
is of the form 

(3) v = -Kgrad V 

where V(x, y, z. t) is temperature, t is time. and K is called the thermal conductil'ity of the body: in ordinary 
physical circumstances K is a constant. Using this information, set up the mathematical model of heat flow, the 
so-called heat equation or diffusion equation. 

Solution. Let T be a region in the body bounded by a surface S with outer unit normal vector n such that 
the divergence theorem applies. Then von is the component of v in the direction of n. and the amount of heat 
leaving T per unit time is 

IIvondA. 
s 

This expression is obtained similarly to the corresponding surface integral in the last example. Using 

(the Laplacian; see (3) in Sec. 9.8), we have by the divergence theorem and (3) 

I IvondA = -K II IdiV(grad U)dxdyd::. 
S T 

(4) 

= -K I I I V
2

Vdxdyd::.. 
T 
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On the other hand, the total amount of heat H in T is 

H = J J J apU d:'(dydz 
T 

465 

where the constant u is the specific heat of the material of the body and p is the density (= mass per unit 
volume) of the material. Hence the time rate of decrease of H is 

_ aH = _ JJJup au d.ydvdz 
at at' 

T 

and thi~ must be equal to the above amount of heat leaving T. From (4) we thus have 

or 

JJJ(up:)~ 
T 

2 ) - K\' U dxdydz = O. 

Since this holds for any region T in the body, the integrand (if continuous) must be zero everywhere; that is, 

(5) 
K 

c 2 =-­
up 

where c2 is called the thermal diJfusil'ity of the material. This partial differential equation is called the heat 
equation. It is the fundamental equation for heat conduction. And our derivation is another impressive 
demonstration of the great importance of the divergence theorem. Methods for solving heat problems will be 
shown in Chap. 12. 

The heat equation is also called the diffusion equation because it also models diffusion processes of motIOns 
of molecules tending to level off differences in den,ity or pressure in gases or liquids. 

If heat flow does not depend on time, it is called steady-state heat flow. Then aUlat = 0, so that (5) reduces 
to Laplace's equation 'iJ2U = O. We met this equation in Secs. 9.7 and 9.8, and we shall now see thaI the 
divergence theorem adds basic insights into the nature of solutions of this equation. • 

Potential Theory. Harmonic Functions 
The theory of solutions of Laplace's equation 

(6) 

is called potential theory. A solution of (6) with continuous second-order partial 
derivatives is called a harmonic function. That continuity is needed for application of 
the divergence theorem in potential theory, where the theorem plays a key role that we 
want to explore. Further details of potential theory follow in Chaps. 12 and 18. 

E X AMP L E 3 A Basic Property of Solutions of Laplace's Equation 

The integrands in the divergence theorem are div F and F' n (Sec. 10.7). If F is the gradient of a scalar function, 
say. F = grad f, then div F = div tgrad f) = 'iJ2f ; see (3). Sec. 9.8. Also, F' n = n' F = n' grad f. TIris is 
the directional derivative of f in the outer normal direction of S. the boundary surface of the region T in the 
theorem. This derivative is called the (outer) normal derivative of f and is denoted by aflan. Thus the formula 
in the divergence theorem becomes 
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(7) 

This is the three-dimensional analog of (9) in Sec. 10.4. Because of the assllmptions in the divergence theorem 
this gives the following result. • 

r 
I 

A Basic Property of Harmonic Functions 

Let f(x, y, z) be a harmonic function in some domain D is space. Let S be any 
piecewise smooth closed orientable st/1jace in D whose entire region it encloses 
belongs to D. Then the integral of the nonna/ derivative of f taken over S is -;ero. 
(For "piecewise smooth" see Sec. 10.5.) 

X AMP L E 4 Green's Theorems 

Let f and g be scalar functions such that F = f grad g satisfies the assumptions of the divergence theorem in 
some region T. Then 

div F = div (f grad g) 

([ 
iJg iJg iJg J) 

= div f -;- . f -;- . f -;-
iJx iJy iJz 

Also, since f is a scalar function, 

Fon = noF 

= no(fgradg) 

= (n 0 grad g)f. 

Now n° grad g is the direcl10nal derivative ag/iJll of g in the outer normal direction of S. Hence the formula in 
the divergence theorem becomes "Green's first formula" 

(8) J J J(fV2g + grad f-grad g) dV = J J f iJg dA. 
T S an 

Formula (8) together with the assumptions is known as thefirstform of Greel1's theorem. 
Interchanging f and g we obtain a similar formula. Subtracting this formula from (8) we find 

(9) 

This formula is called Green's second formula or (together with the assumptions) the secolldform ofGreell's 
theorem. • 
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E X AMP L E 5 Uniqueness of Solutions of Laplace's Equation 

THEOREM 2 

THEOREM 3 

THEOREM 3* 

Let I be harmonic in a domain D and let I be zero everywhere on a piecewise smooth closed orientable surface 
S in D whose entire region T it encloses belongs to D. Then V2g is zero in T. and the surface integral in (8) is 
zero, so that (8) with g = I gives 

I I J grad I . grad I dV = I J I Igrad 112 dV = O. 
T T 

Since I is harmonic, grad I and thus Igrad II are continuous in T and on S, and since Igrad II is nonnegative, 
to make the integral over T zero. grad I must be the zero vector everywhere in T. Hence Ix = I y = I z = O. 
and f is constant in T and, because of continuity, it is equal to its value 0 on S. This proves the following 
theorem. 

Harmonic Functions 

Let j"(x, y, z) be harmonic in some dOll/ain D and zero at eVel)' point of a piecewise 
smooth closed orientable suiface S in D whose entire region T it encloses belongs 
to D. Then f is identically zero in T. 

This theorem has an important conseq LIenee. Let II and 12 be functions that satisfy the assumptions of Theorem 
I and take on the same values On S. Then their difference II - 12 satisfies those assumptions and has the value 
o everywhere on S. Hence, Theorem 2 implies that 

II -h=O throughout T, 

and we have the following fundamental result. 

Uniqueness Theorem for laplace's Equation 

Let T be a region that satisfies the assumptions of the divergence theorem, and let 
f(.\", y, z) be a hal11lOnic function in a domain D that contains T and its /JoundGl)' 
surface S. Then f is uniquely detennined in T by its values on S. 

The problem of determining a solution u of a partial differential equation in a region T such that u assumes 
given values on the boundary surface S of Tis called the Dirichlet problem.8 We may thus reformulate Theorem 
3 as follows. 

Uniqueness Theorem for the Dirichlet Problem 

if the assumptions in Theorem 3 are satisfied and the Dirichlet problem for the 
Laplace equation has a solution in T, then this solution is unique. 

These theorems demonstrate the extreme importance of the divergence theorem in potential theory. • 

8PETER GUSTAV LEJEUNE DIRICHLET il805-1859), German mathematician, studied in Paris LInder 
Cauchy and others and sLlcceeded Gauss at G6ttingen in 1855. He became known by his important research on 
Fourier series (he knew Fourier personally) and in number theory. 
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1. (Hannonic functions) Verify Theorem 1 for 
f = 2x2 + 2y2 - 4z2 and S the surface of the cube 
o ~ x ~ I, 0 ~ y ~ 1, 0 ~ z ~ 1. 

2. (Hannonic functions) Verify Theorem 1 for 
f = y2 - x 2 and the surface of the cylinder 
x 2 + y2 ~ I, 0 ~ z ~ 5. 

3. (Green's first formula) Verify (8) for f = 3y2, 
g = x2

, S the surface of the cube in Prob. I. 

4. (Green's first formula) Verify (8) for f = x, 
g = y2 + ;:2. S the surface of the box 0 ~ x ~ 1, 

o ~ Y ~ 2, 0 ~ z ~ 3. 
5. (Green's second formula) Verify (9) for the data in 

Prob.3. 

6. (Green's second formula) Verify (9) for f = x4, 

g = y2 and the cube in Prob. l. 

7. (Volume as a surface integral) Show that a region T 
with boundary surface S has the volume 

V= ~ IJrcostPdA 
3 S 

where r is the distance of a variable point P: (x, y, z) 

on S from the origin 0 and tP is the angle between the 
directed line OP and the outer normal of Sat P.(Make 
a sketch.) 

8. Find the volume of a ball of radius a by means of the 
formula in Prob. 7. 

9. Show that a region T with boundary surface S has the 
volume 

V= IIXdydz 
S 

= IIyd::dx 
S 

10.9 Stokes's Theorem 

= IIZdxdy 
S 

= ~ II(XdydZ + ydzdx + zdxdy). 
S 

10. TEAM PROJECT. Divergence Theorem and 
Potential Theory. The importance of the divergence 
theorem in potential theory is obvious from (7)-(9) 
and Theorems I - 3. To emphasize it further, consider 
functions f and g that are harmonic in some domain D 
containing a region Twith boundary surface S such that 
T satisfies the assumptions in the divergence theorem. 
Prove and illustrate by examples that then: 

(a) II g :! dA = I IIlgrad gl2 dV. 
S T 

(b) If aglan = 0 on S, then g i8 constant in T. 

(c) II (f og - g Of) dA = O. 
on 011 

S 

(d) If of Ian = fJglon on S, then f = g + c in T, where 
c is a constant. 

(e) The Laplacian can be represented independently 
of coordinate systems in the form 

v2 = lim _1_ JI of dA 
f d(T)~O VeT) an 

S(T) 

where d(T) is the maximum distance of the points of a 
region T bounded by SeT) from the point at which the 
Laplacian is evaluated and veT) is the volume of T. 

Having seen the great usefulness of Gauss's divergence theorem, we now tum to the 
second "big" theorem in this chapter, Stokes's theorem. This theorem transforms line 

integrals into surface integrals and conversely. Hence it generalizes Green's theorem of 
Sec. 10.4. Stokes's theorem involves the curl 

j k 

(1) curl F = a/ax (see Sec. 9.9). 
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THEOREM 1 Stokes's Theorem9 

{Transformation Between Surface and Line Integrals} 

Let S be a piecewise STllooth9 oriented suiface in space and let the boundary of S 
be a piecewise smooth simple closed curve C. Let F(x, y, z) be a continuous vector 
function that has continuous first partial derivatives in a domain in space containing 
S. Then 

(2) J J (curl F)en dA = f Fer' (s) ds. 
s C 

Here n is a unit nonnal vector of S and, depending on n, the integration around C 
is taken in the sense shown in Fig. 251. Furthermore, r' = dr/ds is the unit tangent 
vector and s the arc length of C. 

In components, formula (2) becomes 

(2*) 

= f_(Fl dx + F2 dy + F3 dz). 
C 

Here, F = [Flo F2 , F3]' N = [Nl , N2, N3]' n dA = N du du, 
r' ds = [dx. dy, dz]. and R is the region with boundary curve C in the uv-plane 
corresponding to S represented by r(u. v). 

The proof follows after Example 1. 

r' 

~c r'~ 
J 

n 

Fig. 251. Stokes's theorem 

z 

(\ 
x y 

Fig. 252. Surface 5 in Example 1 

E X AMP L E 1 Verification of Stokes's Theorem 

Before we prove Stokes's theorem, let LIS first get L1sed to it by verifying it for F = [y, z, xl and S the paraboloid 
(Fig. 252) 

z ~ O. 

Solution. The curve C, oriented as in Fig. 252, is the circle r(s) = [cos s, sin s, 0]. Its unit tangent vector 
is r' (s) = I-sin s, cos s, 0]. The function F = [y, z, x] on Cis F(r(s)) = [sin s, 0, cos s]. Hence 

27T 2'17" f Fodr = J F(r(s))or'(s)ds= J [(sins)(-sins)+O+O]ds=-'7T. 
COO 

9 Sir GEORGE GABRIEL STOKES (l819-1903).lrish mathematician and physicist who became a professor 
in Cambridge in 1849. He is also known for his important contribution to the theory of infinite series and to 
viscous flow (Navier-Stokes equations), geodesy, and optics. 

"Piecewise smooth" curves and surfaces are defined in Sees. 10.1 and 10.5. 
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We now consider the surface integral. We have Fl = y. F2 = :, F3 = X. so that in (2*) we obtain 

curlF= Cllrl[Fl' F2 , F3] = cllrl[y. " xj=[-1. -I. -11. 

A normal vector of Sis N = grad(;: - J(x, y)) = [2.-.2,'. I]. Hence (curl F)oN = -2\' - 2y - I. Now 
n dA = N dx dy (see (3'') in Sec. 10.6 with x, y instead of II, u). Using polar coordinates r. e defined by 
x = r cos e, y = r sin e and denoting the projection of S into the x\'-plane by R. we thus obtain 

f I(curIF)ondA = f I<CLlrlF)ON dxdy = I f<-2X - 2y - I)dxdy 
S R R 

2.". 1 

= I I (-2r(cos8+ sin 8) - I)rdr£le 
8=0 7·=0 

2.". 

= f (- f (cos e + sin 8) -1) d8 = 0 + 0 -1 (21T) = -1T. • 

O~O 

PROOF We prove Stokes's theorem. Obviously, (2) holds if the integrals of each component on 
both c;ides of (2*) are equal; that is, 

(3) {I( aaF?l N.2 - aFl) ,( -.- N3 du dv = r Fl dx 
ely c 

(4) 

(5) 

We prove this first for a surface S that can be represented simultaneously in the forms 

(6) (a) ;: = f(x, y), (b) y = g(x, .:), (c) x = h(y, ;:). 

We prove (3), using (6a). Setting u = x, v = y, we have from (6a) 

r(u, v) = rex, y) = [x, y, f(x, y)] = xi + yj + fk 

and in (2), Sec. 10.6. by direct calculation 

Note that N is an upper normal vector of S, since it has a positive z-component. Also, 
R = S*, the projection of S into the x,v-plane, with boundary curve E = C* (Fig. 253). 
Hence the left side of (3) is 

(7) II [aFl 
(-fy) - aFlJ dxdv. 

S* az iJy' 

We now consider the light side of (3). We transform this line integral over E = C* into 
a double integral over S* by applying Green's theorem [formula (1) in Sec, 10.4 with 
F2 = 0]. This gives 

,( Fldx = ff- aFl dxd)'. 
Jc* S* ay 
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Fig. 253. Proof of Stokes's theorem 
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Here, Fl = FI(x, y, f(x, y)). Hence by the chain rule (see also Prob. 10 in Problem Set 9.6), 

(!Fl(X, y, f(x, y)) 

iJy 

iJFl(X, y, z) 

iJy (Jz Cly 
[z = f(x. y)]. 

We see that the right side of this equals the integrand in (7). This proves (3). Relations 
(4) and (5) follow in the same way if we use (6b) and (6c), respectively. By addition we 
obtain (2*). This proves Stokes's theorem for a surface S that can be represented 
simultaneously in the forms (6a), (6b), (6c). 

As in the proof of the divergence theorem, our result may be immediately extended to 
a surface S that can be decomposed into finitely many pieces, each of which is of the kind 
just considered. This covers most of the cases of practical imerest. The proof in the case 
of a most general surface S satisfying the assumptions of the theorem would require a limit 
process; this is similar to the situation in the case of Green's theorem in Sec. lOA. • 

E X AMP L E 2 Green's Theorem in the Plane as a Special Case of Stokes's Theorem 

Let F = IF l' F 21 = F 1 i + F 2 j be a vector function that is continuously differentiable in a domain in the 
\"y-plane containing a simply connected bounded closed region S whose boundary C is a piecewise smooth 
simple closed curve. Then. according to (I), 

aF2 aFl 
(curIF)on = (curlF)ok = --- - ---. ax ay 

Hence the formula in Stokes's theorem now takes the form 

II( a~2 - (IFI) dA = J. (F1 dx -'- F2 dy). 
s rJx Ay 'j c 

This shows that Green's theorem in the plane (Sec. 10.4) is a special case of Stokes's theorem (which we needed 
in the proof of the latter!). • 

E X AMP L E 3 Evaluation of a Line Integral by Stokes's Theorem 

Evaluate f c For' ds, where C is the circle x 2 + y2 = 4, z = - 3, oriented counterclockwise as seen by a person 

standing at the origin, and. with respect to right -handed Cartesian coordinates. 

Solutioll. As a surface S bounded by C we can take the plane circular disk x2 + i ~ 4 in the plane;: = - 3. 
Then n in Stokes's theorem points in the po~itive ;:-direction; thus n = k. Hence (curl F)on is simply the 
compone~t of curl F in the positive ~-direction. Since F with;:: = -3 has the components F1 = y, F2 = -27x, 
F3 = 3y , we thus obtain 

(JF2 iJF1 
(curl F)on = -.- - --- = -27 - I = -28. 

iJx iJy 
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Hence the integral over S in Stokes· s theorem equals - 28 times the area 47T of the disk S. This yields the answer 
-28' 47T = -1127T = -352. Confirm this by direct calculation, which involves somewhat more work. • 

E X AMP L E 4 Physical Meaning of the Curl in Fluid Motion. Circulation 

Fig. 254. Example 4 

Let ST
O 

be a circular disk of radius "0 and center P bounded by the circle CTo (Fig. 254), and let 
F(Q) == F(x, y, :::) be a continuously differentiable vector function in a domain containing ST

O
• Then by Stokes's 

theorem and the mean value theorem for sUiface integrab (see Sec. 10.6), 

where ATo is the area of S'o and P~ is a ~uitable point of S"o. This may be written in the form 

In the case of a fluid motion with velocity vector F = v, the integral 

is called the circulation of the t10w around Cro. It measures the extent to which the corresponding fluid motion 
is a rotation around the circle C

TO
• If we now let ro approach zero, we find 

(8) 

that is. the component of the curl in the positive normal direction can be regarded a~ the specific circulation 
(circulation per unit area) of the flow in the sUiface at the corresponding point. • 

E X AMP L E 5 Work Done in the Displacement around a Closed Curve 

Find the work done by the force F = 2ry3 sin::: i + 3x\2 sin::: j + x2.l cos::: k in the displacement around the 
curve of intersection of the paraboloid z = x2 + y2 and the cylinder (r - 1)2 + y2 = l. 

Solutioll. This work is given by the line integml in Stokes's theorem. Now F = grad f, where f = X
2y3 sin::: 

and curl(grad f) = 0 (see (2) in Sec. 9.9). so that (cur! F)-n = 0 and the work is 0 by Stokes's theorem. This 
agrees with the fact that the present field is conservative (definition in Sec. 9.7). • 

Stokes's Theorem Applied to Path Independence 
We emphasized in Sec. 10.2 that the value of a line integral generally depends not only 
on the function to be integrated and on the two endpoints A and B of the path of integration 
C, but also on the particular choice of a path from A to B. In Theorem 3 of Sec. 10.2 we 
proved that if a line integral 

(9) I F(r)odr = I (FI dx + F2 dy + F3 d;:;) 
C c 

(involving continuous F], F2 , F3 that have continuous first partial derivatives) is path 
independent in a domain D, then curl F = 0 in D. And we claimed in Sec. 10.2 that. 
conversely. curl F = 0 everywhere in D implies path independence of (9) in D provided 
D is simply connected. A proof of this needs Stokes's theorem and can now be given as 
follows. 

Let C be any closed path in D. Since D is simply connected. we can find a surface S 
in D bounded by C. Stokes's theorem applies and gives 

f (Fl dx + F2 dy + F3 d;:;) = f For' ds = J J(curl F)on dA 
c c s 
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for proper direction on C and nonnal vector n on S. Since curl F = 0 in D, the surface 

integral and hence the line integral are zero. This and Theorem 2 of Sec. 10.2 imply that 

the integral (9) is path independent in D. This completes the proof. • 

-.-. .. -
11-81 DIRECT INTEGRATION OF THE SURFACE 

INTEGRALS 

Evaluate the integral II (curl F) 0 n dA directly for the given 
F and S. S 

1. F = [4Z2, 16x, 0], s: Z = Y (0 ~ x ~ 1, 0 ~ y ~ I) 

2. F = [0, 0, 5x cos z], 

s: x 2 + y2 = 4, Y ~ 0, 0 ~ z ~ ~7T 
3. F = [-e Y , eZ, eX], 

s: Z = x + y (0 ~ x ~ 1, 0 ~ y ~ 1) 

4. F = [3 cos y, cosh z, x], 
S the square 0 ~ x ~ 2, 0 ~ y ~ 2, z = 4 

S. F = [e2Z
, eZ sin y, eZ cos y], 

S: Z = y2 (0 ~ X ~ 4, 0 ~ y ~ I) 

6 F = [_2 2 v2] S' 7
2 = x2 + ),2 ,,2: 0 0 ~ 7 ~ ? • .(., X-, _ , ..... ,] _ , _ .... __ 

7. F = [Z2. ~x, 0], 
S the square 0 ~ x ~ a, 0 ~ y ~ a, Z = 1 

8. F = [y3. -x3, 0], S: x 2 + y2 ~ I. Z = 0 

9. Verify Stokes's theorem for F and S in Prob. 7. 

10. Verify Stokes's theorem for F and S in Prob. 8. 

111-181 EVALUATION OF f For' ds 
c 

Calculate this line integral by Stokes's theorem, clockwise 
as seen by a person standing at the origin, for the following 
F and C. Assume the Cartesian coordinates to be right­
handed. (Show the details.) 

:- -_11" .. 
1. List the kinds of integrals in this chapter and how the 

integral theorems relate some of them. 

2. How can work of a variable force be expressed by an 
integral? 

3. State from memory how you can evaluate a line integral. 
A double integral. 

4. What do you remember about path independence? Why 
is it important? 

5. How did we Use Stokes's theorem in connection with 
path independence? 

6. State the definition of curl. Why is it important in this 
chapter? 

7. How can you transform a double integral or a surface 
integral into a line integral? 

11. F = [-3y. 3x. z], C the circle x2 + y2 = 4. z = 1 

12. F = [4z, -2x, 2x], 
C the intersection of x2 + )'2 = I and z = y + 1 

13. F = [y2, x2, -x + z], around the triangle with 
vertices (0, 0, I). (I. O. I), (1, 1, I) 

14. F = [y, xy3, - Zy3], 

C the circle x 2 + y2 = a2, Z = b (> 0) 

IS. F = [y, Z2, x 3 ], C as in Prob. 12 

16. F = [x2, y2, Z2], 

C the intersection of x2 + y2 + Z2 = 4 and z = y2 

17. F = [cos 7T)" sin 7TX, 0], around the rectangle with 
vertices (0, 1,0), (0, 0, I), (1, 0, I), (1, 1. 0) 

18. F = [z, x, y]. C as in Prob. 13 

19. (Stokes's theorem not applicable) Evaluate f Fo r' ds, 
c 

F = (x2 + y2)-1[ -y,x], C: x 2 + y2 = I, z = 0, oriented 
clockwise. Why can Stokes's theorem not be applied? 
What (false) result would it give? 

20. WRITING PROJECT. Grad, Div, Curl in 
Connection with Integrals. Make a list of ideas and 
results on this topic in this chapter. See whether you 
can rearrange or combine parts of your material. Then 
subdivide the material into 3-5 portions and work out 
the details of each portion. Include no proofs but simple 
typical examples of your own that lead to a better 
understanding of the material. 

AND PROBLEMS 

8. What is orientation of a surface? What is its role in 
connection with surface integrals? 

9. State the divergence theorem and its applications from 
memory. 

10. State Laplace's equation. Where in physics is it 
important? What properties of its solutions did we 
discuss? 

111-201 LINE INTEGRALS I F(r)odr 
(WORK INTEGRALS) C 

Evaluate. with F and C as given, by the method that seems 
most suitable. Recall that if F is a force, the integral gives 
the work done in a displacement along C. (Show the details.) 

11. F = [x2• y2, Z2], 

C the straight-line segment from (4, I, 8) to (0, 2, 3) 
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12. F = [cos;::, -sin z, -x sin;:: - y cos ;::]. C the 
straight-line segment from (-2. 0, ~'iT) to (4. 3. 0) 

13. F = [x - y, 0, eZ
], 

C: y = 3x2
, Z = 2x for x from 0 to 2 

14. F = [yz, 2;::x, xy], 

C the circle x2 + y2 = 9, Z = l, counterclockwise 

15.F=[-3v3
, 3x3 +cosy. 0]. 

C the circle x2 + )'2 = 16. z = 0, counterclockwise 

16. F = [sin 10', cos m:, sin 17X]. 

C the boundary of 0 ~ x ~ 112, 0 ~ y ~ 2, z = 2x 

17. F = [9z, 5x, 3.\'], 
C the ellipse x 2 + )'2 = 9. z = x + 2 

18. F = [cosh x, e4y, tan z], C: x 2 + )'2 = -1-, Z = x 2. 

(Sketch C.) 

19. F = [Z2. x3• y2], C: x2 + )'2 = 4, x + Y + Z = 0 

20. F = [x2• y2, )'2X], C the helix 
r = [2 cos I. 2 sin I, 61] from (2. O. 0) to (0. 2, 317) 

~ ... 1-251 DOUBLE INTEGRALS, 
CENTER OF GRAVITY 

Find the coordinmes .i. y of the center of gravity of a mass 
of density I(x. y) in the region R. (Sketch R. Shmv the 
details.) 

21. I = 2x)" R the triangle with vertices (0, 0), (1, 0), 
(1, I) 

22. I = I, R: 0 ~ y ~ I - x2 

23. I = 1. R: x 2 + y2 ~ a 2, y ~ 0 

. ...... .:..:... :. . . ..... 1ft .... - .. _\I... 

24. I = x 2 + )'2, R: x2 + )'2 ~ I, x ~ 0, y ~ 0 

25. I = 2x2, R the region below y = x + 2 and above 
)' = x 2 

126-35 1 SURFACE INTEGRALS f f Fon dA 
5 

Evaluate this integral directly or. if pos~ible. by the 
divergence theorem. (Show the details.) 

26. F = [2X2, 4.", 0], 
S: x + y + z = 1, x ~ 0, y ~ 0, z ~ 0 

27. F = [yo -x. 0]. 
S: 3 t' + 2 Y + z = 6, x ~ 0, y ~ 0, z ~ 0 

28. F = [x - y, y - z, z - x], 
S the sphere of radius 5 and center 0 

29. F = [y2, x2, Z2]. 
S the surface of x 2 + y2 ~ 4, 0 ~ Z ~ 5 

30. F = [-,,3, x3 , 3z2], 

S the portion of the paraboloid z = x2 + y2, z ~ 4 

31. F = [sin2 x, -y sin 2x, 5;::]. 
S the sul1'ace of the box Ixl ~ a, Iyl ~ b, Izl ~ c 

32. F = [1, I, a]. S: x 2 + )'2 + 4;::2 = 4, z ~ 0 

33. F = [x, xy, z], S: x 2 + y2 = I, 0 ~ z ~ h 

34. F as in Prob. 33, S the complete boundary of 
x2 + )'2 ~ I, 0 ~ z ~ II 

35. F = leY, 0, zeX
]. Sthe rectangle with vertices (0, O. 0). 

(1.2,0), (0, O. 5), (1, 2, 5) 

Vector Integral Calculus. Integral Theorems 

Chapter 9 extended differential calculus to vectors, that is, to vector functions 
vex, y, z) or vet). Similarly. Chapter 10 extends integral calculus to vector functions. 
This involves line integrals (Sec. 10.1), double integrals (Sec. 10.3), swface 
integrals (Sec. 10.6), and triple integrals (Sec. 10.7) and the three "big" theorems 
for transforming these integrals into one another, the theorems of Green (Sec. 10.4), 
Gauss (Sec. 10.7), and Stokes (Sec. lO.9). 

The analog of the definite integral of calculus is the line integral (Sec. 10.1) 

(1) 

where C: r(t) = [x(t), y(t), z(t)] = x(t)i + y(t)j + z(t)k (a ~ t ~ b) is a curve in 

space (or in the plane). Physically. (I) may represent the work done by a (variable) 
force in a displacement. Other kinds of line integrals and their applications are also 
discussed in Sec. 10.1. 
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Independence of path of a line integral in a domain D means that the integral 
of a given function over any path C with endpoints P and Q has the same value for 
all paths from P to Q that lie in D; here P and Q are fixed. An integral (1) is 
independent of path in D if and only if the differential form Fl dx + F2 dy + F3 dz 
with continuous FI , F2• F3 is exact in D (Sec. LO.2). Also, if curl F = 0, where 
F = [Fl' F2 , F3]' has continuous first partial derivatives in a simp/" connected 
domain D, then the integral (1) is independent of path in D (Sec. 10.2). 

Integral Theorems. The formula of Green's theorem in the plane (Sec. 10.4) 

(2) II( iJF2 iJFl ) T - - - dr: dy = (F dx + F dy) 
R ax ay . c I 2 . 

transforms double integrals over a region R in the xy-plane into line integrals over 
the boundary curve C of R and conversely. For other forms of (2) see Sec. lOA. 

Similarly, the formula of the divergence theorem of Gauss (Sec. 10.7) 

(3) I I I div F dV = I I F- n dA 
T S 

transforms triple integrals over a region T in space into surface integrals over the 
boundary surface S of T. and conversely. Formula (3) implies Green's formulas 

(4) III (f'\Pg + Vf-Vg)dV= IIf ~g dA, 
T S an 

(5) 

Finally, the formula of Stokes's theorem (Sec. 10.9) 

(6) I I (curl F)-n dA = T F-r' (s) ds 
s c 

transforms surface integrals over a surface S into line integrals over the boundary 
curve C of S and conversely. 
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Fourier Analysis. 
Partial 
Differential 
Equations 

C HAP T E R 11 Fourier Series, Integrals, and Transforms 

C HAP T E R 1 2 Partial Differential Equations (PDEs) 

Fourier analysis concerns periodic phenomena, as they occur quite frequently in 
engineering and elsewhere-think of rotating parts of machines, alternating electric 
currents, or the motion of planets. Related periodic functions may be complicated. This 
situation poses the important practical task of representing these complicated functions in 
terms of simple periodic functions. namely. cosines and sines. These representations will 
be infinite series, called Fourier series. l 

The creation of these series was one of the most path-breaking events in applied 
mathematics, and we mention that it also had considerable influence on matl1ematics as 
a whole, on the concept of a function. on integration theory, on convergence tl1eory for 
series. and so on (see Ref. [OR7] in App. 1). 

Chapter II is concerned mainly with Fourier series. However, the underlying ideas can 
also be extended to nonperiodic phenomena. This leads to Fourier integrals and 
fransjonl1s. A common name for the whole area is Fourier analysis. 

Chapter 12 deals witl1 the most important partial differential equations (PDEs) of physics 
and engineering. This is the area in which Fourier analysis has its most basic applications, 
related to boundary and initial value problems of mechanics, heat flow, electrostatics, and 
other fields. 

IJEAN-BAPTISTE JOSEPH FOURIER (1768-1830). French physicist and mathematician, lived and taught 
in Paris. accompanied Napoleon in the Egyptian War. and was later made prefect of Grenoble. The beginnings 
on Fourier series can be found in works by Euler and by Daniel Bernoulli, but it was Fourier who employed 
them in a systematic and general manner in his main work, Theorie allalyflque de la chaleur (Analytic Theory 
of Heat. Paris, 1822). in which he developed the theory of heat conduction (heat equation; see Sec. 12.5), making 
these series a most important tool in applied mathematics. -

477 
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CHAPTER 1 1 

Fourier Series, Integrals, 
and Transforms 

Fourier series (Sec. 11.1) are infinite series designed to represent general periodic 
functions in terms of simple ones, namely. cosines and sines. They constitute a very 
important tool, in particular in solving problems that involve ODEs and PDEs. 

In this chapter we discuss Fourier series and their engineering use from a practical point 
of view, in connection with ODEs and with the approximation of periodic functions. 
Application to PDEs follows in Chap. 12. 

The theory of Fourier series is complicated. but we shall see that the application of these 
series is rather simple. Fourier series are in a certain sense more universal than the familiar 
Tay lor series in calculus because many discontinuous periodic functions of practical interest 
can be developed in Fourier series but, of course, do not have Taylor series representations. 

In the last sections (11.7-11.9) we consider Fourier integrals and Fourier transforms, 
which extend the ideas dnd techniques of Fourier series to nonperiodic functions and have 
basic applications to PDEs (to be shown in the next chapter). 

Prerequisite: Elementary integral calculus (needed for Fourier coefficients) 
Sections that lIlay be nmitted in a shorter course: 11.4-11.9 
References alld Answers to Problems: App. 1 Part C. App. 2. 

11.1 Fourier Series 

478 

Fourier series are the basic tool for representing periodic functions, which play an 
important role in applications. A function f(x) is called a periodic function if f(x) is 
defined for all real x (perhaps except at some points, such as x = ±7T!2, ±37T/2, ... for 
tan x) and if there is some positive number p. called a period of f(x). such that 

(1) f(x + p) = f(x) for all x. 

The graph of such a function is obtained by periodic repetition of its graph in any interval 
of length p (Fig. 255). 

Familiar periodic functions are the cosine and sine functions. Examples of functions 
that are not periodic are x, x 2

, x 3
, eX, cosh x, and In x, to mention just a few. 

If f(x) has period p, it also has the period 2p because (I) implies 
f(x + 2p) = f([x + p] + p) = f(x + p) = f(x), etc.; thus for any integer 11 = 1,2,3, .. " 

(2) f(x + np) = f(x) for all x. 
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{(x) 

x 

Fig. 255. Periodic function 

Furthermore if f(x) and g(x) have period p, then af(x) + bg(x) with any constants a and 
b also has the period p. 

Our problem in the first few sections of this chapter will be the representation of various 
functions f(x) of period 217 in terms of the simple functions 

(3) I, cos x, sin x, cos 2x, sin 2x, ... , cos In:, sin /lX, . • • . 

All these functions have the period 27T. They form the so-called trigonometric system. Figure 
256 shows the fIrst few of them (except for the constant 1, which is periodic with any period). 

The series to be obtained will be a trigonometric series, that is, a series of the form 

(4) 

ao + a1 cos x + b i sin x + a2 cos 2\'" + b2 sin 2x + 

= ao + .L (an cos IlX + bn sin nx). 
n~I 

ao, Lib b l . a2, b2, ... are constants, called the coefficients of the series. We see that each 
term has the period 27T. Hence if the coefficients are such that the series converges, its 
sum will be a function of period 27T. 

It can be shown that if the series on the left side of (4) converges, then inserting 
parentheses on the right gives a series that converges and has the same sum as the series 
on the left. This justifIes the equality in (4). 

Now suppose that f(x) is a given function of period 27T and is such that it can be 
represented by a series (4), that is, (4) converges and, moreover, has the sum f(x). Then, 
using the equality sign, we write 

(5) 

cos x 

sin x 

f(x) = ao + .L (an cos nx + bn sin nx) 
n~I 

:\ /:\ L 
o vnv 2n 

:\ f\,!\ (, 

cos 2x 

V\ 1f!\. 2n 

V V 
sin 2x 

Fig. 256. Cosine and sine functions having the period 2IT 

cos 3x 

Sin 3x 
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and call (5) the Fourier series of f(x). We shall prove that in this case the coefficients 
of (5) are the so-called Fourier coefficients of f(x), given by the Euler formulas 

I 71" 

(a) ao = - f f(x) dx 
27T -71" 

I 7T 

(6) (b) a = - f f(x) cos I1X dx n = 1.2.··· n 
7T -71" 

I 7T 

(c) bn = - f f(x) sin 11-1: dx 11 = 1,2, .... 
7T -7T 

The name "Fourier series" is sometimes also used in the exceptional case that (5) with 
coefficients (6) does not converge or does not have the sum f(x)-this may happen but 
is merely of theoretical interest. (For Euler see footnote 4 in Sec. 2.5.) 

A Basic Example 
Before we derive the Euler formulas (6). let us become familiar with the application of 
(5) and (6) in the case of an important example. Since your work for other functions will 
be quite similar, try to fully understand every detail of the integrations, which because of 
the 11 involved differ somewhat from what you have practiced in calculus. Do not just 
routinely use your software, but make observations: How are continuous functions (cosines 
and sines) able to represent a given discontinuous function? How does the quality of the 
approximation increase if you take more and more terms of the series? Why are the 
approximating functions, called the partial sums of the series, always zero at 0 and 7T? 
Why is the factor lin (obtained in the integration) important'? 

E X AMP L E 1 Periodic Rectangular Wave (Fig. 257a) 

Find the Fourier coefficients of the periodic function f(x) in Fig. 257a. The formula is 

(7) {

-k 
f(x) = k 

if -71"<X<O 
and f(x + 271") = f(x). 

if O<X<71" 

Functions of this kind occur as external forces acting on mechanical systems, electromotive forces in electric 
circuits, etc. (The value of f(x) at a single point does not affect the integral: hence we can leave f(x) undefined 
at x = 0 and x = 2:71".) 

Solution. From (6a) we obtain ao = O. This can also be seen without integration, since the area under the 
curve of f(x) between -71" and 71" is zero. From (6bl. 

I f'" I [ 0 'IT ] 
an = - f(x) cos nxdx = - f (-k)COSI1Xdx+f kcosl1xdx 

7r -'iT 7T -'iT 0 

[
sin nx 1

0 
sin nx I"'] -k -- +k-- cO 

7r n -7T n 0 

because sin nx = 0 at -71", 0, and 71" for all n = 1, 2, .... Similarly, from (6cl we obtain 

bn = ~ f'" f(x) sin nx dx = 
71" _'" [fO (-k) sin nx dx + f'" k sin 17X dX] 

7r _" 0 

1 [ cos nx /0 cos n.r /"'] k-- -k-- . 
'IT n -'iT n 0 
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-n 0 n 2n x 

L -----l-k 1- J 

(a) The gIven function {(x) (Periodic rectangular wave) 

" / 

'~< 
4k sin 3x 
3" 

'-, ...... _/ 

4k sin 5x 
5" 

n 

n 

(b) The first three partial sums of the corresponding Fourier series 

Fig. 257. Eample 1 

Since cos ( -a) = cos a and cos 0 = 1, this yields 

k U 
b = n [cos 0 - cos (-n7T) - cos n7T + cos 0] = ~ (1 - cos n7T). 

nn nn 

Now, cos 71" = -1, cos 271" = 1, cos 371" = -1, etc.; in general, 

x 

x 

x 

{

-I for odd n, 
I - cosn71" = e for odd n, 

cos n71" = I and thus 
for even n, for cven n. 

Hence the Fourier coefficients hn of our function are 

4k 4k 
h5 = 571" ' 

481 
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Since the an are 7ero, the Fourier series of f(x) is 

(8) 4k (Sin x + ..!.. sin 3x + ..!.. sin 5x + ... ) 
7T 3 5 . 

The partial sums are 

4k 
Sl = ~sinx, S = 4k (sin x + ..!.. sin 3X) 

2 7T 3 ' etc., 

Their graphs in Fig. 257 ,eem to indicate that the series is convergent and has the sum f(x), the given function. 
We notice that at x = 0 and x = 7T, the points of discontinuity of f(x), all partial sums have the value zero, the 
arithmetic mean of the limits -k and k of our function, at these points. 

Furthermore, assuming that f(x) is the sum of the series and setting x = 7TI2, we have 

thus 
1 1 1 7T 

1--+---+-···=-. 
3 5 7 4 

This is a famous result obtained by Leibniz in 1673 from geometric considerations. It illustrates that the value, 
of various series with constant terms can be obtained by evaluating Fourier series at specific points. • 

Derivation of the Euler Formulas (6) 
The key to the Euler formulas (6) is the orthogonality of (3), a concept of basic importance, 
as follows. 

THEOREM 1 Orthogonality of the Trigonometric System (3) 

The trigonometric system (3) is orthogonal on the interval -7T ~ X ~ 7T (hence also 
on 0 ~ x ~ 27T or any other interval of length 27T because of periodicity): that is, 
the integral of the product of any two functions in (3) over that interval is 0, so that 
for any integers nand nz, 

(a) J7T cos nx cos nIX dx = 0 (n =/=- m) 
-7T 

(9) (b) J" sin nx sin mx dx = 0 (n =/=- m) 
-7T 

(e) J7T sin nx cos mx dx = 0 (n =/=- m or n = m). 
-7T 

PROOF This follows simply by transfonning the integrands trigonometrically from product'> into 
sums. In (9a) and (9b), by (11) in App. A3.I, 

7T 1"" 17T I cos nx cos nIX dx = - J cos (n + m)x dx + - J cos (n - m)x dx 
-7T 2 -7T 2 _.". 

1 7T J 7T - J cos (n - m)x dx - - J cos (n + m)x dx. 
2 -7T 2 -7T 

J"" sin nx sin nzx dx = 
-7T 
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Since m * n (integer!), the integrals on the right are all O. Similarly, in (9c), for all integer 
m and n (without exception; do you see why?) 

~ I ~ ~ 

J sin nx cos mx dx = - J sin (n + m)x dr: + J sin (n - lIl)x dr: = 0 + O. • 
_~ 2 _~ 2 _~ 

Application of Theorem 1 to the Fourier Series (5) 
We prove (6a). Integrating on both sides of (5) from -7T to 7T, we get 

~ ~ [ 00 ] L}(X) dx = L~ ao + ~l (an cos rue + bn sin Itt) dx. 

We now assume that termwise integration is allowed. (We shall say in the proof of 
Theorem 2 when this is true.) Then we obtain 

The first tenn on the right equals 27Tao. Integration shows that all the other integrals are 
O. Hence division by 27T gives (6a). 

We prove (6b). Multiplying (5) on both sides by cos 11/X with any fixed positive integer 
m and integrating from - 7T to 7T, we have 

(10) 
~ ~ [ YO ] J_~f(X) cos mx dx = J_~ ao + ~1 (an cos nx + hn sin nx) cos mx dx. 

We now integrate term by term. Then on the right we obtain an integral of ao cos mx. 
which is 0; an integral of an cos nx cos 17U, which is am 7T for n = 11/ and 0 for n =/=- 111 by 
(9a); and an integral of bn sin In cos 111X, which is 0 for all nand 111 by (9c). Hence the 
right side of (10) equals am 7T. Division by 7T gives (6b) (with 111 instead of n). 

We finally prove (6c). Multiplying (5) on both sides by sin my with any fixed positive 
integer 111 and integrating from - 7T to 7T, we get 

(II) ~ ~ [ = ] L}(X) sin mx dx = LTi ao + ~l (an cos nx + hn sin nx) sin mx dr:. 

Integrating term by term, we obtain on the right an integral of ao sin mx, which is 0; an 
integral of an cos nx sin mx, which is 0 by (9c); and an integral of hn sin 11.)( sin llU", which 
is hm 7T if n = 1ll and 0 if 17 =/=- m, by (9b). This implies (6c) (with n denoted by m). This 
completes the proof of the Euler formulas (6) for the Fourier coefficients. • 
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Convergence and Sum of a Fourier Series 
The class of functions that can be represented by Fourier series is surprisingly large and 
general. Sufficient conditions valid in most applications are as follows. 

THEOREM 2 Representation by a Fourier Series 

f(x) 

Let f(x) he periodic with period 271" and pieceJ,vise cOlltinuous (see Sec. 6.1) in the 
interval -71" ~ X ~ 71". Furthermore, let f(x) have a left-hand derivative and a 
right-hand derivative at each point of that interval. Then the Fourier series (5) of 
f(x) [with coefficients (6)] conver!!es. Its sum is f(x), except at points Xo where f(x) 
is discontinuous. There the slim of the series is the average of the left- and 
right-hand limits2 of f(x) at Xo. 

PROOF We prove convergence in Theorem 2. We prove convergence for a continuous function 
f(x} having continuous first and second derivatives. Integrating (6b) by parts, we obtain. 

f(l- 0) 

j~ 

1 I71" f(x) sin IlX 17T I I71" , 
an = - f(x) cos nx dr: = - - f (x) sin nx dt. 

71" -71" n71" -7T n71"_7T 

The first teml on the right is zero. Another integration by parts gives 

t' (.x) cos nx 171" I I7T " 
an = 2 - -2- f (x) cos nx dx. 

n 71" -7T n 71" -7r 

The firs I term on the right is zero because of the periodicity and continuity of f' (x). Since 
f" is continuous in the interval of integration, we have 

If"(x)1 < M 

for an appropriate constant M. Furthermore, Icos nxl ~ 1. It follows that 

lanl = -i-II 7T {'ex) cos nx dxl < -i- I7T M dx = 2M 
n 71" -7T n 71" -7T n2 

. 

2The left-hand limit of f(x) at Xo is defined as the limit of f(x) as x approaches Xo from the left 
and is commonly denoted by f(xo - 0). Thus 

f(xo - 0) = lim f(xo - Iz) as h ~ 0 through positive values. 
h~O o x 

Fig. 258. Left- and 
right-hand limits 

The right-hand limit is denoted by f(xo + 0) and 

f(xo + 0) = lim f(xo + h) as h ---> 0 through positive values. 
11._0 

1(1 - O} = 1, 

1(1 + 0) =i 
of the function 

{ 

X2 

I(x) = 
x/2 

if x < 1 

The left- and right-hand derivatives of f(x) at xo are defined as the limits of 

f(xo - Iz) - f(xo - 0) 

-Iz 
and 

f(xo + Iz) - f(xo + 0) 

It 

respectively, as Iz ---> 0 through positive values. Of course if f(x) is continuous at X()o the last tenn in 
both numerators is simply flxo). 
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Similarly, Ibnl < 2 Mln 2 for alln. Hence the absolute value of each teml of the Fourier 
series of f(x) is at most equal to the corresponding term of the series 

( 
1 III ) 

la I + 2M 1 + 1 + - + - + - + - + ... 
o 22 22 32 32 

which is convergent. Hence that Fourier series converges and the proof is complete. 
(Readers already familiar with uniform convergence will see that, by the Weierstrass test 
in Sec. 15.5, under our present assumptions the Fourier series converges uniformly, and 
our derivation of (6) by integrating term by term is then justified by Theorem 3 of 
Sec. 15.5.) 

The proof of convergence in the case of a piecewise continuous function f(x) and the 
proof that under the assumptions in the theorem the Fourier series (5) with coefficients 
(6) represents f(x) are substantially more complicated; see, for instance, Ref. [C121. • 

E X AMP L E 2 Convergence at a Jump as Indicated in Theorem 2 

The rectangular wave in Example I has a jump at x = O. Its left-hand limit there is -k and its right-hand limit 
is k (Fig. 257). Hence the average of these limits is O. The Fourier series (8) of the wave does indeed converge 
to this value when x = 0 because then all its terms are O. Similarly for the other jumps. This is in agreement 
with Theorem 2. • 

Summary. A Fourier series of a given function f(x) of period 271' is a series of the form 
(5) with coefficients given by the Euler formulas (6). Theorem 2 gives conditions that are 
sufficient for this series to converge and at each x to have the value f(x), except at 
discontinuities of f(x), where the series equals the arithmetic mean of the left-hand and 
right-hand limits of f(x) at that point. 

.. =J~ 

1. (Calculus review) Review integration techniques for 
integrals as they are likely to arise from the Euler 
formulas, for instance, definite integrals of x cos /lX, 

x 2 sin I1X, e-2x cos I1X, etc. 

@-iJ FUNDAMENTAL PERIOD 
Theful1damental period is the smallest positive period. Find 
it for 

2. 

3. 

cos x, sinx. cos 2x. sin 2x, 
cos 27TX, sin 27TX 

27TX 
cos I1X. sin nx. cos -k-

27TI1X 
cos -k- , 

27TI1X 
sin -­

k 

cos 7TX, sin 7TX. 

27TX 
sin --

k ' 

4. Show that f = COl1st is periodic with any period but 
has no fundamental period. 

S. If f(x) and g(x) have period p, show that 
hex) = af(x) + bg(x) (a, b, constant) has the period p. 
Thus all functions of period 17 form a vector space. 

6. (Change of scale) If f(x) has period 17, show that f(ax), 
a *- O. and f(x/b) , b *- O. are periodic functions of x 
of periods pia and bp, respectively. Give examples. 

17-121 GRAPHS OF 21T"PERIODIC FUNCTIONS 

Sketch or graph f(x), of period 27T, which for -7T < X < 7T 

is given as follows. 

7. f(x) =x 8. f(x) = e- lxl 

9. f(x) 7T - Ixl 10. f(x) Isin 2xI 

{-X
3 if -7T < x < 0 

11. f(x) 
x 3 if O<X<7T 

Losl ~x 
if-7T<x<O 

12. f(x) 
if O<x< 7T 

113-241 FOURIER SERIES 

Showing the details of your work, find the Fourier series 
of the given f(x)' which is assumed to have the period 27T. 

Sketch or graph the pattial sums up to that including 
cos 5x and sin 5x. 
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13. lIn 
l _ 

-IT 0 lIT 
2 

14. II 
-IT 0 IT 

15. 

/~ 
-Tr 0 IT 

16. 

~ -Tr 2 ~ 1 Tr 

"2Tr 

17. Tr 

-Tr 0 Tr 

18. 

"" '/ "-
'. 

-Tr 0 IT 

19. 

20. 

21. f(x) = x 2 
(- 7T < X < 7T) 

22. f(x) = x 2 (0 < X < 27T) 

23. f{x) 

{

-4X 
24. f{x) = 

4x 

if -7T < x < 0 

if 0 < x < 7T 

25. (Discontinuities) Verify the last statement in Theorem 
2 for the discontinuities of f(x) in Prob. 13. 

26. CAS EXPERIMENT. Graphing. Write a program for 
graphing partial sums of the following series. Guess 
from the graph what f(x) the series may represent. 
Confirm or disprove your guess by using the Euler 
formula~. 

(a) 2{sinx + ~ sin 3x + ! sin 5x + ... ) 

- 2( i sin 2x + i sin 4x + i sin 6x ... ) 

141 (b) 2 + ----z (cos x + 9 cos 3x + :l5 cos Sx + ... ) 
7T 

(c) ~~ + 4(cos x - i cos 2x + i cos 3x - -h cos 4x 
+ - ... ) 

27. CAS EXPERIMENT. Order of Fourier Coefficients. 
The order seems to be lin if f is discontinous. and 11112 

if f is continuous but f' = dfldx is discontinuous. 1In3 

if f and J' are continuous but fff is discontinuous, etc. 
Try to verify this for examples. Try to prove it by 
integrating the Euler formulas by parIs. Whal is the 
practical significance of this? 

28. PROJECT. Euler Formulas in Terms of Jumps 
Without Integration. Show that for a function whose 
third derivative is identically zero, 

a = n 
1l'iT 

n7T 

I .ff. ] + n 2 L is Sill nxs 

1 - Lj~ sinnxs 
n 

I ~ _ff ] 
- 2 L..J is cos nxs 

11 

where n = I, 2, ... and we sum over all the jumps js, 
j~,j; of f, J', J'. respectively. located atxs' 

29. Apply the formulas in Project 28 to the function in 
Prob. 21 and compare the results. 

30. CAS EXPERIMENT. Orthogonality. Integrate and 
graph the integral of the product cos mx cos nx (with 
various integer m and IJ of your choice) from -a to a 
as a function of a and conclude orthogonality of cos 
mx and cos nx (m *- Il) for a = 7T from the graph. For 
what m and n will you get orthogonality for a = 7T/2, 
rr/3, 7T14? Other a? Extend the experiment to cos mx 
sin Il\: and sin 111 ,. sin l1X. 
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11.2 Functions of Any Period p = 2L 
The functions considered so far had period l7T, for the simplicity of the formulas. Of 
course, periodi.c function~ in applications will generally have other periods. However, we 
now show that the transition from period p = 27T to a period 2L is quite simple. The 
notation p = 2L is practical because L will be the length of a violin string (Sec. 12.2) or 
the length of a rod in heat conduction (Sec. 12.5), and so on. 

The idea is simply to find and use a cha1lge of scale that gives from a function g(v) of 
period 27T a function of period 2L. Now from (5) and (6) in the last section with g(v) 

instead of I(x) we have the Fourier series 

(1) 

with coefficients 

(2) 

"" 
g(v) = ao + 2: (an cos flV + bn sin llv) 

n=l 

1 7T 

ao = - J g(v) dv 
27T -71" 

1 7T 

lin = - J g(v) cos flV dv 
7T -7T 

1 7T 

bn = - J g(v) sin llV dv. 
7T -7T 

We can now write the change of scale as v = kx with k such that the old period v = 27T 
gives for the new variable x the new period x = 2L. Thus, 27T = k2L. Hence k = 7TIL and 

(3) v = kx = 7TXIL. 

This implies dv = (7TIL) dx. which upon substitution into (2) cancels 1I27T and 1I7T and 
gives instead the factors 1I2L and IlL. Writing 

(4) g(v) = I(x), 

we thus obtain from (1) the Fourier series of the function f(x) of period 2L 

(5) 00 ( ) 

1l7T 1l7T 
f(x) = ao + ~l an cos L x + bn sin L x 

with the Fourier coefficients of f(x) given by the Euler formulas 

(a) 

(6) (b) 

(C) 

1 L 

ao = -;;- J f(x) dx 
... L -L 

1 JL ll7TX 
an = - f(x) cos -- dx 

L -L L 

1 JL ll7TX 
bn = L I(x) sin -- dx 

-L L 

11 = 1,2, ... 

n = 1,2, ... 
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Just as in Sec. 11.1, we continue to call (5) with any coefficients a trigonometric series. 
And we can integrate from 0 to 2L or over any other interval of length p = 2L. 

E X AMP L E 1 Periodic Rectangular Wave 

Find the Fourier series of the function (Fig. 259) 

{

o if -2 < x < -1 

f(x) = Ok if -1 < x < 1 p = 2L = 4. L = 2. 

if 1<..1.'< 2 

Solution. From (6a) we obtain ao = kl2 (verify!). From (6h) we ohtain 

an = I {/(X) cos 11;' dx = I f/ cos 11;..1.' dx = ,~: sin 1127T . 

Thus an = 0 if 11 is even and 

an = 2kln7T if n = 1, 5, 9, .... an = -2kll17T if n = 3,7, 11, .... 

From (6c) we find that bn = 0 for 11 = 1,2 ..... Hence the Fourier series is 

k 2k ( 7T 1 37T I 57T ) 
f(x) = - + - cos - x - - cos - x + - cos -..I. - + ... 

2 7T . 2 3 2 5' 2 . 

~b I 
-2 -1 0 1'-----:!~:---' 

Fig. 259. Example 1 

E X AMP L E 2 Periodic Rectangular Wave 

Find the Fourier serie~ of the function (Fig. 260) 

{

-k if -2 < x < 0 
f(x) = 

kif 0<..1.'<2 

Solution. ao = 0 from (6a). From (6bt with IlL = 112, 

p = 2L = 4, 

x 

L = 2. 

a = n [f a Il1iX {2 n7TX ] 
2 _2(-k) cos -2- dt: + 0 k cos -2- dx 

[
_ 2k sin 117TX 1

0 

+ 2k sin 1l7TX 1
2J = O. 

2 n7T 2 -2 1l7T 2 0 

so that the Fourier series has no cosine terms. From (6c). 

I [2k fl7TX 1
0 

2k 1l7TX 1
2J bn = - - cos -- - - cos --

2 1l7T 2 -2 1l7T 2 0 

k {4klll7T if Il = L 3 •... 
= 117T (I - cos n7T - cos 1l7T + 1) = 0 if II = 2, 4, .... 

• 
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EXAMPLE 3 

Hence the Fourier series of f(.1:) is 

f(x) ~ 4k (Sin ~ x + ~ sin 37T x + ~ sin 57T x + ... ) 
7T 2 3 2 5 2 . 

It is interesting that we could have derived this from (8) in Sec. 11.1, namely, by the scale change (3). Indeed. 
writing v instead of x, we have in (8), Sec. 11.1, 

: (sin v + ~ sin 3v + + sin 5v + ... ) . 

Since the period 27T in v corresponds to 2L = 4, we have k = 7TIL = 7T12 and v = kx = TTXI2 in (3); hence we 
obtain the Fourier series of f(x), as before. • 

{(x) 

k 

'-------j-k 

2 x 
L-

Fig. 260. Example 2 

Half-Wave Rectifier 

~, ""'6 
-rr/m o rr/m 

Fig. 261. Half-wave rectifier 

A sinusoidal voltage E sin WT. where T is time. is passed through a half-wave rectifier that clips the negative 
portion of the wave (Fig. 261). Find the Fourier series of the resulting periodic function 

u(t) = { 0 
E sin wi if 

if -L < t < O. 7T 
p = 2L ~ L= 

0< r < L W W 

Solution. Since u = 0 when -L < t < 0, we obtain from (6a), with t instead of x, 

W f7C/W E 
ao = - E sin wt dt = -

27T 0 7T 

and from (6b), by using formula (11) in App. A3.1 with x = wt and y = I1wt, 

an = !:'!... f7C/W E sin WT cos I1WT dt = ~E f",IW[Sin (1 + 111M + sin (1 - I1)M] dt. 
7T 0 _7T 0 

If 11 = I, the integral on the right is zero, and if 11 = 2, 3, ... , we readily obtain 

a = n 
wE [_ cos (1 + Il)wt 

27T (1 + I1)W 

2: (-cos (~ : ~7T + 

If 11 is odd, thi, is equal to zero, and for even 11 we have 

cos <I - I1)Wt ] 7C/w 

(I - l1)w 0 

+ _-_c_o_s_<_I_-_")_7T_+_1 ) . 
1 - 11 

2E 

(11 - 1)(11 + 1)7T 
(Il = 2,4, .. '). 

In a similar fashion we find from (tiC) that b i = E12 and bn = 0 for 11 = 2,3, .... Consequently, 

u(t) = ~ + f sin wt - z: (1 ~ 3 cos 2mt + 3 ~ 5 cos 4wt + .. -) . • 
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11-111 FOURIER SERIES FOR PERIOD P = lL 

Fmd the Fourier series of the function f(x), of pedol! p = 2L, 
and sketch or graph the first three partial sums. (Show the 
details of your work.) 

1. f(x) = -1 (-2 < x < 0). f(x) = 1 (0 < x < 2). p = 4 

2. f(x) = 0 (-2 < x < 0). f(x) = 4 (0 < x < 2). p = 4 

3. f(x) = x 2 
(- I < x < 1), p = 2 

4. f(x) 7Tx 312 (-I < x < I), p = 2 

5. f(x) sin TTX (0 < X < I), P = 1 

6. f(x) cos TTX (-4 < x < ~), p = 1 

7.f(x) Ixl (-l<x<l). p=2 

{
I + x if - I < x < 0 

8. f(x) = 1 _ x if 0 < x < 1. p = 2 

9. f(x) = I - ~2 (-1 < x < I), P = 2 

10. f(x) = 0 (-2 < x < 0), f(x) = x (0 < x < 2), p = 4 

ll.f(x)=-x (-I<x<O), f(x)=x (O<x<I). 
f(x) = 1 tl < x < 3), p = 4 

12. (Rectifier) Find the Fourier series of the function 
obtained by passing the voltage v(t) = Vo cos 100m 
through a half-wave rectifier. 

13. Show that the familiar identities 
cos3 x =! cos x + ~ cos 3x and 

sin3 x = ~ sin x - ! sin 3x can be interpreted as 
Fourier series expansions. Develop cos4 x. 

14. Obtain the series in Prob. 7 from that in Prob. 8. 

15. Obtain the series in Prob. 6 from that in Prob. 5. 

16. Obtain the series in Prob. 3 from that in Prob. 21 of 
Problem Set 11.1. 

17. Using Prob. 3, show that 
I - ! + ~ - k + - . . . = fz7T

2 

18. Show that I +! + ~ + k + ... = ~7T2. 

19. CAS PROJECT. Fourier Series of 2L-Periodic 
Functions. (a) Write a program for obtaining partial 
sums of a Fourier series (1). 

(b) Apply the program to Probs. 2-5. graphing the first 
few partial sums of each of the four series on common 
axes. Choose the first five or more partial sums until 
they approximate the given function reasonably well. 
Compare and comment. 

20. CAS EXPERIMENT. Gibbs Phenomenon. The 
partial sums ,1'n(X) of a Fourier series show oscillations 
near a discontinuity point. These oscillations do not 
disappear as 1l increases but instead become sharp 
"spikes." They were explained mathematically by 
1. W. Gibbs3

• Grdph sn(x) in Prob. 10. When 11 = 50. 
"ay. you will see those oscillations quite distinctly. 
Consider other Fourier series of your choice in a similar 
way. Compare. 

11.3 Even and Odd Functions. 
Half-Range Expansions 

The function in Example 1, Sec. 11.2, is even, and its Fourier series has only cosine 
terms. The function in Example 2, Sec. 11.2, is odd, and its Fourier series has only sine 
terms. 

Recall that g is even if g( - x) = g(x), so that its graph is symmetric with respect to the 

vertical axis (Fig. 262). A function h is odd if h( - x) = - hex) (Fig. 263). 
Now the cosine terms in the Fourier series (5), Sec. I L.2. are even and the sine terms 

are odd. So it should not be a surprise that an even function is given by a series of 

cosine terms and an odd function by a series of sine terms. Indeed, the following holds. 

3JOSIAH WILLARD GIBBS (1839-1903). American mathematician. professor of mathematical physics at 
Yale from 1871 on. one of the founders of vector calculus [another being O. Heaviside (see Sec. 6.1)], 
mathematical thermodynamics. and statistical mechanics. His work was of great importance to the development 
of mathematical physics. 
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THEOREM 1 

y 
y 

x 

Fig. 262. Even function Fig. 263. Odd function 

Fourier Cosine Series, Fourier Sine Series 

The Fourier series of an even function of period 2L is a "Fourier cosine series" 

ro 
117T 

f(x) = £/0 + 2: an cos L X 

n=l 

(1) 

with coefficients (note: integration from 0 to L only!) 

1 L 

(2) ao = - J f(x) dx, 
L 0 

2 JL tl7TX 
an = - f(x) cos -- dx, 

L 0 L 

(f even) 

n = 1,2, .. '. 

The Fourier series of an odd function of period 2L is a "Fourier sine series" 

ro n7T 
f(x) = 2: bn sin L x 

n=l 

(f odd) (3) 

with coefficients 

(4) 
2 JL n7TX 

bn = - f(x) sin -- (h. 
L 0 L 

PROOF Since the definite integral of a function gives the area under the curve of the function 
between the limits of integration. we have 

L L J g(x) d>:: = 2 J g(x) dx 
-L 0 

L J hex) dx = 0 
-L 

for even g 

for odd h 

as is obvious from the graphs of g and h. (Give a formal proof.) Now let f be even. Then 
(6a), Sec. 11.2, gives ao in (2). Also, the integrand in (6b), Sec. 11.2, is even (a product 
of even functions is even), so that (6b) gives an in (2). Furthermore, the integrand in (6c), 
Sec. 11.2, is the even f times the odd sine, so that the integrand (the product) is odd, the 
integral is zero, and there are no sine terms in (1). 
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THEOREM 2 

CHAP.11 Fourier Series, Integrals, and Transforms 

Similarly, if f is odd. the integrals for ao and an in (6a) and (6b). Sec. 11.2. are zero, 
f times the sine in (6c) is even. (6c) implies (4), and there are no cosine terms in (3) .• 

oc 

The Case of Period 27T. If L = 7f, then f(x) = ao + ~ an cos nx (f even) with 
coefficients n~l 

(2*) 

co 

I 'iT 

ao = - f f(x) dx, 
7f 0 

2 'iT 

an = - f f(x) cos nx dx, 
7f 0 

and f(x) = ~ bn sin nx (f odd) with coefficients 
n=l 

(4*) 
2 'iT 

bn = - f f(x) sin nx dx, 
7f 0 

n = 1,2, ... 

n = 1,2,···. 

For instance, f(x) in Example I, Sec. ILl, is odd and is represented by a Fourier sine 
series. 

Further simplifications result from the following property, whose very simple proof is 
left to the student. 

Sum and Scalar Multiple 

The Fourier coefficients of a sum h + f2 are the sums of the corresponding Fourier 
coefficients of f 1 and f 2· 

The Fourier coefficients of cf are c times the corresponding Fourier coefficiencs 
off· 

E X AMP L E 1 Rectangular Pulse 

The function f"(x) in Fig. 264 is the sum of the function f(x) in Example I of Sec 11.1 and the constant k. 
Hence. from that example and Theorem 2 we conclude that 

4k ( 1 1 ) f*(x) = k + -:; sin x + "3 sin 3x + 5" sin 5x + . .. . • 
E X AMP L E 2 Half-Wave Rectifier 

The function u(t) in Example 3 of Sec. 11.2 has a Fourier cosine series plus a single term vCr) = (E/2) sin wi. 

We conclude from this and Theorem 2 that U(l) - Vel) must be an even function. Verify this graphically. (See 
Fig. 265.) • 

-1r 

[*(x) 

2k 

o 

y 

Fig. 264. Example 1 Fig. 265. u(t) - v(t) with E = 1, W = 1 
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EXAM PLE 3 Sawtooth Wave 

Find the Fourier series of the function (Fig. 266) 

f(x) = x + 7T if -7T < x < 7T and 

(a) The functionf(x) 

(b) Partial sums 81> 8 2, 8 3, 8 20 

Fig. 266. Example 3 
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l(x + 27T) = f(x). 

Solution. We have f = iI + f2' where h = x and f2 = 7T. The Fourier coefficients at f2 are zero, except 
for the first one (the constant term). which is 7T. Hence, by Theorem 2. the Fourier coefficients an' bn are those 
of iI, except for ao, which is 7T. Since iI is odd, an = 0 for n = 1,2, ... , and 

bn = 2. ('iIlX)sin ny dx = 2. ("x sinllx cL--.:. 
7T Jo 7T Jo 

Integrating by parts, we obtain 

2 
b =-

n 7T [
-XCOSIlX I'" 1 f'" ] 2 - + - cosl1xcL>: = - - COSl17T. 

11 0 11 0 11 

Hence b i = 2, b2 = - 2/2, bs = 2/3, b4 = -214, ... , and the Fourier series of f(x) is 

f(x) = 7T + 2 (Sin x - ~ sin 2x + ~ sin 3x - + ... ) . 

Half-Range Expansions 

• 

Half-range expansions are Fourier series. The idea is simple and useful. Figure 267 
explains it. We want to represent f(x) in Fig. 267a by a Fourier series. where f(x) may 
be the shape of a distorted violin string or the temperature in a metal bar of length L, for 
example. (Corresponding problems will be discussed in Chap. 12.) Now comes the idea. 
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[(x)~ 

L x 

(a) The given function [(x) 

-L L x 

(b) [(x) extended as an even periodic function of period 2L 

(e) [(x) extended as an odd periodic function of period 2L 

Fig. 267. (a) Function fIx) given on an interval 0 ~ x ~ L 

(b) Even extension to the full "range" (interval) -L ~ x ~ L (heavy curve) 
and the periodic extension of period 2L to the x-axis 

(c) Odd extension to -L ~ x ~ L (heavy curve) and the periodic extension 
of period 2L to the x-axis 

We could extend I(x) as a function of period L and develop the extended function into a 
Fourier series. But this series would in general contain both cosine and sine terms. We 
can do better and get simpler series. Indeed, for our given I we can calculate Fourier 
coefficients from (2) or from (4) in Theorem l. And we have a choice and can take what 
seems more practicaL If we use (2). we get (1). This is the even periodic extension II 
of f in Fig. 267b. If we choose (4) instead. we get (3), the odd periodic extension I2 of 
I in Fig. 267c. 

Both extensions have period 2L. This motivates the name half-range expansions: I is 
given (and of physical interest) only on half the range, half the interval of periodicity of 
length 2L. 

Let us illustrate these ideas with an example that we shall also need in Chap. 12. 

E X AMP L E 4 "Triangle" and Its Half-Range Expansions 

o Ll2 L x 

Fig. 268. The given 
function in Example 4 

Find the two half-range expansions of the function (Fig. 268) 

Solution. 

{

2k 

T X 

f(x) = 
2k 
T(L - X} 

L 
if O<x<2" 

L 
if 2"<x<L. 

(a) E,'en periodic extell.~ion. From (2) we obtain 

2 [2k rUz 
1l7T 2k fL 117T ] 

an = L T J
o 

xcosT xdx + T uz(L-x)cosT xdx . 
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We cunsider an' For the first integral we obtain by integration by parts 

r l2

X cos nTT x (iT = ~ sin nTT x I L/2 J 0 L nTT L 0 

L fL/

2

S1I1 nTT x dx 
nTT 0 L 

L2 sin nTT + 2L22 (cos 112TT _ 1) . 
211TT 2 n TT 

Similarly, for the second integral we obtain 

fL nTT L 11TT IL L 
(L - x) cos - x dx = - (L - x) sin - x + 

L/2 L nTT L L/2 11TT f
L nTT 

sin -xdx 
L/2 L 

We insert these two results into the formula for an' The sine terms cancel and so does a factor L2. This gives 

Thus, 

4k (2 cos 112TT - cos n TT - 1) . 
n2 TT2 

and a" = 0 if n * 2.6. 10. 14 ..... Hence the first half-range expansion of f(x) is (Fig. 269a) 

f(x) = ~ - ~ (~ cos 2TT X + ~ cos 6TT X + ... ) . 
2 TT2 22 L 62 L 

This Fourier cosine series represents the even periodic extension of the given function f(x), of period 2L. 

(b) Odd periodic exte11sio11. Sunilarly, from (4) we obtain 

8k 11TT 
(5) bn = 22 sin -. 

n 1T 2 

Hence the other half-range expansion of f(x) is (Fig. 269b) 

8k ( 1 TT 1 3TT 5TT 
f(X) = TT2 12 sin LX - 32 sin LX + 52 sin L X -

This series represents the odd periodic extension of f(x), of period 2L. 
Basic applications of these results will be shown in Sees. 12.3 and 12.5. 

-L o L x 

(a) Even extension 

x 

(b) Odd extension 

Fig. 269. Periodic extensions of [(xl in Example 4 

• 
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S£E?H:r-~--

[I~ EVEN AND ODD FUNCTIONS 

Are the following functions even. odd. or neither even nor 
odd? 

1. lxi, x 2 sin IIX, x + x 2
• e-1xl , In x, x cosh x 

2. sin (X2), sin2 x, x sinh x, Ix3 1, e=-, xex
, tan 2x, xlO + x2) 

Are the following functions, which are assumed to be 
periodic of period 27T. even. odd, or neither even nor odd? 

3. lex) = x 3 
( - 7T < X < 7T) 

4. lex) = x 2 (-7T/2 < x < 37T12) 

5. f(x) = e-4x (-7T < x < 7T) 

6. lex) = x 3 sin x (-7T < X < 17) 

7. lex) = xlxl - x3 (-17 < X < 7T) 

8. lex) = I - x + x 3 
- x 5 (-7T < X < 7T) 

9. f(x) = 1/(1 + \"2) if -17 < x < o. f(x) = -1/(1 + x2
) 

ifO<x<7T 

10. PROJECT. Even and Odd Functions. (a) Are the 
following expressions even or odd? Sums and products 
of even functions and of odd functions. Products of 
even times odd functions. Absolute values of odd 
functions. f(x) + f( -xl and f(x) - f( -x) for arbitrary 
f(x). 

(b) Write ekx
, lI(l - x). sin (x + k), cosh (x + k) as 

sums of an even and an odd function. 

(c) Find all functions that are both even and odd. 

(d) Is cos3 
\" even or odd? sin3 x? Find the Fourier 

series of these functions. Do you recognize familiar 
identities? 

111-161 FOURIER SERIES OF EVEN AND ODD 
FUNCTIONS 

Is the given function even or odd? Find its Fourier series. 
Sketch or graph the function and some partial sums. (Show 
the details of your work.) 

11. lex) = 17 - Ixl (-7T < x < 7T) 

12. fIx) = 2xlxl (-I<x<l) 

{

X if -1712 < x < 1712 
13. f(x) = 

17-X if 7T12 < x < 31712 

if-17<x<O 
14. lex) 

if 0 <X<17 

e if -2 <x<O 
15. f(x) 

if 0 <x<2 

=c 
- !Ixl if -2 < x < 2 

16. lex) (p = 8) 
0 if 2<x<6 

117-251 HALF-RANGE EXPANSIONS 

Find (a) the Fourier cosine series, (b) the Fourier sine serie~. 
Sketch J(x) and its two periodic extensions. (Show the 
details of your work.) 

17. f(x) = I (0 < x < 2) 

18. f(x) = x (0 < x < ~) 
19. lex) = 2 - x (0 < x < 2) 

{
o (0 < x < 2) 

20. lex) = 1 
(2 < x < 4) 

21. f(x) -- {2
1 

22. f(x) = { x 
7T/2 

(0 < x < I) 

(I < x < 2) 

(0 < x < 7T12) 

(1712 < x < 7T) 

23. f(x) = x (0 < x < L) 

24. f(x) = x 2 (0 < \. < L) 

25. f(x) = 7T - X (0 < x < 17) 

26. Illustrate the formulas in the proof of Theorem I with 
examples. Prove the formulas. 

11.4 Complex Fourier Series. Optional 
In this optional section we show that the Fourier series 

(1) f(x) = ao + ~ (an cos IIX + bn sin I1X) 

n~l 

can be written in complex form, which sometimes simplifies calculations (see Example 1, 
on page 498). This complex form can be obtained because in complex, the exponential 

function eit and cos t and sin t are related by the basic Euler formula (see (11) in Sec. 2.2) 

(2) eit = cos t + i sin T. Thus e-it = cos t - i sin t. 
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Conversely, by adding and subtracting these two fonnulas, we obtain 

(3) (b) 
1. . 

sin t = _(e't - e-lt). 
2i 

From (3), using 1Ii = -i in sin t and setting t = nx in both formulas, we get 

1 . I . -'nx - (an - ib.,o}e1nx + (a + lb )e • 2 . "2 n n . 

We insert this into (1). Writing ao = Co' !(an - ibn) = Cn' and !(an + ibn) = kn, 
we get from (l) 

00 

(4) f(x) = Co + ~ (cneinx + kne-inx). 
n=1 

The coefficients Cl' C2, •••• and klo k2 • •.• are obtained from (6b), (6c) in Sec. 11.1 and 
then (2) above with t = nx. 

1 1 7T 1 7T • 

C = -2 (an - ibn) = - f f(x)(cos nx - i sin llX) dx = - f f(x)e-mx dx 
n 27T _" 27T -TT 

(5) 

1 1 7T 1 7T _ 

kn = - (an + ibn) = - f f(x)(cos llX + i sin 1LX) dx = - f f(x)e1nx dx. 
2 27T -7T 27T -7T 

Finally, we can combine (5) into a single formula by the trick of writing kn = en' Then 
(4). (5), and Co = ao in (6a) of Sec. ll.l give (summation from -cx::!) 

00 

f(x) = ~ cnein.r, 
n=-co 

(6) 
1 7T 

C = - f f(x)e- tnx dx, 
11. 27T_-rr 

11 = O. ±1, ±2, .. '. 

This is the so-called complex fOl"l/l of the Fourier series or, more briefly, the complex 
Fourier series, of f(x). The Cn are called the complex Fourier coefficients of f(x). 

For a function of period 2L our reasoning gives the complex Fourier series 

00 

f(x) = ~ Cnein7rxlL, 

(7) 
n=-x 

11 = 0, ±l, ±2,···. 
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E X AMP L E 1 Complex Fourier Series 

Find the complex Fourier series of fex) = eX if -7T < x < 7T and f(x + 27T) = f(x) and obtain from it the usual 
Fourier series. 

Solution. Since sin n7T = 0 for integer n, we have 

e"'in7T = cos n7T ::':: i sin n7T = cos n7T = (-I)n. 

With this we obtain from (6) by integration 

en = ITT' eXe-inx dx = __ 1_ eX-inxl"" 
27T -7T 27T 1 - in X~-7T 

On the right, 

I + in 

I - in (I - in)(I + in) 

I + in 

I + n2 and e7T - e-7T = 2 sinh 7T. 

Hence the complex Fourier ,erie, is 

(8) 
7T 

00 I + in . L (_l)n ---2- e1nx 

n~-oo I + n 
( - 7T < X < 7T). 

sinh 7T 

From this let us derive the real Fourier series. Using (2) with t = l1X and i 2 = -1, we have in (8) 

(I + il1)inx = (I + ill)(cos IU: + i sin In) = (cos nx - n sin l1x) + ;(n cos nx + sin l1x). 

Now (8) also has a corresponding term with -II instead of n. Since cos (-nx) = cos IU: and 
sin (-In) = -sin IIX, we obtain in this term 

(I - in)e-inx = (I - ;n)(cos nx - i sin nx) = (cos l1X - n sin IU:) - i(n cos nx + sin nx). 

If we add these two expressions, the imaginary parts cancel. Hence their sum is 

2(cos nx - n sin nx), n = 1,2,···. 

For II = 0 we get I (not 2) because there is only one term. Hence the real Fourier series is 

(9) 
2sinh7T[1 I I 

eX = --- - - --- (cos x - sin x) + --- (cos il - 2 sin il) -
7T 2 I + 12 1 + 22 

+ .. J 
In Fig. 270 the poor approximation near the jumps at ::'::7T is a case of the Gibbs phenomenon (see CAS 

Experiment 20 in Problem Set 11.2). • 

-lC, 

y 

25 

20 

15 

10· / 

5/ 
o 

~ 

lC X 

Fig. 270. Partial sum of (9), terms from n = 0 to 50 
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1. (Calculus review) Review complex numbers. 

2. (Even and odd functions) Show that the complex 
Fourier coefficients of an even function are real and 
those of an odd function are pure imaginary. 

3. (Fourier coefficients) Show that 
ao = Co, an = Cn + C-n , bn = i(cn - c-n)· 

4. Verify the calculations in Example 1. 

S. Find further temlS in (9) and graph partial sums with 
your CAS. 

6. Obtain the real series in Example 1 directly from the 
Euler formulas in Sec. II. 

[7-131 COMPLEX FOURIER SERIES 

Find the complex Fourier series of the following functions. 
(Show the details of your work.) 
7. f(x) = -1 if - 7r < X < 0, f(x) = 1 if 0 < x < 7r 

8. Convert the series in Prob. 7 to real form. 
9. f(x) = x (-7r < X < 7r) 

11.5 Forced Oscillations 
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10. Convert the series in Prob. 9 to real form. 

11. f(x) = x 2 (-7r < X < 7r) 

12. Convert the series in Prob. II to real form. 

13. f(x) = x (0 < x < 27r) 

14. PROJECT. Complex Fourier Coefficients. It is very 
interesting that the Cn in (6) can be derived directly by 
a method sinlllar to that for an and bn in Sec. 11.1. For 
this, mUltiply the series in (6) by e-imx with fixed 
integer m, and integrate term wise from -7r to 7r on 
both sides (allowed, for instance, in the case of uniform 
convergence) to get 

I7T f(x)e- imx dx = ~ cn I7T ei(n-m)x dx. 
-7r n=-OO-71" 

Show that the integral on the right equals 27r when 
n = m and 0 when n =1= m [use (3b)], so that you get 
the coefficient formula in (6). 

Fourier series have important applications in connection with ODEs and PDEs. We show 
this for a basic problem modeled by an ODE. Various applications to PDEs will follow 
in Chap. 12. This will show the enormous usefulness of Euler's and Fourier's ingenious 
idea of splitting up periodic functions into the simplest ones possible. 

From Sec. 2.8 we know that forced oscillations of a body of mass m on a spring of 
modulus k are governed by the ODE 

(1) my" + cy' + f....), = ret) 

where y = yet) is the displacement from rest, c the damping constant, k the spring constant 
(spring modulus), and r(t) the external force depending on time t. Figure 271 shows the 
model and Fig. 272 its electrical analog, an RLC-circuit governed by 

Fig.271. Vibrating system under 
consideration 

c 

R L 

E(t) 

Fig. 272. Electrical analog of the 
system in Fig. 271 (RLC-circuit) 
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(1*) 
I 

Ll" + RT' + - T = E' (t) 
C 

(Sec. 2.9). 

We consider (1). If ret) is a sine or cosine function and if there is damping (c > 0), 
then the steady-state solution is a harmonic oscillation with frequency equal to that of r(t). 
However, if r(t) is not a pure sine or cosine function but is any other periodic function, 
then the steady-state solution will be a superposition of harmonic oscillations with 
frequencies equal to that of r(t) and integer multiples of the latter. And if one of these 
frequencies is close to the (practical) resonant frequency of the vibrating system (see 
Sec. 2.8), then the corresponding oscillation may be the dominant patt of the response of 
the system to the external force. This is what the use of Fourier series will show us. Of 
course, this is quite surprising to an observer unfamiliar with Fourier series, which are 
highly important in the study of vibrating systems and resonance. Let us discuss the entire 
situation in terms of a typical example. 

E X AMP L E 1 Forced Oscillations under a Nonsinusoidal Periodic Driving Force 

In (I), let In = 1 (gm), C = 0.05 (gmfsec), and k = 25 (gmfsec2
), so that (1) becomes 

(2) y" + 0.05/ + 25y = r(t) 

where r(t) is measured in gm • cmfsec2. Let (Fig. 273) 

{ 

t + ~ 
r(t) = 2 

IT 
-( + 2" if 

if -7T<t<O, 

r(t + 27T) = r(t). 

O<t<7T, 

Find the steady-state solution yet). 

Fig. 273. Force in Example 1 

Solution. We represent ret) by a Fourier series. finding 

(3) r(t) = ~ (cos t + ~ cos 3t + ~ cos 5t + ... ) 
7T 3 52 

(take the answer [0 Prob. 11 in Problem Set 11.3 minus ~7T and write t for x). Then we consider the ODE 

(4) " I 4 v + 0.05y + 251' = -- cos Ilt . . - 2 
11 7T 

(n = 1. 3 .... ) 

whose right side is a single term of the series (3). From Sec. 2.8 we know that the steady-state solution vn(t) 

of (4) is of the form 

(5) Yn = An cos I1f + Bn sin nt. 
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By substituting this into (4) we find that 

0.2 
(6) A = n where 

Since the ODE (2) i~ linear. we may expect the steady-state solution to be 

(7) Y = .1'1 + )'3 + Y5 + ... 

where )'n is given by (5) and (6). In fact, this follows readily by substituting (7) into (2) and using the Fourier 
series of r( t), provided that termwise differentiation of (7) is permissible. (Readers already fami) iar with the notion 
of uniform convergence [Sec. 15.51 may prove that (7) may be diilerentiated term by term.) 

From (6) we find that the amplitude of (5) is (a factor Vii;. cancels out) 

Numeric values are 

C1 = 0.0531 

C3 = 0.0088 

C5 = 0.2037 

C7 = 0.0011 

C9 = 0.0003. 

Figure 274 shows the input (multiplied by 0.1) and the output. For n = 5 the quantity Dn is very small. the 
denominator of C5 is small, and C5 is so large that Y5 is the dominating term in (7). Hence the output is almost 
a harmonic oscillation of five times the frequency of the driving force, a little distorted due to the term Yl, whose 
amplitude is about 25% of that of Y5' You could make the situation still more extreme by decreasing the damping 

constant c. Try it. • 

y 

0.3 

Fig. 274. Input and steady-state output in Example 1 

1. (Coefficients) Derive the fonnula for en from An and Bn. 

2. (Spring constant) What would happen to the amplitudes 
en in Example 1 (and thus to the fonn of the vibration) 
if we changed the spring constant to the value 97 If we 
took a stiffer spring with k = 817 First guess. 

3. (Damping) In Example I change c to 0.02 and discuss 
how this changes the output. 

4. (Input) What would happen in Example I if we 
replaced ret) with its derivative (the rectangular wave)? 
What is the ratio of the new en to the old ones? 
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15-111 GENERAL SOLUTION 

Find a general solution of the ODE y" + w2y = ret) with 
r(t) as given. (Show the details of your work.) 

5. r(t) = cos wt, w = 0.5, 0.8, U, 1.5, 5.0, 10.0 

6. r(t) = cos WIt + cos w2t (w2 
=1= W1

2
, W22) 

N 

7. r(t) = 2 an cos Ilt, Iwl =1= 1, 2, ... , N 

8. r(t) 

9. r(t) 

n=1 

sin t + l sin 3t + ! sin 5t + t sin 7t 

{ 

t+7f if 

-t + 7f if 

-7T<t<O 

O<t<7T 

and r(t + 27T) = ret), Iwl =1= 0, 1,3, 

10. r(t) = { ( 

7T-

if - 7T12 < t < 7T12 

if 7T12 < t < 37T12 

and r(t + 27T) = reT), Iwl =1= 1,3,5, ... 

7T 
11. ret) = "4 Isin t/ if -7T < t < 7T and 

r(t + 27T) = ret). Iwl =1= o. 2. 4 .... 

12. (CAS Program) Write a program for solving the ODE 
just considered and for jointly graphing input and 
output of an initial value problem involving that ODE. 
Apply the program to Probs. 5 and 9 with initial values 
of your choice. 

13. (Sign of coefficients) Some An in Example 1 are positive 
and some negative. Is this physically understandable? 

114-171 STEADY-STATE DAMPED OSCILLATIONS 

Find the steady-state oscillation of y" + c/ + Y = r(t) 

with c > 0 and ret) as given. (Sho\'i the details of your 
work.) 

14. ret) = an cos III 

15. r(t) = sin 3t 

16. reT) 
{ 

7Tt 

7f( 7T - t) 

if 

if 

and r(t + 27f) = ret) 
N 

17. ret) = 2 bn sin nt 
n=l 

-7T12 < t < ,,12 

7T12 < t < 3,,/2 

18. CAS EXPERIMENT. Maximum Output Term. 
Graph and discus~ outputs of y" + cy' + /...y = ret) 
with r(t) as in Example I for various c and k with 
emphasis on the maximum Cn and its ratio to the 
second largest Icni. 

~9_-~ RLC-CIRCUIT 
Find the steady-state current I(t) in the RLC-circuit in 
Fig. 272, where R = 100 n, L = 10 H, C = 10-2 F and 
E(t) V as follows and periodic with period 27f. Sketch or 
graph the first four partial sums. Note that the coefficients 
of the solution decrease rapidly. 

19. E(t) = 200t( 7T2 - t 2) (- 7T < t < 7f) 

{ 

100 (7Tt + t 2) if - 7f < t < 0 
20. E(t) = 

lOO( 7Tt - (2) if 0 < t < 7T 

11.6 Approximation by Trigonometric Polynomials 
Fourier series playa prominent role in differential equations. Another field in which they 
have major applications is approximation theory, which concerns the approximation of 
functions by other (usually simpler) functions. In connection with Fourier series the idea 
is as follows. 

Let lex) be a function on the interval -7T" ~ X ~ 7f that can be represented on this 
interval by a Fourier series. Then the Nth partial sum of the series 

N 

(1) f(x) = 00 + 2: (on cos nx + bn sin nx) 
n=l 

is an approximation of the given f(x). It is natural to ask whether (l) is the "best"" 
approximation of f by a trigonometric polynomial of degree N, that is, by a function 
of the form 

N 

(2) F(x) = Ao + 2: (An cos nx + Bn sin nx) (N fixed) 
n=l 

where "best" means that the "error" of the approximation is as small as possible. 
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Of course, we must first define what we mean by the error E of such an approximation. 
We could choose the maximum of If - Fl. But in connection with Fourier series it is 
better to choose a definition that measures the goodness of agreement between f and 
F on the whole interval - 7T ~ X ~ 7T. This seems preferable, in particular if f has jumps: 
F in Fig. 275 is a good overall approximation of f, but the maximum of If - FI (more 
precisely, the supremum) is large (it equals at least half the jump of fat Xo). We choose 

(3) E = J'" (f - Fi dx . 
-'" 

This is called the square error of F relative to the function f on the interval -7T ~ X ~ 7T. 

Clearly, E ~ O. 
N being fixed. we want to determine the coefficients in (2) such that E is minimum. 

Since (f - Ff = f2 - 2fF + F2, we have 

(4) E = J'" f2 dx - 2 J'" fF dx + J'" F2 dx. 
-~ -~ -~ 

We square (2), insert it into the I&<;t integral in (4), and evaluate the occurring integrals. 
This gives integrals of cos2 m: and sin2

1u (n ~ 1), which equal 7T, and integrals of 
cos nx, sin 1Z:r. and (cos nx)(sin mx). which are zero (just as in Sec. 11.1). Thus 

'" '" [ N J2 L7T F2 dx = L7T Ao + ~I (An cos llX + Bn sin nx) dx 

We now insert (2) into the integral of fF in (4). This gives integrals of f cos nx as well 
as f sin IU, just as in Euler's formulas, Sec. 1l.1, for an and bn (each multiplied by An 

or Bn)' Hence 

J'" fF dx = 7T(2Aoao + AlaI + ... + ANaN + Bibi + ... + BNbN)· 
-'" 

With these expressions, (4) becomes 

E = J:J2 
d, - 27T [2Aoao + ~l (Anan + Bnbn) J 

+ 7T [ 2A02 + ~I (An
2 + Bn

2)J . 
(5) 

x 

Fig. 275. Error of approximation 
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We now take An = an and Bn = bn in (2). Then in (5) the second line cancels half of the 
integral-free expression in the first line. Hence for this choice of the coefficients of F the 
square error, call it E*, is 

(6) 

We finally subtract (6) from (5). Then the integrals drop out and we get terms 
An 2 - 2Anan + an 2 = (An - an)2 and similar terms (Bn - bn)2: 

Since the sum of squares of real numbers on the right cannot be negative, 

E - E* ~ 0, thus E~E*, 

and E = E* if and only if Ao = ao, ... , EN = bN . This proves the following fundamental 
minimum property of the partial sums of Fourier series. 

Minimum Square Error 

The square error of Fill (2) (with fixed N) relative to f on the interval -7T ~ X ~ 7T 

is millimum if alld ollly if the coefficients of Fill (2) are the Foltrier coefficients of 
f. This millimllm vallle E* is givell by (6). 

From (6) we see that E* cannot increase as N increases, but may decrease. Hence with 
increasing N the partial sums of the Fourier series of f yield better and better 
approximations to f, considered from the viewpoint of the square error. 

Since E* ~ 0 and (6) holds for every N, we obtain from (6) the important Bessel's 
inequality 

(7) 

for the Fourier coefficients of any function f for which integral on the right exists. (For 
F. W. Bessel see Sec. 5.5.) 

It can be shown (see [eI2] in App. 1) that for such a function f, Parseval's theorem 
holds; that is, formula (7) holds with the equality sign, so that it becomes Parseval's 
identity4 

(8) 

4MARC ANTOINE P ARSEV AL (1755-1836), French mathematician. A physical interpretation of the identity 
follows in the next section. 
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-IT 

E X AMP L E 1 Minimum Square Error for the Sawtooth Wave 

o IT X 

Compute the minimum square error E* of F(x) with N = 1, 2, ... , 10, 20, ... , 100 and 1000 relative to 

f(x) = x + 71' 

on the interval - 71' ~ X ~ 71'. 

1 1 (_l)N+l 
Solution. F(x) = 71' + 2 (sin x - '2 sin 2, + '3 sin 3x - + ... + - ~ sin Nx) by Example 3 in 
Sec. 11.3. From this and (6), 

Numeric values are: 

N E* N E* N E* N E* 

1 8.1045 6 1.9295 20 0.6129 70 0.1782 

2 4.9629 7 1.6730 30 0,4120 80 0.1561 

3 3.5666 8 1.4767 40 0.3103 90 0.1389 

4 2.7812 9 l.3216 50 0.2488 100 0.1250 

5 2.2786 10 L.1959 (iO 0.2077 1000 0.0126 

Fig. 276. F with 

N = 20 in Example 1 

F = S1. S2, S3 are shown in Fig. 266 in Sec. 11.3, and F = S20 is shown in Fig. 276. Although l.r(x) - F(x)1 

is large at :+: 71' (how large?), where f is discontinuous, F approximates f quite well on the whole interval, except 
near :+:71', where "waves" remain owing to the Gibbs phenomenon (see CAS Experiment 20 in Problem Set 
11.2). 

Can you think of functions f for which E* decreases more quickly with increasing N? • 
This is the end of our discussion of Fourier series, which has emphasized the practical 
aspects of these series, as needed in applications. In the last three sections of this chapter 
we show how ideas and techniques in Fourier series can be extended to non periodic 
functions. 

L:il MINIMUM SQUARE ERROR 

Find the trigonometric polynomial F(x) of the form (2) for 
which the square error with respect to the given f(x) on the 
interval - 7T ~ x ~ 7T is minimum, and compute the 
minimum value for N = 1, 2 .... , 5 (or also for larger 
values if you have a CAS). 

1. f(x) = x (-7T < X < 7T) 

2. f(x) = x 2 (-7T < X < 7T) 

3. f(x) = Ixl (-7T < x < 7T) 

4. f(x) = .\'3 (-7T < X < 7T) 

5.f(x) ISinxl(-7T<x<7T) 

6. f(x) e- 1xl (- 7T < X < 7T) 

if -7T<X<O 
7. f(x) 

if O<X<7T 

{

X if 
8. f(x) = 

o if 

-!7T < x < !7T 

!7T < X < ~7T 

9. f(x) = .r(x + 7T) if -7T < x < 0, f(x) = xC-x + 7T) 
if 0 < x < 7T 

10. CAS EXPERIMENT. Size and Decrease of E*. 
Compare the size of the minimum square error E* for 
functions of your choice. Find experimentally the 
factors on which the decrease of E* with N depends. 
For each function considered find the smaIIest N such 
that E* < 0.1. 

11. (Monotonicity) Show that the minimum square error 
(6) is a monotone decreasing function of N. How can 
you use this in practice? 
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[12-161 PARSEVAL'S IDENTITY 

Usmg Parseval"s identity, prove that the series have the 
indicated sums. Compute the first fev; partial sums to see 
that the convergence is rapid. 

7T
4 

12. L + + + + ... = - = 1.014678032 
34 54 74 96 

(Use Prob. 15 in Sec. 11.1.) 

1 1 ~ 

1 rr 
16 

"2 = 0.116850275 

(Use Prob. 5. this set.) 

I I 7T
4 

15. J + - + - + .. 
24 34 90 

(Use Prob. 21 in Sec. 1l.1.) 

ILl 7T
6 

1.08232 3234 

13. L + - + - + ... = 
32 52 8 

1.23370 0550 16. I + - + - + - + ... = - = 1.001447078 
36 56 76 960 

(Use Prob. 13 in Sec. 11.1.) (Use Prob. 9, this set.) 

11.7 Fourier Integral 
Fourier series are powerful tools for problems involving functions that are periodic or are of 
interest on a finite interval only. Sections 11.3 and L 1.5 first illustrated this, and various further 
applications follow in Chap. 12. Since, of course, many problems involve functions that are 
nonperiodic and are of interest on the whole x-axis, we ask what can be done to extend the 
method of Fourier series to such functions. This idea will lead to "Fourier integrals." 

In Example I we stan from a special function fL of period 2L and see what happens 
to its Fourier series if we let L ~ x. Then we do the same for an arbitral}' function fL 
of period 2L. This will motivate and suggest the main result of this section, which is an 
integral representation given in Theorem 1 (below). 

E X AMP L E 1 Rectangular Wave 

Consider the periodic rectangular wave fdx) of period 2L > 2 given by 

J,N~ {; 

if -£<x<-1 

if -I<x< 

if I<x< L. 

The left part of Fig. 277 shows this function for 2L = 4, 8, 16 as well as the nonperiodic function f(x), which 
we obtain from fL if we let L ~ x, 

f(x) = lim hex) = {I 
L-"" 0 

if -I <x < I 

otherwise. 

We now explore what happens to the Fourier coefficients of fL as L increa~es. Since fL is even, bn = 0 for 
all n. For an the Euler formulas (6), Sec. 11.2. give 

I II I I II 1171"X 2 II Il71"X 2 sin (1171"IL) 
a - - dx - - an = - cos - - dx = - cos -- dx = - --- -
0- 2L -1 - £ ' £ -I L L 0 £ L 1171"IL 

This sequence of Fourier coefficients is called the amplitude spectrum of fL because lanl is the maximum 
amplitude of the wave an cos (Ilm:lL). Figure 277 shows this spectrum fOf the periods 2L = 4, 8, 16. We see 
that for increasing L these amplitude, become more and more dense on the positive wn-axis. where Wn = 1l71"1L. 

Indeed, for 2£ = 4, 8, 16 we have I. 3, 7 amplitudes per "half-wave" of the function (2 sin wn)/(Lwn ) (dashed 
in the figurel. Hence for 2L = 2k we have 2k - 1 

- I amplitudes per half-wave. so that these amplitudes will 
eventually be everywhere dense on the positive w.,-axis (and will decrease to zero). 

The outcome of this example gives an intuitive impression of what about to expect if we turn from our special 
function to an arbitrary one, as we shall do next. • 
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Waveform fL (x) 
1 , 

Amplitude spectrum un(wn) , rno, wn=nn/L 

fn=5 
\ ~ , 

x , , 
n=:} 

wn , ,I" 
~ n=3/ 

2L=4 
1 
2 

1'r\n=2 
£n=lO 
-, 

x 'L J ,..J W 

n=6/ 
n 

r--2L=8~ 
n= 14 

fL(;;6 1 n=4 

1 1 -'=1-_ 4 [1l;'I',uv 1--
C n =20 

-8 0 8 x 
. r 

n=12/ n=28/ 
Wn 

IE 2L= 16 "'I 

___________ f_(;;6~ ____________________ ___ 
-101 x 

Fig. 277. Waveforms and amplitude spectra in Example 1 

From Fourier Series to Fourier Integral 
We now consider any periodic function fL(X) of period 2L that can be represented by a 
Fourier series 

00 

fdx) = ao + ~ (an cos WnX + bn sin wnx), 
n=l 

w = n 

n7T 

L 

and find out what happens if we let L~ 00. Together with Example I the present calculation 
will suggest that we should expect an integral (instead of a series) involving cos wx and 
sin wx with W no longer restricted to integer multiples W = Wn = 117TIL of 7TIL but taking 
all values. We shall also see what form such an integral might have. 

If we insert an and bn from the Euler formulas (6), Sec. 1 1.2, and denote the variable 
of integration by v, the Fourier series of fdx) becomes 

We now set 

(n + 1)7T 
ll.w = Wn+l - Wn = 

L 

1l7T 7T 

L L 
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Then lIL = /1W/7T, and we may write the Fourier series in the form 

(1) 
1 L 1=[ L 

fdx) = - I iLlv) dv + - ~ (cos wnx) Llll' I iLtv) cos WnV dv 
2L -L 7T n=l -L 

+ (sin wnx) .lw f:/dV) sin wnv dVJ 
This representation is valid for any fixed L, arbitrarily large, but finite. 

We now let L ~ x and assume that the resulting nonperiodic function 

f(x) = lim iLlx) 
L_x 

is absolutely integrable on the x-axis: that is, the following (finite!) limits exist: 

(2) lim IOlf(x)1 dx + lim fblf(x)1 dx (written I_oo=lf(X)1 dX) . 
a~-x a b~x 0 

Then lIL ~ 0, and the value of the first term on the right side of (l) approaches zero. 
Also LlW = 7T/L ~ 0 and it seems plausible that the infinite series in (l) becomes an 
integral from 0 to Xl, which represents f(x), namely, 

I =[ = = ] (3) f(x) = - L cos wx I f(v) cos wv dv + sin wx I f(v) sin wv dv dw. 
7T ° -x -00 

If we introduce the notations 

(4) 
1 co 

A(w) = - I f(v) cos wv dv, 
7T -cc 

I co 

B(w) = - I f(v) sin wv dv 
7T -co 

we can write this in the form 

(5) f(x) = LX lA(w) cos wx + B(w) sin wx] dw. 

° 
This is called a representation of f(x) by a Fourier integral. 

It is clear that our naive approach merely suggests the representation (5), but by no 
means establishes it; in fact. the limit of the series in (I) as Llw approaches zero is not 
the definition of the integral (3). Sufficient conditions for the validity of (5) are as follows. 

Fourier Integral 

If f(x) is piecewise continllous (see Sec. 6.1) ill eve/}' finite interml and has a 
right-hand derimtive alld a left-hand derivative at evel), point (see Sec ILl) and 
if the integral (2) exists, then f(x) call be represented by a Fourier imegral (5) with 
A and B given by (4). At a point where f(x) is disconti1lllolis the value of the Fourier 
integral equals the average of the left- and right-hand limits of f(x) at that point 
(see Sec. 11.1). (Proof in Ref. [C 12]; see App. 1.) 
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Applications of Fourier Integrals 
The main application of Fourier integrals is in solving ODEs and PDEs, as we shall see 
for PDEs in Sec. 12.6. However, we can also use Fourier integrals in integration and in 
discussing functions defined by integrals, as the next examples (2 and 3) illustrate. 

E X AMP L E 2 Single Pulse, Sine Integral 

Find the Fourier integral representation of the function 

Solutioll. From (4) we obtain 

if 
f(x) = C if Ixl < I 

loll> I 

---_~~:j l--x 
Fig. 278. Example 2 

I Joe I Jl sin II"V 11 2 sin w 
A(w) = - f(v) cos >l'U dv = - cos wv dv = ---

7T -x 7T -1 mv -1 7n1' 

I Jl B(w) = - sin wU dv = 0 
7r -1 

and (5) gives the answer 

cos wx sin w 
(6) f(x) = dw. 

w 

The average of the left- and right-hand limits of f(x) at x = I is equal to (I + 0)/2. that is. 111. 
Furthermore. from (6) and Theorem I we obtain (multiply by 7r12) 

r if o ~x< I. fX 

cos In sin 11' 
(7) dll" = 71/4 if x = 1, 

o II" 

0 if x> 1. 

(Fig. 278). 

We mention that this integral is called Dirichlet's discontinous factor. (For P. L. Dirichlet see Sec. 10.8.) 
The case x = 0 is of particular interest. If x = O. then (7) gives 

co 

(8*) 1 sin II" 7r 
--dw=-. 

o w 2 

We see that this integral is the limit of the ~o-called sine integral 

(8) 

u 

1 sinw 
Si(lI) = -- dll' 

o W 

as II ~ x. The graphs of Si(lI) and of the integrand are shown in Fig. 279. 
Tn the case of a Fourier series the graphs of the partial sums are approximation curves of the curve of the 

periodic function represented by the series. Similarly, in the case of the Fourier integral (5). approximations are 
obtained by replacing GO by numbers a. Hence the integral 

(9) 

a 21 _c_os_w_x_s_in_'_v 
dw 

7r 0 W 

approximares the right side in (6) and therefore f(x). 
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y 

Integrand 1 
~ 

,; 
1C 

2 

Fig. 279. Sine integral Situ} and integrand 

Figure 280 shows o,cillations near the points of discontinuity of f(x). We might expect that these oscillations 
disappear as a approaches infinity. But this is not tfile; with increasing a, they are shifted closer to the points 
x = :!: I. Thi~ unexpected behavior. which also occurs in connection with Fourier series. is known as the Gibbs 
phenomenon. (See also Problem Set 1l.2.) We can explain it by representing (9) in terms of sine integmls as 
follows. Using (II) in App. A3.1. we have 

a a a 
2 I cos wx sin w I I sin (w + ,,"x) 1 I sin (w - wx) 
- dll' = - dw + - dw. 
7To U' 7To U' 7To l'\,' 

In the fIrst integral on the right we set w + wx = r. Then dw/w = dt/t, and 0 ::<; w ::<; a corresponds to 

0::<; t::<; (x + 1)1I. In the last integral we set w - wx ~ -I. Then dw/w = dt/t, and 0::<; w::<; a corresponds to 
0::<; t ::<; (x - I)a. Since sin (-t) = -sin t. we thus obtain 

2 

I
a. I(x+lla . cos wx sm w I Sin t 

- dw=- --dt-
1T 0 w 1T 0 t 

From this and (8) we see that our integral (9) equab 

I
(X-lla . 

smt 
-- dt. 

1T 0 t 

I I 
- Si(a[x + I]) - - Si(lI[x - I]) 
1T 1T 

and the oscillations in Fig 280 result from those in Fig. 279. The increa~e of a amounts to a transformation 
of the scale on the axis and causes the shift of the oscillations (the waves) toward the points of discontinuity 
-1 and 1. • 

2x 

Fig. 280. 

y 

a= 16 

-2 -1 0 2 x -2 -1 0 

The integral (9) for a = 8, 16, and 32 
I 2x 
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Fourier Cosine Integral and Fourier Sine Integral 
For an even or odd function the Fourier integral becomes simpler. Just as in the case of 
Fourier series (Sec. 1l.3), this is of practical interest in saving work and avoiding errors. 
The simplifications follow immediately from the formulas just obtained. 

Indeed. if f(x) is an evell function. then B(w) = 0 in (4) and 

(10) 
2 :x: 

Alw) = - I feu) cos wu du. 
7r 0 

The Fourier integral (5) then reduces to the Fourier cosine integral 

(11) f(x) = fO A(w) cos WX {hI 
o 

Similarly, if f(x) is odd, then in (4) we have A(w) = 0 and 

(12) 
2 GC 

B(w) = - L f(u) sin wu du. 
7r 0 

The Fourier integral (5) then reduces to the Fourier sine integral 

(13) f(x) = IX Blw) sin \1'X dw 
o 

Evaluation of Integrals 

(f even). 

(f odd). 

Earlier in this section we pointed out that the main application of the Fourier integral is 
in differential equations but that Fourier imegral representations also help in evaluating 
certain integrals. To see this, we show the method for an important case, the Laplace 
integrals. 

E X AMP L E 3 Laplace Integrals 

Fig. 281. fIx) in 
Example 3 

We shall derive the Fourier cosme and Fourier sine integrals of f(x) = e -kX, where x> 0 and k > 0 (Fig. 2lll). 
The re~ult will be used to evaluate the so-called Laplace integrals. 

Solutioll. (a) From tIO) we have A(lI") = ~ IXe- kv cos wv dv. Now. by integration by parts, 
7T 0 

I -kv k -lw ( lI" , ) e cos nov dv = - 2 2 e - - sm II'V + cos wv . 
k + w k 

If v = O. the expression on the right equals -kl(k2 + w2
). If v approaches infinity. that expression approache~ 

lero because of the exponential factor. Thus 

(14) 

By substituting this into (II) we thus obtain the Fourier cosine integral representation 

:x: 
2k L cos liT 

f(x) = e -k.-.; = - 2 2 dll" 
7T 0 k +w 

(x> 0, k> 0), 
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From this representation we see that 

(15) foo coswx dw = ~ e-kx 

o k2 +w2 2k 
(x> 0, k > 0). 

(b) Similarly, from (12) we have B(w) = ~ foo e-kv sin wu du. By integration by parts 
7T 0 

f -kv . 11' -ku (k . ) e slllwudu=- 2 2 e -SIllWU+Coswu. 
k + w w 

This equals -wl(k2 + ",2) if u = 0, and approaches 0 as u ~ ce. Thus 

(16) 

From (13) we thus obtain the Fourier sine integral representation 

00 

k 2 L 11'sinwx 
f(x) = e - x = - 2 2 dw. 

7T 0 k +w 

From this we see that 

= 
(17) L w sin U'X 7T -kx 

o k 2 + 11'2 d11' = 2 e 

The integrals (15) and (17) are called the Laplace integrals. 

11-61 EVALUATION OF INTEGRALS 

Show that the given integral represents the indicated 
function. Hint. Use (5), (11), or (13); the integral tells you 
which one, and its value tells you what function to consider. 
(Show the details of your work.) 

0:: • L smw 4. -- cos xw dw 
o H' r rr/4 

0 

0 if x< 0 
00 

{ wl2 

L
oo 

cos (rrwI2) 
5. 2 cosxw dw 

o l-w 

L cosxw + w sin xw 
1. dw = if x= 0 

1 + w2 

rre- x if x> 0 

00 • 

(x> 0, k > 0). 

• 

if O~x< 

if x= 

if x> 

if 0 < Ixl < rr/2 

if Ixl ~ 7T12 

L Slnw-wcosw 
2. 2 sinxw dw 

o w Lo:: sin rrw sin xw {¥ sin x 
6. 2 dw = 

o 1 - W 0 

if 

if 

00 

L cosxw 
3. --- dw 

o 1 + w 2 

{ 

12 if 0 < x < 1 

= :0/4 if x = 

if x> 

rr 
-e-x if x > 0 
2 

17-121 FOURIER COSINE INTEGRAL 
REPRESENTATIONS 

Represent j(x) as an integral (11). 

{

I if 
7. f(x) = 

o if 

O<x<a 

x>a 
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r
2 if O<x<a 

8. f(x) = 0 
if x>a 

=e 
if 0< x < 1 

9. f(x) 
if x > 1 

10. f(x) ~ f 1 

xl2 if o<x< 

- x/2 if <x<2 

0 if x>2 

rnx 
if O<X<7T 

11. f(x) = 0 
if X>7T 

= {e~X if O<x<a 
12. f(x) 

if x>a 

13. CAS EXPERIMENT. Approximate Fourier Cosine 
Integrals. Graph the integrals in Prob. 7, 9, and 11 as 
functions of x. Graph approximations obtained by 
replacing co with finite upper limits of your choice. 
Compare the quality of the approximations. Write a 
short report on your empirical results and observations. 

114-191 FOURIER SINE INTEGRAL 
REPRESENTATIONS 

Represent f(x) as an integral (13). 

14. f(x) = e if O<x<a 

if x> a 

{

SlllX if 
15. f(x) = 0 

if 

O<X<7T 
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{I - x
2 if O<x< 

16. f(x) = 0 
if x> 

{7T - x if O<X<7T 
17. f(x) = 0 

if X> 7T 

= ro~x if O<X<7T 
18. f(x) 

if x> 7T 

= r ~ x 
if O<x<a 

19. f(x) 
if x>a 

20. PROJECT. Properties of Fourier Integrals 
(a) Fourier cosine integral. Show that (11) implies 

(al) f(ax) = ~ fO A( :) cos xw dw 

(a2) 

(a3) 

(a> 0) (Scale change) 

xf(x) = fOO B*(w) sin xw dw, 
o 

dA 
B* = -

dw ' 
A as in (10) 

x 2f(x) = f=A*(W) cosxw dw, 
o 

d 2A 
A* = - dw 2 . 

(b) Solve Prob. 8 by applying (a3) to the result of 
Prob.7. 

(c) Verify (a2) for f(x) = I if 0 < x < a and 
f(x) = 0 if x > a. 

(d) Fourier sine integral Find formulas for the 
Fourier sine integral similar to those in (a). 

11.8 Fourier Cosine and Sine Transforms 
An integral transform is a transformation in the form of an integral that produces from 
given functions new functions depending on a different variable. These transformations 
are of interest mainly as tools for solving ODEs, PDEs, and integral equations, and they 
often also help in handling and applying special functions. The Laplace transform 
(Chap. 6) is of this kind and is by far the most important integral transform in 
engineering. 

The next in order of importance are Fourier transforms. We shall see that these 
transforms can be obtained from the Fourier integral in Sec. 11.7 in a rather simple fashion. 
In this section we consider two of them, which are real, and in the next section a third 
one that is complex. 
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Fourier Cosine Transform 
For an even function f(x), the Fourier integral is the Fourier cosine integral 

(1) (a) f(x) = t"'A(W) cos wx dw. 
o 

where 
2 "" 

(b) A(w) = - L f(v) cos wv dv 
7T 0 

[see (10), (11), Sec. 11.71. We now set A(w) = "'v'ij; icCw), where c suggests "cosine." 
Then from (1 b), writing v = x, we have 

(2) 

and from (la), 

(3) 

~
ac 

icCw) = - L f(x) cos wx dx 
'iT 0 

~
CIJ 

f(x) = - L ie(w) cos WX dll'. 
7T 0 

ATTENTION! In (2) we integrate with respect to x and in (3) with respect to 11". Formula 
(2) gives from f(x) a new function ie(w), called the Fourier cosine transform of f(x). 
Formula (3) gives us back f(x) from ie(w), and we therefore call f(x) the inverse Fourier 
cosine transform of ie(w). 

The process of obtaining the transform ie from a given f is also called the Fourier 
cosine transform or the Fourier cosine transJoml method. 

Fourier Sine Transform 
Similarly, for an odd function f(x), the Fourier integral is the Fourier sine integral [see 
(12), (13), Sec. 11.7] 

CIJ 

(4) (a) f(x) = L B(w) sin wx dw, 
o 

where 
2 ac 

(b) B(w) = - L f(v) sin wv dv. 
7T 0 

We now set B(w) = "'v'ij; isCw), where s suggests "sine:' Then from (4b), writing v = x, 
we have 

(5) A ~ CXJ fsCw) = - L f(x) sin wx dx. 
7T 0 

This is called the Fourier sine transform of f(x). Similarly, from (-I-a) we have 

(6) ~ 
""A 

f(x) = - L fs(w) sin wx dw. 
7T 0 

This is called the inverse Fourier sine transform of is(w). The process of obtaining iAw) 
from f(x) is also called the Fourier sine transform or the Fourier sine transJoT11111letlzod. 

Other flotations are 

and g;;;-l and 9F;! for the inverses of ;!Fe and 9Fs, respectively. 
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EXAMPLE 

x=a x 

Fig. 282. fIx) in 
Example 1 

Fourier Cosine and Fourier Sine Transforms 

Find the Fourier cosine and Fourier sine tran~forms of the function 

j(x) = {k 
o 

ifO<x<a 

if x> a 

Solution. From the definitions (2) and (5) we obtain by integration 

, f2 fa f2 (sin aw ) 
Ic(w) = -V -:;; k 0 cos wx dt = -V -:;; k -w-

, If fa If (1 - cos aw ) Iiw) = - k sin ll'X dx = - k . 
7T 0 7T W 

This agrees with formulas 1 in the first two tables in Sec. 11.10 (where k = 1). 
Note that for I(x) = k = const (0 < x < co). these transforms do not exist. (Why?) 

(Fig. 282). 

• 
E X AMP L E 2 Fourier Cosine Transform of the Exponential Function 

Find ?F c( e -x). 

Solution. By integration by parts and recursion. 

- ~f2 Leo -1· f; e-·l' 1= V2hr ?Fc(e x) = -7T 0 e . cos wx dx = -7T ---2 (-cos wx + w sin wx) = ---2 
l+w 0 l+w 

This agrees with formula 3 in Table 1. Sec. 11.10. with 1I = 1. See also the next example. • 
What did we do to introduce the two integral transforms under consideration? Actually 
not much: We changed the notations A and B to get a "symmetric" distribution of the 
constant 2/7T in the original formulas (10)-(13), Sec. 11.7. This redistribution is a standard 
convenience, but it is not essential. One could do without it. 

What have we gained? We show next that these transforms have operational properties 
that permit them to convert differentiations into algebraic operations (just as the Laplace 
transform does). This is the key to their application in solving differential equations. 

Linearity, Transforms of Derivatives 
If f(x) is absolutely integrable (see Sec. 11.7) on the positive x-axis and piecewise 
continuous (see Sec. 6.1) on every finite interval, then the Fourier cosine and sine 
transforms of f exist. 

Furthermore, if f and g have Fourier cosine and sine transforms, so does af + bg for 
any constants a and b, and by (2), 

~
oo 

9FcCaf + bg) = - L [af(x) + bg(x)] cos lIJX dx 
7T 0 

~ cc ~oo = a - L f(x) cos wx d-1: + b - L gCx) cos wx dx. 
7T 0 7T 0 

The right side is a9Fc(f) + b2Fc(g). Similarly for 2Fs, by (5). This shows that the Fourier 
cosine and sine transforms are linear operations, 

(7) 
(a) '*c(af + bg) = a9Fc(f) + b9FcCg), 

(b) 9FsCaf + bg) = a9FsCf) + b9Fs(g). 
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I Cosine and Sine Transforms of Derivatives 

Let f(x) be continuous and absolutely integrable on the x-axis, let t' (x) be piecewise 
continuous on eve'}' finite interval, and let let f(x) ~ 0 as x ~ 00. Then 

(a) 
(8) 

(b) 

9' e{f' (x)} = w9's{f(x)} - [f f(O), 

9's{f'(x)} = -w9'e{f(x)}. 

PROOF This follows from the definitions by integration by parts, namely, 

and similarly, 

[f CC 

= - I f'(x) cos wx dx 
7T 0 

= ~ [f(X) cos wx I: + w f~ f(x) sin wx dxJ 

= - [f f(O) + w9's{f(x)}; 

, [fIX' 9'sff (x)} = - f (x) sin wx dx 
7T 0 

= ~ [f(X) sin wx I: -w LX f(x) cos wx dx ] 

= 0 - w9'e{f(x)}. • 
Formula (8a) with t' instead of f gives (when f', f" satisfy the respective assumptions 
for f, J' in Theorem 1) 

Q7; { " Q7;' {2 '·0 ~e f (x)} = w~s{f (x)} - -V -:;;. f ( ); 

hence by (8b) 

(9a) 

Similarly, 

(9b) 

A basic application of (9) to PDEs will be given in Sec. 12.6. For the time being we 
show how (9) can be used for deriving transforms. 
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E X AMP L E 3 An Application of the Operational Formula (9) 

Find the Fourier cosine transform <;IF c(e -ax) of f(x) = e -ax, where a > O. 

Solution. By differentiation, (e- ax)" = a 2e-ax; thus 

From this, (9a), and the linearity (7 a), 

Hence 

The answer is (see Table I, Sec. ll.lO) 

(a> 0). • 
Tables of Fourier cosine and sine transfonns are included in Sec. 11.10. 

I -10 1 FOURIER COSINE TRANSFORM 

1. Let f(x) = - I if 0 < x < L f(x) = 1 if 1 < x < 2. 
f(x) = 0 if x > 2. Find ic(w), 

2. Let f(x) = x if 0 < x < k, f(x) = 0 if x > k. Find 
Ic(w), 

3. Derive formula 3 in Table 1 of Sec. 11.10 by integration. 

4. Find the inverse Fourier cosine transform f(x) from the 
answer to Prob. 1. Hint. Use Prob. 4 in Sec. 11.7. 

5. Obtain 9';:-1(1/(1 + w 2
)) from Prob. 3 in Sec. 11.7. 

6. Obtain 9';:-I(e-W
) by integration. 

7. Find 9'c«(1 - X
2
)-1 cos (7TX/2». Hint. Use Prob. 5 in 

Sec. 11.7. 

8. Let f(x) = x 2 if 0 < x < I and 0 if x> 1. Find 9'cCf). 

9. Does the Fourier cosine transform of X-I sin x exist? 
Of X-I cos x? Give reasons. 

10. f(x) = 1 (0 < x < (0) has no Fourier cosine or sine 
transform. Give reasons. 

/11-201 FOURIER SINE TRANSFORM 

11. Find 9's(e-"'-X) by integration. 

12. Find the answer to Prob. 11 from (9b). 

13. Obtain formula 8 in Table II of Sec. 11.1 I from (8b) 
and a suitable formula in Table I. 

14. Let f(x) = sinx if 0 < x < 7T and 0 if x> 7T. Find 
9's(f). Compare with Prob. 6 in Sec. 11.7. Comment. 

15. In Table II of Sec. 11.10 obtain formula 2 from formula 
4, using r@ = y.;;: [(30) in App. 3.1]. 

16. Show that 9'sCx- 1I2
) = w- 1I2 by setting wx = t 2 and 

using S(oo) = y:;;j8 in (38) of App. 3.1. 

17. Obtain 9'sCe-ax) from (8a) and formula 3 in Table I of 
Sec. 11.10. 

18. Show that 9's(x-3/2
) = 2w1/2

• Hint. Set wx = t 2
, 

integrate by parts, and use C(oo) = y:;;j8 in (38) of 
App.3.1. 

19. (Scale change) Using the notation of (5), show that 
f(ax) has the Fourier sine transform (1/a)IsCw/a). 

20. WRITING PROJECT. Obtaining Fourier Cosine 
and Sine Transforms. Write a short report on ways 
of obtaining these transforms, giving illustrations with 
examples of your own. 
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11.9 Fourier Transform. 
Discrete and Fast Fourier Transforms 

The two transforms in the last section are real. We now consider a third one, called the 
Fourier transform, which is complex. We shall obtain this transform from the complex 
Fourier integral. which we explain first. 

Complex Form of the Fourier Integral 
The (real) Fourier integral is [see (4), (5), Sec. 11.7] 

where 

f(x) = LX [A(w) cos wx + B(w) sin wx] (hI' 
o 

1 x 

A(w) = - f f(v) cos wv dv, 
7T -x 

1 = 
B(w) = - J f(v) sin wv dv. 

7T -0<: 

Suhstituting A and B into the integral for f, we have 

1 GC x 

f(x) = - L f f(v) Lcos wv cos IVX + sin wv sin wx] dv dlV. 
7T 0 -x 

By the addition formula for the cosine L(6) in App. A3.1] the expression in the brackets 
[ ... ] equals cos (wv - wx) or, since the cosine is even, cos (wx - wv). We thus obtain 

(1 *) 1 =[ "" ] f(x) = - L f f(v) cos (wx - wv) dv dw. 
7T 0 -x 

The integral in brackets is an even function of w. call it F(w). because cos (wx - wv) is 
an even function of w, the function f does not depend on IV, and we integrate with respect 
to v (not w). Hence the integral of F(w) from w = 0 to x is 1/2 times the integral of F(w) 
from -x to x. Thus (note the change of the integration limit!) 

(1) 1 = [ = ] 
f(x) = 27T Lx L::.l(V) cos (wx - wv) dv dw. 

We claim that the integral of the form (1) with sin instead of cos is zero: 

(2) 1 x [ 00 ] - f J f(v) sin (wx - wv) dv dw = O. 
27T -0<: -x 

This is true since sin (wx - IVV) is an odd function of lV, which makes the integral in 
brackets an odd function of w, call it G(w). Hence the integral of G(W) from -x to ex; is 
zero, as claimed. 

We now take the integrand of (1) plus i (= -v=T) times the integrand of (2) and use 
the Euler formula l( 11) in Sec. 2.2] 

(3) eix 
= cos x + i sin x. 
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Taking wx - IrV instead of x in (3) and multiplying by f(v) gives 

f(v) cos (~~:\" - wv) + if(v) sin (wx - wv) = f(v)ei(WX-Wv) 

Hence the result of adding (1) plus i times (2), called the complex Fourier integral, is 

(4) 
I =:xl . 

f(x) = - f f f(v)e'W(X-v) dv dw 
27T -oc -= 

(i = v=i). 

It is now only a very short step to our present goal, the Fourier transform. 

Fourier Transform and Its Inverse 
Writing the exponential function in (4) as a product of exponential functions, we have 

(5) 
1 x [I cc . J. f(x) = -- f -- f f(v)e-'WV dv e'wx dw. 

yI2; -x yI2; -cc 

The expression in brackets is a function of tV, is denoted by 1(».'), and is called the Fourier 
transform of f; writing v = x, we have 

(6) 
A 1 f= . 
few) = -- f(x)e-'wx dx. 
~ -x 

With this, (5) becomes 

(7) 
I f= A • f(x) = -- f(w)e'WX dw 

yI2; -0:; 

and is called the inverse Fourier transform of jew). 
Another notation for the Fourier transform is 

I = ?F(f), 

so that 

The process of obtaining the Fourier transform ':!F(f) = I from a given f is also called 
the Fourier transform or the Fourier transfon1l method. 

Conditions sufficient for the existence of the Fourier transform (involving concepts 
defined in Secs. 6.1 and 11.7) are as follows. as we state without proof. 

Existence of the Fourier Transform 

{tJCx) is absolutely integrable on the x-axis and piecewise continuous on every finite 
interval. then tile Fourier transform ICw) of f(x) given by (6) exists. 
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E X AMP L E 1 Fourier Transform 

Find the Fourier transfonn of f(x) = I if Ixl < 1 and f(x) = 0 otherwise. 

Solution. Using (6) and integrating, we obtain 

- I Jl iwx 1 e-
iwx 

few) = -- e - dx = -- . --. -
v'2; -1 v'2; -IW 

As in (3) we have eiw = cos W + i sin w, e-iw = cos w - i sin w, and by subtraction 

i w - e-iw = 2; sin w. 

Substituting this in the previous formula on the right, we see that i drops out and we obtain the answer 

_ ,-:;; sin w 

few) = "2 --;- . 
E X AMP L E 2 Fourier Transform 

Find the Fourier transfonn '!F(e -ax) of f(x) = e -ax if X > 0 and f(x) = 0 if x < 0; here a > o. 
Solution. From the definition (6) we obtain by integration 

m( -ax 1 Loo 
-ax -iwx d ere )= ,~ e e x 

v27r 0 

e-ca+iw)X 

v'2; -(a + iw) v'2;(a + iw) 

This proves fonnula 5 of Table III in Sec. 11.10. 

Physical Interpretation: Spectrum 

• 

• 

The nature of the representation (7) of f(x) becomes clear if we think of it as a superposition 
of sinusoidal oscillations of all possible frequencies, called a spectral representation. 
This name is suggested by optics, where light is such a superposition of colors 
(frequencies). In (7), the "spectral density" jew) measures the intensity of f(x) in the 
frequency interval between wand w + Aw (Aw small, fixed). We claim that in connection 
with vibrations, the integral 

f,o Ij(w)12 dw 
-co 

can be interpreted as the total energy of the physical system. Hence an integral of Ij(w)12 

from a to b gives the contribution of the frequencies w between a and b to the total energy. 
To make this plausible, we begin with a mechanical system giving a single frequency, 

namely, the harmonic oscillator (mass on a spring, Sec. 2.4) 

my" + ky = o. 

Here we denote time t by x. Multiplication by y' gives my' y" + ky' y = O. By integration, 

!mv2 + !ky2 = Eo = const 

where v = y' is the velocity. The first term is the kinetic energy, the second the potential 
energy, and Eo the total energy of the system. Now a general solution is (use (3) in 
Sec. 11.4 with t = x) 
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w0
2 = kIm 

where Cl = (al - ibI )/2, Cl = CI = (al + ibl )/2. We write simply A cle
iwoX, 

B = cle- iWoX• Then y = A + B. By differentiation, v = y' = A' + B' = iWo(A - B). 

Substitution of v and)' on the left side of the equation for Eo gives 

Here Wo 
2 = kim. as just stated: hence mwo 2 = k. Also i2 = -I. so that 

Hence the energy is proponional to the square of the amplitude lell. 
As the next step, if a more complicated system leads to a periodic solution y = f(x) 

that can be represented by a Fourier series, then instead of the single energy term IeII2 we 
get a series of squares Ienl2 of Fourier coefficients Cn given by (6), Sec. 11.4. In this case 
we have a "discrete spectrum" (or "point spectrum") consisting of countably many 
isolated frequencies (infinitely many, in general), the corresponding Ienl2 being the 
contributions to the total energy. 

Finally, a system whose solution can be represented by an integral (7) leads to the above 
integral for the energy, as is plausible from the cases just discussed. 

Linearity. Fourier Transform of Derivatives 
New transforms can be obtained from given ones by 

Linearity of the Fourier Transform 

The Fourier transform is a linear operation; that is, for any functions f(x) and g(x) 
whose Fourier transforms exist and any constants a and b, the Fourier transform 
of af + bg exists, and 

(8) g;(af + bg) = a'2F(f) + bgjP(g). 

PROOF This is true because integration is a linear operation, so that (6) gives 

I co _ 

gjP{af(x) + bg(x)} = ~ ~ f [af(x) + bg(x)]e-tWX dx 
v 27T -::>0 

1 ::>0. 1::>0. 

= a -- f f(x)e- tWX dx + b -- J g(x)e-tWX dx 
yI2; -co yI2; -::>C 

= agjP{f(x)} + b'2F{g(x)}. • 
In applying the Fourier transform to differential equations, the key property IS that 
differentiation of functions corresponds to multiplication of transforms by iw: 
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Fourier Transform of the Derivative of I(x) 

Let f(x) be continuous on the x-axis and f(x) ~ 0 as Ixl ~ co. Furthermore, let 
f' (x) be absolutely integrable on the x-axis. Then 

(9) ~(f'(x)} = iw~{f(x)}. 

PROOF From the definition of the Fourier transform we have 

, 1 IX, . 
~{f (x)} = -- f (x)e-ZWX dx. 

yI2; -= 

Integrating by parts, we obtain 

~{f'(x)} = ~ [f(x)e- iWX loc - (-iw) Ioo 

f(x)e- iwx dX] . 
yI2; -= -= 

Since f(x) ~ 0 as Ixl ~ ro, the desired result follows, namely, 

~(f'(x)} = 0 + iw~{f(x)}. • 
Two successive applications of (9) give 

~(f") = iw~(f') = (iwf~(f). 

Since (iW)2 = -w2, we have for the transform of the second derivative of f 

(10) ~{f"(x)} = -w2~{f(X)}. 

Similarly for higher derivatives. 
An application of (l0) to differential equations will be given in Sec. 12.6. For the time 

being we show how (9) can be used to derive transforms. 

E X AMP L E 3 Application of the Operational Formula (9) 

Find the Fourier transform of xe -x' from Table III. Sec 11.10. 

Solution. We use (9). By formula 9 in Table III. 

~(~e-X2) = ~{ . + (e-X2)'} 

= - ~ ~{(e-x'n 

I 1 2} 
= - - ill' - e-w 4 

2 v'2 

• 
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THEOREM 4 

Convolution 
The convolution f * g of functions f and g is defined by 

(11) h(x) = (f * g)(x) = Ioo 

f(P)R(x - p) dp = t; f(x - p)g(p) dp. 
-~ -x 

The purpose is the same as in the case of Laplace transforms (Sec. 6.5): taking the 
convolution of two functions and then taking the transform of the convolution is the same 
as multiplying the transforms of these functions (and multiplying them by \.1'2;): 

Convolution Theorem 

Suppose that f(x) and g(x) are piecewise continuous, bounded. and absolutely 
intes;rable Oil the x-axis. Then 

(12) '?Jf(f * g) = \.1'2; '?Jf(f)'?Jf(g). 

PROOF By the definition, 
I x x . 

'?Jf(f * g) = -- I I f(p)g(x - p) dp e-ZWX dx. 
\.1'2; -00 -00 

An interchange of the order of integration gives 

I X:JC . 

'?Jf(f * g) = -- I I f(p)g(x - p)e-ZWX d-..: dp. 
\.1'2; -x -x 

Instead of x we now take x - p = q as a new variable of integration. Then x = p + q and 

I 00 00 . 

'?Jf(f * g) = -- I I f(p)g(q)e-ZW(p+q) dq dp. 
\.1'2; -x -x 

This double integral can be written as a product of two integrals and gives the desired 
result 

lOX:. 00 . 

'?Jf(f * g) = -- I f(p)e- ZWP dp I g(q)e-·wq dq 
\.1'2; -cxo -00 

• 
By taking the inverse Fourier transform on both sides of (12), writing j = '?Jf(f) and 
g = '?Jf(g) as before, and noting that \.1'2; and l/\.I'2; in (12) and (7) cancel each other, 
we obtain 

(13) (f * g)(X) = {C j(w)g(w)eiwx dw, 
-x 

a formula that will help us in solving partial differential equations (Sec. 12.6). 
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Discrete Fourier Transform (OFT), 
Fast Fourier Transform (FFT) 
In using Fourier series, Fourier transforms, and trigonometric approximations (Sec. 11.6) 
we have to assume that a function f(x), to be developed or transformed, is given on some 
interval, over which we integrate in the Euler formulas, etc. Now very often a function 
f(x) is given only in terms of values at finitely many points. and one is interested in 
extending Fourier analysis to this case. The main application of such a "discrete Fourier 
analysis" concerns large amounts of equally spaced data, as they occur in 
telecommunication, time series analysis, and various simulation problems. In these 
situations. dealing with sampled values rather than with functions. we can replace the 
Fourier transform by the so-called discrete Fourier transform (DFT) as follows. 

Let f(x) be periodic, for simplicity of period 27f. We assume that N measurements of 
f(x) are taken over the interval 0 ~ x ~ 27f at regularly spaced points 

(14) 
27fk 

N' 
k = 0, 1, ... , N - 1. 

We also say that f(x) is being sampled at these points. We now want to determine a 
complex trigonometric polynomial 

(15) 

N-l 

q(x) = 2: cne
inxk 

n~O 

that interpolates f(x) at the nodes (14). that is. q(Xk) = f(Xk). written out, with fk denoting 
f(Xk). 

N-l 

(16) fk = f(xk) = q(Xk) = 2: c,/nxk k = 0, 1, ... , N - 1. 
n~O 

Hence we must determine the coefficients co, ... , CN - 1 such that (16) holds. We do this 
by an idea similar to that in Sec. 11.1 for deriving the Fourier coefficients by using the 
orthogonality ofthe trigonometric system. Instead of integrals we now take sums. Namely, 
we multiply (16) by e-imxk (note the minus!) and sum over k from 0 to N - 1. Then we 
interchange the order of the two summations and insert Xk from (14). This gives 

N-l N-IN-l N-l N-l 

(17) 
~ f -imxk _ ~ ~ iCn-m)xk _ ~ ~ iCn-m)27TkIN 
£..J ke - £..J £..J cne - £..J Cn £..J e . 
k~O k~O n~O n=O k=O 

Now 

We donote [ ... ] by r. For n = m we have r = eO = 1. The sum of these terms over k 
equals N, the number of these terms. For n "* m we have r "* 1 and by the formula for a 
geometric sum [(6) in Sec. 15.1 with q = rand n = N - 1] 

N-l 1 - r N 

2: rk = = 0 
k=o 1 - r 
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because rN = 1; indeed, since k, m, and n are integers, 

r N = eiCn- m
)27Tk = cos 27Tk(n - m) + i sin 27Tk(n - m) = I + 0 = 1. 

This shows that the right side of (17) equals cmN. Writing n for m and dividing by N, we 
thus obtain the desired coefficient formula 

(18*) fk = f(Xk), n = 0, 1, ... , N - 1. 

Since computation of the Cn (by the fast Fourier transform, below) involves successive 
halfing of the problem size N, it is practical to drop the factor lIN from Cn and define the 
discrete Fourier transform of the given signal f = [fo fN_I]T to be the vector 
f = [io iN-I] with components 

(18) 

N-l 

in = NCn = ~ fke-inXk, 
k=O 

fk = f(Xk), n = 0, ... , N - 1. 

This is the frequency spectrum of the signaL 
In vector notation, f = FNf, where the N X N Fourier matrix FN = [enk] has the 

entries [given in (18)] 

(19) 

where n, k = 0, ... , N - 1. 

E X AMP L E 4 Discrete Fourier Transform (OFT). Sample of N = 4 Values 

Let N = 4 measurements (sample values) be given. Then w = e -2r.i/N = e -",i/2 = -i and thus wnk = (_i)nk. 

Let the sample values be. say f = [0 I 4 9]T. Then by (18) and (19). 

[ w' 
wO wO 

A wO wI w2 

(20) f = F4f = 
2 w4 wO w 

wO w3 w6 

::1 f = [: -i -I :1 [~1 = [-41: 8i1 
w6 I -I -I 4 -6 

w9 1 -[ -i 9 -4 - 8i 

From the first matrix in (20) it is easy to infer what F N looks like for arbitrary N. which in practice may be 
1000 or more, for reasons given below. • 

From the DFT (the frequency spectrum) f = FNf we can recreate the given signal 

f = F IV 1 f, as we shall now prove. Here F N and its complex conjugate F N = ~ [wnk
] satisfy 

(21a) 

where I is the N X N unit matrix; hence F N has the inverse 

(21b) 
-1 _ 1 -

FN - N FN • 



526 CHAP. 11 Fourier Series. Integrals. and Transforms 

PROOF We pr~ve (21). By the multiplication rule (row times col~n) the product matrix 
G N = FNFN = [gjk] in (21a) has the entries gjk = Row j ofFN times Column k ofFN. 
That is, writing W = wjw\ we prove that 

= WO + WI + ... + WN- 1 = {~ if 

if 

j=l=-k 

j = k. 

Indeed, when j = k, then w\vk = (wwl = (e2TTiINe-2uiIN)k = 1 k = L so that the sum 
of these N tenns equals N; these are the diagonal entries of GN. Also, when j =f=. k, then 
W =I=- 1 and we have a geometric sum (whose value is given by (6) in Sec. 15.1 with 
q=Wandn=N-l) 

WO + WI + ... + WN-1 = 1 - WN = 0 
1 - W 

• 
We have seen that f is the frequency spectrum of the signal f(x). Thus the components 
in of f give a resolution of the 2 IT-periodic function f(x) into simple (complex) harmonics. 
Here one should use only n's that are much smaller than N!2, to avoid aliasing. By this we 
mean the effect caused by sampling at too few (equally spaced) points, so that. for instance, 
in a motion picture, rotating wheels appear as rotating too slowly or even in the wrong sense. 
Hence in applications, N is usually large. But this poses a problem. Eq. (18) requires O(N) 
operations for any particular n, hence O(N2) operations for, say. alln < N!2. Thus, already 
for 1000 sample points the straightforward calculation would involve millions of operations. 
However, this difficulty can be overcome by the so called fast Fourier transform (FFT), 
for which codes are readily available (e.g. in Maple). The FFT is a computational method 
for the DFT that needs only O(N) log2 N operations instead of O(N2). It makes the DFT a 
practical tool for large N. Here one chooses N = 2P (p integer) and uses the special fonn 
of the Fourier matrix to break down the given problem into smaller problems. For instance. 
when N = 1000, those operations are reduced by a factor lOOO/log2 1000 = 100. 

The breakdown produces two problems of size M = N12. This breakdown is possible 
because for N = 2M we have in (19) 

The given vector f = [fo fN_I]T is split into two vectors with M components 
each, namely, fev = [fo f2 fN_2]T containing the even components of f, and 
fod = [fl!3 fN_dT containing the odd components of f. For fev and fod we 
determine the DFTs 

A [~ 
fev = fev.o iev.2 ~ r fev.N-2 = FMfev 

and 

fOd = [iOd,1 iOd.3 ~ r f od,N-l = F Mfod 

involving the same M X M matrix F M' From these vectors we obtain the components of 
the DFT of the given vector f by the formulas 

(22) 
(a) 11 = 0,"', M - 1 

(b) in+M = iev,n - wNniod.n 11 = 0,"', M - 1. 
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For N = 2P this breakdown can be repeated p - 1 times in order to finally arrive at NI2 
problems of size 2 each, so that the number of multiplications is reduced as indicated 
above. 

We show the reduction from N = 4 to M = NI2 = 2 and then prove (22). 

E X AMP L E 5 Fast Fourier Transform (FFT). Sample of N = 4 Values 

When N = 4. then W = WN = -i as in Example 4 and M = N12 = 2. hence It' = "'M = e-2m/2 = e--rr; = -I. 
Consequently. 

- = [/0] = = [I I] [foJ = [fo + 12J fev A F2 fev 
f2 I -I f2 fo - f2 

From this and (22a) we obtain 

lo = lev.o + wN°lod.O = (fo + f2) + (fl + 13) = fo + ft +,(2 + 13 

II = lev,1 + H'N
1
lod.l = efo - f2) - i(fl + f3) = fo - iIt - f2 + i13-

Similarly. by (22b). 

A A 0 A 

f2 = fev,o - II'N fod,O = efo + f2) - (fl + f3) = fo - ft + 12 - f3 
A A 1 A 

f3 = f ev.l - wN f ud.l = (fo - f2) - (-i)(fl - f3) = fo + if 1 - f2 - if3' 

This agrees with Example 4, as can be seen by replacing O. l. 4, 9 with fo. ft, 12, /3, 

We prove (22). From (8) and (19) we have for the components of the DFT 

Splitting into two sums of M = NI2 terms each gives 

M-I M-I 

f- ~ 2kn ~ (2k+ 1m 
n = .c.., WN f2k + .c.., WN .f2k+l· 

k=O 

We now use WN
2 = WM and pull out WN

n from under the second sum, obtaining 

M-l M-I 

(23) f- ~ knf n ~ knf 
n =.c.., WM eV,k + WN .c.., WM od,k' 

k=O k=O 

• 

The twO sums are f eV,n and f od.no the components of the "half-size" transforms F fev and 
Ffod ' 

Formula (22a) is the same as (23). In (22b) we have 11 + M instead of n, This causes 
a sign change in (23), namely -wN

n before the second sum because 

This gives the minus in (22b) and completes the proof. • 
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--
1. (Review) Show that 1Ii = -i, e ix + e-ix = 2 cos x, 

eix - e -;,,, = 2i sin x. 

12-91 FOURIER TRANSFORMS BY INTEGRATION 

Find the Fourier transform of f(x) (without using Table III 
in Sec. ILl 0). Show the details. 

{

e kX if x < 0 
2. f(x) = 

o ifx>O 

{

k ifO<x<b 
3. f(x) = 0 

otherwise 

(k> 0) 

{

e2iX if - I < x < 
4. f(x) = 

o otherwise 

5. f(x) = e if-l<x< 

otherwise 

6. f(x) = {: 
if -I < x < 1 

otherwise 

7. f(x) = {: 
ifO<x< 

otherwise 

{

xe- X if -1 < x < 0 
8. f(x) = 

o otherwise 

{

-I if-l<x<O 

9. f(x) = 01 if 0 < x < 

otherwise 

OTHER METHODS 

10. Find the Fourier transform of f(x) = xe-x if x> 0 and 
o if x < 0 from formula 5 in Table III and (9) in the 
text. Him: Consider xe-x and e-x . 

11. Obtain '!-F(e-x"/2) from formula 9 in Table m. 
12. Obtain formula 7 in Table III from formula 8. 

13. Obtain formula 1 in Table III from formula 2. 

14. TEAM PROJECT. Shifting. (a) Show that if f(x) 
has a Fourier transform, so does f(x - a), and 
SC{f(x - a)} = e-iwaSC[f(x)}. 

(b) Using (a), obtain formula 1 in Table III, Sec. l1.10, 
from formula 2. 

(e) Shifting on the w-Axis. Show that if j(lI') is the 
Fourier transform of f(x), then J(w - a) is the Fourier 
transform of eiaxf(x). 

(d) Using (c), obtain formula 7 in Table TTTfrom 1 and 
formula 8 from 2. 



SEC 11.10 Tables of Transforms 529 

11.10 Tables of Transforms 
Table I. Fourier Cosine Transforms 

See (2) in Sec. 11.8. 

f(x) fetw ) = ?]PeW 
I 

{~ 
if 0 < X < a H sinaw I 
otherwise 7f w 

2 x a - 1 (0 < a < I) H no) cos a7f 
7f w a 2 

(na) see App. A3.1.) 

3 e-ax (a> 0) H ((12: W2 ) 

I 
4 e-x2/2 e-w2/ 2 

5 e-ax" (0) 0) _I _ e-w2/(4a> 

'\~ 

H n! 
Re (a + iW)71+1 

Re = 
6 xne-ax (a> 0) 

(a 2 + w2)n+l Real part 

ro~, ifO<x<a _1_ [ sin a(l - w) + sin o( 1 + w) ] 
7 

otherwise \12; I-w I + w 

8 cos «(lX2) (a> 0) 1 (W2 7f) 
V2c; cos 4a - "4 

9 sin (llX
2) (a> 0) 

1 C1,2 7f) 
vTc; co~ 4a + "4 

smax H (1 - lI(w - a» \0 -- (a> 0) (See Sec. 6.3.) 
x 

e-x sin x I 2 
II -- arctan-

I X \12; w2 

I 
12 lo(ax) (a> 0) \ff I 

Va2 - w2 (l - lI(w - 0)) (See Secs. 5.5, 6.3.) 
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Table II. Fourier Sine Transforms 

See (5) in Sec. 11.8. 

I 
J(x) is(w) = ~s(J) 

{~ 
ifO<x<a H [ 1 - cosaw ] 1 
otherwise 7f W 

2 1/~ 1/,,;;' 

3 1/J3/2 2~ 

4 x a-I (O<a<l) H r(a) sin (!7f 

7f w a 2 
(rca) see App. A3.1.) 

I 

5 e-ax (a> 0) fI ( w ) 
V 7f a2 + H.·

2 

e-ax H w 6 -- la > 0) - arctan -

I 
x 7f a 

IT i II! 1m = 
7 xne-ax (a> 0) V 7f (0 2 + ~1,2)n+ 1 

1m (a + iw)n+l 
Imaginary part 

8 xe-x2/2 we-w2/2 

9 xe-ax2 (a > 0) _~_v_ e-w2/4a 
(2a)3/2 

{Si~X if 0 < X < a _1_ [ sin aU - w) _ sin aO + w) ] 
10 

otherwise yI2; I-w 1 + w 

I 
cos (I\" E u(w - a) 11 -- (a > 0) (See Sec. 6.3.) 

x V 2 

2a yI2; sinh (/11' -aw 12 arctan - (a > 0) e 
x w 

I 
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Table III. Fourier Transforms 

See (6) in Sec. 1l.9. 

---
I i(x) jeW) = ge(f) 

C 
if -17 < x < b H sinbw 1 
otherwise 7T w 

{~ 
ifb<x<c e-ibw _ e-icw 

2 
iw\l2; otherwise 

I r; e-a1wl 

3 
x 2 + a2 (0 > 0) 

\I 2 a 

{ , ifO<x<b 
-1 + 2eibw - e-2ibw 

4 2X: b if b < x < 2b 
\l2;w2 

otherwise 

r~~T if x > 0 1 
5 (a> 0) 

\I2;(a + iw) otherwise 

r~x if b < x < c eCa-iw)c _ eCa-iw)b 

6 
V2-ii-Ca - iw) otherwise 

e:x if -b <.r < b IT sin b(w - a) 
7 I otherwise \I 7T w-a 

{e:
x if b < x < c i eibCa-w) _ eicCa-w) 

8 V2; otherwise a-w 

9 e-a:il (a> 0) _1_ e-w2/4a 

V2a 

sin ax H if Iwl < a; o iflwl > a 10 -- (a> 0) 
x 

--
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1. What is a Fourier series? A Fourier sine series? A 
half-range expansion? 

2. Can a discontinuous function have a Fourier series? A 
Taylor series? Explain. 

3. Why did we start with period 27f? How did we proceed 
to functions of any period p? 

4. What is the trigonometric system? Its main property by 
which we obtained the Euler formulas? 

5. What do you know about the convergence of a Fourier 
. ? senes. 

6. What is the Gibbs phenomenon? 

7. What is approximation by trigonometric polynomials? 
The minimum square error? 

8. What is remarkable about the response of a vibrating 
system to an arbitrary periodic force? 

9. What do you know about the Fourier integral? Its 
applications? 

10. What is the Fourier sine transform? Give examples. 

11l-20 I FOURIER SERIES 

Find the Fourier series of f(x) as given over one period. 
Sketch f(x). (Show the details of your work.) 

11. f(x) {-: 

12. f(x) C 
13. f(x) = x 

14. f(x) 

IS. f(x) 

if -1 < x < 0 

if O<x<1 

if -7f/2 < x < 7f/2 

if 7f/2 < x < 37f/2 

(-27f < X < 27f) 

(-2<x<2) 

if -I < x < I 

{2 
x 

-x if < x < 3 

16. f(x) = {- I - x 
1 - x 

if -1 < x < 0 

if 0 < x < 1 

17. f(x) = Isin 8m:1 (-118 < x < 1/8) 

18. f(x) = eX (-7f < x < 7f) 

19. f(x) = x 2 (-7f/2 < x < 7f/2) 

20. f(x) = x (0 < x < 27f) 

TIONS AND PROBLEMS 

[21-23J Using the answers to suitable odd-numbered 
problems, find the sum of 

21. I - ~ + ~ - ~ + 

22. + + + ... 
1·3 3·5 5·7 

23.1+b+~+ 

24. (Parseval's identity) Obtain the result of Prob. 23 by 
applying Parseval's identity to Prob. 12. 

2S. What are the sum of the cosine terms and the sum of 
the sine terms in a Fourier series whose sum is f(x)? 
Give two examples. 

26. (Half-range expansion) Find the half-range sine series 
of f(x) = 0 if 0 < x < 7f/2, f(x) = 1 if 7f/2 < x < 7f. 
Compare with Prob. 12. 

27. (Half-range cosine series) Find the half-range cosine 
series of f(x) = x (0 < x < 27f). Compare with 
Prob.20. 

~8-291 MINIMUM SQUARE ERROR 
Compute the minimum square errors for the trigonometric 
polynomials of degree N = I, ... , 8: 

28. For f(x) in Prob. 12. 

29. For f(x) = X (-7f < X < 7f). 

~0-311 GENERAL SOLUTION 

Solve y" + (lly = ret). where Iwl '* o. I. 2 ..... r(t) 
is 27f-periodic and: 

31. r(t) = (2 

~2-371 FOURIER INTEGRALS AND 
TRANSFORMS 

Sketch the given function and represent it as indicated. If 
you have a CAS, graph approximate curves obtained by 
replacing ::to with finite limits; also look for Gibbs 
phenomena. 

32. f(x) = I if I < x < 2 and 0 otherwise, by a Fourier 
integral 

33. f(x) = x if 0 < x < 1 and 0 otherwise, by a Fourier 
integral 
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34. f(x) = I + x/2 if -2 < x < o. f(x) = I - x/2 if 
o < x < 2, ((x) = 0 othenvise, by a Fourier cosine 
integral 

37. f(x) = 4 - x 2 if -2 < x < 2. f(x) = 0 otherwise. by 
a Fourier cosine integral 

38. Find the Fourier transform of f(x) = k if 
a < x < b. f(x) = 0 otherwise. 35. f(x) = -I - x/2 if -2 < x < O. f(x) = 1 - x/2 if 

o < x < 2, f(x) = 0 otherwise. by a Fourier sine 
integral 

36. f(x) = -4 + x 2 if -2 < x < 0, f(x) = 4 - x 2 if 
o < x < 2, f(x) = 0 otherwise, by a Fourier sine 
integral 

39. Find the Fourier cosine transform of f(x) = e-2x if 
x > 0, f(x) = 0 if x < O. 

40. Find 9' c(e-2x) and 9' s(e-2x) by formulas involving 
second derivatives 

- - -- --~ .. "."- .. ""''''-''---'-.... ...... _--___ .·."4 ...... _ ....... -. .... -. .... ·_._ .... ~ _ 

Fourier Series, Integrals, Transforms 

Fourier series concern periodic functions f(x) of period p = 2L, that is. by definition 
f(x + p) = f(x) for all x and some fixed p > 0; thus. f(x + IIp) = f(x) for any 
integer 11. These series are of the form 

(I) = ( ) 
117T 117T 

f(x) = ao + ~ an cos - x + bn sin - X 

n~l L L 
(Sec. 11.2) 

with coefficients, called the Fourier coefficients of f(x), given by the Euler formulas 
(Sec. 11.2) 

(2) 

1 L - f f(x) dx. 
2L -L 

1 fL 117TX 
an = - f(x) cos -- dx 

L -L L 

1 fL 117TX 
bn = - f(x) sin -- dx 

L -L L 

where 11 = 1. 2. • ••. For period 27T we simply have (Sec. 11.1) 

(l *) f(x) = ao + ~ (an cos nx + bn sin I1X) 

71=1 

with the Fourier coefficients of f(x) (Sec. L1.1) 

I .,,-
ao = 27T L!(X) dx, 

I .,,-
an = - f f(x) cos I1X dx, 

7T _.,,-

1 .,., 
bn = - f f(x) sin nx dx. 

7T _.,,-

Fourier series are fundamental in connection with periodic phenomena, 
pm1icularly in models involving differential equations (Sec. 11.5, Chap. 12). If f(x) 

is even [f( -x) = f(x)] or odd [f( - x) = - f(x)], they reduce to Fourier cosine or 
Fourier sine series, respectively (Sec. 11.3). If f(x) is given for 0 ~ x ~ L only, 
it has two half-range expansions of period 2L, namely, a cosine and a sine series 
(Sec. 11.3). 
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The set of cosine and sine functions in (I) is called the trigonometric system. 
Its most basic property is its orthogonality on an interval of length 2L; that is, for 
all integers /11 and n * 111 we have 

IL 1117TX 117TX 
cos -- cos -- dx = 0, IL 11l7TX n 7[;r 

sin -- sin -- dx = 0 
-L L L -L L L 

and for all integers m and 11. 

IL ITI7rX WlTX 
cos -- sin -- dx = O. 

-L L L 

This 0l1hogonality was crucial in deriving the Euler formulas (2). 
Partial sums of Fourier series minimize the square error (Sec. 11.6). 
Ideas and techniques of Fourier series extend to non periodic functions f(x) defined 

on the entire real line: this leads to the Fourier integral 

(3) 

where 

f(x) = {O [A(w) cos wx + B(w) sin wx] dw 
o 

(Sec. 11.7) 

1 x 

(4) A(w) = - I f(v) cos wv dv, 
Tr _= 

I x 

B(w) = - I f(v) sin wv dv 
7r -GC 

or, in complex form (Sec. 11.9), 

(5) 
1 IX A • 

f(x) = -- f(w)etwx dw 
V2; -x 

where 

(6) 
1 GC . 

jew) = -- I f(x)e-tw:r dx. 
V2; -x 

Formula (6) transforms f(x) into its Fourier transform jew), and (5) is the inverse 
transform. 

Related to this are the Fourier cosine transform (Sec. 11.8) 

(7) p; x 

je(w) = - I f(x) cos H'X dx 
7r 0 

and the Fourier sine transform (Sec. 11.8) 

(8) 
A p; 00 
fs(W) = - I f(x) sin wx dx. 

7r 0 

The discrete Fourier transform (DFT) and a practical method of computing it, 
called the fast Fourier transform (FFT), are discussed in Sec. I 1.9. 
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CHAPTER 1 2 

Partial Differential Equations 
(PDEs) 

PDEs are models of various physical and geometrical problems, arising when the unknown 
functions (the solutions) depend on two or more variables, usually on time t and one or 
several space variables. It is fair to say that only the simplest physical systems can be 
modeled by ODEs, whereas most problems in dynamics, elasticity, heat transfer, 
electromagnetic theory, and quantum mechanics require PDEs. Indeed, the range of 
applications of PDEs is enormous, compared to that of ODEs. 

In this chapter we concentrate on the most important PDEs of applied mathematics, the 
wave equations governing the vibrating string (Sec. 12.2) and the vibrating membrane 
(Sec. 12.7), the heat equation (Sec. 12.5), and the Laplace equation (Secs. 12.5, 12.10). 
We derive these PDEs from physics and consider methods for solving initial and 
boundary value problems, that is. methods of obtaining solutions satisfying conditions 
that are given by the physical situation. 

In Secs. 12.6 and 12.11 we show that PDEs can also be solved by Fourier and Laplace 
transform methods. 

COMMENT. Numerics for PDEs is explained in Secs. 21.4-21.7. 

Prerequisites: Linear ODEs (Chap. 2), Fourier series (Chap. 11) 
Sections that may be omitted ill a shorter course: 12.6, 12.9-12.11 
References and Answers to Problems: App. 1 Part C, App. 2 

12.1 Basic Concepts 
A partial differential equation (PDE) is an equation involving one or more partial 
derivatives of an (unknown) function, call it u, that depends on two or more variables, 
often time t and one or several variables in space. The order of the highest derivative is 
called the order of the PDE. As for ODEs. second-order PDEs will be the most imp0l1ant 
ones in applications. 

Just as for ordinary differential equations (ODEs) we say that a PDE is linear if it is 
of the first degree in the unknown function u and its partial derivatives. Otherwise we call 
it nonlinear. Thus, all the equations in Example 1 on p. 536 are linear. We call a linear 
PDE homogeneous if each of its terms contains either u or one of its partial derivatives. 
Otherwise we call the equation nonhomogeneous. Thus, (4) in Example I (with f not 
identically zero) is nonhomogeneous, whereas the other equations are homogeneous. 

535 
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E X AMP L E 1 Important Second-Order POEs 

THEOREM 1 

(I) Olle-dimellsiollal WUl'e equation 

(2) One-dimensional heat equation 

(3) Two-dimensiollal Laplace equatioll 

(4) Two-dimensional Poissoll equatioll 

(5) (J211 = c2 (iJ
2
U + a

2u) 
ilt2 ax2 iJy2 

Two-dimellsiollal wave equatioll 

a2 u iJ211 (J2u 
(6) - + - + - =0 

iJx2 iJy2 iJ72 
Three-dimellsiollal Laplace equation 

Here c is a posItive constant, t is time, x. y • .: are CartesIan coordinates, and dimensioll is the number of these 
coordinates in the equation. • 

A solution of a PDE in some region R of the space of the independent variables is a 
function that has all the partial derivatives appearing in the PDE in some domain D 
(definition in Sec. 9.6) containing R, and satisfies the PDE everywhere in R. 

Often one merely requires that the function is continuous on the boundary of R. has 
those derivatives in the interior of R, and satisfies the PDE in the interior of R. Letting 
R lie in D simplifies the situation regarding derivatives on the boundary of R, which is 
then the same on the boundary as it is in the interior of R. 

In general, the totality of solutions of a PDE is very large. For example, the functions 

u = eX cosy, u = sin x cosh y, 

which are entirely different from each other, are solutions of (3), as you may verify. We 
shall see later that the unique solution of a PDE corresponding to a given physical problem 
will be obtained by the use of additional conditions arising from the problem. For 
instance, this may be the condition that the solution u assume given values on the boundary 
of the region R ("boundary conditions"). Or, when time t is one of the variables, u (or 
Ut = uu/ut or both) may be prescribed at t = 0 ("initial conditions"). 

We know that if an ODE is linear and homogeneous, then from known solutions we 
can obtain further solutions by superposition. For PDEs the situation is quite similar: 

Fundamental Theorem on Superposition 

If Ul and U2 are solutions of a homoge1leous linear PDE in some regioll R, then 

with an.v constants Cl and C2 is also a solution of that PDE in the region R. 

The simple proof of this imp0l1ant theorem is quite similar to that of Theorem I in 
Sec. 2.1 and is left to the student. 
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Verification of solutions in Probs. 14-25 proceeds as for ODEs. Problems 1-12 concern 
PDEs solvable like ODEs. To help the student with them. we consider two typical 
examples. 

E X AMP L E 2 Solving Uxx - U = 0 Like an ODE 

Find solutions II of the PDE Uxx - It = 0 depending on x and y. 

Soluti01l. Since no y-derivatives occur. we can solve this PDE like uTI - u = O. In Sec. 2.2 we would have 
obtained u = Aex + Be -.l' with constant A and B. Here A and B may be functions of y. so that the answer i, 

u(x, y) = A(y)ex + B(y)e-x 

with arbitrary functions A and B. We thus have a great variety ot solution~. Check the result by differentiation .• 

E X AMP L E 3 Solving uxy = -UK Like an ODE 

Find solutions II = lI(X. y) of this PDE. 

Soluti01l. Setting "x = p. we have Py = -p. pylp = -I. lnp = -y + ('(x). p = c!x)e-
y and by 

integration with respect to x, 

u(x, yl = J(x)e- y + .!,'(y) where J(x) = f c(x) £Ix; 

here, J(x) and g(y! are arbitrary. 

--- --

11-121 PDEs SOLVABLE AS ODEs 

This happens if a PDE involves derivatives with respect to 
one variable only (or can be transformed to such a form), 
so that the other variable(s) can be treated as parameter(s). 
Solve for u = u(x. y): 

1. U yy + 16u = 0 2. U.l :X = U 

3. Uyy = 0 4. uy + 2yu 0 

5. uy + U = eXY 6. Uxx = 4y 2 u 

7. uy = (cosh x)yu 8. uy = 2xyu 

9. y 2
u yy + 2yuy - 2u = 0 10. Uyy = 4xl/y 

11. u xy = Ux 

12. Uyy + lOuy + 25u = e-5y 

13. (Fundamental Theorem) Prove Fundamental 
Theorem I for second-order PDEs in two and three 
independent variables. 

114-251 VERIFICATION OF SOLUTIONS 

Verify (by substitution) that the given function is a solution 
of the indicated PDE. Sketch or graph the solution as a 
surface in space. 

[14-171 Wave Equation (1) with suitable c 

14. U - 4x2 + (2 15. U sin 8x cos 2l 

16. U = sin 3x sin 18t 17. U = sin kx cos ket 

• 

118-211 Heat Equation (2) with suitable c 

18. It e-2kt cos 8x 19. II 

2U. It - e-4w2t sin wx 21. U 

e- w2t sin 4x 

e-w2c2t cos wx 

122-251 Laplace Equation (3) 

22. U in (7) in the text 

24. U = arctan (ylx) 

23. U cos 2y sinh 2x 

25. U - e
x2

-
y2 sin 2xJ 

26. TEAM PROJECT. Verification of Solutions 
(a) Wave equation. Verify that 
u(.\". t) = vex + ell + w(x - el) with any twice 
differentiable functions v and w satisfies (I). 

(b) Poisson equation. Verify that each u satisfies (4) 
with f(x. y) as indicated. 

u = X4 + y4 f = 12(x2 + y2) 

U = cos.\ sin y f = -2 cos x sin y 

u = .vlx f = 2)'lx3 

(c) Laplace equation. Verify that 

u = IIV x 2 + y2 + Z2 satisfies (6) and 
u = In (x2 + y2) satisfies (3). Is u = l/V x2 + y2 a 
solution of (3)? Of what Poisson equation? 
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(d) Verify that II with any (sufficiently often 
differentiable) v and w satisfies the given PDE. 

1I = vex) + II"(Y) 

!I = v(xhl"(y) 

1/ = vex + 31) + w( \" - 31) 

equation (3) and determine a and b so that u satisfies 
the boundary conditions 1I = 110 on the circle 
x 2 + .1'2 = 1 and II = 0 on the circle.\"2 + y2 = 100. 

12S-301 SYSTEMS OF PDEs 
Solve 

28. !Ix = 0, lly = 0 

27. (Boundary value problem) Verify that the function 
u(x, y) = a In (x 2 + ,.2) + b satisfies Laplace's 

29. U"X = 0, !lxy = 0 

30. l/xx = n, llyy = n 

12.2 Modeling: Vibrating String, Wave Equation 
As a first important POE let us derive the equation modeling small transverse vibrations 
of an elastic string, such as a violin string. We place the string along the x-axis, stretch it 
to length L, and fasten it at the ends x = 0 and x = L. We then dist0l1 the string, and at 
some instant. call it t = 0, we release it and allow it to vibrate. The problem is to determine 
the vibrations of the string. that is, to find its deflection u(x, 1) at any point x and at any 
time t > 0; see Fig. 283. 

u(x, t) will be the solution of a POE that is the model of our physical system to be 
derived. This POE should not be too complicated. so that we can solve it. Reasonable 
simplifying assumptions Uust as for ODEs modeling vibration~ in Chap. 2) are as 
follows. 

Physical Assumptions 

1. The mass of the string per unit length is constant ("homogeneous stl;ng"). The string 
is perfectly elastic and does not offer any resistance to bending. 

2. The tension caused by stretching the string before fastening it at the ends is so large 
that the action of the gravitational force on the string (trying to pull the string down 
a little) can be neglected. 

3. The string performs small transverse motions in a ve11ical plane: that is, every particle 
ofthe string moves strictly vel1ically and so that the deflection and the slope at every 
point of the string always remain small in absolute value. 

Under these assumptions we may expect solutions lI(X, t) that describe the physical 
reality sufficiently well. 

u 

o 

f3 
p Q:....",."'""'~~. T2 
-....--', 

r 
r 
r 
r 
r 
r 

x x+ili: L 

Fig. 283. Deflected string at fixed time t. Explanation on p. 539 
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Derivation of the PDE of the Model 
(,lWave Equation") from Forces 

539 

The model of the vibrating string will consist of a PDE (""wave equation") and additional 
conditions. To obtain the PDE, we consider the forces acting 011 a small portion of the 
string (Fig. 283). This method is typical of modeling in mechanics and elsewhere. 

Since the string offers no resistance to bending. the tension is tangential to the curve 
of the string at each point. Let T] and T2 be the tension at the endpoints P and Q of that 
portion. Since the points of the string move vertically, there is no motion in the horizontal 
direction. Hence the horizontal components of the tension must be constant. Using the 
notation shown in Fig. 283. we thus obtain 

(1) Tl cos ll' = T2 cos f3 = T = COllst. 

In the vertical direction we have two forces. namely, the vertical components - T] sin ll' 
and T2 sin f3 of Tl and T2; here the minus sign appears because the component at P is 
directed downward. By Newton's second law the resultant of these two forces is equal 
to the mass p ~x of the portion times the acceleration a2uICJ(2, evaluated at some point 
between x and x + ~x; here p is the mass of the un deflected string per unit length. and 
~x is the length of the portion of the undeflected string. (~ is generally used to denote 
small quantities; this has nothing to do with the Laplacian V2, which is sometimes also 
denoted by ~.) Hence 

Using 0), we can divide this by T2 cos f3 = Tl cos ll' = T, obtaining 

(2) 
Tl sin ll' p ~x a2u 

= tan f3 - tan ll' = -T 0"(2 
Tl cos ll' 

Now tan ll' and tan f3 are the slopes of the string at x and x + ~x: 

tan ll' = (~u) I 
dx x 

and (au) I tanf3= - . 
ax x+.lx 

Here we have to write partial derivatives because u depends also on time (. Dividing (2) 
b) ~x, we thus have 

If we let ~x approach zero, we obtain the linear PDE 

(3) 
p 

This is called the one-dimensional wave equation. We see that it is homogeneous and 
of the second order. The physical constant Tip is denoted by c 2 (instead of c) to indicate 
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that this constant is positive. a fact that will be essential to the form of the solutions. 
"One-dimensional" means that the equation involves only one space variable. x. In the 
next section we shall complete setting up the model and then show how to solve it by a 
general method that is probably the most imp0l1ani one for PDEs in engineering 
mathematics. 

12.3 Solution by Separating Variables. 
Use of Fourier Series 

The model of a vibrating elastic string (a violin string, for instance) consists of the 
one-dimensional wave equation 

(1) 
p 

for the unknown deflection tI(x, t) of the string, a PDE that we have just obtained, dnd 
some additiollal cOllditiolls, which we shall now derive. 

Since the string is fastened at the ends x = 0 and x = L (see Sec. 12.2). we have the 
two boundary conditions 

(2) ~a) ufO, t) = 0, (b) ll(L, t) = 0 for all T. 

FUl1hermore, the form of the motion of the string will depend on its initial deflection 
(deflecrion ar time t = 0), call it f(x), and on its iniTiall'eiocity (velocity at t = 0). call 
it g(x). We thus have rhe rwo initial conditions 

(3) (a) l/(x. 0) = f(x) , (b) Ut(x. 0) = g(x) (0 ~ x ~ L) 

where lit = ilu/at. We now have to find a solution of the PDE (I) satisfying the conditions 
(2) and (3). This will be the suI uti on of our problem. We shall do this in three steps, as 
follows. 

Step 1. By the "method of separating variables" or product meThod. setting 
u(x. t) = F(x)G(t). we obtain from (l) two ODEs. one for F(x) and the other one for G(t). 

Step 2. We determine solutions of these ODEs that satisfy the boundary conditions (2). 

Step 3. FinaIl y, using Fourier series, we compose the solutions gained in Step 2 to obtain 
a solution of (l) satisfying both (2) and (3), that is, the solution of our model of the 
vibrating string. 

Step 1. Two ODEs from the Wave Equation (1) 
In the method of separating variables, or product method, we determine solutions of the 
wave equation (I) of the form 

(4) ll(X, 1) = F(x)G(T) 
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which are a product of two functions. each depending only on one of the variables x and 
t. This is a powerful general method that has various applications in engineering 
mathematics. as we shall see in this chapter. Differentiating (4), we obtain 

and 

where dots denote derivatives with respect to T and primes derivatives with respect to x. 
By inserting this into the wave equation (1) we have 

Dividing by c2FG and simplifying gives 

The variables are now separated, the left side depending only on t and the right side only 
on x. Hence both sides must be constant because if they were variable. then chdnging 
t or x would affect only one side. leaving the other unaltered. Thus. say, 

F" 
- =k F . 

Multiplying by the denominators gives immediately two ordinary DEs 

(5) F" - kF = 0 

and 

(6) 

Here. the separation constant k is still arbitrary. 

Step 2. Satisfying the Boundary Conditions (2) 
We now determine solutions F and G of (5) and (6) so that u = FG satisfies the boundary 
conditions (2), that is, 

(7) u(O, t) = F(O)G(t) = 0, u(L, t) = F(L)G(t) = 0 for all T. 

We first solve (5). If G 0= 0, then u = FG =0 0, which is of no interest. Hence G "'" 0 
and then by (7), 

(8) (a) F(O) = o. (b) F(L) = o. 

We show that k must be negative. For k = 0 the general solution of (5) is F = ax + b, 

and from (8) we obtain a = b = 0, so that F 0= 0 and II = FG 0= 0, which is of no interest. 
For positive k = J..t2 a general solution of (5) is 
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and from (8) we obtain F ~ 0 as before (verify!). Hence we are left with the possibility 
of choosing k negative, say, k = _p2. Then (5) becomes F" + p2F = 0 and has as a 
general solution 

F(x) = A cos px + B sin px. 

From this and (8) we have 

F(O) = A = 0 and then F(L) = B sinpL = O. 

We must take B *- 0 since otherwise F ~ O. Hence sinpL = O. Thus 

(9) pL = 117T, so that 
117T 

p=-
L 

Setting B = 1, we thus obtain infinitely many solutions F(x) = F,l>:), where 

(ll integer). 

(10) 
117T 

Fn(x) = sin -x 
L 

In = I, 2, .. '). 

These solutions satisfy (8). [For negative integer 11 we obtain essentially the same solutions, 
except for a minus sign, because sin (-ex) = -sin ex.] 

We now solve (6) with k = _p2 = -(Il7TIL)2 resulting from (9), that is. 

C177T 
(11 *) where An = cp = 

L 

A general solution is 

Hence solutions of (I) satisfying (2) are unlx, t) = Fn(x)Gn(t) = Gn(t)Fn(X), written out 

(11) (11 = I. 2 ... '). 

These functions are called the eigenfunctions, or characteristic junctions, and the values 
A" = C177TIL are called the eigenvalues, or characteristic ralues, of the vibrating sHing. 
The set {AI, A2 , ••• } is called the spectrum. 

Discussion of Eigenfunctions. We see that each Un represents a harmonic motion having 
the frequency A,,!27T = cnl2L cycles per unit time. This motion is called the 11th normal 
mode of the string. The first normal mode is known as the fillldalllelltal mode (17 = 1), 
and the others are known as overto17es; musically they give the octave, octave plus fifth, 
etc. Since in (II) 

. 177TX 
Sll1 -- = 0 

L 
at x= 

L 2L 

11 11 

11-1 
--L, 

11 

the nth normal mode has 11 - I nodes, that is, points of the string that do not move (in 
addition to the fixed endpoints); :-.ee Fig. 284. 
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I~'J 
o L 

n=l n=2 n=3 n=4 

Fig. 284. Normal modes of the vibrating string 

Figure 285 shows the second normal mode for various values of t. At any instant the 
string has the form of a sine wave. When the left part of the string is moving down, the 
other half is moving up, and conversely. For the other modes the situation is similar. 

Tuning is done by changing the tension T. Our formula for the frequency AJ27T = cll!2L 
of Un with c = VfiP [see (3), Sec. 12.2] confirms that effect because it shows that the 
frequency is proportional ro the tension. T cannot be increased indefinitely, but can you 
see what to do to get a string with a high fundamental mode? (Think of both Land p.) 

Why is a violin smaller than a double-bass? 

___ -'.0" 

....... .- .. , . ,. 
x 

Fig. 285. Second normal mode for various values of t 

Step 3. Solution of the Entire Problem. Fourier Series 
The eigenfunctions (II) satisfy the wave equation (l) and the boundary conditions (2) 
(string fixed at the ends). A single Un will generally not satisfy [he initial conditions (3). 
But since the wave equation (I) is linear and homogeneous, it follows from Fundamental 
Theorem 1 in Sec. 12.\ that the sum of finitely many solutions Un is a solution of (I). To 
obtain a solution that also satisfies the initial conditions (3), we consider the infinite series 
(with An = Cl17TIL as before) 

<Xl ex: 117T 

(12) u(x, t) = ~ un(x, 1) = ~ (Bn cos Ant + Bn * sin Ant) sin LX. 
n~l n~l 

Satisfying Initial Condition (3a) (Given Initial Displacement). From (12) and (3a) 
we obtain 

(\3) 
<Xl 117T 

u(x, 0) =~l Bn sin LX = f(x). 

Hence we must choose the Bn's so that u(x. 0) becomes the Fourier sine series of f(x). 
Thus, by (4) in Sec. 11.3, 

(14) 
2 fL 117TX 

Bn = - f(x) sin --dx, 
L 0 L 

11 = 1,2,·· '. 
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Satisfying Initial Condition (3b) (Given Initial Velocity). Similarly, by differentiating 
(12) with respect to t and using (3b). we obtain 

co 117TX 

= .L Bn*An sin L = g(x). 
n~l 

Hence we must choose the Bn*' s so that for t = 0 the derivative aulat becomes the Fourier 
sine series of g(x). Thus, again by (4) in Sec. 11.3, 

2 t 1117X 
BrI *ArI = L 0 g(x) sin L dx. 

Since An = CI117IL, we obtain by division 

(15) 2 t 1117X BrI * = -- g(x) sin -- d\:, 
CIl17 0 L 

11 = 1,2,···. 

Result. Our discussion shows that u(x, t) given by (12) with coefficients (14) and (15) 
is a solution of (I) that satisfies all the conditions in (2) and (3), provided the series (12) 
converges and so do the selies obtained by differentiating (12) twice tennwise with respect 
to x and t and have the sums a2ulax2 and a2ulat2

. respectively, which are continuous. 

Solution (12) Established. According to our derivation the solution (12) is at first a 
purely formal expression, but we shall now establish it. For the sake of simplicity we 
consider only the case when the initial velocity g(x) is identically zero. Then the Bn* are 
zero, and (12) reduces to 

(16) 
co 1117X 

u(x, t) = .L Bn cos Ant sin -L- , 
n~l 

C1117 

L 

It is possible to sum this series, that is. to wlite the result in a closed or finite form. For 
this purpose we use the formula [see (l L), App. A3.I] 

C1117 1117 1 [ { 1117 } { 1117 }] cos L t sin LX = 2 sin L (x - ct) + sin L (x + ct) 

Consequently, we may write (16) in the form 

1 co { 1117 } 1 co { 1117 } 
l/(x, t) = 2 .L Bn sin L (x - ct) + 2 .L Bn sin L (x + cO . 

n~l n~l 

These two series are those obtained by substituting x - ct and x + ct, respectively, for 
the variable x in the Fourier sine series (13) fOf j(x). Thus 

(17) u(x, t) = Hf*(x - ct) + f*(x + ct)] 
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where f* is the odd periodic extension of f with the period 2L (Fig. 286). Since the initial 
deflection f(x) is continuous on the interval 0 ~ x ~ L and zero at the endpoints, it follows 
from (17) that u(x, t) is a continuous function of both variables x and t for all values of 
the variables. By differentiating (17) we see that u(x, t) is a solution of (1), provided f(x) 
is twice differentiable on the interval 0 < x < L, and has one-sided second derivatives at 
x = 0 and x = L, which are zero. Under these conditions u(x. t) is established as a solution 
of (1), satisfying (2) and (3) with g(x) == O. • 

'J J..............-
Fig. 286. Odd periodic extension of {{x) 

Generalized Solution. 1ft' (x) and f"(x) are merely piecewise continuous (see Sec. 6.1), 
or if those one-sided derivatives are not zero, then for each t there will be finitely many 
values of x at which the second delivatives of u appearing in (1) do not exist. Except at 
these points the wave equation will still be satisfied. We may then regard u(x, t) as a 
"generalized solution," as it is called, that is, as a solution in a broader sense. For instance, 
a triangular initial deflection as in Example I (below) leads to a generalized solution. 

Physical Interpretation of the Solution (17). The graph of f*(x - ct) is obtained from 
the graph of f*(x) by shifting the latter ct units to the right (Fig. 287). This means thal 
f*(x - ct) (c > 0) represents a wave that is traveling to the right as t increases. Similarly, 
f*(x + ct) represents a wave that i:. traveling to the left. and u(x. t) is the superposition 
of these two waves. 

x 

Fig. 287. Interpretation of (l7) 

E X AMP L E 1 Vibrating String if the Initial Deflection Is Triangular 

Find the solution of the wave equation (1) cOlTesponding to the triangular initial deflection 

{

2J.. 

f(x) = ~x 
T(L - x) 

if 

if 

L 
O<x<-

2 
L 
-<x<L 
2 

and initial velocity zero. (Figure 288 shows f(x) = I/(X, 0) at the top.) 

Solutioll. Since g(x) == 0, we have Bn * = 0 in (12). and from Example 4 in Sec. 11.3 we see that the Bn 
are given by (5), Sec. 11.3. Thus (12) takes the fonn 

81.. [ I 7T 7TC I 37T 37TC J 
I/(x, t) = 7T2 )2 sin L x cos L t - )2 sin LX cos L t + - . " . 

For graphing the solution we may use u(x, 0) = fer) and the above interpretation of the two functions in the 
representation (17). This leads to the graph shown in Fig. 2g8. • 
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/s: t = 0 

o L 

/ t = Ll5e 

v'''--______ '''.,. t = 2L15e 

-- --

, , 1 
~2f*(X-L) 

=!{"(x +L) 
2 

t = Ll2c 

t = 4L15c 

t = LIe 

Fig. 288. Solution u(x, t) in Example 1 for various values of t (right part 
of the figure) obtained as the superposition of a wave traveling to the 
right (dashed) and a wave traveling to the left (left part of the figure) 

11-10 I DEFLECTION OF THE STRING 

Find u(x, t) for the string of length L = 1 and c2 = 1 when 
the initial velocity is zero and the initial deflection with 
small k (say, 0.01) is as follows. Sketch or graph U(X, 1) as 
in Fig. 288. 

1. k sin 27TX 

3. h(l - x) 

2. k(sin TTX -l sin 37TX) 

4. kx(l - X 2 ) 

5. L 
0.1~._! 

0.5 

6
olt/ " 

" 
1 3 
4 4 

7. 

8. 

9. 

*b 
1 1 
4 "2 

1 
4 /' 

1 
4 

1 
-4 

It vA, 
1 1 3 
4 "2 4 
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10. 

0.8 

11. (Frequency) How does the frequency of the 
fundamental mode of the vibrating string depend on 
the length of the string? On the mass per unit length? 
What happens to the string if we double the tension? 
Why is a contrabass larger than a violin? 

12. (Nonzero initial velocity) Find the deflection II(X, t) 

of the string of length L = 7f and ("2 = I for zero 
initial displacement and "triangular" initial velocity 
IIt (x, 0) = 0.0 I x if 0 :;;; x ~ ~7f, IIt (X, 0) = 0.0 I (7f - x) 

if ~7f ~ x :;;; 7f. (Initial conditions with lIix, 0) ~ 0 are 
hard to realize experimentally.) 

13. CAS PROJECT. Graphing Normal Modes. Write a 
program for graphing lin with L = 7f and c 2 of your 
choice similarly as in Fig. 284. Apply the program to 
112, U3, 114' Also graph these solutions as surfaces over 
thext-plane. Explain the connection between these two 
kinds of graphs. 

14. TEAM PROJECT. Forced Vibrations of an Elastic 
String. Show the following. 

(a) Substitution of 

x Il7fX 

(17) II(X, t) = L GnU) sin L 
n=l 

(L = length of the string) into the wave equation (I) 
governing free vibrations leads to [see (lO'~)J 

(18) 
•• 2_ 

G n + An G - 0, 

(b) Forced vibrations of the string under an external 
force P(x, t) per unit length acting normal to the string 
are governed by the PDE 

(19) 

(c) For a sinusoidal force P = Ap sin wt we obtain 

(20) 

p ex n7fX 
= A sin wt = L knCt) sin L ' 

p n~l 

_ {(4A11l7f) sin wt 
k,,(t) -

o 

(11 odd) 

(n even). 

Substituting (17) and (20) into (19) gives 

•• 2 _ 2A ,,' 
G n + An Gn - - (l - cos 1l7f) sm wt. 

f/7f 

2A(1 - cos 1I7f) . 
+ 2 2 sm wt. 

nTo(An - w ) 

Determine B" and Bn * so that II satisfies the initial 
conditions u(x, 0) = f(x), uix, 0) = O. 

(d) (Resonance) Show that if An = w, then 

A 
- -- (1 - cos 1l7f)T cos WT. 

n7fW 

(e) (Reduction of boundary conditions) Show that 
a problem (1)-(3) with more complicated boundary 
conditions 11(0, t) = 0, u(L, t) = h(t), can be reduced 
to a problem for a new function v satisfying conditions 
v(O, t) = v(L, f) = 0, vex. 0) = fl(x), Vt(x, 0) = gl(X) 

but a nonhomogeneous wave equation. Him: Set 
II = V + I\" and determine w suitably. 

u y 

Fig. 189. Elastic beam 

SEPARATION OF A FOURTH-ORDER POE. 
VIBRATING BEAM 

By the prinCiples used in modeling the string it can be 
shown that small free vertical vibrations of a uniform elastic 
beam (Fig. 289) are modeled by the fourth-order PDE 

(21) (Ref. [CII]) 

where c 2 = EIIpA (E = Young's modulus of elasticity, 
I = moment of intertia of the cross section with respect to 
the y-axis in the figure, p = density, A = cross-sectional 
area). (Bending of a beam under a load is discussed in 
Sec. 3.3.) 

15. Substituting II = F(x)G(t) into (21), show that 

F(4)/F = -C/c2G = 13 4 = conST, 

F(x) = A cos f3x + B sin f3x 

+ C cosh f3x + D sinh f3x, 

G(l) 
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~ =-=:l1.. (A) Simply supported 

x=L 

+= x=L 

I 
I 

x=L 

(E) Clamped at both 
ends 

(e) Clamped at the left 
end, free at the 
right end 

Fig. 290. Supports of a beam 

18. Compare the results of Probs. 17 and 3. What is the 
basic difference between the frequencies of the 
normal modes of the vibrating string and the vibrating 
beam? 

19. (Clamped beam in Fig. 290B) What are the boundary 
conditions for the clamped beam in Fig. 290B? Show 
that F in Prob. 15 satistles these conditions if {3L is a 
solution of the equation 

(22) cosh {3L cos {3L = I. 

Determine approximate solutions of (22), for instance, 
graphically from the intersections of the curves of 
cos {3L and lIcosh {3L. 

16. (Simply supported beam in Fig. 290A) Find solutions 
un = Fn(x)Gn(t) of (21) corresponding to zero initial 
velocity and satisfying the boundary conditions (see 
Fig. 290A) 

20. (Clamped-free beam in Fig. 290C) If the beam is 
clamped at the left and free at the right (Fig. 290C), 
the boundary conditions are 

u(O, t) = 0, 
u(O, t) = 0, u(L, t) = 0 

(ends simply supported for all times t), uxx(L, t) = 0, uxxx(L, t) = O. 

uxx(O, t) = 0, uxx(L, t) = 0 
(zero moments, hence zero curvature, at the ends). 

Show that F in Prob. 15 satisfies these conditions if {3L 
is a solution of the equation 

17. Find the solution of (21) that satisfies the conditions in 
Prob. 16 as well as the initial condition 

(23) cosh {3L cos (3L = - 1. 

u(x, 0) = f(x) = x(L - x). Find approximate solutions of (18). 

12.4 D'Alembert's Solution 
of the Wave Equation. 
Characteristics 

It is interesting that the solution (17), Sec. 12.3, of the wave equation 

(1) 
p 

can be immediately obtained by transforming (1) in a suitable way, namely, by introducing 

the new independent variables 

(2) v = x + ct, w = x - ct. 

Then u becomes a function of v and w. The delivatives in (1) can now be expressed in 
terms of delivatives with respect to v and w by the use of the chain rule in Sec. 9.6. 
Denoting partial delivatives by subscripts, we see from (2) that Vx = I and Wx = I. For 
simplicity let us denote u(x, t), as a function of v and w, by the same letter u. Then 
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We now apply the chain rule to the right side of this equation. We assume that all the 
partial derivatives involved are continuous, so that Uwv = uvw' Since Vx = I and Wx = 1, 
we obtain 

Transforming the other derivative in (1) by the same procedure. we find 

By inserting these two results in (I) we get (see footnote 2 in App. A3.2) 

(3) = o. 
awav 

The point of the present method is that (3) can be readily solved by two successive 
integrations, first with respect to wand then with respect to v. This gives 

all 
= h(v) 

av 
and u = fh(V) dv + I/J(w). 

Here h(v) and I/J(w) are arbitrary functions of v and w, respectively. Since the integral is 
a function of v, say, cfJ(v). the solution is of the form u = cfJ(v) + I/J(w). In tem1S of 
x and t, by (2), we thus have 

(4) u(x, t) = cfJ(x + ct) + I/J(x - ct). 

Thi~ is known as d' Alembert's solutionl of the wave equation (1), 
Its derivation was much more elegant than the method in Sec. 12.3. but d'Alembert's 

method is special, whereas the use of Fourier series applies to various equations, as we 
shall see. 

D'Alembert's Solution Satisfying the Initial Conditions 

(5) (a) U(X. 0) = f(x). (b) Ut(X. 0) = g(x). 

These are the same as (3) in Sec. 12.3. By differentiating (4) we have 

(6) Ut(x, t) = ccfJ' (x + ct) - cl/J' (x - ct) 

IJEAN LE RONO O'ALEMBERT (1717-1783). French mathematician, also known for his important work 
in mechanics. 

We mention that the general theory of POEs provides a systematic way for rmding the transformation (2) that 
simplifies (I). See Ref. [e8] in App. I. 
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where primes denote delivatives with respect to the entire arguments x + ct and x - ct, 
respectively, and the minus sign comes from the chain rule. From (4}-(6) we have 

(7) 

(8) 

U(x, 0) = <p(x) + ",(x) = f(x), 

Ut(X, 0) = C<p' (x) - crJ/ (x) = g(x). 

Dividing (8) by c and integrating with respect to x. we obtain 

(9) 
I x 

<p(x) - "'(x) = k(xo) + - I g(s) ds, 
c Xo 

If we add this to (7). then '" drops out and division by 2 gives 

(10) 
I I x I 

<p(X) = - f(x) + - I g(s) ds + - k(xo)· 
2 ~ ~ 2 

Similarly, subtraction of (9) from (7) and division by 2 gives 

(11) 1 I r I ",(x) = - f(x) - - g(s) ds - - k(xo). 
2 2c Xo 2 

In (10) we replace x by x + ct; we then get an integral from Xo to x + ct. In (11) we 
replace x by x - ct and get minus an integral from Xo to x - ct or plus an integral from 
x - ct to xo. Hence addition of <p(x + ct) and "'(x - ct) gives u(x, t) [see (4)] in the form 

(12) 
1 1 x+ct 

u(x. t) = - [J(x + ct) + f(x - ct)] + - I g(s) ds. 
2 2c x-ct 

If the initial velocity is zero. we see that this reduces to 

(13) u(x, t) = Uf(x + ct) + f(x - ct)], 

in agreement with (17) in Sec. 12.3. You may show that because of the boundary conditions 
(2) in that section the function f must be odd and must have the period 2L. 

Our result shows that the two initial conditions [the functions f(x) and g(x) in (5)] 
determine the solution uniquely. 

The solution of the wave equation by the Laplace transform method will be shown in 
Sec. 12.11. 

Characteristics. Types and Normal Forms of PDEs 
The idea of d' Alembert's solution is just a special instance of the method of 
characteristics. This concems PDEs of the form 

(14) 
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(as well as PDEs in more than two variables). Equation (14) is called quasilinear because 
it is linear in the highest delivatives (but may be arbitrary otherwise). There are three 
types of PDEs (14), depending on the discliminant AC - B2, as follows. 

Type Defining Condition Example in Sec. 12.1 

Hyperbolic AC - B2 < 0 Wave equation (1) 

Parabolic AC - B2 = 0 Heat equation (2) 

Elliptic AC - B2 > 0 Laplace equation (3) 

Note that (I) and (2) in Sec. 12.1 involve t, but to have y as in (14), we set y = ct in 
(1). obtaining Utt - c 2uxx = c2(uyy - uxx) = O. And in (2) we set .r = c2 t. so that 

2 _ 2( ) 
Ut - c U= - C uy - Ux~' . 

A, B, C may be functions of x, y, so that a PDE may be of mixed type, that is, of 
different type in different regions of the xy-plane. An important mixed-type PDE is the 
Tricomi equation (see Prob. 10). 

Transformation of (14) to Normal Form. The normal forms of (14) and the 
corresponding transformations depend on the type of the PDE. They are obtained by 
solving the characteristic equation of (14), which is the ODE 

(15) Ay'2 - 2By' + C = 0 

where y' = dy/dx (note -2B, not + 2B). The solutions of (I5) are called the characteristics 
of (14), and we write them in the form (I\x, y) = const and 'l'(x, y) = const. Then the 
transformations giving new variables v, winstead of x, y and the normal fonns of (14) 
are as follows. 

Type New Variables Normal Form 

Hyperbolic v=<fJ w='l' uvw = Fl 

Parabolic v=x w=<fJ='l' Uww = F2 

V = ~(<fJ + 'l') 
1 

Elliptic tv = 2i (<fJ - 'l') uvv + uww = Fg 

Here, <I) = (I\x, y), 'l' = 'l'(x, y), Fl = F1(v, w, u, uv , uw ), etc., and we denote u as 
function of v, w again by u, for simplicity. We see that the normal form of a hyperbolic 
PDE is as in d' Alembert's solution. In the parabolic case we get just one family of solutions 
<I) = 'l'. In the elliptic case, i = yq, and the characteristics are complex and are of 
minor interest. For derivation, see Ref. [GR3] in App. 1. 

EX AMP LEt D'Alembert's Solution Obtained Systematically 

The theory of characteristics gives d' Alembert's solution in a systematic fashion. To see this, we write the wave 
equation Utt - c

2
uxx ~ 0 in the form (14) by setting Y ~ ct. By the chain rule, Ut = uyYt = cUy and 

Htt = C
2

Hyy. Division by c
2 

gives H.= - Uyy = 0, as stated before. Hence the characteristic equation is 

y'2 - I = (y' + 1)(/ - 1) = O. The two families of solutions (characteristics) are <1>(x, y) = )' + x = const 

and 'I'(x, y) = y - x = const. This gives the new variables v = <1> = y + x = ct + x and 
w = 'I' = y - x = ct - x and d'Alembert's solution u = h(x + ct) + f2(X - ct). • 
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-.- .. - ..... .-. .. ................ ___ ._ ....w--- =-
1. Show that c is the speed of each of the two waves given 

by (4). 
/6-91 GRAPHING SOLUTIONS 

using (13), st...etch or graph a figure (similar to Fig. 288 in 
Sec. 12.3) of the deflection u(x. t) of a vibrating string 
(length L = L ends fixed, c = I) starting with initial 
velocity 0 and initial deflection (k small, say, k = 0.0 I). 

2. Show that because of the boundaty conditions (2). 
Sec. 12.3, the function f in (13) of this section must 
be odd and of period 2L. 

3. If a steel wire 2 m in length weighs 0.9 nt (about 0.20 lb) 
and is stretched by a tensile force of 300 m (about 67.4 
Ib). what is the corresponding speed of transverse waves? 

4. What are the frequencies of the eigenfunctions in 
Prob.3? 

5. Longitudinal Vibrations of an Elastic Bar or Rod. 
These vibrations in the direction of the x-axis are 
modeled by the wave equation Utt = r 2 uxx , c 2 = EI P 
(see Tolstov [C9]. p. 275). If the rod is fastened at one 
end. x = 0, and free at the other. x = L. we have 
11(0. t) = 0 and II.AL, t) = O. Show that the motion 
corresponding to initial displacement u(x, 0) = f(x) 
and initial velocity zero is 

= 
II = 2: An sin Pnx cos Pnct, 

n=O 

2 fL 
An = - f(x) sin PnX dx, 

L 0 
Pn = 

(211 + 1)7T 

2L 

6. f(x) k sin TTX 7. f(x) = k(l - cos 27TX) 

8. .f(x) kx(l - x) 

10. (Tricomi and Airy equations2
) Show that the Tricomi 

equatioll YUxx + lIyy = 0 is of mixed type. Obtain the 

Airy equation G" - yG = 0 from the Tricomi equation 
by separation. (For solutions, see p. 446 of Ref. [GR I] 
listed in App. I.) 

/11~01 NORMAL FORMS 
Find the type, transform to normal form. and solve. (Show 
the details of your work.) 

11. llxy - Uyy = 0 12. l"~x - 211xy + Uyy = 0 

13. Uxx + 9uyy = 0 14. lI~.x + lIXY - 2uyy = 0 

15. U= + 2uxy + Uyy = 0 16. XU"lI - yUyy = 0 

17. u"", - 4uxy + 411yy = 0 

19. XlIxx - Xl/xy = 0 

18. uxx + 2uxy + 5uyy = 0 

20. lixx - 4uxy + 3l1yy = 0 

12.5 Heat Equation: Solution by Fourier Series 
From the wave equation we now turn to the next "'big" PDE, the heat equation 

K 

up 

which gives the temperature u{x, y, ~, t) in a body of homogeneous material. Here c2 is 
the thermal diffusivity, K the thermal conductivity, u the specific heat, and p the density 
of the material of the body. V2

11 is the Laplacian of u, and with respect to Cartesian 
coordinates x, y, .:::, 

The heat equation was derived in Sec. 10.8. It is also called the diffusion equation. 
As an important application. let us first consider the temperature in a long thin metal 

bar or wire of constant cross section and homogeneous material, which is oriented along 
the x-axis (Fig. 291) and is perfectly insulated laterally. so that heat flows in the x-direction 

2SIR GEORGE BIDELL AIRY (1801-1892), English mathematician, known for his work in elasticity. 
FRANCESCO TRICOMI (1897-1978), Italian mathematIcian, who worked in integral equations. 
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o x=L 

Fig. 291. Bar under consideration 

only. Then u depends only on x and time t. and the heat equation becomes the 
one-dimensional heat equation 

(1) 

This seems to differ only very little from the wave equation, which has a term lttt instead 
of LIt, but we shall see that this will make the solutions of (1) behave quite differently 
from those of the wave equation. 

We shall solve (1) for some important types of boundary and initial conditions. We 
begin with the case in which the ends x = 0 and x = L of the bar are kept at temperature 
zero, so that we have the boundary conditions 

(2) u(O, t) = 0, u{L, t) = 0 for all t. 

Furthermore, the initial temperature in the bar at time t = 0 is given. say, f(x). so that we 
have the initial condition 

(3) u(x, 0) = f(.t) [f(x) given]. 

Here we must have teO) = 0 and ttL) = 0 because of (2). 
We shall determine a solution /I(x, t) of (I) satisfying (2) and (3)-one initial condition 

will be enough, as opposed to two initial conditions for the wave equation. Technically. 
our method will parallel that for the wave equation in Sec. 12.3: a separation of variables. 
followed by the use of Fourier series. You may find a step-by-step comparison worthwhile. 

Step 1. Two ODEs from the heat equation (1). Substitution of a product 
u(x, t) = F{x)G(t) into (I) gives FG = c2F"G with G = dG/dt and F" = d 2Fldr;2. To 
separate the variables, we divide by c2FG, obtaining 

G F" 
(4) 

F 

The left side depends only on t and the right side only on x, so that both sides must equal 
a constant k (as in Sec. 12.3). You may show that for k = 0 or k > 0 the only solution 
u = FG satisfying (2) is u == O. For negative k = _p2 we have from (4) 

Multiplication by the denominators gives immediately the two ODEs 

(5) 
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and 

(6) 

Step 2. Satisfying the boundary conditions (2). We first solve (5). A general solution is 

(7) Ex) = A cos px + B sin px. 

From the boundary conditions (2) it follows that 

lI(O. t) = F(O)G(t) = 0 and u(L, t) = F(L)G(t) = O. 

Since G == 0 would give LI == O. we require F(O) = O. F(L) = 0 and get F(O) = A = 0 
by 0) and then F(L) = B sinpL = 0, with B =1= 0 (to avoid F == 0); thus, 

sinpL = 0, hence II = I. 2, .... 

Setting B = 1, we thus obtain the following solutions of (5) satisfying (2): 

117TX 
Fn(x) = sin L' II = 1,2 ..... 

(As in Sec. 12.3, we need not consider negative integral values of Il.) 
All this was literally the same as in Sec. 12.3. From now on it differs since (6) differs 

from (6) in Sec. 12.3. We now solve (6). For p = Il7TIL, as just obtained, (6) becomes 

G + A 2G = 0 n where 

It has the general solution 

where Bn is a constanl. Hence the funclions 

A = n 

CIl7T 

L 

(8) 
Il7TX 2 

L1n(X, t) = Fn(x)Gn(t) = Bn sin L e-An t 

11 = I, 2, ... 

(n = 1, 2, ... ) 

are solutions of the heat equation (1), satisfying (2). These are the eigenfunctions of the 
problem. cOlTesponding to the eigenvalues An = cll7TIL. 

Step 3. Solution of the entire problem. Fourier series. So far we have solutions (8) 
satisfying the boundary conditions (2). To oblain a solution that also satisfies the initial 
condition (3), we consider a series of these eigenfunctions, 

(9) 
ex; ex; 117TX 

u(x, t) = 2: un(x, t) = 2: Bn sin -- e-J. n2t 
n=1 n=1 L 

( 
= CII7T) 

An L . 
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From this and (3) we have 

x n17X 
u(x, 0) = L Bn sin L = j(x). 

n=l 

Hence for (9) to satisfy (3), the Bn' s must be the coefficients of the Fourier sine series, 
as given by (4) in Sec. 11.3; thus 

(10) 
2 fL 1117.\ 

Bn = - I(x) sin -- dr 
L 0 L 

(11 = 1. 2 ... '). 

The solution of our problem can be established, assuming that I(x) is piecewise 
continuous (see Sec. 6.1) on the interval 0 ~ x ~ L and has one-sided derivatives (see 
Sec. 11.1) at all interior points of that interval; that is, under these assumptions the series 
(9) with coefficients (10) is the solution of our physical problem. A proof requires 
knowledge of uniform convergence and will be given at a later occasion (Probs. 19, 20 
in Problem Set 15.5). 

Because of the exponential factor, all the terms in (9) approach zero as t approaches 
infinity. The rate of decay increases with 11. 

E X AMP L E 1 Sinusoidal Initial Temperature 

Find the temperature 1I(.I. r} in a laterally insulated copper bar 80 cm long if the initial temperature i~ 

100 sin (Tlx/80) °C and the ends are kept at O°c. How long will it take for the maximum temperature in the 
bar to drop to 50°C? First guess. then calculate. Physical data for copper: density 8.92 gm/cm3

• specific heat 
0.092 call(gm °C), thermal conductivity 0.95 cal/(cm sec 0c}. 

Solution. The initial condition gives 

x 1l7T\" 7TX 

u(x. O} = 2:: Bn sin 80 = f(x} = 100 sin 80 . 
1'1-1 

Hence. by inspection or from (9) we get Bl = 100. B2 = B3 = ... = O. In (9) we need A12 = C
2

T121L2, 

where c2 = KI(ap) = 0.95/(0.092' 8.92) = 1.158 [cm2/sec]. Hence we obtain 

The solution (9) is 
TlX 

U(l t) = 100 sin - e-O.00l785t ., 80 . 

Also, 100e-O.001785t = 50 when r = (\nO.5)/(-0.00l785) = 388 rsec] = 6.5 [min1. Does your guess. or at 
least its order of magnitude. agree with this result'! • 

E X AMP L E 1 Speed of Decay 

Solve the problem in Example 1 when the initial temperature is 100 sin (3T11/80) °C and the other data are as 
before. 

Solutioll. In (9). instead of 11 = I we now have 11 = 3. and A32 = 32 A 12 = 9 • 0.001 785 = 0.01607, so that 
the solution now is 

3T1x 001607t !l(x r) = 100 sin -- e- . , 80 . 

Hence the maximum temperature drops to SO°C in t = (in 0.5)/( -0.01607) = 43 [secondsl, which is much 
faster (9 times as fast as in Example I; why?). 
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Had we chosen a bigger 11. the decay would have been still faster. and in a sum or series of such terms, each 
term has it~ own rate of decay. and terms with large 11 are practically 0 after a very short time. Our next example 
is of this type. and the curve in Fig. 292 corresponding to r = 0.5 looks almost like a sine curve; that is, it is 
practically the graph of the first term of the solution. • 

"I ~=O 
L-\ 

n x 

x 

u~ 
x 

u I_--_-:t = 2 
~ =:-:--"1 

x 

Fig. 292. Example 3. Decrease of temperature 
with time t for L = 'if and c = 1 

E X AMP L E 3 "Triangular" Initial Temperature in a Bar 

Find the temperalllre in a laterally insulated bar of length L whose ends are kept at temperature 0, assuming that 
the initial temperature is 

f(x) = { x 
L-x 

if 

if 

0<.l<Ll2, 

LI2 < x < L. 

(The uppermost part of Fig. 292 shows this function for the special L = 17.) 

Solutioll. From (10) we get 

2 (JLl2 1117< r 1l17X) Bn = L x sin -L dx + (L - x) sin -- dx . 
o L/2 L 

Integration gives Bn = 0 if II is even. 

Bn = 
4L 
2 2 

11 7i 
(n = I, 5, 9, ... ) and B =­n 

(see also Example 4 in Sec. 11.3 with k = Ll2). Hence the solution is 

4L 
2 2 

f1 'iT 

4L [ 17" [( Cl7)2 ] I 317X [ !I(x, t) = 172 sin L exp - L t -"9 ~in L exp -

(II = 3,7, 11, .. '). 

Figure 292 shows that the temperalllre decreases with increasing t. because of the heat loss due to the cooling 
of the ends. 

Compare Fig. 292 and Fig. 288 in Sec. 12.3 and comment. • 
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E X AMP L E 4 Bar with Insulated Ends. Eigenvalue 0 

Find a solution formula of (I). (3) with (2) replaced by the condition that both ends of the bar are insulated. 

Solution. Physical experiments show that the rate of heat flow is proportional to the gradient of the 
temperature. Hence if the ends x = 0 and x = L of the bar are in~ulated. so that no heat can t10w through the 
ends. we have grad u = lIx = iJuliJx and the boundary conditions 

C2""; " xCO,1) = O. "xCL. f) = 0 for all r. 

Since II(X. t) = F{x)G{t). this gives u,,{O, t) = F'(O)G(t) = 0 and "x(L, t) = F'{L)G(t) = O. Differentiating 0). 
we have F' (x) = - Ap sin px + Bp cos px. '0 that 

FiCo) = Bp = 0 and then F'CL) = -Ap sinpL = O. 

The second of these conditions gives p = Pn = Il'TTIL. (11 = O. l. 2, .. '). From this and (7) with A = I 
and B = 0 we get Fn{x) = cos (Il'TTxIL). (II = 0, l. 2 ... '). With Gn as before, thi~ yield~ the eigenfunctions 

(II) 
117iX -A 21 

UniX. t) = Fnl,)GnltJ = An cos Len (n = 0, I,"'J 

corresponding to the eigenvalues An = cn7TlL. The latter are as before, but we now have the additional eigenvalue 
Ao = 0 and eigenfunction 110 = consr, which is the solution of the problem if the initial temperature fIx) is 
constant. This ,hows the remarkable fact that a separatioll cOllstallt call very well be zero. alld ;;,ero call be all 
eigellvalue. 

Furthermore. whereas (8) gave a Fourier sine series. we now get from (II) a Fourier cosine series 

x x 
Il7iX 2 

II(X. t) = L ll.ix. 1) = L An co~ -- e -A" t ( 
= C/l7T) (ll) 

L 
11.=0 n=O 

Its coefficients result from the initial condition (3), 

in the form (2). Sec. 11.3. that is. 

(3) 

L 

Ao = ± f fIx) dx. 
o 

x f17TJ .. -

tI{x. 0) = L An cos L = fIx), 
n-O 

L 

2 f I17TX 
An = L fix) cos -- dx. 

o L 

E X AMP L E 5 "Triangular" Initial Temperature in a Bar with Insulated Ends 

An L' 

11 = 1.2." • 

Find the temperature in the bar in Example 3, assuming that the ends are insulated (instead of being kept at 
temperature 0). 

Solutioll. For the triangular initial temperature. (13) gives Ao = Ll4 and (see also Example 4 in Sec. 11.3 
with k = U2) 

[ 

L/2 L ] 2 11 'iTt Il1TX 
An = - f X cos -- dx + f (L - t) cos -- dx 

L 0 L L/2 L 

2L 

( 

117T ) 2 cos ""2 - COSIl7r- I . 

Hence the solution {I 2) is 

L 8L { I 2nt [ 
u{x r) = - - - - cos -- exp -

, 4 ~ 22 L ( 2e7T)2 ] I 67TX [( 6C7T)2 ] } L I + 62 cos L exp - L r +... . 

We see that the terms decrease with increasing t. and II -4 Ll4 as t -> "'; this is the mean value of the initial 
temperature. Thi~ is plausible because no heat can escape from this totally insulated bar. In contrast. the cooling 
of the ends in Example 3 led to heat loss and u -> O. the temperature at which the ends were kept. • 
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Steady Two-Dimensional Heat Problems. 
Laplace's Equation 
We shall now extend our discussion from one to two space dimensions and consider the 
two-dimensional heat equation 

for steady (that is. time-indepelldem) problems. Then all/at = 0 and the heat equation 
reduces to Laplace's equation 

(14) 

(which has already occUlTed in Sec. 10.8 and will be considered fUlther in 
Secs. 12.7-12.10). A heat problem then consists of this POE to be considered in some 
region R of the xy-plane and a given boundary condition on the boundary curve C of R 
This is a boundary value problem (BVP). One calls it: 

First BVP or Dirichlet Problem if u is prescribed on C ("Dirichlet boundary 
condition") 

Second BVP or ~eumann Problem if the normal derivative u., = aU/all is 
prescribed on C ("Neumann boundary condition") 

Third BVP, Mixed BVP, or Robin Problem if 1I is prescribed on a portion of C 
and u" on the rest of C ("Mixed buundary condition"). 

y 
u = {(x) 

b~----------~--------~ 

u=o R u=o 

o-r----------u-=-o----------~--------x 
o a 

Fig. 293. Rectangle R and given boundary values 

Dirichlet Problem in a Rectangle R (Fig. 293). We consider a Dirichlet problem for 
Laplace's equation (14) in a rectangle R. assuming that the temperature u(x, y) equals a 
given function f(x) on the upper side and 0 on the other three sides of the rectangle. 

We solve this problem by separating variables. Substituting u(x, y) = F(x)G(y) into 
(14) written as Uxx = -Uyy, dividing by FG, and equating both sides to a negative constant, 
we obtain 
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From this we get 

+ kF = 0, 
d'(2 

-k. 

and the left and right boundary conditions imply 

F(O) = 0, and F(a) = O. 

This gives k = (1l7T/a)2 and corresponding nonzero solutions 

(15) 
1l7T 

F(x) = FnlX) = sin -x, 
a 

The ODE for G with k = (117T/a)2 then becomes 

d
2
.G _ (1l7T)2 G = O. 

d\"2 a 
Solutions are 

559 

11 = L 2,···. 

Now the boundary condition II = 0 on the lower side of R implies that Gn(O) = 0; that 
is, Gn(O) = An + En = 0 or En = -An. This gives 

From this and (15), writing 2An = A~, we obtain as the eigenfunctions of our problem 

(16) 
x . Il7TX. Il7TY 

un(x, y) = Fn(x)GnCv) = A':' sm -- smh -- . 
a a 

These solutions satisfy the boundary condition u = 0 on the left, right. and lower sides. 
To get a solution also satisfying the boundary condition u(x, b) = f(x) on the upper 

side, we consider the infinite series 

co 

u(x, y) = ~ un(x, y). 
71=1 

From this and (16) with y = b we obtain 

DC * Il7TX 117Tb 
u(x. b) = f(x) = ~ An sin -- sinh -- . 

a a 

We can write this in the form 

U(x, b) = ~1 (A! sinh n:b) . Il7TX 
sm--. 

a 
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This shows that the expressions in the parentheses must be the Fourier coefficients bn of 
f(x); that is, by (4) in Sec. 11.3, 

* n7Tb 2 fa Il7TX 
bn = An sinh -- = - j(x) sin -- dx. 

a a 0 a 

From this and (16) we see that the solution of our problem is 

"" x 

(17) " "* n7TX 117TY u(x, y) = .c.. un(x, y) = .c.. An sin -- sinh --' 
a a 

where 

(18) 
2 fa n7TX 

A~ = f(x) sin -- dx. 
a sinh (l17Tbla) 0 a 

We have obtained this solution formally, neither considering convergence nor showing 
that the series for u, U:rx' and U yy have the right sums. This can be proved if one assumes 
that f and f' are continuous and f" is piecewise continuous on the interval 0 ~ x ~ a. 

The proof is somewhat involved and relies on uniform convergence. It can be found in 
[C4] listed in App. l. 

Unifying Power of Methods. Electrostatics, Elasticity 
The Laplace equation (14) also governs the electrostatic potential of electrical charges in 
any region that is free of these charges. Thus our steady-state heal problem can also be 
interpreted as an electrostatic potential problem. Then (17), (18) is the potential in the 
rectangle R when the upper side of R is at potential f(x) and the other three sides are 
grounded. 

Actually, in the steady-state case, the two-dimensional wave equation (to be considered 
in Secs. 12.7, 12.8) also reduces to (14). Then (17), (18) is the displacement of a rectangular 
elastic membrane (rubber sheet, drumhead) that is fixed along its boundary, with three 
sides lying in the x),-plane and the fourth side given the displacement f(x). 

This is another impressive demonstration of the unifying power of mathematics. It 
illustrates that entirely different physical systems may have the same mathematical model 
and can thus be treated by the same mathematical methods . 

..,_ ... -
• ~-

1. WRITING PROJECT. Wave and Heat Equations. 2. (Eigenfunctions) Sketch (or graph) and compare the 
first three eigenfunctions (8) with Bn = 1, c = I. 

L = 7T for t = 0, 0.2, 0.4, 0.6, 0.8. 1.0. 
Compare the two PDEs with respect to type, general 
behavior of eigenfunctions. and kind of boundary and 
initial conditions and resulting practical problems. Also 
discuss the difference between Figs. 288 in Sec. 12.3 
and 292. 

3. (Decay) How does the rate of decay of (8) with fIxed 
/J depend on the specific heat, the density, and the 
thermal conductivity of the material? 
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4. If the first eigenfunction (8) of the bar decreases to half 
its value within 10 sec, what is the value of the 
diffusi vity? 

15-91 LATERALLY INSULATED BAR 

A laterally insulated bar of length 10 cm and constant 
cross-sectional area I cm2

, of density 10.6 gmlcm3
, thermal 

conductivity 1.04 call( cm sec DC), and specific heat 
0.056 cal/(gm DC) (this corresponds to silver, a good heat 
conductor) has initial temperature f(x) and is kept at ODC 
at the ends x = 0 and x = 10. Find the temperature u(x, t) 

at later times. Here, f(x) equals: 

5. f(x) sin 0.411X 

6. f(x) sin 0.11lx + i sin 0.2m: 

7. f(x) 0.2x if 0 < x < 5 and 0 otherwise 

8. f(x} I - 0.21x - 51 

9. f(x) = x if 0 < x < 2.5, f(x) = 2.5 if2.5 < x < 7.5, 

f(x) = 10 - x if 7.5 < x < 10 

10. (Arbitrar~ temperatures at ends) If the ends x = 0 
and x = L of the bar in the text are kept at constant 
temperatures VI and V 2, respectively, what is the 
temperature UI(X) in the bar after a long time 
(theoretically, as t -'? "YO)? First guess, then calculate. 

11. Tn Prob. 10 find the temperature at any time. 

12. (Changing end temperatures) Assume that the ends 
of the bar in Probs. 5-9 have been kept at 100DC for a 
long time. Then at some instant. call it t = 0, the 
temperature at x = L is suddenly changed to ODC and 
kept at ODC, whereas the temperature at x = 0 is kept 
at 100De. Find the temperature in the middle of the bar 
at t = L 2. 3, 10, 50 sec. First guess, then calculate. 

BAR UNDER ADIABATIC CONDITIONS 

"Adiabatic" means no heat exchange with the 
neighborhood. because the bar is completely insulated, also 
at the ends. PhysicolTnformation: The heat flux at the ends 
is proportional to the value of aulax there. 

13. Show that for the completely insulated bar. 
ux(O, t) = 0, uAL, t) = 0, /leX, t) = f(x) and separation 
of variables gives the following solution, with An given 
by (2) in Sec. 11.3. 

"" u(x. t) = Ao + L An cos ";x e-{cn7T/L)2t 

n~l 

1 14-19J Find the temperature in Prob. 13 with L 11. 

C = 1, and 
14. f(x) = t" 

16. f(x) = 0.5 cos 4x 
18. f(x) = ~11 - Ix - ~1I1 

15. f(x) = 1 
17. f(x) = 112 - x 2 

19. f(x) = (x - ~11)2 

20. Find the temperature of the bar in Prob. 13 if the left 
end is kept at ODC, the right end is insulated, and the 
initial temperature is Vo = const. 

561 

21. The boundary condition of heat transfer 

(19) -ux (1I, t) = k[II('IT. t) - uo] 

applies when a bar of length 'IT with c = I is laterally 
insulated, the left end x = 0 is kept at O°C, and at the 
right end heat is flowing into air of constant 
temperature uo. Let k = I for simplicity, and 110 = O. 
Show that a solution is lI(x, t) = sin px e-p2t

• where 
P is a solution of tan p1I = - p. Show graphically 
that this equation has infinitely many positive solutions 
PI> P2, P3, ... , where Pn > 11 - i and 

lim (Pn - 11 + ~) = O. (Formula (19) is also known 
n_cc 

as radiation boundary condition, but this is 
misleading; see Ref. [C3], p. 19.) 

22. (Discontinuous f) Solve (\), (2), (3) with L = 11 

and f(x) = Vo = const (=1= 0) if 0 < x < 11/2, 

f(x) = 0 if 1112 < x < 11. 

23. (Heat flux) The heat fiLix of a solution II(X, t) across 
x = 0 is defined by cp(t) = - KlIx(O, t). Find CPU) for 
the solution (9). Explain the name. Is it physically 
understandable that cp goes to 0 as t -'? x? 

OTHER HEAT EQUATIONS 

24. (Bar with heat generation) If heat is generated at a 
constant rate throughout a bar of length L = 'IT with 
initial temperature f(x) and the ends at x = 0 and 
'IT are kept at temperature 0, the heat equation is 
U t = c 2 uxx + H with constant H > O. Solve this 
problem. Hint. Set u = v - Hx(x - 'IT)/(2c 2

). 

25. (Convection) If heat in the bar in the text is free to 
flow through an end into the surrounding medium 
kept at O°C, thePDEbecomesvt = c 2 vxx - f3v. Show 
that it can be reduced to the form (I) by setting 
vex, t) = II(X, t)w(t). 

26. Consider v t = c 2vxx - v (0 < x < L, t > 0), 
v(O, t) = 0, veL, t) = 0, vex, 0) = f(x), where the term 
-v models heat transfer to the surrounding medium 
kept at temperature O. Reduce this PDE by setting 
vex, t) = u(x, t)w(t) with w such that U is given by (9), 
(10). 

27. (Nonhomogeneous heat equation) Show that the 
problem modeled by 

and (2), (3) can be reduced to a problem for the 
homogeneous heat equation by setting 

u(x, t) = vex, t) + w(x) 

and determining w so that v satisfies the homogeneous 
PDE and the conditions v(O, t) = veL, t) = 0, 
v(x.O) = f(x) - w(x). (The term Ne- ax may represent 
heat loss due to radioactive decay in the bar.) 
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28-351 TWO-DIMENSIONAL PROBLEMS 

28. (Laplace equation) Find the potential in the rectangle 
o ~ x ~ 20, 0 ~ y ~ 40 whose upper side is kept at 
potential 220 V and whose other sides are grounded. 

29. Find the potential in the square 0 ~ x ~ 2, 0 ~ y ~ 2 
if the upper side is kept at the potential sin 47TX and the 
other sides are grounded. 

30. CAS PROJECT. Isotherms. Find the steady-state 
solutions (temperatures) in the square plate in Fig. 294 
with a = 2 satisfying the following boundary 
conditions. Graph isotherms. 

(a) II = sin TTX on the upper side. 0 on the others. 

(b) u = 0 on the vertical sides. assuming that the other 
sides are perfectly insulated. 

(c) Boundary conditions of your choice (such that the 
solution is not identically zero). 

YI 

a~ 
-, a x 

Fig. 294. Square plate 

31. (Heat flow in a plate) The faces of the thin square 
plate in Fig. 294 with side a = 24 are perfectly 
insulated. The upper side is kept at 20°C and tl1e other 
sides are kept at O°C. Find the steady-state temperature 
II(X, y) in the plate. 

32. Find the steady-state temperature in the plate in Prob. 
31 if the lower side is kept at UO dc, the upper side at 
UI dc, and the other sides are kept at O°c. Hint: Split 
into two problems in which the boundary temperature 
is 0 on three sides for each problem. 

33. <Mixed boundary value problem) Find the steady­
~tate temperature in the plate in Prob. 31 with the upper 
and lower sides perfectly insulated. the left side kept 
at O°c. and the right side kept at f(y)°C. 

34. (Radiation) Find steady-state temperatures in the 
rectangle in Fig. 293 with the upper and left sides 
perfectly insulated and the right side radiating into a 
medium at O°C according to 1I,.(a. y) + hu(a, y) = O. 
" > 0 constant. (You will get many solutions since no 
condition on the lower side is given.) 

35. Find formulas similar to (\7). (18) for the temperature 
in the rectangle R of the text when the lower side of R 
is kept at temperature f(x) and the other side~ are kept 
at O°c. 

12.6 Heat Equation: Solution by 
Fourier Integrals and Transforms 

Our discussion of the heat equation 

(1) 

in the last section extends to bars of infinite length, which are good models of very long 
bars or wires (such a<; a wire of length, say, 300 ft). Then the role of Fourier series in the 

solution process will be taken by Fourier integrals (Sec. 11.7). 
Let us illustrate the method by solving (1) for a bar that extends to infinity on both 

sides (and is laterally insulated as before). Then we do not have boundary conditions. but 
only the initial condition 

(2) u(x, 0) = f(x) (-co < x < ro) 

where f(x) is the given initial temperature of the bar. 
To solve this problem, we start as in the last section, substituting uex, t) 

into (1). This gives the two ODEs 
F(x)G(t) 

(3) [see (5), Sec. 12.5] 
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and 

(4) [see (6), Sec. 12.5]. 

Solutions are 

F(x) = A cos px + B sin px and 

respectively. where A and 8 are any constants. Hence a solution of (1) is 

(5) u(x, t; p) = FG = (A cuspx + 8 sinpx)e-C2p2t. 

Here we had to choose the separation constant k negative. k = _p2, because positive 
values of k would lead to an increasing exponential function in (5), which has no physical 
meaning. 

Use of Fourier Integrals 
Any series of functions (5), found in the usual manner by taking p as multiples of a fixed 
number, would lead to a function that is periodic in x when t = O. However, since f(x) 
in (2) is not assumed to be periodic, it is natural to use Fourier integrals instead of Fourier 
series. Also, A and B in (5) are arbitrary and we may regard them as functions of p, writing 
A = A(p) and 8 = 8(p). Now, since the heat equation (I) is linear and homogeneous. 
the function 

(6) u(x, t) = {:U(X, t; p) dp = {c[A(P) COSpl + 8(p) sinpx]e-C2p2t dp 
o 0 

is then a solution of (I), provided this integral exists and can be differentiated twice with 
respect to x and once with respect to t. 

Determination ofA(p) and R(p) from the Initial Condition. From (6) and (2) we get 

(7) fleX, 0) = LX [A(p) cos px + 8(p) sin px] dp = f(x). 
o 

This gives A(p) and 8(p) in teons of f(x); indeed. from (4) in Sec. 11.7 we have 

(8) 
1 :x:: 

A(p) = - f feu) cos pu du. 
7T -00 

1 :x:: 

8(p) = - f feu) sinpu du. 
7T -GO 

According to (l *). Sec. 11.9. our Fourier integral (7) with these A(p) and B(p) can be 
written 

I X[:X:: ] 
u(x, 0) = 7T ~ icof(U) cos (px - pu) du dp. 

Similarly, (6) in this section becomes 

u(x, t) = - i J feu) cos (px - pu) e-c2p2t du dp. 1 X[ ~ ] 
7T 0 -::x; 
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Assuming that we may reverse the order of integration. we obtain 

(9) 1 W [W ] u(x, t) = - I f(v) L e-c2p2t cos (px - pv) dp dv. 
7T -ex. 0 

Then we can evaluate the inner integral by using the formula 

(10) L
oo 

-" v;. b2 
o e-~- cos 2bs ds = -2- e- . 

[A derivation of (10) is given in Problem Set 16.4 (Team Project 28).] This takes the form 
of our inner integral if we choose p = s/(eVt) as a new variable of integration and set 

x-v 
b=--

2eVt . 

Then 2bs = (x - v)p and ds = eVtdp, so that (10) becomes 

x V; {(X - V)2 } L e-c2p2t cos (px - pv) dp = ~ r exp -
o 2evt 4e2t' 

By inserting this result into (9) we obtain the representation 

(11) I Ioo 
{(X - V)2 } u(x, t) = ~ r-: f(v) exp - 2 dv. 

2ev 7T1 -00 4c t 

Taking.:: = (v - x)f(2eVt) as a variable of integration, we get the alternative form 

(12) 
1 oc 

/lex. t) = ~~ I f(x + 2ezVt) e-z2 
dz. 

v 7T -x 

If f(x) is bounded for all values of x and integrable in every finite interval, it can be 
shown (see Ref. [ClOD that the function (11) or (12) satisfies (I) and (2) Hence this 
function is the required solution in the present case. 

E X AMP L E 1 Temperature in an Infinite Bar 

Find the temperature in the infinite bar if the initial temperature is (Fig. 295) 

{

Vo = cons' 
I(x) = 

o 

{(xli 

~ 

I I I 
-1 

if ~TI < I, 

if Ixl> I. 

x 

Fig. 295. Initial temperature in Example 1 
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Solution. From (11) we have 

U, Ii { (x - v)2 } 
u(x. t) = • ~ exp - --2- dv. 

2CV7Tt -1 4c I 

If we introduce the above variable of integration ::. then the integration over v from - I to 1 corre~ponds to the 
integration over:: from (-I - x)/(2cVi) to (l - x)/(2cVi). and 

(1 -xl/(2cVt) 

Vo I 2 !I(X, t) = -- e-Z dz 
y:;;: -0 +xl/(2cVtl 

(13) (t> 0). 

We mention that this integral is not an elementary function, but can be expressed in terms of the error function, 
whose values have been tabulated. (Table A4 in App. 5 contains a few values; larger tables are listed in 
Ref. [GRI] in App. I. See also CAS Project 10. p. 568.) Figure 296 shows I/(X. t) for Vo = 100°C, 
c2 = 1 cm2/sec. and several values of t. • 

-3 

ulx, t) 

-2 -1 o 
Fig. 296. Solution u(x, t) in Example 1 for Uo = lOO·C, 

c2 = 1 cm2/sec, and several values of t 

Use of Fourier Transforms 
The Fourier transform is closely related to the Fourier integral, from which we obtained 
the transform in Sec. 11.9. And the transition to the Fourier cosine and sine transform in 
Sec. 11.8 was even simpler. (You may perhaps wish to review this before going on.) 
Hence it should not surprise you that we can use these transforms for solving our present 
or similar problems. The Fourier transform applies to problems concerning the entire axis. 
and the Fourier cosine and sine transforms to problems involving the positive half-axis. 
Let us explain these transform methods by typical applications that fit our present 
discussion. 

E X AMP L E 2 Temperature in the Infinite Bar in Example 1 

Solve Example I using the Fourier transfonn. 

Solutioll. The problem consist, of the hear equation (I) and the initial condition (2), which in this example is 

f(x) = Vo = COllst if Ixl < I and 0 otherwise. 

Our strategy is Lo take the Fourier transform with respect to x and then to solve the resulting ordinary DE in t. 
The details are as follows. 
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LeI i; = g;'(1I) denote the Fourier transform of II. regarded as afllllcliOlI ofx. From (l0) in Sec. 11.9 we see 
that the heat equation (1) gives 

On the left, assuming that we may interchange the order of differentiation and integmtion. we have 

Thus 

1 f""· I a fcc. au 
~(Ut) = .~ Ute-tWX dx = =- - lie-twX dx = -:;- . 

V217 -00 V217 at -00 at 

au 
at 

2 2" = -c w u. 

Since this equation involves only a derivative with respect to t but none with respect to w, this is a tirst-order 
ordinary DE. with t as the independent variable and was a parameter. By separating variables (Sec. 1.3) we 
get the general solution 

u(w, t) = C(w)e -C
2
w

2
t 

with the arbitrary "constant" C(w) depending on the parameter w. The initial condition (2) yields the relationship 
u(w, 0) ~ C(w) ~ J(w) = ~(f). Our intermediate result is 

The inversion fonnula (7). Sec. 11.9. now gives the solution 

(14) 

In this SolUTion we may insert the Fourier transform 

" I fCC ivw 
few) ~ vz; _ccf(u)e- du. 

Assuming that we may inver! the order of integration, we then obtain 

By the Euler formula (3). Sec. l1.9. the integrand of the inner integral equals 

We see that it~ imaginary part is an odd function of w, so that its integral is O. (More precisely, this is the 
principal part of the integral; see Sec. 16.4.) The real part is an even function of w, so that its integral from 
-:x; to :x; equals twice the integral from 0 to x: 

This agrees with (9) (withp = w) and leads to the further formulas (il) and (13). • 
E X AMP L E 3 Solution in Example 1 by the Method of Convolution 

Solve the heat problem in Example I by the method of convolution. 

Solution. The beginning is as in Example 2 and leads to (14). that is, 
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Now comes the crucial idea. We recognize that this is of the form (13) in Sec. 11.9. that i~. 

(16) uCr. t) = (j '" g)Cr) = IX I(w)g(w)eiwx dw 
-00 

where 

(17) 

Since. by the definition of convolution [(II l. Sec. 11.9], 

(18) (f * g)(x) = {YO f(p)g(x - p) dl', 
-:lc 

as our next and last step we must determine the inverse Fourier tmnsform g of g. For this we can use formula 
9 in Table III of Sec. 11.10, 

with a suitable a With c 2t = 1I(4a) or a = 1I(4c2t). using (17) we obtain 

Hence g has the inverse 

-XZ/(4c2t) e . 

Replacing x with x - I' and suh~tituting this into (18) we finally have 

(19) 
I foo {(X - p)2 } 

u(x, t) = (f * g)(x) = • ~ f(p) exp - --2- dp. 
2c V7Tl -:>G 4c I 

This solution formula of our problem agrees with (II l. We wrote (f * g)(x). without indicating the parameter I 
with respect to which we did not integrate. • 

E X AMP L E 4 Fourier Sine Transform Applied to the Heat Equation 

If a latemlly insulated bar extends from" = 0 to infinity, we can use the Fourier sine transform. We let the 
initial temperature be u(x, 0) = f(x) and impose the boundary condition 11(0, t) = O. Then from the heat equation 
and (9b) in Sec. 11.8, since frO) = £1(0, 0) = 0, we obtain 

This is a first-order ODE aUs/ill + C
2

1l.
2us = O. Its solution is 

From the initial condition u(x. OJ = f(x) we have us("', 0) = IS<w) = C(w). Hence 

"s(w, t) = is(w)e -dlw
2
t. 

Taking the inverse Fourier sine transform and ,ubstituting 

Is(w) = IT {"'"f(P) sin lI'p dp 
~-; 0 
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on the right. we obtain the solution formula 

(20) 2 L=L"" c
2
w

2
t u(x. t) ~ - f(p) sin 1\'1' e - sin lH dp dll". 

7T 0 0 

Figure 297 shows (20) with c = I for f(x) = I if 0 ~ x ~ 1 and 0 otherwise. graphed over the xt-plane for 
0;;;; x;;;; 2. 0.01 ;;;; t ~ 1.5. Note that the curves of u(x, t) for constant t resembk- those in Fig. 296 on p. 565 .• 

Fig. 297. Solution (20) in Example 4 

11-71 SOLUTION IN INTEGRAL FORM 

Using (6). obtain the solution of (I) in integral form 
satisfying the initial condition u(x. m = lex). where 

1. lex) l if Ixl < a and 0 otherwise 

2. f(x) = e-klxl (/.. > m 
3. f(x) LI( I + X2). [Use (15) in Sec. 11.7.] 

4. I(x) = (sin xl/x. [Use Prob. 4 in Sec. 11.7.] 

5. I(x) = (sin 7fx)/x. [Use Prob. 4 in Sec. 11.7.] 

6. f(x) = x if Ixl < I and 0 otherwise 

7. I(x) = Ixl if Ixl < 1 and 0 otherwise. 

8. Verify that II in Prob. 5 satisfies the initial condition. 

9. CAS PROJECT. Heat Flow. (a) Graph the basic 
Fig. 296. 

(b) In (a) apply animation to "see" the heat flow in 
terms of the dccrease of temperature. 

(c) Graph u(x, t) with c = I as a surface over the upper 
xt-half-plane. 

to. CAS PROJECT. Error Function 

(21) 
2 rX 

erfx = -- J e- w2 dw 
~ 0 

This function is imp0l1ant in applied mathematics 
and physics (probability theory and statistics. 
thermodynamics. etc.) and fits our present discussion. 
Regarding it as a typical case of a special function 
defined by an integral that cannot be evaluated as in 
elementary calculus. do the following. 

(a) Sketch or gmph the bell-shaped curve [the curve 
of the integrand in (21 )J. Show that erf x is odd. Show 
that 

I
b ~ 
e-w2 dw = 2 (erfb - erfa), 

a 

b I e-
w2 dw = .y:;;: erf b. 

-b 

(b) Obtain the Maclaurin series of erf x from that 
of the integrand. Use that series to compute a table of 
erfx for x = OCO.OI)3 (meaning x = O. O.OL 0.02, 
.... 3). 

(c) Obtain the values required in (b) by an integration 
command of your CAS. Compare accuracy. 

(d) [t can be shown that erf (x) = 1. Confirm this 
experimentally by computing erf x for large x. 
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(e) Let J(x) = 1 when x> 0 and 0 when x < O. Using 
erf(X) = 1, show that (12) then gives 

1 x 2 

u(x, t) = • I I e-Z dz 
v 7f -x/(2cVtJ 

(t> 0). 

1 IX 2 (g) Show that ¢(t) = =-- e-s /2 ds 
"27f -ex: 

569 

(1) Express the temperature (13) in tenns of the error 
function. 

Here. the integral is the definition of the "distribution 
function of the normal distribution" to be discussed in 
Sec. 24.8. 

12.7 Modeling: Membrane, 
Two-Dimensional Wave Equation 

The vibrating string in Sec. 12.2 is a basic one-dimensional vibrational problem. Equally 
important is its two-dimensional analog, namely, the motion of an elastic membrane. such 
as a drumhead, that is stretched and then fixed along its edge. Indeed. setting up the model 
will proceed almost as in Sec. 12.2. 

Physical Assumptions 

1. The mass of the membrane per unit area is constant ("homogeneous membrane"). 
The membrane is perfectly flexible and offers no resistance to bending. 

2. The membrane is stretched and then fixed along its entire boundary in the xy-plane. 
The tension per unit length T caused by stretching the membrane is the same at all 
points and in all directions and does not change during the motion. 

3. The deflection u{x. y. t) of the membrane during the motion is small compared to 
the size of the membrane, and all angles of inclination are small. 

Although these assumptions cannot be realized exactly, they hold relatively accurately for 
small transverse vibrations of a thin elastic membrane, so that we shall obtain a good 
model, for instance. of a drumhead. 

Derivation of the POE of the Model ("Two-Dimensional Wave Equation") from 
Forces. As in Sec. 12.2 the model will consist of a POE and additional conditions. The 
POE will be obtained by the same method as in Sec. 12.2, namely, by considering the 
forces acting on a small portion of the physical system, the membrane in Fig. 298 on the 
next page, as it is moving up and down. 

Since the deflections of the membrane and the angles of inclination are small. the sides 
of the portion are approximately equal to Ax and Ay. The tension T is the force per unit 
length. Hence the forces acting on the sides of the portion are approximately T Ax and 
T Ay. Since the membrane is perfectly flexible, these forces are tangent to the moving 
membrane at every instant. 

Horizontal Components of the Forces. We first consider the horizontal components 
of the forces. These components are obtained by multiplying the forces by the cosines of 
the angles of inclination. Since these angles are small, their cosines are close to I. Hence 
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Membrane) 
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Fig. 298. Vibrating membrane 

the horizontal components of the forces at opposite sides are approximately equaL 
Therefore, the motion of the particles of the membrane in a horizontal direction will be 
negligibly small. From this we conclude that we may regard the motion of the membrane 
as transversal; that is, each particle moves vertically. 

Vertical Components of the Forces. These components along the righr side and the 
left side are (Fig. 298), respectively, 

T ~y sin f3 and -T ~v sin a. 

Here a and f3 are the values of the angle of inclination (which varies slightly along the 
edges) in the middle of the edges, and the minus sign appears because the force on the 
left side is directed downward. Since the angles are small, we may replace their sines by 
their tangents. Hence the resultant of those two vertical components is 

(I) 
T ily (sin f3 - sin a) = T .ly (tan f3 - tan a) 

= T~)' [ux(x + ~X, )'1) - ux(X, )'2)] 

where subscripts x denote partial derivative~ and Yl and .\'2 are values between), and 
)' + .ly. Similarly. the resultant of the vertical components of the forces acting on the 
other two sides of the portion is 

(2) 

where Xl and X2 are values between X and x + .lx. 

Newton's Second Law Gives the POE of the Model. By Newton's second law (see 
Sec. 2.4) the sum of the forces given by (I) and (2) is equal to the mass p~A of that small 



SEC. 12.8 Rectangular Membrane. Double Fourier Series 571 

portion times the acceleration a2u/at2
; here p is the mass of the undeflected membrane 

per unit area, and .lA = Llx Lly is the area of that portion when it is undeflected. Thus 

a2u 
p Llx~)' at2 = T Lly [ux(x + .lX • .'"1) - lIx(X, )'2)] 

+ T ~.\ [lIiXI' )' + .1y) - Uy (X2, y)] 

where the derivative on the left is evaluated at some suitable point (x, Y) corresponding 
to that portion. Division by p .lx LlY gives 

a
2
u = T [lIx (X + .lx. )'1) - II"J', }'2) + lIy(x., y + ~)') - lIiX2. Y) ] . 

at2 p.lx .ly 

If we let Llx and Lly approach zero, we obtain the PDE of the model 

(3) 
p 

This PDE is called the two-dimensional wave equation. The expression in parentheses 
is the Laplacian V2 u of u (Sec. 10.8). Hence (3) can be written 

(3') 

Solutions of the wave equation (3) will be obtained and discussed in the next section. 

12.8 Rectangular Membrane. 
Double Fourier Series 

The model of the vibrating membrane for obtaining the displacement u(x, y, t) of a point 
(x, y) of the membrane from rest (u = 0) at time tis 

(1) 

(2) 

(3a) 

(3b) 

u = 0 on the boundary 

u(x, y. 0) = f(x. y) 

lit (x, y. 0) = g(x. v). 

Here (1) is the two-dimensional wave equation with c2 = TIp just derived, (2) is the 
boundary condition (membrane fixed along the boundary in the xy-plane for all times 
t ~ 0), and (3) are the initial conditions at t = O. consisting of the given initial 
displacement (initial shape) f(x, y) and the given initial velocity g(x, y), where Ut = au/at. 
We see that these conditions are quite similar to those for the string in Sec. 12.2. 
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bt------, 
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a x 

Fig. 299. Rectangular membrane 

As a first important model, let us consider the rectangular membrane R in Fig. 299, 
which is simpler than the circular drumhead to follow. Then the boundary in (2) is the 
rectangle in Fig. 299. We shall solve this problem in three steps: 

Step 1. By separating variables, setting !leX, y, t) = F(x, y)C(t) and later F(x, y) = H(x)Q(y) 
we obtain from (I) an ODE (4) for G and later from a PDE (5) for F two ODEs (6) and 
(7) for Hand Q. 

Step 2. From the solutions of those ODEs we determine solutions (13) of (1) 
("eigenfunctions" Limn) that satisfy the boundary condition (2). 

Step 3. We compose the Umn into a double series (14) solving the whole model (I), (2), (3). 

Step 1. Three ODEs From the Wave Equation (1) 
To obtain ODEs from (I), we apply two successive separations of variables. In the first 
separation we set u(x, y, t) = Flx, y)G(t). Substitution into (I) gives 

where subscript'> denote partial derivatives and dots denote derivatives with respect to t. 
To separate the variables, we divide both sides by c 2FG: 

C 1 
c2C = F (Fxx + Fyy). 

Since the left side depends only on t. whereas the right side is independent of t. both sides 
must equal a constant. By a simple investigation we see that only negative values of that 
constant will lead to solutions that satisfy (2) without being identically zero: this is similar 
to Sec. 12.3. Denoting that negative constant by - v2

, we have 

This gives two equations: for the "time function" G(t) we have the ODE 

(4) where 11. = cv. 

and for the "amplitude function" F(x. y) a PDE. called the two-dimef15iofl({/ Helmholtz3 

equation 

(5) 

3HERMANN VON HELMHOLTZ (!821-J894), German physici~t, known for his basic work in 
thermodynamics, fluid flow. and acoustics. 
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Separation of the Helmholtz equation is achieved if we set F(x, y) = H(x)Q(y). By 
substitution of this into (5) we obtain 

To separate the variables, we divide both sides by HQ, finding 

Both sides must equal a constant, by the usual argument. This constant must be negative, 
say, -k2

, because only negative values will lead to solutions that satisfy (2) without being 
identically zero. Thus 

This yields two ODEs for Hand Q, namely, 

(6) 

and 

(7) 

Step 2. Satisfying the Boundary Condition 
General solutions of (6) and (7) are 

H(x) = A cos kx + B sin kx and Q(y) = C cospy + D sinpy 

with constant A. B. C, D. From II = FG and (2) it follows that F = HQ must be zero on 
the boundary, that is, on the edges x = 0, x = a, Y = 0, Y = b; see Fig. 299. This gives 
the conditions 

H(O) = 0, H(a) = 0, Q(O) = 0, Q(b) = O. 

Hence H(O) = A = 0 and then H(n) = B sin ka = O. Here we must take B *' 0 since 
otherwise H(x) == 0 and F(x, y) == O. Hence sin ka = 0 or ka = 11177, that is, 

11177 
k= 

a 
(m integer). 
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In precisely the same fashion we conclude that C = 0 and p must be restricted to the 
values p = n7Tlb where n is an integer. We thus obtain the solutions H = Hm, Q = Qm 
where 

I717TX 
Hm(x) = sin -­

a 
and 

117TY 

Qn(Y) = sin -:- ' 
171 = 1.2 .... , 

11 = 1,2, .... 

As in the case of the vibrating string, it is not necessary to consider 111, n = - I, - 2, ... 
since the corresponding solutions are essentially the same as for positive m and n, except 
for a factor - I. Hence the functions 

(8) 
• 11l7TX . 117TY 

F mn(x, y) = Hm(x)Qn(Y) = Sill -- Sill -b- , 
a 

III = 1,2, ... , 

11 = I, 2, ... , 

are solutions of the Helmholtz equation (5) that are zero on the boundary of our membrane. 

Eigenfunctions and Eigenvalues. Having taken care of (5), we tum to (4). Since 
p2 = 1J2 - k2 in (7) and A = CIJ in (4). we have 

Hence to k = l717Tla and p = l17Tlb there corresponds the value 

III = 1,2, ... , 
(9) 

Il = 1,2, ... , 

in the ODE (4). A corresponding general solution of (4) is 

It follows that the functions 111Ttn(.\:' y. t) = F mn(x. y)Gmn(tt written out 

(10) 
*. . 1117TX . Il7TY 

umn(x, y, t) = (Brnn cos Amnt + Bmn SIn Amnt) SIn -- SIn --
a b 

with Amn according to (9), are solutions of the wave equation (I) that are zero on 
the boundary of the rectangular membrane in Fig. 299. These functions are called the 
eigenfunctions or characteristic jilllctiol1S. and the numbers Amn are called the 
eigenvalues or characteristic values of the vibrating membrane. The frequency of Umn is 
AmnI27T. 

Discussion of Eigenfunctions. It is very interesting that, depending on a and b, several 
functions Fm11 may correspond to the same eigenvalue. Physically this means that there 
may exist vibrations having the same frequency but entirely different nodal lines (curves 
of points on the membrane that do not move). Let us illustrate this with the following 
example. 
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E X AMP L E 1 Eigenvalues and Eigenfunctions of the Square Membrane 

Consider the square membrane with a = b = I. From (9) we obtain its eigenvalues 

(II) 
~ 1""""22 Autn = C7fV Ill'" + n"-. 

Hence Amn = An",' but for 111 * 11 the correspouding functions 

F mn = sin II/1n sin 117T)' and Fum = sin /I'lTT sin 1117T)' 

are certainly different. For example. to A12 = A2l = C'lT\' '5 there correspond the two functions 

F12 = sin 'lTX sin 2'lTV and F2l = sin 2'lTX sin 'lTy. 

Hence the corresponding solutions 

and 

have the nodal lines J = ~ and x = ~. respectively (see Fig. 300). Taking Bl2 = 1 and B~2 = 8;1 = O~ we 
obtain 

(12) 

which represents another vibration corresponding to the eigenValue C7TVs. The nodal line of this function is the 
solution of the equation 

F12 + B21F2l = sin 'lTX sin 2'lTY + B21 sin 2'lTX sin 'IT)" = 0 

or, since sin 2a = 2 sin a cos a, 

(13) sin 1T.r sin 'IT.\' (cos 'lTY + B21 cos 'lTx) = O. 

This solution depends on the value of B2l (see Fig. 301). 
From \ I I) we see that even more than two functions may correspond to the same numerical value of Amn. 

For example, the four functions F1S• FS1, F 47• and F74 correspond to the value 

because 

This happens because 65 can be expressed as the sum of two squares of positive integers in several ways. 
According to a theorem by Gauss, this is the case for every sum of two squares among whose prime factors 
there are at least two different ones of the form 411 + I where II is a positive integer. In our case we have 
65 = 5·13 = (4 + 1)(12 + I). • 

DOC] 
'Tln 
W U [JI 

I I 
I I 

Fig. 300. Nodal lines of the solutions 
Un. Un. U 21• U 22• un. U 31 in the case of 

the square membrane 

B21 =-10 

,-__ ..L:.._----, B21 =-1 

B2l = -0.5 

B21 =0 

B2l = 0.5 

"--------' B21 = 1 

Fig. 301. Nodal lines 
of the solution (12) for 

some values of B21 
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Step 3. Solution of the Model (1), (2), (3). 
Double Fourier Series 
So far we have solutions (10) satisfying (I) and (2) only. To obtain the solution that also 
satisfies (3), we proceed as in Sec. 12.3. We consider the double series 

x x 

u(x, y, t) = L L umn~x, y, t) 
m=ln=l 

(14) 
x x '" 11l17X 1l17" 

= 2: L (Bmn cos Amnt + B;nn sin Amnt) sin -- sin --' 
m=ln=l a b 

(without discussing convergence and uniqueness). From (14) and (3a), setting t = 0, we 
have 

(15) 
00 x 1Il17X 1117" 

u(x, y, 0) = L L Bmn sin -- sin -b' = f(x, y). 
m=ln=l a 

Suppose that f(x. y) can be represented by (15). (Sufficient for this is the continuity of 
f, afli)x, BflBy, a2 ftr)xBy in R.) Then (15) is called the double Fourier series of f(x, y) 

Its coefficients can be determined as follows. Setting 

(16) 
:>0 • 1l17y 

KmCY) = L Bmn sm b 
n=l 

we can write (15) in the form 

17l17X 
f(x, y) = 2: Knb) sin -- . 

a 
7n=1 

For fixed y this is the Fourier sine series of f(x, y), considered as a function of x. From 
(4) in Sec. 11.3 we see that the coefficients of this expansion are 

(17) 
2 la m17X 

KmC\') = - f(x, y) sin -- dx. 
a 0 a 

Furthermore, (16) is the Fourier sine series of Km(Y), and from (4) in Sec. 11.3 it follows 
that the coefficients are 

2 lb 1117,,' 
B = - K (,,) sin --' d". mn b 0 m. b' 

From this and (17) we obtain the generalized Euler formula 

(18) 
4 Ib1a 11117X 1117\' 

Bmn = -b f(x, y) sin -- sin --' dx dy 
a 0 0 a b 

17l = 1, 2, ... 

n = 1,2, .,. 
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for the Fourier coefficients of f(x, y) in the double Fourier series (15). 
The Bmn in (14) are now determined in terms of f(x, y). To determine the B;;m, we 

differentiate (14) termwise with respect to t; using (3b), we obtain 

au I 00 ex; * . IIl7TX n7TY 
= :L :L BmnAmn Sin -- sin -b' = g(x, y). 

at t=O m=l n=l a 

Suppose that g(x. y) can be developed in this double Fourier series. Then. proceeding as 
before. we find that the coefficients are 

(19) 
4 JbJa m7TX n7TV 

B,~n = --- g(x, y) sin -- sin --- dx d,' 
abAmn 0 0 a b . 

111 = 1, 2, ... 

n = 1, 2, .... 

Result. If f and g ill (3) are such that u can be represented by (14), then (14) with 
coefficients (18) and (19) is the solution of the model (1), (2). (3). 

E X AMP L E 2 Vibration of a Rectangular Membrane 

Find the vibrations of a rectangular membrane of sides a = 4 ft and b = 2 ft (Fig. 302) if the tension is 
12.5 Ib/ft. the dem,ity is 2.5 slugs/fr (as for light rubber). the initial velocity is O. ami the initial displacement is 

(20) 

y 

2 1--------. 
R 

4 x 

Membrane Initial displacement 

Fig. 302. Example 2 

Solution. c2 = TIp = 12.512.5 = 5 [ft2/sec21. Also. B~tn = 0 from (19). From (18) and (2m. 

2 4 4 J J 2 2 m7fX 117fl' Bmn = -- 0.1(4x - x )(2y - y ) sin -- sin --- dx dy 
4'2 0 0 4 2 

4 2 

I J In7Tr J 2 117TY 
20 (4x - x 2

) sin -4- dr (2l' - y ) sin 2 dy. 
o 0 

Two integrations by parts give for the first integral on the right 

(m odd) 

and for the second integral 

(11 odd). 

For even m or 11 we get O. Together with the factor 1120 we thus have B.rnn = 0 if 111 or 11 is even and 

256· 32 
Bmn = 33 6 

20m Il 7f 
(m and Il both odd) 
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From this. (9), and (14) we obtain the answer 

_ nl7TX _ n7Ty 
SlIl-- SIn--

4 2 

( 

Vs1TVs 1TX 1Tl' J Vs1TV37 1TX 31TY 
(21) = 0.426050 cos 4 t sin 4 ~in 2 + 27- cos 4 I sin 4 SIn -2-

1 Vs1Tv'13 31TX 1Ty I Vs1TV45 3m 31Tl' ) 
+ 27 cos 4 f sin 4 sin 2 + 729 cos 4 1 sin 4 sin ~ + . .. . 

To discuss this solution, we note that the first term i~ very similar to the initial shape of the membrane. has no 
nodal lines, and is by far the dominating term because the coefficients of the next terms are much smaller. The 
second term has two horizontal nodal lines ly = 2/3, 4/3), the third term two vertical ones lx = 4/3, 8/3), the 
fourth term two horizontal and two vertical ones, and so on. • 

1. (Frequency) How does the frequency of the 
eigenfunctions of the rectangular membrane change if 
(a) we double the tension, (b) we take a membrane of 
half the mass of the original one, (c) we double the 
sides of the membrane? (Give reason.) 

SQUARE MEMBRANE 

2. Determine and sketch the nodal lines of the 
eigenfunctions of the square membrane for m = I, 2, 
3, 4 and n = I, 2, 3, 4. 

If-~ Double Fourier Series. Represent f(x, y) by a 
series (15), where 0 < x < I. 0 < Y < I. 

3. f(x, y) = \ 

4. f(x, y) = x 

5. f(x, y) = y 

6. f(x, y) = x + y 

7. f(x, y) = xy 

8. f(x, y) = xy(1 - x)(l - y) 

9. CAS PROJECT. Double Fourier Series. (a) Wlite a 
program that gives and graphs partial sums of (\5). 
Apply it to Probs. 4 and 5. Do the graphs show that 
those partial sums satisfy the boundary condition (3a)? 
Explain Why. Why is the convergence rapid? 

(b) Do the tasks in (a) for Prob. 3. Graph a portion, 
say, 0 < x < ~, 0 < Y < ~, of several partial sums on 
common axes, so that you can see how they differ. (See 
Fig. 303.) 

(c) Do the tasks in (b) for functions of your choice. 

Fig. 303. Partial sums 52•2 and 510.10 

in CAS Project 9b 

10. CAS EXPERIMENT. Quadruples of F mn- Write a 
program that gives you four numerically equal "mn in 
Example I, so that four different Fmn correspond to 
it. Sketch the nodal lines of F 18, F 81 , F 47 , F74 in 
Example I and similarly for further F mn that you will 
find. 

111-131 Deflection. Find the deflection u(x, y, t) of the 
square membrane of side 7r and c2 = 1 if the initial velocity 
is 0 and the initial deflection is 

11. k sin 2x sin 5y 

12. 0.1 sin x siny 

13. O.lxy( 7r - x)( 7r - y) 

RECTANGULAR MEMBRANE 

14. VerifY the discussion of the terms of (21) in Example 2. 

15. Repeat the task of Prob. 2 when a = 4 and b = 1. 
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16. Verify the calculation of Bmn in Example 2 by 
integration by parts. 

17. Find eigenvalues of the rectangular membrane of sides 
a = 2 and b = I to which there correspond two or 
more different (independent) eigenfunctions. 

18. (Minimum property) Show that among all rectangular 
membranes of the same area A = ab and the same c 
the square membrane is that for which Un [see (10)] 
has the lowest frequency. 

119-221 Double Fourier Series. Represent f(x, y) 

(0 < x < a, 0 < Y < b) by a double Fourier series (15). 

19. f(x, y) = k 

20. f(x, y) = 0.25x)" 

21. f(x, y) = xy(a 2 - x 2 )(b 2 - y2) 

22. j(x. y) = xy(a - x)(b - y) 

23. (Deflection) Find the deflection of the membrane of 
sides a and b with c2 = I for the initial deflection 

f . 3'7TX . 4'7TY d" . I I . 0 (x, y) = sm -- sm -- an mltla ve oClty . 
a b 

24. Repeat the task in Prob. 23 with c2 = 1, for f(x, y) as 
in Prob. 22 and initial velocity O. 

25. (Forced vibrations) Show that forced vibrations of a 
membrane are modeled by the PDE Utt = C

2 V 2
U + PIp, 

where P(x, y, t) is the external force per unit area acting 
perpendicular to the xy-plane. 

12.9 Laplacian in Polar Coordinates. 
Circular Membrane. 
Fourier-Bessel Series 

In boundary value problems for PDEs it is a general principle to use coordinates in which 
the fonTIula for the boundary is as simple as possible. Since we want to discuss circular 
membranes (drumheads), we first transform the Laplacian in the wave equation (1), 
Sec. 12.8, 

(1) 

(subscripts denoting partial derivatives) into polar coordinates 

v e = arctan -'-- . 
x 

Hence x = r cos e, y = r sin e. By the chain rule (Sec. 9.6) we obtain 

Differentiating once more with respect to x and using the product rule and then again the 
chain rule gives 

(2) 

Also, by differentiation of rand (J we find 

x x 
rx = -v"~=+=y=2 r 

e = -----;:-
x 1 + (Y/X)2 

y 
r2 . 
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Differentiating these two formulas again, we obtain 

r = xx 
r 

e = -\" (-~) r = 2xy 
xx - 1'3 x 1'4· 

We substitute all these expressions into (2). Assuming continuity of the first and second 
partial derivatives, we have UrfJ = lie,., and by simplifying, 

(3) 

In a similar fashion it follows that 

(4) 

By adding (3) and (4) we see that the Laplacian of II in polar coordinates is 

(5) 

Circular Membrane 
Circular membranes occur in drums, pumps, microphones, telephones, and so on. This 
accounts for their great importance in engineering. Whenever a circular membrane is plane 
and its material is elastic, but offers no resistance to bending (this excludes thin metallic 
membranes!), its vibrations are modeled by the two-dimensional wave equation in polar 
coordinates obtained from (l) with y 2u given by (5), that is, 

(6) 
p 

Y We shall consider a membrane of radius R (Fig. 304) and determine solutions u(r. t) 

that are radially symmetric. (Solutions also depending on the angle e will be discussed in 
the problem set.) Then um] = 0 in (6) and the model of the problem (the analog of (1). 

R x (2), (3) in Sec. 12.8) is 

Fig. 304. Circular 
membrane 

(7) 

(8) 

(9a) 

(9b) 

u(R, t) = 0 for all t ~ 0 

u(r, 0) = fer) 

Here (8) means that the membrane is fixed along the boundary circle l' = R. The initial 
deflection fer) and the initial velocity g(r) depend only on 1', not on e, so that we can 
expect radially symmetric solutions u(r, t). 
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Step 1. Two ODEs From the Wave Equation (7). 
Bessel's Equation 

581 

Using the method of separation of variables, we first determine solutions u( r, t) = W(r) GCt). 
(We write W, not F because W depends on r, whereas F, used before, depended on x.) 
Substituting u = WG and its derivatives into (7) and dividing the result by c 2 WG, we get 

-- = - W"+ - W' G 1 ( 1) 
c2G W r 

where dots denote derivatives with respect to t and primes denote derivatives with respect 
to r. The expressions on both sides must equal a constant. This constant must be negative, 
say, -k2

, in order to obtain solutions that satisfy the boundary condition without being 
identically zero. Thus, 

This gives the two linear ODEs 

(10) where A = ck 

and 

(11) w"+ 
r 

We can reduce (11) to Bessel's equation (Sec. 5.5) if we set s = kr. Then IIr = kls and, 
retaining the notation W for simplicity, we obtain by the chain rule 

W'= 
dW 

dr 

dW ds 

ds dr 

dW 
=-k 

ds 
and " d

2
W 2 W =-2-k. 

ds 

By substituting this into (11) and omitting the common factor k2 we have 

d 2 W 1 dW 
(12) + - + W= O. 

ds 2 
S ds 

This is Bessel's equation (I), Sec. 5.5, with parameter v = o. 

Step 2. Satisfying the Boundary Condition (8) 
Solutions of (12) are the Bessel functions 10 and Yo of the first and second kind (see 
Secs. 5.5, 5.6). But Yo becomes infinite at 0, so that we cannot use it because the deflection 
of the membrane must always remain finite. This leaves us with 

(13) W(r) = 10(5) = lo(kr) (5 = kr). 
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On the boundary r = R we get W(R) = 10(kR) = 0 from (8) (because G == 0 would imply 
u == 0). We can satisfy this condition because 10 has (infinitely many) positive zeros, 
S = 0'1' 0'2, ••• (see Fig. 305), with numerical values 

0'1 = 2.4048, 0'2 = 5.5201, 0'3 = 8.6537, 0'4 = 11.7915, 0'5 = 14.9309 

and so on. (For further values, consult your CAS or Ref. [GRI] in App. l.) These zeros 
are slightly inegularly spaced. as we see. Equation (13) now implies 

(14) kR = am thus 111 = I, 2, .... 

Hence the functions 

(15) m = 1,2,'" 

are solutions of (I 1) that are zero on the boundary circle r = R. 

Eigenfunctions and Eigenvalues. For Wm in (15), a corresponding general solution of 
(10) with A = Am = ckm = camlR is 

Hence the functions 

with III = 1,2, ... are solutions of the wave equation (7) satisfying the boundary condition 
(8). These are the eigenfunctions of our problem. The corresponding eigenvalues are Am. 

The vibration of the membrane conesponding to Urn is called the 111th normal mode; 
it has the frequency Am l27r cycles per unit time. Since the zeros of the Bessel function 10 
are not regularly spaced on the axis (in contrast to the zeros of the sine functions appearing 
in the case of the vibrating string), the sound of a drum is entirely different from that of 
a violin. The fonTIs of the normal modes can easily be obtained from Fig. 305 and are 
shown in Fig. 306. For 111 = I, all the points of the membrane move up (or down) at the 
same time. For 111 = 2, the situation is as follows. The function W2(r) = 10 (a2r1R) is zero 
for a2r1R = 0'1' thus r = a1R1a2' The circle r = alR1cx2 is, therefore, nodal line, and 
when at some instant the central part of the membrane moves up, the outer part 
(r > a l Rl(2 ) moves down. and conversely. The solution um(r. t) has 111 - I nodal lines, 
which are circles (Fig. 306). 

) 
/ \ 5 ~ 10 

~'~ __ ~~ __ ~~ __ ~~ __ ~ __ ~ __ -L~ __ ~'~~~ __ __ 

-04 -03 01 ----/ 02 03 04 s 

-10 

Fig. 305. Bessel function Jo(5) 
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m=3 

Fig. 306. Normal modes of the circular membrane in the case of vibrations 
mdependent of the angle 

Step 3. Solution of the Entire Problem 

583 

To obtain a solution lI(r, t) that also satisfies the initial conditions (9), we may proceed 
as in the case of the string. That is. we consider the series 

(17) u(r, t) = ~1 W"lr)Gm(t) = ~1 (Am cos Am! + Bm sin A",I) 10 ( ~n 1') 

(leaving aside the problems of convergence and uniqueness). Setting! = 0 and using (9a). 
we obtain 

(18) 

Thus for the series (17) to satisfy the condition (9a), the constants Am must be the 
coefficients of the Fourier-Bessel series (18) that represents fer) in terms of 10 (O'm rlR); 
that is [see (10) in Sec. 5.8 with 11 = O. O'O,rn = am, and x = 1'1, 

(19) 2 JR (am) Am = 2 2 rf(r)10 - r dr 
R II (O'Ul) 0 R 

(111 = 1, 2, .. '). 

Differentiability of fer) in the interval 0 ~ r ~ R is sufficient for the existence of the 
development (18); see Ref. [Al3]. The coefficients Em in (17) can be determined from 
(9b) in a similar fashion. Numeric values of Am and Em may be obtained from a CAS or 
by a numeric integration method. using tables of 10 and 11 , However, numeric integration 
can sometimes be avoided, as the following example shows. 
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E X AMP L E 1 Vibrations of a Circular Membrane 

Find the vibrations of a circular drumhead of radius I ft and density 2 slugs/ft2 if the tension is 8 Iblft, the initial 
velocity is O. and the initial displacement is 

f(,.) = I - r2 [ftl. 

Solutioll. c2 = TIp = 8/2 = 4 [ft2/sec21. Also Bm = 0, since the initial velocity is O. From (19) and Example 
3 in Sec. 5.8, since R = I, we obtain 

4J2(am ) 

a",21r 2(a",) 

8 

where the last equality follows from (24c). Sec. 5.5, with v = I, that b. 

2 2 
J2{am ) = - h(crm ) - JO(u,n) = - J1(am )· 

Urn am 

Table 9.5 on p. 409 of [GRI] gives lYm dnd J~(a",). From this we get h(am) = -J~(a",) by (24b), Sec. 5.5. 
with v = 0, and compute the coefficients Am: 

171 am. 11(0'",) 12(0CyJ Am 

2.40483 0.51915 0.43176 1.10801 

2 5.52008 -0.34026 -0.12328 -0.l3978 

3 8.65373 0.27145 0.06274 0.04548 

4 11.79153 -0.23246 -0.03943 -0.02099 

5 14.93092 0.20655 0.02767 0.01164 

6 18.07106 -0.18773 -0.02078 -0.00722 

7 2l.21164 0.17327 0.01634 0.00484 

8 24.35247 -0.16170 -0.0l328 -0.00343 

9 27.49348 0.15218 0.01107 0.00253 

10 30.63461 -0.14417 -0.00941 -0.00193 

Thus 
fer) = 1.108Jo(2.4048,.) - 0.140Jo(5.520Ir) + 0.045Jo(!!.6537r) - .... 

We see that the coefficients decrease relatively slowly. The sum of the explicitly given coefficients in the table 
is 0.99915. The sum of all the coefficients should be I. (Why?) Hence by the Leibniz test in App. A3.3 the 
partial sum of those terms gives about three correct decimals of the amplitude (fr). 

Since 

from (17) we tl1U~ obtain the solution (with,. measured in feet and t in seconds) 

lI{r. t) = 1.1 08Jo(2.4048r) cos 4.8097 t - 0.140J0<5.5201 r) cos 11.0402t + 0.045JO<8.6537r) (;O~ 17.3075t - .... 

In Fig. 306, m = I gives an idea of the motion of the tlrst term of our series, 111 = 2 of the second term, and 
111 = 3 of the third term, so that we can "see" our result about as well as for a violin string in Sec. 12.3. • 
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========= -. SET 3:£2:--

1. Why did we use polar coordinates in this section? 

2. Work out the details of the calculation leading to the 
Laplacian in polar coordinates. 

3. If l/ is independent of e, then (5) reduces to 
y 2 u = II'T + uTlr. Derive this directly from the 
Laplacian in Cartesian coordinates. 

1 il 
4. An alternative form of (5) is v2u = -

r ill' 
iJ211 

( 
iJU) r-
ilr 

+ ae2 . Derive this from (5). 
r2 

5. (Radial solution) Show that the only solution of 

y 2u = 0 depending only on r = V.~ + i is 
u = a In r + b with constant a and b. 

6. TEAM PROJECT. Series for Dirichlet and 
Nemnann Problems 

(a) Show that lin = 1'71 cos lie. "n = rn sin ne, II = 0, 
I, ... , are solutions of Laplace's equation -V2u = 0 
with ,211 given by (5). (What would Un be in Cartesian 
coordinates'? Experiment with small II.) 

(b) Dirichlet problem (See Sec. 12.5) Assuming that 
term wise differentiation is permissible. show that a 
solution of the Laplace equation in the disk r < R 
satisfying the boundary condition u(R, e) = I(e) 
(f given) is 

x [ (r)n u(r, B> = 00 + ~l an Ii cos lie 

(20) 

( r)n ] + bn R sin nO 

where (In' bn are the Fourier coefficients of f (see 
Sec. 11.I). 

(c) Dirichlet problem Solve the Dirichlet problem 
using (20) if R = I and the boundary values are 
u(O) = -100 volts if -7r < 0 < O. u(O) = 100 volts 
if 0 < e < 7r. (Sketch this disk, indicate the boundary 
values.) 

(d) Neumann problem Show that the solution of the 
Neumann problem y211 = 0 if r < R, llN(R, e) = f(B) 

(where LIN = iJ"/iJN is the directional de11vative in the 
direction of the outer normal) is 

u(r, 0) = Ao + L rn(An cos IlO + Bn sin lie) 
n~1 

with arbitrary Ao and 

I TI" 

--n-_--cl f f(A) cos nA de, 
7rIlR -TI" 

I " 
Bn = n-l f fee) sin lie de. 

7rIlR _ .. 

(e) Compatibility condition Show that (9), Sec. 10.4, 
impo~es on f(O) in (d) the "compatibility condition" 

(f) Neumann problem Solve y 2u = 0 in the annulus 
I < r < 3 if liTO, 0) = sin 0, U,(3, e) = o. 

17-121 ELECTROSTATIC POTENTIAL. 
STEADY-STATE HEAT PROBLEMS 

The electrostatic potential satisfies Laplace's equation 
'V2 11 = 0 in any region free of charges. Also the heat 
equation lit = C

2
,211 (Sec. 12.5) reduces to Laplace's equation 

if the temperature u is tinIe-independent ("steady-state 
case"). Using (20), find the potential (equivalently: the 
steady-state temperature) in the disk r < I if the boundary 
values are (sketch them, to see what is going on). 

7. u(l. 01 = 40 cos3 0 

8. u( I, e) 800 sin3 0 

9. 1I(l, 0) 

10. u( I, e) 

11. u(l, 0) 

12. lI( I. 0) 

I IO if -!7r < e < ~7r and 0 otherwise 

o if -!7r < e < ~7r and 0 otherwise 

I 0 I if - 7r < 0 < 7r 

0 2 if - 7r < 0 < 7r 

13. CAS EXPERIMENT. Equipotential Lines. Guess 
what the equipotential lines tI(r, e) = const in Probs. 
9 and 11 may look like. Then graph some of them, 
using partial sums of the series. 

14. (Semidisk) Find the electrostatic potential in the 
semidisk r < I, 0 < e < 7r which equals I IO O( 7r - B> 
on the semicircle I' = I and 0 on the segment 
-I<x<l. 

15. (Semidisk) Find the steady-state temperature in a 
semicircular thin plate r < a, 0 < e < 7r with the 
semicircle I' = a kept at constant temperature 110 and 
the segment -(l < X < a at O. 

16. (Illvariance) Show that y 2 u is invariant under 
translations x* = x + (l, y* = Y + b and under rotations 
x* = x cos a - y sin a, y* = x sin a + y cos a. 
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CIRCULAR MEMBRANE 

17. (Frequency) What happens to the frequency of an 
eigenfunction of a dfilm if you double the tension? 

18. (Size of a drum) A small dfilm should have a higher 
fundamental frequency than a large one, tension and 
density being the same. How does this follow from our 
formulas? 

19. (Tension) Find a formula for the tension required to 
produce a desired fundamental frequency f I of a 
drum. 

20. CAS PROJECT. Normal Modes. (a) Graph the 
nOimal modes 114' 115' 116 as in Fig. 306. 

(b) Write a program for calculating the Am's in 
Example 1 and extend the table to III = 15. Verify 
numerically that am = (Ill - ~) 7T and compute the 
error for 111 = 1, . . . , 10. 

(c) Graph the initial deflection fer) in Example 1 as 
well as the fIrst three partial sums of the series. 
Comment on accuracy. 

(d) Compute the radii of the nodal lines of U2' U3' 114 

when R = I. How do these values compare to those of 
the nodes of the vibrating string of length I? Can you 
establish any empirical laws by experimentation with 
further 11m? 

21. (Nodal lines) Is it possible that for fixed L" and R two 
or more II", [see (16)] with ditlerent nodal lines 
correspond to the same eigenvalue? (Give a reason.) 

22. Why is Al + A2 + ... = 1 in Example I? Compute 
the first few partial sums until you get 3-digit accuracy. 
What does this problem mean in the field of music? 

23. (Nonzero initial velocity) Show that for (17) to satisfy 
(9b) we must have 

(21) 
R 

X f rg(r)Jo(a1ll rlR) dr. 
o 

VIBRATIONS OF A CIRCULAR MEMBRANE 
DEPENDING ON BOTH rAND (J 

24. (Separations) Show that substitution of II = F(r, (})G(t) 
into the wave equation (6), that is, 

gives an ODE and a PDE 

0, where A = ck, 

(24) 
r 

Show that the PDE can now be separated by 
substituting F = W(r)Q(O), giving 

(25) 

25. (Periodicity) Show that Q(8) must be periodic with 
period 27T and. therefore. 11 = 0, 1, 2 •••. in (25) and 
(26). Show that this yields the solutions Qn = cos 110, 
Qn * = sin nO, Wn = In(kr), 11 = 0, 1, .... 

26. (Boundary condition) Show that the boundary 
condition 

(27) u(R. O. t) = 0 

leads to k = kmn = amnlR, where s = a mn is the mth 
positive zero of In(s). 

27. (Solutions depending on both rand 8) Sho\\ that 
solutions of (22) satisfying (27) are (see Fig. 307) 

(28) 

CD 
Fig. 307. Nodal lines of some of the solutions (28) 

28. (Initial condition) Show that II t {r, O. 0) = 0 gives 
Bmn = 0, Bi;,n = 0 in (28). 

29. Show that II~,O = 0 and UmO is identical with (16) in 
the current section. 

30. (Semicircular membrane) Show that Ull represents 
the fundamental mode of a semicircular membrane and 
fInd the corresponding frequency when c2 = I and 
R = 1. 
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12.1 0 Laplace's Equation in Cylindrical and 
Spherical Coordinates. Potential 

Laplace's equation 

(1) 

is one of the most important PDEs in physics and its engineering applications. Here, 
x, y, z are Cartesian coordinates in space (Fig. 165 in Sec. 9.1), /lxx = a2u/ax2, etc. The 
expression V2u is called the Laplacian of u. The theory of the solutions of (1) is called 
potential theory. Solutions of (I) that have COlltillUOUS second partial derivatives are 
known as harmonic functions. 

Laplace's equation occurs mainly in gravitation, electrostatics (see Theorem 3, 
Sec. 9.7). steady-state heat flow (Sec. 12.5), and fluid flow (to be discussed In 

Chap. 18.4). 
Recall from Sec. 9.7 that the gravitational potential u(x. y.::) at a point (x. y. z) resulting 

from a single mass located at a point (X. Y. Z) is 

c c 
(2) u(x, y, z) = (r> 0) 

V (x - X)2 + (y - y)2 + (z - Z)2 r 

and u satisfies (1). Similarly, if mass is distributed in a region T in space with density 
p(X, Y, Z), its potential at a point (x, y, ::) not occupied by mass is 

(3) III p(X, Y, Z) 
u(x, y, z) = k dX dY dZ. 

T r 

It satisfies (I) because V2(\/r) = 0 (Sec. 9.7) and p is not a function of x, y, ::. 
Practical problems involving Laplace's equation are boundary value problems in a 

region T in space with boundary surface S. Such a problem is called (see also Sec. 12.5 
for the two-dimensional case): 

(I) First boundary value problem or Dirichlet problem if u is prescribed on S. 
(II) Second boundary value problem or Neumann problem if the normal 

derivative Un = au/an is prescribed on S. 
(III) Third or mixed boundary value problem or Robin problem if II is prescribed 

on a portion of S and lin on the remaining portion of S. 

Laplacian in Cylindrical Coordinates 
The first step in solving a boundary value problem is generally the introduction of 
coordinates in which the boundary surface S has a simple representation. Cylindrical 
symmetry (a cylinder as a region T) calls for cylindrical coordinates r, e, :: related to x, 
y, z by 

(4) x = r cos e, y = r sin e, z = z (Fig. 308, p. 588). 
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Fig. 308. Cylindrical coordinates Fig. 309. Spherical coordinates 

For these we get y 2
U immediately by adding U zz to (5) in Sec. 12.9; thus, 

(5) 

Laplacian in Spherical Coordinates 
Spherical symmetry (a ball as region T bounded by a sphere S) requires spherical 
coordinates r, e, lb related to x, y, z by 

(6) x = r cos e sin efy. y = r sin e sin efy. z = r cos efy (Fig. 309). 

Using the chain rule (as in Sec. 12.9), we obtain V-2u in spherical coordinates 

(7) 

We leave the details as an exercise. It is sometimes practical to write (7) in the form 

I 2 I [a (2 au) I a (. au ) 1 a
2
u ] (7) Yu=- - r - +--- smefy- +--- . 

r2 ar ar sin efy aefy defy sin2 efy ae2 

Remark on Notation. Equation (6) is used in calculus and extends the familiar notation 
for polar coordinates. Unfortunately, some books use e and efy interchanged, an extension 
of the notation x = r cos efy, y = r sin efy for polar coordinates (used in some European 
countries). 

Boundary Value Problem in Spherical Coordinates 
We shall solve the following Dirichlet problem in spherical coordinates: 

(8) 

(9) 

(10) 

[ a (2 au) I a (. au ) ] - r - + -- - SIll efy - = o. 
ar ar sin efy aefy aefy 

u(R, efy) = J(efy) 

lim u(r, efy) = O. 
'1"-->00 
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The PDE (8) follows from (7) by assuming that the solution £I will not depend on e because 
the Dirichlet condition (9) is independent of e. This may be an electrostatic potential (or 
a temperature) J(ep) at which the sphere S: r = R is kept. Condition (10) means that the 
potential at infinity will be zero. 

Separating Variables by substituting u(r. ep) = C(r)H(ep) into (8). MUltiplying (8) by 
r2, making the substitution and then dividing by CH, we obtain 

I d (2 dC) I d (. dH ) G dr r dr = - H sin lb dlb sm ep dlb . 

By the usual argument both sides must be equal to a constant k. Thus we get the two 
ODEs 

(11) 

and 

(12) 

I d 

C dr (
r2 dC) = k 

dr 
or 

~ (Sin cb dH) + kH = O. 
sin ep dep dep 

The solutions of (11) will take a simple form if we set k = n(n + 1). Then, writing 
C' = dC/dr, etc., we obtain 

(13) r2C" + 2rC' - n(1l + l) C = O. 

This is an Euler-Cauchy equation. From Sec. 2.5 we know that it has solutions C = r a 

Substituting this and dropping the common factor r a gives 

a(a - I) + 2a - n(n + 1) = O. The roots are a = nand -n - I 

Hence solutions are 

(14) and C~(r) = 

We now solve (12). Setting cos ep = w, we have sin2 lb = 1 - w 2 and 

d 

dep 

d dw d 
= -sin ep -. 

dl!' dep dl\' 

Consequently, (12) with k = n(n + 1) takes the form 

(15) d [ dH] -d (I - w 2
) - + n(n + l)H = O. 

II' dw 
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This is Legendre's equation (see Sec. 5.3), written out 

(15') 
d2H dH 

(1 - w2 ) -- - 2w - + n(n + 1)H = O. 
d1l'2 dw 

For integer II = 0, 1, ... the Legendre polynomials 

11 = 0,1, "., 

are solutions of Legendre's equation (15). We thus obtain the following two sequences 
of solution II = GH of Laplace's equation (8), with constant An and Bn, where 
n = 0, 1, ... , 

(16) (a) (b) 

Use of Fourier-Legendre Series 

Interior Problem: Potential Within the Sphere S. We consider a series of terms from 
(16a), 

(17) lI(r. ¢) = :L Anrnp n(cos ¢) (r ~ R). 
n~O 

Since S is given by r = R, for (17) to satisfy the Dirichlet condition (9) on the sphere S, 
we must have 

(18) 
n=O 

that is, (18) must be the Fourier-Legendre series of f(¢). From (7) in Sec. 5.8 we get 
the coefficients 

(19*) 
211 + I II -

AnRn = f(w)Pn(w) dw 
2 -1 

where few) denotes f(¢) as a function of IV = cos ¢. Since dll· = -sin ¢ d¢, and the 
limits of integration -I and I correspond to ¢ = 7T" and ¢ = 0, respectively, we also 
obtain 

(19) 
2n + I 7r 

An = n 1 f(¢)Pn(cos ¢) sin ¢ d¢, 
lR 0 

11 = 0,1, ... 

If f(¢) and j'(¢) are piecewise continuous on the interval 0 ~ ¢ ~ 7T", then the series (17) 
with coefficients (19) solves our problem for points inside the sphere because it can be 
shown that under these continuity assumptions the series (17) with coefficients (19) gives 
the derivatives occuning in (8) by termwise differentiation, thus justifying our derivation. 
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Exterior Problem: Potential Outside the Sphere S. Outside the sphere we cannot use 
the functions Un in (16a) because they do not satisfy (to). But we can use the ll~ in (16b). 
which do satisfy (to) (but could not be used inside S; why?). Proceeding as before leads 
to the solution of the exterior problem 

(20) (r ~ R) 

satisfying (8), (9), (10), with coefficients 

(21) 
2n + 1 IT. 

En = Rn
+

1 f(c/J)Pn(cos c/J) sin c/J dd>. 
2 0 

The next example illustrates all this for a sphere of radius I consisting of two hemispheres 
that are separated by a small strip of insulating material along the equator, so that these 
hemispheres can be kept at different potentials OW V and 0 V). 

E X AMP L E 1 Spherical Capacitor 

Find the potential inside and outside a spherical capacitor consisting of two metallic hemispheres of radius I ft 
separated by a small slit for reasons of insulation, if the upper hemisphere is kept at 110 V J.nd the lower i~ 
grounded (Fig. 310). 

Solutioll. The given boundary condition is (recall Fig. 309) 

if 0""-<1><71"/2 

{

IIO 
f(<I» = 0 

if 71"/2 < <I> ""- 71". 

Since R = I, we thus obtain from (19) 

.,,/2 
2n + I I An = --- . 110 Pn(COS <1» sin <I> d<l> 

2 0 

1 

2n + I I --2- . 110 Pn(w) dw 
o 

where U' = cos <1>. Hence Pn(COS <1» sin <1> d<1> = -p .. (w) tin'. we integrate from I to O. and we finally get rid 
of the minus by integrating from 0 to I. You can evaluate this integral by your CAS or continue by using (II) 

in Sec. 5.3, obtaining 

M (2n - 2m)! II 
An = 55(211 + 1) L (-I)'" "n 1 1 2)1 ".n-2m dll" 

m~O ~ m.(n - m).(n - II!. 0 

where M = nl2 for even nand M = (II - 1)/2 for odd n. The integral equals lI(n - 2m + I). Thus 

110 volts 

x y 

Fig. 310. Spherical capacitor in Example 1 
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(22) 
55(211 + 1) ~ m (211 - 2m)! 

An = 21Z L.J (-I) m!(11 - m)!(11 - 2m + I)! 
·m=O 

Taking 11 = 0, we get Ao = 55 tsince O! = 1). For 11 = I, 2, 3,' .. we get 

165 2! 165 

2 0!1!2! 2 ' 

275 ( 4! 2! ) 
A2 = -- ~ 0, 

4 0!2!3! 1!1!l ! 

385 (6! 4!) 385 
A3 = -- ---

8 0!3!4! 1!2!2! 8 
etc. 

Hence the potential (17) inside the sphere is (since Po = 1) 

(23) u(r, </J) = 55 + 
165 385 3 
2 r P1tcos </J) - -8- r P3(cos </J) + ... (Fig. 311) 

with PI, P3, ... given by (Il '), Sec. 5.3. Since R = I, we see from (19) and (2l) in this section that 
En = An' and (20) thus gives the potential outside the sphere 

55 165 385 
(24) u(r, </J) = + -2- PI (cos </J) - -4- P3(cos </J) + .... 

r 2r 8r 

Partial sums of these series can now be used for computing approximate values of the inner and outer potential. 
Also, it is interesting to see that far away from the sphere the potential is approximately that of a point charge, 
namely, 55/r. (Compare with Theorem 3 in Sec. 9.7.) • 

y 

o IT 

2 
Jr 

Fig. 311. Partial sums of the first 4, 6, and 11 
nonzero terms of (23) for r = R = 1 

E X AMP L E 2 Simpler Cases. Help with Problems 

The technicalities occurring in cases like that of Example I can often be avoided. For instance, find the potential 
inside the sphere S: r = R = I when S is kept at the potential j(</J) = cos 2</J. (Can you see the potential on S? 
What is it at the North Pole? The equator? The South Pole? I 

Solution. w = cos </J, cos 2</J = 2 cos2 </J - 1 = 2w2 - I = ~P2(W) - ~ = ~(~w2 - ~) - ~. Hence the 
potential in the interior of the sphere is 

• 



SEC. 12.10 Laplace's Equation in Cylindrical and Spherical Coordinates. Potential 593 

. . .... .... .-.-. -_ ..... -........... ---. .. 
1. Derive (7) from V2

11 in Cartesian coordinates. (Show 
the details.) 

2. Find the surfaces on which the functions l/I' lI2. l/3 are 
zero. 

3. Sketch the functions P,,(cos c/J) for II = O. I. 2 (see 
(11') in Sec. 5.3). 

4. Sketch the functions P3(COS c/J) and P 4 (cos c/J). 

5. Verify that lin and lin * in (16) are solutions of (8). 

!:!il POTENTIALS DEPENDING ONLY ON r 

6. (Dimension 3) Show that the only solution of the 
Laplace equation depending only on 

r = Vx 2 + y2 + :2 is II = elr + k with constant c 
and k. 

7. (Dimension 3) Verify that 1I = dr. 

r = Vx 2 + y2 + :2. satisfies Laplace's equation in 
spherical coordinates. 

8. (Dirichlet problem). Find the electrostatic potential 
between two concentric spheres of radii rl = 10 cm 
and r2 = 20 em kept at potentials VI = 260 V amI 
V 2 = 110 V. respectively. 

9. (Dimension 2. logarithmic potential) Show that the 
onl) solution of the two-dimensional Laplace equation 

depending only on r = V>;;2 + .1'2 is l/ = c In r + k 

with constant c and k. 

10. (Logarithmic potential) Find the electrostatic potential 
between two coaxial cylinders of radii r l = 10 cm and 
r2 = 20 cm kept at potentials VI = 260 V and 
V2 = 110 V. respectively. Compare with Prob. 8. 
Comment. 

11. (Heat problem) If the sUiface of the ball 
r2 = x 2 + y2 + :2 ~ R2 is kept at temperature 
zero and the initial temperature in the ball is f( 1'). 

show that the temperature u(r, t) in the ball is a solution 
of lit = c 2 (u r l" + 2u,./r) satisfying the conditions 
u(R.1) = O. u(r, 0) = fer). Show that setting v = ru 
gives v t = C2VJT' vCR. t) = O. vCr. 0) = rf(r). Include 
the condition v(O. t) = 0 (which holds because II must 
be bounded at r = 0). and solve the resulting problem 
by separating variables. 

12. (Two-dimensional potential problems) Show that the 
functions x 2 - )'2. XY. xl(x2 + y2). eX cos y. r~ sin r. 
cos x cosh y. I~ (x2 ' + y2). and arctan <.,:Ix) satisfy 
Laplace's equation "xx + l/yy = O. (Two-dimensional 
potential problems are best solved by complex 
allalysis, as we shall see in Chap. 18.) 

113-171 BOUNDARY VALUE PROBLEMS IN 
SPHERICAL COORDINATES r, 8, c/J 

Find the potential in the interior of the sphere S: r = R = I 
if this interior is free of charges and the potential on Sis: 

13. f(tb) = 100 

14. f(c/J) = cos c/J 

15. f( cp) = cos 3c/J 

16. f( c/J) sin2 c/J 

17. f( c/J) 35 cos 4c/J + 20 cos 2tb + 9 

18. Show that in Prob. 13 the potential exterior to the 
sphere is the same as that of a point charge at the origin. 
Is this physically plausible? 

19. Sketch the intersection of the equipotential surfaces in 
Prob. 14 with the xo-plane. 

20. Find the potential exterior to the sphere in Example 2 
of the text and in Prob. 15. 

21. What is the temperature in a ball of radius I and of 
homogeneous material if its lower boundary 
hemisphere is kept at O°C and its upper at 100°C? 

22. (Renection in a sphere) Let r, 0, c/J be spherical 
coordinates. If u(r. O. c/J) satisfies V2

11 = O. show that 
vCr. O. c/J) = lI( Ilr. O. c/J)lr satisfies V 2 v = O. What 
does this give for (l6)? 

23. (Renection in a circle) Let r, 0 be polar coordinates. 
If lI(r. 0) satisfies V2

l/ = 0, show that the function 
v(r. 0) = lI(llr, 0) satisfies V2 v = O. What are 
l/ = r cos 0 and v in terms of x and y? Answer the 
same question for u = r2 cos 0 sin 0 and v. 

24. TEAM PROJECT. Transmission Line and Related 
PDEs. Consider a long cable or telephone wire 
(Fig. 312) that is imperfectly insulated. so that leaks 
occur along the entire length of the cable. The source 
S of the current i(x, t) in the cable is at x = 0, the 
receiving end T at x = I. The current flows from S to 
T. through the load, and returns to the ground. Let the 
constants R, L. C. and G denote the resistance, 
inductance, capacitance to ground. and conductance to 
ground. respectively. of the cable per unit length. 

x=O x=l 

Fig. 312. Transmission line 
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(a) Show that ("first transmission line equation") 

au ai 
- - =Ri + L-ax at 

where u(x, t) is the potential in the cable. Hint: Apply 
Kirchhoff's voltage law to a small portion of the cable 
between x and x + !n (difference of the potentials at 
x and x + !n = resistive drop + inductive drop). 

(b) Show that for the cable in (a) ("second 
transmission line equation"), 

ai au 
- - = Gu + C-ax at 

Hint: Use Kirchhoff's current law (difference of the 
currents at x and x + LlX = loss due to leakage to 

ground + capacitive loss). 

(c) Second-order PDEs. Show that elimination of 
i or u from the transmission line equations leads to 

uxx = LCutt + (RC + GLhl t + RGu. 

ixx = LCitt + (RC + GL)it + RGi. 

(d) Telegraph equations. For a submarine cable, 
G is negligible and the frequencies are low. Show that 
this leads to the so-called submarine cable equations 
or telegraph equations 

Find the potential in a submarine cable with ends 
(x = 0, x = l) grounded and initial voltage distribution 
Va = const. 

(e) High-frequency line equations. Show that in the 
case of alternating currents of high frequencies the 
equations in (c) can be approximated by the so-called 
high-frequency line equations 

Solve the first of them, assuming that the initial 
potential is 

Vo sin (7fx/l). 

and ut(x. 0) = 0 and u = 0 at the ends x = 0 and 
x = I for all t. 

12.11 Solution of PDEs by Laplace Transforms 
Readers familiar with Chap. 6 may wonder whether Laplace transforms can also be used 
for solving partial differential equations. The answer is yes, particularly if one of the 
independent variables ranges over the positive axis. The steps to obtain a solution are 
similar to those in Chap. 6. For a PDE in two variables they are as follows. 

1. Take the Laplace transform with respect to one of the two variables, usually t. This 
gives an ODE for the transform of the unknown function. This is so since the 
derivatives of this function with respect to the other variable slip into the transformed 

equation. The latter also incorporates the given boundary and initial conditions. 

2. Solving that ODE, obtain the transform of the unknown function. 

3. Taking the inverse transform, obtain the solution of the given problem. 

If the coefficients of the given equation do not depend on t, the use of Laplace transforms 
will simplify the problem. 

We explain the method in terms of a typical example. 

E X AMP LEI Semi-Infinite String 

Find the displacement It'(X. t) of an elastic string subject to the following conditions. (We write IV since we need 
u to denote the unit step function.) 

(i) The suing is initially at rest on the x-axis from x = 0 to 00 ("semi-infiniTe string"). 

(ii) For t > 0 the left end of the string (x = 0) is moved in a given fashion, namely, according to a single 
sine wave 

{
sin t 

w(O, t) = f(t) = 0 
if 0 ~ t ~ 27T 

(Fig. 313). 
otherwise 



SEC. 12.11 Solution of PDEs by Laplace Transforms 595 

Fig. 313. Motion of the left end of the string in Example 1 as a function of time t 

(iii) Furthermore, lim w(x, t) = 0 for t ~ O. 
X_Xl 

Of course there is no infinite string, but our model describes a long string or rope (of negligible weight) with 
its right end fixed far out on the x-axis. 

Solutioll. We have to solve the wave equation (Sec. 12.2) 

(1) 
p 

for positive x and t, subject to the "boundary conditions" 

(2) w(O. t) = JU). lim w(x. t) = 0 (t ~ 0) 
X_!]C 

with J as given above. and the initial conditions 

(3) (a) "'(x, 0) = 0, (b) wt(x, 0) = o. 

We take the Laplace transform with respect to t. By (2) in Sec. 6.2. 

The expression - sw(x. 0) - "'t(x, 0) drops out because of (3). On the right we assume that we may interchange 
integration and differentiation. Then 

;£ {a2

: J = ('°e_ st iJ
2

:, dt = iJ
2

2 
(Oe-stw(x, t) dt = iJ

2

2 
;£(w(x, t)}, 

[Ix Jo ax ax Jo [I~ 

Writing W(x, s) = ;£{w(x, tl}, we thus obtain 

a2 w 
s2W = c2 -2-' 

ax 
thus 

Since this equation contains only a derivative with respect to x, it may be regarded as an ordillary differelltial 
equatioll for W(x, s) considered as a function of x. A general solution is 

(4) W(x, s) = A(s)esx1c + B(s)e-sxlc. 

From (2) we obtain. writing F(s) = ;£{.f(tl}. 

W(Q. s) = ~'(1I'W. t)) = ;£{J(t») = Frs). 

Assnming that we can interchange integration and taking the limit, we have 

00 00 

lim W(.\", s) = lim ( e -stw(x, t) tit = ( e -st lim w(x. t) tit = O. 
x-x x.-oo Jo Jo x_oo 

This implies A(s) = 0 in (4) because c > O. so that for every fixed positive s the function eSx!c increases as x 

increases. Note that we may assume s > 0 since a Laplace transfonn generally exists for all s greater than some 
fixed k (Sec. 6.2). Hence we have 

W(O, s) = B(s) = F(s), 
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so that (4) becomes 

Wtx, s) = F(s)e -sxle. 

From the second shifting theorem (Sec. 6.3) with a = xle we obtain the inverse transform 

(5) W(x, t) = + -~) + -~) (Fig. 314) 

that is, 

W(x, t) = sin (t - ~) if 
x x 
- < t < - + 27T 
c C 

or ct> x > (t - 27T)C 

and zero otherwise. This is a single sine wave traveling to the right with speed c. Note that a point x remains 
at rest until t = x/c, the time needed to reach that x if one stalts at t = 0 (start of the motion of the left end) 
and travels with speed c The result agrees with our physical intuition. Since we proceeded formally, we must 
verify that (5) satisfies the given conditions. We leave this to the student. • 

(t=O)LI ____________________ __ 

x 

(t=2ro~~L-~I----------------
~ 2nc x 

(t = 4n) LI ___ ~-~LC---"'----. 
'C7 x 

(t = 6n) LI ______________ -.--_-,/-/'-

'C7 x 

Fig. 314. Traveling wave in Example 1 

This is the end of Chap. 12, in which we concentrated on the most important partial 
differential equations (PDEs) in physics and engineering. This is also the end of Part C 
on Fourier analysis and PDEs. 

We have seen that PDEs have various basic engineering applications, which make them 
the subject of many ongoing research projects. 

Numerics for PDEs follows in Secs. 21.4-21.7, which are independent of the other 
sections in Part E on numerics. 

In the next part, Part D on complex analysis, we tum to an area of a different nature 
that is also highly important to the engineer, as our examples and problems will show. 
This will include another approach to the (two-dimensional) Laplace equation and its 
applications in Chap. 18. 

1. Sketch a figure similar to Fig. 314 if c = 1 and f is 
"triangular" as in Example 1, Sec. 12.3. 

(nonterminating) sinusoidal motion of the left end 
starting at t = O? 

2. How does the speed of the wave in Example I depend 
on the tension and on the mass of the string? 

3. Verify the solution in Example 1. What traveling wave 
do we obtain in Example I in the case of a 

/4-6/ SOLVE BY LAPLACE TRANSFORMS 

aw aw 
4. - + x- = x, w(x, 0) = 1, w(O, t) = ax at 
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aw aw 
s.x- + = Xl, w(x, 0) = 0 if x ~ 0, 

6. 

ax at 
w(O, t) o if t ~ 0 

a2w a2w OW 

ax2 100- + 100- + 25w, 
ot2 at 

w(x, 0) = 0 if x ~ 0, "'t(x, 0) = 0 if t ~ 0, 
w(O, t) = sin t if t ~ 0 

7. Solve Prob. 5 by another method. 

18-101 HEAT PROBLEM 
Find the temperature w(x, t) in a semi-infinite laterally 
insulated bar extending from x = 0 along the x-axis 
to infinity, assuming that the initial temperature is 0, 
w(x, t) -> 0 as x -> 00 for every fixed 1 ~ 0, and 
w(O. t) = J(t). Proceed as follows. 

8. Set up the model and show that the Laplace transform 
leads to 

and 
W = F(s)e-'- sxte (F = .'i{f}). 

Applying the convolution theorem. show that 
t 

w(x, t) = 2C~;; L J(t - T)T-3/2e-x2t(4c?T) dT. 

597 

9. Let w(O, t) = J(t) = u(t) (Sec. 6.3). Denote the 
con-esponding w. W, and F by wo, Wo, and Fo. Show 
that then in Prob. 8. 

t 

wo(x, t) = __ l:_ I T-3/2e-x2t(4c?T) dT 
2cV; 0 

l-erf(~~) 
with the en-or function erf as defined in Problem 
Set 12.6. 

10. (Duhamel's formula4
) Show that in Prob. 9, 

and the convolution theorem gives Duhamel's formula 

It awo 
w(x, 1) = J(t - T) -- dT. 

o OT 

:;:. .... _= .. =. S T ION SAN D PRO B L EMS 

1. Write down the three probably most important PDEs 
from memory and state their main applications. 

2. What is the method of separating variables for PDEs? 
Give an example from memory. 

3. What is the superposition principle? Give a typical 
application. 

4. What role did Fourier series play in this chapter? Fourier 
integrals? 

S. What are the eigenfunctions and their frequencies of the 
vibrating string? Of the heat equation? 

6. What additional conditions did we consider for the wave 
equation? For the heat equation? 

7. Name and explain the three kinds of boundary conditions. 

8. What do you know about types of PDEs? About 
transformation to normal forms? 

9. What is d' Alembert's method? To what PDE does it 
apply? 

10. When and why did we use polar coordinates? Spherical 
coordinates? 

11. When and why did Legendre's equation occur in this 
chapter? Bessel's equation? 

12. What are the eigenfunctions of the circular membrane? 
How do their frequencies differ in principle from those 
of the eigenfunctions of the vibrating string? 

13. Explain mathematically (not physically) why we got 
exponential functions in separating the heat equation, 
but not for the wave equation. 

14. What is the en-or function? Why did it occur and where? 

15. Explain the idea of using Laplace transform methods 
for PDEs. Give an example from memory. 

16. For what k and 111 are X4 + kx2y2 + y4 and 
sin nIX sinh y solutions of Laplace's equation? 

17. Verify that (x2 - y2)/(x2 + y2)2 satisfies Laplace's 
equation. 

1tH-21 I Solve for II = lI(X, y): 

18. U yy + 1611 = 0 

19. "xx + U x - 2u = 0 

20. u xy + u y + x + y + ] = 0 

21. U yy + u y = O. u(x, 0) = J(x), lIyCX, 0) = g(x) 

22. Find all solution u(x, y) = F(x)G(y) of Laplace's 
equation in two variables. 

4JEAN-MARlE CONSTANT DUHAMEL (1797-1872), French mathematician. 
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li3~261 Find and sketch or graph (as in Fig. 285 
in Sec. 12.3) the deflection u(x, t) of a vibrating string of 
length 7r, extending from x = 0 to x = 7r, and 
e 2 = TIp = I. starting with velocity 0 and deflection 

23 . .f(x) = sin x - 4 sin 2x 

24 • .f(x) = !7r - Ix - !7r1 

25 . .f(x) = sin3 x 

26 • .f(x) = x( 7r - x) 

127-30 I Find the temperature distribution in a laterally 
insulated thin copper bar (e2 = Klpu = 1.158 cm2/sec), 
50 cm long and of constant cross section with endpoints at 
x = 0 and 50 kept at O°C and initial temperature 

27 • .f(x) = sin (7rxI50) 

28 • .f(x) = x(50 - x) 

29 . .f(x) = 25 - 125 - xl 
30 • .f(x) = 4 sin3 (7rxIlO) 

131-331 Find the temperature IItx, t) in a laterally 
insulated bar of length 7r. extending from x = 0 to x = 7r. 

with e2 = I for adiabatic boundary condition (see Problem 
Set 12.5) and initial temperature 

31. 100 cos 4x 

32. 3x2 

33. 7r - 21x - ~7r1 

34. Using partial sums, graph lI(x, t) in Prob. 33 for several 
constant f on conunon axes. Do these graphs agree with 
your physical intuition? 

35. Let .f(x, y) = utx, y, 0) be the initial temperature in a 
thin square plate of side 7r with edges kept at onc and 
faces perfectly insulated. Separating variables. obtain 
from U t = C

2 V 2
U the solution 

x 

u(x, y, t) = L L Bmn sin mx sin II}" e-C2
(m2+n2)t 

m=l n=l 

where 
4 Tr 7C 

Bmn = ----:2 f f .f(x, y) sin mx sin ny dx dy. 
7r 0 0 

36. Find the temperature in Prob. 35 if 
.f(x, y) = x( 7r - x)y( 7r - y). 

137-=,~ Transform to normal form and solve (showing 
the details!) 

37. u xy = Uxx 

38. lIxx + 411xy + 4uyy = 0 
39. Uxx + 411yy = 0 

40. 2uxx + SUxy + 2uyy = 0 

41. Uxx + 2l1xy + Uyy = 0 

42. U yy + u xy - 2uxx = 0 

L43-4~1 Show that the following membranes of area 
with e 2 = I have the frequencies of the fundamental mode 
as given (4-decimal values). Compare. 

43. Circle: a/(2V:;;:) = 0.6784 

44. Square: Iv'l = 0.7071 

45. Rectangle (sides 1: 2): ~ = 0.7906 

46. Semicircle: 3.832/vs.;;: = 0.7644 

47. Quadrant of circle: aI2/(4v'";) = 0.7244 
(a12 = S.13562 = first positive zero of J2 ) 

1 ,!8-50 1 Find the electrostatic potential in the following 
(charge-free) regions: 

48. Between two concentric spheres of radii ro and 1"1 kept 
at the potentials Uo and u I , respectively. 

49. Between two coaxial circular cylinders of radii 1"0 and 
1"1 kept at the potential 110 and lI., respectively. 
(Compare with Prob. 48.) 

50. In the interior of a sphere of radius 1 kept at the 
potential .f(c/J) = cos 3c/J + 3 cos c/J (referred to our 
usual spherical coordinates). 

Partial Differential Equations (PDEs) 

Whereas ODEs (Chaps. 1-6) serve as models of problems involving only one 
independent variable, problems involving (H'O or more independent variables (space 
variables or time t and one or several space variables) lead to PDEs. This accounts for 
the enonnous importance of PDEs to the engineer and physicist. Most important are: 

(1) Utt = ('2U= 

(2) Utt = c 2(uxx + Uyy) 

One-dimensional wave equation (Sees. 12.2-12.4) 

Two-dimensional wave equation (Sees. 12.7-12.9) 
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One-dimensional heat equation (Secs. 12.5. 12.6) 

(4) V 2 u = u"x + Uyy = 0 Two-dimensional Laplace equation (Secs. 12.5, 12.9) 

(5) V 2u = Uxx + uYV + Uzz = 0 Three-dimensional Laplace equation 
(Sec. 12.10). 

Equations (I) and (2) are hyperbolic. (3) is parabolic. (4) and (5) are elliptic. 
In practice, one is interested in obtaining the solution of such an equation in a 

given region satisfying given additional conditions, such as initial conditions 
(conditions at time t = 0) or boundary conditions (prescribed values of the solution 
u or some of its derivatives on the boundary surface S, or boundary curve C, of the 
region) or both. For (1) and (2) one prescribes two initial conditions (initial 
displacement and initial velocity). For (3) one prescribes the initial temperature 
distribution. For (4) and (5) one prescribes a boundary condition and calls the 
resulting problem a (see Sec. 12.5) 

Dirichlet problem if u is prescribed on S. 
Neumann problem if lin = all/an is prescribed on S, 
Mixed problem if u is prescribed on one part of S and lin on the other. 

A general method for solving such problems is the method of separating 
variables or product method, in which one assumes solutions in the form of 
products of functions each depending on one variable only. Thus equation (1) is 
solved by setting lItx, t) = F(x)G(t); see Sec. 12.3; similarly for (3) (see Sec. 12.5). 
Substitution into the given equation yields ordinary differential equations for F and 
G, and from these one gets infinitely many solutions F = Fn and G = Gn such that 
the corresponding functions 

are solutions of the PDE satisfying the given boundary conditions. These are the 
eigenfunctions of the problem. and the corresponding eigenvalues determine the 
frequency of the vibration (or the rapidity of the decrease of temperature in the case 
of the heat equation. etc.). To satisfy also the initial condition (or conditions). one 
must consider infinite series of the Un. whose coefficients tum oul to be the Fourier 
coefficients of the functions f and g representing the given initial conditions 
(Secs. 12.3, 12.5). Hence Fourier series (and Fourier integrals) are of basic 
importance here (Secs. 12.3. 12.5, 12.6, 12.8). 

Steady-state problems are problems in which the solution does not depend on 
time I. For these, the heat equation lit = C

2 V 2
U becomes the Laplace equation. 

Before solving an initial or boundary value problem. one often transforms the 
PDE into coordinates in which the boundary of the region considered is given by 
simple formulas. Thus in polar coordinates given by x = r cos e. y = r sin e. the 
Laplacian becomes (Sec. 12.9) 

(6) 
1 

y 2
U = li,T + - U, . + ""2 u fi /!; r r 

for spherical coordinates see Sec. 12.10. If one now separates the variables. one gets 
Bessel's equation from (2) and (6) (vibrating circular membrane, Sec. 12.9) and 
Legendre's equation from (5) transf01med into spherical coordinates (Sec. 12.10). 
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Complex 
Analysis 

C HAP T E R 13 Complex Numbers and Functions 

C HAP T E R 14 Complex Integration 

C HAP T E R 1 5 Power Series, Taylor Series 

C HAP T E R 1 6 Laurent Series. Residue Integration 

C HAP T E R 17 Conformal Mapping 

C HAP T E R 18 Complex Analysis and Potential Theory 

Many engineering problems can be modeled, investigated, and solved by functions of a 
complex variable. For simpler problems, some acquaintance with complex numbers will 
suffice. This is true for simpler electric circuits and mechanical vibrating systems. For 
more complicated problems in heat conduction, fluid flow, electrostatics, etc., one needs 
the theory of complex analytic functions, briefly called complex analysis. The importance 
of the latter in applied mathematics has three main reasons: 

1. Most importantly, the real and imaginary parts of an analytic function satisfy 
Laplace's equation in two real variables. Hence two-dimensional potential problems can 
be solved by methods for analytic functions, and this is often simpler than working in 
real. 

2. Many complicated real and complex integrals in applications can be evaluated by 
the elegant methods of complex integration. 

3. Most functions in engineering mathematics are analytic functions, and their study 
as functions of a complex variable leads to a deeper understanding of their properties and 
to interrelations in complex that have no analog in real calculus. 
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CHAPTER 1 3 

Complex Numbers 
and Functions 

Complex numbers and their geometric representation in the complex plane are discussed 
in Secs. 13.1 and 13.2. Complex analysis i:-. concerned with complex analytic functions 
as defined in Sec. 13.3. Checking for analyticity is done by the Cauchy-Riemann 
equations (Sec. 13.4). These equations are of basic importance, also because of their 
relation to Laplace's equation. 

The remaining sections of the chapter are devoted to elementary complex functions 
(exponential, trigonometric, hyperbolic, and logarithmic functions). These generalize the 
familiar real functions of calculus. Their detailed knowledge is an absolute necessity in 
practical work. just as that of their real counterparts is in calculus. 

Prerequisite: Elementary calculus. 
References and Answers to Problems: App. I Part D. App. 2. 

13.1 Complex Numbers. Complex Plane 
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Equations without real solutions, such as x2 = -1 or x 2 
- lOx + 40 = O. were observed 

early in history and led to the introduction of complex numbers.1 By definition, a complex 
number z is an ordered pair (x, y) of real numbers x and y, written 

z = (x, y). 

x is called the real part and y the imaginary part of z. written 

x = Re;::, y = [m Z. 

By definition, two complex numbers are equal if and only if their real parts are equal 
and their imaginary parts are equal. 

(0, 1) is called the imaginary unit and is denoted by i, 

(1) i = (0, 1). 

IFirst to use complex numbers for this purpose was the Italian mathematician GIROLAMO CARDANO 
(1501-1576). who found the formula for solving cubic equations. The term "complex number" was introduced 
by CARL FRlEDRICH GAUSS (see the footnote in Sec. 5.4). who also paved the way for a general u~e of 
complex numbers. 



SEC. 13.1 Complex Numbers. Complex Plane 

Addition, Multiplication. Notation z = x + iy 
Addition of two complex numbers ::1 = (Xl> Yl) and ::2 = (.\"2, ."2) is defined by 

(2) 

Multiplication is defined by 

(3) 

In particular, these two definitions imply that 

and 
(Xl> 0) + (X2' 0) = (Xl + X2, 0) 

(Xl> 0)(X2' 0) = (XlX2, 0) 
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as for real numbers Xl> X2. Hence the complex numbers "extend" the real numbers We 
can thus write 

(x,O) = x. Similarly, (0, y) = iy 

because by (1) and the definition of multiplication we have 

iy = (0, l)y = (0, l)(y, 0) = (0· y - 1·0, 0·0 + 1 . y) = (0, y). 

Together we have by addition (x, y) = (x, 0) + (0, y) = x + iy: 
In practice, complex numbers z = (x, y) are written 

(4) z = x + iy 

or z = x + .vi, e.g., 17 + 4i (instead of i4). 
Electrical engineers often write j instead if i because they need i for the cunent. 
If .r = 0, then z = iy and is called pure imaginary. Also, (1) and (3) give 

(5) 

because by the definition of multiplication, i2 = ii = (0, 1)(0, 1) = (-1, 0) = -l. 
For addition the standard notation (4) gives [see (2)] 

For multiplication the standard notation gives the following very simple recipe. Multiply 
each term by each other term and use i2 = -1 when it occurs [see (3)]: 

This agrees with (3). And it shows that x + iy is a more practical nmation for complex 
numbers than (x, y). 
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If you know vectors. you see that (2) is vector addition. whereas the multiplication (3) 

has no counterpart in the usual vector algebra. 

E X AMP L E 1 Real Part, Imaginary Part, Sum and Product of Complex Numbers 

LeI '::1 = 8 + 3i and '::2 = 9 ~ 2i, Then Re <:1 = 8. Im:::l = 3, Re:::2 = 9, [m:::2 = ~2 and 

:::1 + :::2 = (8 + 3i) + (9 ~ 2i) = 17 + i. 

:::1:::2 = (8 + 3i)(9 ~ 2;) = 72 + 6 + ;(~16 + 27) = 78 + IIi. 

Subtraction, Division 

• 

Subtraction and division are defined as the inverse operations of addition and 
multiplication, respectively. Thus the difference z = ZI - ':2 is the complex number.:: for 
which ZI = .: + ':2' Hence by (2), 

(6) 

The quotient z = z1/22 (Z2 *- 0) is the complex number z for which':l = 2Z2' If we equate 
the real and the imaginary parts on both sides of this equation, setting 2 = x + iy, we 
obtain Xl = X2X - Y2Y')'I = Y2X + X2)" The solution is 

(7*) z= 
21 = x + iy. x= 

X l X2 + )'1."2 

X2
2 + ."22 

y= 
X2Yl - Xl."2 

X2
2 + )'22 

The practical rule used to get this is by multiplying numerator and denominator of zl /z2 

by X2 - iY2 and simplifiying: 

(7) 
Xl + iYl 

X2 + iY2 

(Xl + i)'l) (X2 - i."2) 

(X2 + i)'2) (x2 - i."2) 

E X AMP L E 2 Difference and Quotient of Complex Numbers 

XIX2 + ."1)'2 + i X2Yl - Xl .\'2 

X2
2 + ."22 X2

2 + yl 

For :::1 = 8 + 3; and :2 = 9 ~ 2; we get:1 ~ :2 = (8 + 3;) ~ (9 ~ 2i) = ~ 1 + 5; and 

ZI 8 + 3i 

9 ~ 2; 
(8 + 3i)(9 + 2i) 

(9 ~ 2i)(9 + 2;) 

Check the division by multiplication to get 8 + 3i. 

66 + 43i 

81 + 4 

66 43 
- + -i. 
85 85 

• 
Complex numbers satisfy the same commutative. associative. and distributive laws as real 
numbers (see the problem set). 

Complex Plane 
This was algebra. Now comes geometry: the geometrical representation of complex 
numbers as points in the plane. This is of great practical importance. The idea is quite 
simple and natural. We choose two perpendicular coordinate axes, the horizontal x-axis. 
called the real axis, and the vertical y-axis, called the imaginary axis. On both axes we 
choose the same unit of length (Fig. 315). This is called a Cartesian coordinate system. 
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(Imaginary 
axis) 
y 

p 
z =X +iy 

(Real 
CF---!---------x- axis) 

Fig. 315. The complex plane 

y 

5 x 

-3 ---------- 4-3i 

Fig. 316. The number 4 - 3; in 
the complex plane 
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We now plot a given complex number z = (x. y) = x + iy as the point P with coordinates 
x, y. The xy-plane in which the complex numbers are represented in this way is called the 
complex plane.2 Figure 31 t1 shows an example. 

Instead of saying "the point represented by z in the complex plane" we say briefly and 
simply "the point z in the complex plane." This will cause no misunderstandings. 

Addition and subtraction can now be visualized as illustrated in Figs. 317 and 318. 

y 

y 

I 
I 

I 
I 

I 
6---
-z2 

x 

Fig. 317. Addition of complex numbers Fig. 318. Subtraction of complex numbers 

Complex Conjugate Numbers 
The complex conjugate z of a complex number z = x + iy is defined by 

z = x - iy. 

It is obtained geometrically by reflecting the point z in the real axis. Figure 319 shows 
this for z = 5 + 2i and its conjugate Z = 5 - 2i. 

Y 

2 ~- z =x + iy = 5 + 2i 

Fig. 319. Complex conjugate numbers 

2Sometimes called the Argand diagram, atter the French mathematician JEAN ROBERT ARGAND 
(1768-1822). born in Geneva and later librarian in Paris. His paper on the complex plane appeared in 1806. 
nine years after a similar memoir by the Norwegian mathematician CASPAR WESSEL (1745-1818). a surveyor 
of the Danish Academy of Science. 
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The complex conjugate is important because it permits us to switch from complex 

to real. Indeed, by multiplication, zz = x 2 + )'2 (verify!). By addition and subtraction. 

z + Z = 2x. z - z = 2iy. We thus obtain for the real part x and the imaginary part y 
(not iy!) of::: = .\ + iy the important formulas 

I I 
(8) Re z = x = 2 (::: + Z), 1m z = y = --;;: (z - z). 

_I 

If z is real, Z = x, then Z = z by the definition of Z, and conversely. 
Working with conjugates is easy, since we have 

(9) 

E X AMP L E 3 Illustration of (8) and (9) 

Let Zl = 4 + 3i and :2 = 2 + 5i. Then by (8), 

I 3i + 3i 
1m:1 = 2i [(4 + 3i) - (4 - 3i)] = -2-i- = 3. 

Also, the multiplication formula in (9) is verified by 

(':1':2) ~ (4 + 3i)(2 + 5i) = (-7 + 26i) = -7 - 26i. 

Zl::2 = (4 - 3i)(2 - 5;) = -7 - 26i. 

===== --.•. ........ : ... -.-. to. "1-=--
1. (powersofi)Showthari2 = -I, i3 = -i, i4 = I, 

;5 = i .... and IIi = -i. Ili2 = -I. lIi3 = i ..... 

2. (Rotation) \1ultiplication by i is geometrically a 
counterclockwise rotation through rr12 (90°). Verify 
this by graphing <. and iz and the angle of rotarian for 
z = 2 + 2i, : = -I - 5i, z = 4 - 3i. 

3. (Dhision) Verify the calculation in (7). 

4. (Multiplication) If the product of two complex numbers 
is zero, show that at least one factor must be zero. 

13. (4z 1 - :2)2 

15. (Zl + z2)/(zl - Z2) 

116-]2] Let z = x + iy. Find: 

16. Im:3, (1m Z)3 

17. Re (lIZ) 

18. 1m [0 + i)8;;:2] 

19. Re (1/z2) 

• 

S. Show that: = x + iy is pure imaginary if and onJy 
if;: = -:. 

6. (Laws for conjugates) Verify (9) for Zl = 24 + 10i. 

20. (Laws of addition and multiplication) Derive the 
following laws for complex numbers from the 
corresponding laws for real numbers. 

':2 = 4 + 6i. 

17-151 COMPLEX ARITHMETIC 

Let': l = 2 + 3i and Z2 = 4 - 5i. Showing the details 
of your work. find (in the form x + iy): 

7. (5':1 + 3::zf 8. ;:1;:2 

9. Re (1/: 1
2

) 10. Re (:22), (Re 22)2 

(::1 + ':2) + ':3 = ':1 + (:::2 + ':3)' 

(Associative laws) 

(ZlZ2)Z3 = Zl(Z2Z3) 

(Distributive law) 

o + Z = Z + 0 = z, 
Z + (- z) = (- z) + Z = 0, Z' 1 z. 
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13.2 Polar Form of Complex Numbers. 
Powers and Roots 

The complex plane becomes even more useful and gives further insight into the arithmetic 
operations for complex numbers if besides the xy-coordinates we also employ the usual 
polar coordinates r. e defined by 

(1) x = r cos e, y= r sin e. 

We see that then::: = x + iy takes the so-called polar form 

(2) ::: = r(cos e + i sin 8). 

r is called the absolute value or modulus of.: and is denoted by Izl. Hence 

(3) 1::1 = r = V.~ + );2 = V2 . 

Geometrically, Izl is the distance of the point z from the origin (Fig. 320). Similarly, 
1'::1 - :::21 is the distance between Zl and 22 (Fig. 321). 

e is called the argument of z and is denoted by arg z. Thus (Fig. 320) 

(4) 
y e = arg::: = arctan .:.... 
X 

(z *" 0). 

Geometrically, e is the directed angle from the positive x-axis to OP in Fig. 320. Here. as 
in calculus, all angles are measured in radians and positive in the counterclockwise sense. 

For z = 0 this angle e is undefined. (Why?) For a given z *" 0 it is determined only 
up to integer multiples of 27r since cosine and sine are periodic with period 27r. But one 
often wants to specify a unique value of arg ::: of a given::: *" O. For this reason one defines 
the principal value Arg::: (with capital A!) of arg ::: by the double inequality 

(5) -7r < Arg z ~ 7r. 

Then we have Arg z = 0 for positive real.:: = x, which is practical, and Arg z = 7r (not 
-7r!) for negative real :::, e.g., for z = -4. The principal value (5) will be important in 
connection with roots, the complex logarithm (Sec. 13.7), and certain integrals. Obviously, 
for a given z *" 0 the other values of arg ::: are arg::: = Arg::: ± 21l7r (11 = ± I. ±2 ... '). 

Imaginary 
axis 

p . 
Y -----------. z =X + 'Y 

I 
I 
I 

06"'---'---------!~c--- :~~I 
Fig. 320. Complex plane, polar form 

of a complex number 

Y 

x 

Fig. 321. Distance between two 
points in the complex plane 
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E X AMP L E 1 Polar Form of Complex Numbers. Principal Value Arg z 

y z = I + ; (Fig. 322) has the polar form z = V2 (COS!7T + i sin !7T). Hence we obtain 

1 + i arg::: =!7T:!: 21l7T(1l = D, I." .), and Arg::: =!7T (the principal value). 

Similarly. z = 3 + 3V3i = 6 (cos ~7T + i sin ~7T). Izl = 6. and Arg::: = ~7T. • 
lfl4 

x 
CArTION! [n using (4), we must pay attention to the quadrant in which::: lies, since 
tan 6 has period 7r, so that the arguments of z and -z have the same tangent. Example: 

g. 322. Example 1 for 61 = arg (1 + i) and 62 = arg (-] - i) we have tan 61 = tan 62 = 1. 

A 

Triangle Inequality 
Inequalities such as Xl < X2 make sense for real numbers, but not in complex because 
there is 110 lIatural WllY of ordering complex 11 umbers. However, inequalities between 
absolute values (which are real!), such as IZII < 1:::21 (meaning that ZI is closer to the origin 
than Z2) are of great importance. The daily bread of the complex analyst is the triangle 
inequality 

(6) (Fig. 323) 

which we shall use quite frequently. This inequality follows by noting that the three points 
0, .(;1' and;::1 + ':2 are the vertices of a triangle (Fig. 323) with sides 1z.1, 1.:21, and 1;::1 + 221. 
and one side cannot exceed the sum of the other two sides. A formal proof is left to the 
reader (Prob. 35). (The triangle degenerates if:::l and :::2 lie on the same straight line through 
the origin.) 

Y I -,P" ~"." 
~ 

x 

Fig. 323. Triangle inequality 

By induction we obtain from (6) the generalized triangle inequality 

(6*) 17 + ~ + ... + 7 I :so; Iz I + 17 I + ... + Iz I' -1 ~2 -n - 1 -2 n , 

that is. the absolute value of a SUIIl callnot exceed the sum of the absolute vailies of The 
terms. 

.. 2 Triangle Inequality 

If:::l = I + ; and :::2 = -2 + 3;. then (sketch a figure!) 

1:::1 + :::21 = I-I + 4il = \'17 = 4.123 < \'2 + Vi] = 5.020. • 
Multiplication and Division in Polar Form 
This will give us a "geometrical"' understanding of multiplication and division. Let 

and 
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Multiplication. By (3) in Sec. 13.1 the product is at first 

The addition rules for the sine and cosine [(6) in App. A3.1] now yield 

(7) 

Taking absolute values on both sides of (7), we see that the absolute value of a product 
equals the product of the absolute values of the factors, 

(8) 

Taking arguments in (7) shows that the argument of a product equals the sum of the 
arguments of the factors, 

(9) (up to multiples of 27T). 

Division. We have ~l = (ZlIz2)z2. Hence IZ11 = I (zI 1z2)z21 = IZ11z211z21 and by division 
by 1'<:21 

(10) 

(11) 
Zl 

arg - = arg Z 1 - arg Z2 (up to multiples of 27T). 
22 

Combining (10) and (II) we also have the analog of (7), 

(12) 

To comprehend this formula. note that it is the polar form of a complex number of absolute 
value r1/r2 and argument (it - 82 . But these are the absolute value and argument of zl lz2 , 

as we can see from (10). (II), and the polar forms of Zl and Z2. 

E X AMP L E 3 Illustration of Formulas (8)-(11) 

Let Zl = -2 + 2; and::2 = 3i. Then ~IZ2 = -6 - 6i, zl fz2 = 213 + (213);. Hence (make a sketch) 

and for the argumems we obtain Arg::1 = 3m4, Arg;:2 = 7[12, 

37[ 
Arg (::1::2) = - 4 = Arg;:1 + Arg::2 - 27[, Arg (::/<:2) = ; = Arg Z1 - Arg ;:2· • 
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E X AMP L E 4 Integer Powers of z. De Moivre's Formula 

From (8) and (9) with ~1 = ~2 = Z we obtain by induction for 11 = O. 1,2 .... 

(13) Z,n = rn (COS ne + i sin I/e). 

Similarly. (l~) with::1 = I and::2 = :" gives (I3)for 11 = - I, -2 ..... For 1::1 = r = I, tormula (13) becomes 
De Moivre's formula3 

(13*) (cos e + i sin e)'" = cos I/e + i sin nfl. 

We can use this to express cos 118 and sin lI8 in terms of powers of cos 8 and sin 8. For instance, for II = 2 we 
have on the left cos2 0 + 2; cos 0 sin 0 - sin2 O. Taking the real and imaginary parts on both sides of (13"') 
with /I = 2 gives the familiar formulas 

cos 28 = cos2 0 - sin2 8, sin 20 = 2 cos 0 sin O. 

This shows that complex methods often simplify the derivation of real formulas. Try /I = 3. • 
Roots 
If ;: = w" (n = 1. 2, .. '). then to each value of w there corresponds olle value of ;:. We 
shall immediately see that, conversely, to a given z =1= 0 there correspond precisely 11 
distinct values of w. Each of these values is called an nth root of ;:, and we write 

(14) 
~nf 

W = V z. 

Hence this symbol is l1lultivalued, namely, n-va/ued. The 11 values of ~ can be obtained 
as follows. We write;: and w in polar form 

z = r(cos e + i sin tJ) and w = R(cos c/J + i sin c/J). 

Then the equation w" = z becomes. by De Moivre's formula (with c/J instead of e) 

w" = R"(cos Ilc/J + i sin 11c/J) = .: = r(cos e + i sin e). 

The absolute values on both sides must be equal: thus. R n = r. so that R = Vr , where 
~"f v r is positive real (an absolute value must be nonnegative!) and thus uniquely determined. 
Equating the arguments 11c/J and e and recalling that e is determined only up to integer 
multiples of 21T, we obtain 

e 2k1T 
11c/J = e + 2k1T, thus c/J= + 

11 n 

where k is an integer. For k = O. I, .... n - I we get 11 distinct values of w. Further 
integers of k would give values already obtained. For instance, k = n gives 2k7r1n = 271", 

3 ABRAHAM DE MOIVRE (1667-1754), French mathematician. who pioneered the use of complex numbers 
in trigonometry and also contributed to probability theory (see Sec. 24.8). 
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hence the w corresponding to k = 0, etc. Consequently, Vz, for z *- 0, has the 11 distinct 
values 

(15) 
~nl ~nl ( () + 2k7r .' () + 2k7r) v z = v r cos + 1 Sin ----

11 11 

~nl 
where k = 0, I, ... , 11 - 1. These n values lie on a circle of radius v r with center at 
the origin and constitute the vertices of a regular polygon of 11 sides. The value of Vz 
obtained by taking the principal value of arg z and k = 0 in (15) is called the principal 

~"I value of w = v .:: . 
Taking.:: = I in (15), we have Izl = r = I and Arg::: = O. Then (15) gives 

(16) 
~nr. 2br 2br 
v 1 = cos -- + i sin -- , k = 0, 1, .... n - 1. 

n n 

These 11 values are called the nth roots of unity. They lie on the circle of radius I and 
center 0, briefly called the unit circle (and used quite frequently!). Figures 324-326 show 
~3r.1 - I _1 + 1~ r;;3 .... V11 - + I +' d ~5r.l v I - , 2 - 2 V .:j I., - - • _I, an VI. 

If w denotes the value corresponding to k = I in (6). then the 11 value" of VI can be 
written as 

More generally, if WI is any nth root of an arbitrary complex number z (*- 0), then the 

II values of Vz in (15) are 

(17) 

because multiplying ~~'! by wk corresponds to increasing the argument of WI by 2k7r/n. 
Formula (17) motivates the introduction of roots of unity and shows their usefulness. 

y 

OJ 

x 

Fig. 324. Vl 

11-81 POLAR FORM 

Do these problems very carefully since polar forms will be 
needed frequently. Represent in polar form and graph in 
the complex plane as in Fig. 322 on p. 608. (Show the 
details of your work.) 

y 

OJ 

Fig. 325. ~l 

L 3 - 3i 

3. -5 

1 + 
5. 

1 - ; 

:r 

y 

OJ 

Fig. 326. "\ll 

2. 2i. -2; 

4. ~ + ~1Ti 

6. 3V2 + 2i 

-VI - (2/3); 

x 
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7. 
-6 + 5; 

3i 

2 + 3; 
8. 5 + 4i 

[9-151 PRINCIPAL ARGUMENT 

Determine the principal value of the argument. 

9. - I - i 10. - 20 + ;, - 20 - ; 

11. 4 ::':: 3; 

13. 7 ::':: 7; 

IS. (9 + 9;)3 

12. -7T2 

14. (l + i)12 

116-20 I CONVERSION TO X + iy 
Represent in the form x + iy and graph it in the complex 
plane. 

16. COS!7T + ; sin (::'::!7T) 

18. 4(COS!7T ::':: ; sin !7T) 

20. 12(cos ~7T + ; sin ~7T) 

121-251 ROOTS 

17. 3(cos 0.2 + ; sin 0.2) 

19. cos (-I) + ; sin (-I) 

Find and graph all roots in the complex plane. 

21. V-i 22. {Y] 

23. ~ 24. ~ 3 + 4; 

2S.~ 

26. TEAM PROJECT. Square Root. (a) Show that 
w = ~ has the values 

}\'1 = Vi- [cos ~ + ; sin ~ ] ' 

(b) Obtain from (8) the often more practical formula 

(19) V~ = ::,::[v'~ (1.;:1 +x) + (signy)iv'~ (izl +x)j 

where sign y = I if y ~ 0, sign y = -I if y < 0, 
and all square roots of positive numbers are taken 
with positive sign. Hint: Use (10) in App. A3.1 with 
x = 012. 

(e) Find the square roots of 4;, 16 - 30i, and 
9 + 8 v7 i by both (18) and (19) and comment on the 
work involved. 

(d) Do some further examples of your own and apply 
a method of checking your results. 

127-301 EQUATIONS 

Solve and graph all solutions, showing the details: 

27. ::2 - (8 - 5i)::; + 40 - 20; = 0 (Use (19).) 

28. ::4 + (5 - 14i)::2 - (24 + Wi) = 0 

29. 8::;2 - (36 - 6i)z + 42 - I Ii = 0 

30. Z4 + 16 = O. Then use the solutions to factor Z4 + 16 
into quadratic factors with real coefficients. 

31. CAS PROJECT. Roots of Unity and Their Graphs. 
Write a program for calculating these roots and for 
graphing them as poims on the unit circle. Apply the 
program to z n = 1 with n = 2, 3. . . . , 10. Then extend 
the program to one for arbitrary roots. using an idea 
near the end of the text, and apply the program to 
examples of your choice. 

132-351 INEQUALITIES AND AN EQUATION 

Verify or prove as indicated. 

32. (Re and 1m) Prove IRe zl ~ Izl, lIm zl ~ Izl· 

33. (parallelogram equality) Prove 

1::1 + 2212 + 1.:::1 - ::;212 = 2(h12 + IZ212). 

Explain the name. 

34. (Triangle inequality) Verify (6) for ZI = 4 + 7i. 
::2 = 5 + 1;. 

35. (Triangle inequality) Prove (6). 

13.3 Derivative. Analytic Function 
Our study of complex functions will involve point sets in the complex plane. Most 
important will be the following ones. 

Circles and Disks. Half-Planes 
The unit circle Izl = 1 (Fig. 327) has already occurred in Sec. 13.2. Figure 328 shows a 
general circle of radius p and center a. Its equation is 

Iz - al = p 
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y 

1 x 

Fig. 127. Unit circle 

y 

x 

Fig. 128. Circle in the 
complex plane 

y 

613 

a 

x 

Fig. 129. Annulus in the 
complex plane 

because it is the set of all : whose distance Iz - al from the center 1I equals p. Accordingly, 
its interior ("open circular disk") is given by Iz - al < p, its interior plus the circle itself 
("closed circular disk") by Iz - al ~ p, and its exterior by Iz - al > p. As an example, 
sketch this for a = 1 + i and P = 2, to make sure that you understand these inequalities. 

An open circular disk Iz - 1I1 < P is also called a neighborhood of a or, more precisely, 
a p-neighborhood of 1I. And 1I has infinitely many of them. one fur each value of 
P (> 0), and a is a point of each of them, by definition! 

In modem literature any set containing a p-neighborhood of a is also called a 
neighborhood of a. 

Figure 329 shows an open annulus (circular ring) PI < Iz - al < P2, which we shall 
need later. This is the set of all z whose distance Iz - al from 1I is greater than PI but less 
than P2. Similarly, the closed annulus PI ~ Iz - al ~ P2 includes the two circles. 

Half-Planes. By the (open) upper half-plane we mean the set of all points: = x + iy 
such that y > O. Similarly, the condition y < 0 defines the lower half-plane, x > 0 the 
right half-plane, and x < 0 the left half-plane. 

For Reference: Concepts on Sets in the 
Complex Plane 
To Our discussion of special sets let us add some general concepts related to sets that we 
shall need throughout Chaps. 13-18: keep in mind that you can find them here. 

By a point set in the complex plane we mean any sort of collection of finitely many 
or infinitely many points. Examples are the solutions of a quadratic equation, the points 
of a line, the points in the interior of a circle as well as the sets discussed just before. 

A set S is called open if every point of S has a neighborhood consisting entirely of 
points that belong to S. For example, the points in the interior of a circle or a square form 
an open set, and so do the points of the right half-plane Re z = x > O. 

A set S is called connected if any two of its points can be joined by a broken line of 
finitely many straight-line segments all of whose points belong to S. An open and connected 
set is called a domain. Thus an open disk and an open annulus are domains. An open 
square with a diagonal removed is not a domain since this set is not connected. (Why?) 

The complement of a set S in the complex plane is the set of all points of the complex 
plane that do 1I0t belo1lg to S. A set S is called closed if its complement is open. For 
example, the points on and inside the unit circle form a closed set ("closed unit disk") 
since its complement Izl > I is open. 

A boundary point of a set S is a point every neighborhood of which contains both 
points that belong to S and points that do not belong to S. For example, the boundary 
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points of an annulus are the points on the two bounding circles. Clearly, if a set S is open. 
then no boundary point belongs to S; if S is closed, then every boundary point belongs to 
S. The set of all boundary points of a set S is called the boundary of S. 

A region is a set consisting of a domain plus, perhaps, some or all of it'> boundary 
points. WARNING! "Domain" is the modem term for an open connected set. 
Nevertheless, some authors still call a domain a "region" and others make no distinction 
between the two terms. 

Complex Function 
Complex analysis is concerned with complex functions that are differentiable in some 
domain. Hence we should first say what we mean by a complex function and then define 
the concepts of limit and derivative in complex. This discussion will be similar to that in 
calculus. Nevertheless it needs great attention because it will show interesting basic 
differences between real and complex calculus. 

Recall from calculus that a real function f defined on a set S of real numbers (usually 
an interval) is a rule that assigns to every x in S a real number f(x), called the value of 
f at x. Now in complex, S is a set of complex numbers. And a function f defined on S is 
a rule that assigns to every.::: in S a complex number lV, called the vallie of fat.:::. We write 

w = f(.:::). 

Here z varies in S and is called a complex variable. The set S is called the domain of 
definition of f or, briefly, the domain of f. (In most cases S will be open and connected, 
thus a domain as defined just before.) 

Example: w = fez) = Z2 + 3.::: is a complex function defined for all z; that is, its domain 
S is the whole complex plane. 

The set of all values of a function f is called the range qf f. 
w is complex, and we write w = u + iv, where u and v are the real and imaginary 

parts, respectively. Now H' depends on .::: = x + iy. Hence u becomes a real function of x 
and y. and so does v. We may thus write 

w = fez) = u(x, y) + iv(x, y). 

This shows thaI a complex function f(z) is equivalent to a pair of real functions u(x, v) 
and vex, y), each depending on the two real variables x and y. 

E X AMP L E 1 Function of a Complex Variable 

Let w = 1(:) = ;;:2 + 3::. Find II and v and calculate the value of I at :: = I + 3i. 

Solutio1l. /I = Re 1(:::) = x 2 
- .\"2 + 3~ and v = 2~y + 3y. Also. 

1(1 + 3i) = (I + 3i)2 + 30 + 3i) = I - 9 + 6i + 3 + 9i = - 5 + 15i. 

This shows that 11(1. 3) = -5 and vO. 3) = 15. Check this by using the expressions for II and v. • 

E X AMP L E 2 Function of a Complex Variable 

Let w = f(:;:) = 2iz + 6z. Find u and v and the vallie of f at z = ~ + 4i. 

Solution. 1(;::) = 2i(x + iy) + 6(x - iy) gives Lt(x. y) = 6x - 2)" and vex. y) = 2.< - 6.\". Also, 

I(! + 4i) = 2i(~ + 4i) + 6(! - 4i) = i - 8 + 3 - 24i = -5 - 23;. 

Check thIS a~ III Example I. • 
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Remarks on Notation and Terminology 

1. Strictly speaking, fez) denotes the value of f at z, but it is a convenient abuse of 
language to talk about the junction fez) (instead of the junction f), thereby exhibiting the 
notation for the independent variable. 

2. We assume all functions to be sillgle-valued relatiolls, as usual: to each.: in S there 
corresponds but one value w = f(.:) (but. of course, several z. may give the same value 
tv = fez), just as in calculus). Accordingly, we shall not lise the term "multi valued 
function" (used in some books on complex analysis) for a multivalued relation. in which 
to a.: there corresponds more than one w. 

Limit, Continuity 
A function f(;:.) is said to have the limit I as ;:. approaches a point ':0, written 

(1) lim fez) = I, 
z-Z'o 

if f is defined in a neighborhood of ':0 (except perhaps at Zo itself) and if the values 
of f are "close" to I for all z. "close" to Zo; in precise terms, if for every positive real E 

we can find a positive real 0 such that for all z * ':0 in the disk Iz - 201 < 0 (Fig. 330) 
we have 

(2) If(z) - II < E; 

geometrically. if for every.::: * ':0 in that 8-disk the value of f lies in the disk (2). 

Formally, this definition is similar to that in calculus. but there is a big difference. 
Whereas in the real case, x can approach an Xo only along the real line. here, by definition. 
z may approach Zofrolll allY direction in the complex plane. This will be quite es~ential 
in what follows. 

If a limit exists, it is unique. (See Team Project 26.) 

A function fez) is said to be continuous at z = ':0 if f(.:o) is defined and 

(3) lim f(.:) = f(;:.o)· 
Z-Zo 

Note that by definition of a limit this implies that fez) is defined in some neighborhood 
of ':0' 

f(;:.) is said to be continuous in a domain if it is continuous at each point of this domain. 

y v 

,,.---- ........ , 
--.1_ , " ---- " I --"-0 , 
, f(z) I 
I E~l , 
,.....------ I 
, I 

, " U 
.... " x 

' .... _---,,. 
Fig. :no. Limit 
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Derivative 
The derivative of a complex function f at a point ':0 is written J' (~o) and is defined by 

(4) 

provided this limit exists. Then f is said to be differentiable at zoo If we write b.z = :: - ':0, 

we have z = '::0 + .1.: and (4) takes the fonn 

(4') 
fez) - f(zo) 

f' (zo) = lim 
2-20 Z - 20 

Now comes an important point. Remember that, by the definition of limit. f(.::) is defined 
in a neighborhood of Zo and z in (4') may approach Zo from any direction in the complex 
plane Hence differentiability at '::0 means that. along whatever path.:: approaches ':0' the 
quotient in (4') always approaches a certain value and all these values are equal. This is 
important and should be kept in mind. 

E X AMP L E 1 Differentiability. Derivative 

The function I(;:;) = ~2 is differentiable for all.: and has the derivative I'(.:) = 2.: because 

• 
The differentiation rules are the same as in real calculus, since their proofs are literally 
the same. Thus for any analytic functions f and g and constants c we have 

(cf)' = cJ', (f + g)' = J' + g', (fg)' = f'g + fg', (;)' = 

as well as the chain rule and the power rule (:::n)' = 11Z
n - 1 (11 integer). 

J'g - fg' 

If 

Also, if f(.::) is differentiable at zoo it is continuous at '::0' (See Team Project 26.) 

E X AMP L E 4 i not Differentiable 

It may come as a surprise that there are many complex functions that do not have a derivative at any point. For 

instance. II.:) = ;: = f - iy is such a function. To ~ee this. we write .l:: = .l" + ;.ly and obtain 

(5) 
I(~ + .l::) - I(::) 

Cl.:: 

(z + j.::) - ;: 

Cl.7 

Cl.x - iCl.y 

Cl.x + iCl.y 

If .ly = O. thi, i, + I. If j.x = O. this is - I. Thu, (5) approaches + I along path I in Fig. 331 but -I along 

path H. Hence. by definition. the limit of (5) as .l: -> 0 does not exist at any.:. • 

y 

x 

Fig. 331. Paths in (5) 
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DEFINITION 

Surprising as Example 4 may be. it merely illustrates that differentiability of a compler 
function is a rather severe requirement. 

The idea of proof (approach of z. from different directions) is basic and will be used 
again as the crucial argument in the next section. 

Analytic Functions 
Complex analysis is concerned with the theory and application of "analytic functions," 
that is. functions that are differentiable in some domain. so that we can do "calculus in 
complex." The definition is as follows. 

Analyticity 

A function f(::.) is said to be allalytic ill a domaill D if f(~) is defined and 
differentiable at all points of D. The function f(z.) is said to be analytic at a point 
Z. = Zo in D if fez) is analytic in a neighborhood of zoo 

Also, by an analytic function we mean a function that is analytic in some domain. 

Hence analyticity of fez) at :0 means that fez) has a derivative at every point in some 
neighborhood of Zo (including Zo itself since, by definition, Zo is a point of all its 
neighborhoods). This concept is motivated by the fact that it is of no practical interest if 
a function is differentiable merely at a single point ::'0 but not throughout some 
neighborhood of zoo Team Project 26 gives an example. 

A more modem term for analytic in D is bolomorphic in D. 

E X AMP L E 5 Polynomials, Rational Functions 

The nonnegative integer powers I, z, ::.2 •••• are analytic in the entire complex plane. and so are polynomials, 
that is, functions of the form 

where Co • •••• Cn are complex constants. 
The quotient of two polynomials g(::.) and h(;;:), 

g(::.) 
I(:) = he:) , 

is called a rational function. This I is analytic except at the points where /i(::;) = 0: here we assume that common 
factors of .Ii and h have been canceled. 

Many further analytic functions will be considered in the next sections and Chapters. • 
The concepts discussed in this section extend familiar concepts of calculus. Most important 
is the concept of an analytic function, the exclusive concern of complex analysis. Although 
many simple functions are not analytic, the large variety of remaining functions will yield 
a most beautiful branch of mathematics that is very useful in engineering and physics. 

11-101 CURVES AND REGIONS OF 
PRACTICAL INTEREST 

Find and sketch or graph the sets in the complex plane given 
by 

1. Iz - 3 - 2il = ~ 2. 1 ~ Iz - I + 4il ~ 5 

3. 0 < Iz - 11 < 1 

5. 1m Z2 = 2 

7. Iz + 11 = Iz - 11 
9. Re z 21m.:: 

4. -7r<Re;:<7r 

6.Rez>-I 

8. IArg zl ~ ~7r 
10. Re (1/:) < 1 
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11. WRITING PROJECT. Sets in the Complex Plane. 
Extend the part of the text on sets in the complex plane 
by fonnulating that part in your own words and 
including examples of your own and comparing with 
calculus when applicable. 

COMPLEX FUNCTIONS AND DERIVATIVES 

112-151 Function Values. Find Re I and 1m f. Also find 
their values at the given point :::. 

12. f = 3::: 2 
- 6::: + 3i, z = 2 + 

13. f .:::/(z + I), z = 4 - 5i 

14. f 1/( I - :::), ::: = l + !i 
15. f 1/:::2, ::: = I + ; 

116-191 Continuity. Find out (and give reason) whether 
.f(z) is continuous at ::: = 0 if I(O) = 0 and for z =1= 0 the 
function I is equal to: 

16. [Re (::2)]/ld2 

18. 1z12 Re (1/::) 

17. [1m (::2)]/1z1 

19. (1m ::)/(1 

120-241 Derivative. Differentiate 

20. (.:::2 - 9)/(:::2 + I) 21. (:3 + ;)2 

22. (3:: + 4i)/( 1.5;: - 2) 23. i/(l - ;::)2 

24. ::2/(: + ;)2 

1:::1) 

25. CAS PROJECT. Graphing Functions. Find and 
graph Re f. 1m f. and If I as surfaces over the ::-plane. 
Also graph the two families of curves Re Ie::) = COllSt 

and 1m if:::) = COllst in the same figure, and the curves 
If(zli = COIlS! in anoth€r figure, where (a) fez) = ::2, 

(b) I(z) = liz, (c) fez) = Z4. 

26. TEAM PROJECT. Limit, Continuity, Derivative 
(a) Limit. Prove that (I) is equivalent to the pair of 
relations 

lim Re i(z) = Re t, lim 1m Ie::) = 1m l. 
2-----;"2'0 Z-Zo 

(b) Limit. If lim I(:::) exists, show that this limit is 
unique. 

z-zo 

(e) Continuity. If:::}o ::2' ... are complex numbers for 
which lim ::" = a, and if i(:) is continuous at 

'it_CO 

z = a, show that lim i(::n) = i(a). 
n-----'""x 

(d) Continuity. If if:::) is differentiable at :::0' show that 
if:::) is continuous at :::0' 

(e) Differentiability. Show that if::) = Re z = x is 
not differentiable at any z. Can you find other such 
functions? 

(l) Differentiability. Show that if::) = 1:::12 is 
differentiable only at:: = 0; hence it is nowhere analytic. 

13.4 Cauchy-Riemann Equations. 
Laplace's Equation 

Tlte Cauchy-Riemall1l equatiolls are tile most importallt equatiolls ill tltis chapter and 
one of the pillars on which complex analysis rests. They provide a criterion (a test) for 
the analyticity of a complex function 

w = fez) = u(x, y) + iv(x, y). 

Roughly, f is analytic in a domain D if and only if the first partial derivatives of u and 
v satisfy the two Cauchy-Riemann equations4 

(1) 

4 The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians 
BERNHARD RIEMANN (l1l26-Hl66) and KARL WEIERSTRASS (1815 ·1897: see also Sec. 15.5) are the 
founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Gilttingen. where 
he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is 
used in basic calculus courses. and made important contributions to differential equations. number theory. and 
mathematical physics. He also developed the s(}-called Riemannian geometry. which is the mathematical 
foundation of Einstein's theory of relativity; see Ref. [GR9] in App. I. 



SEC. 13.4 Cauchy-Riemann Equations. Laplace's Equation 619 

THEOREM 1 

everywhere in D; here Ux = alliax and uy = aulay (and ~imilarly for v) are the usual 
notations for partial derivatives. The precise formulation of this statement is given in 
Theorems I and 2. 

Example: fez) = ;:,2 = x2 
- ."2 + 2ixy is analytic for all:: (see Example 3 in Sec. 13.3), 

and II = x 2 
- ."2 and v = 2xy satisfy (1), namely, Ux = 2x = Vy as well as lIy = -2y = -vx . 

More examples will follow. 

Cauchy-Riemann Equations 

Let fez) = lI(X, y) + iv(x, y) be defined and continuous in some neighborhood of a 
point :: = x + iy and d(fferentiable at :: itself. Then at that point, the first-order 
partial derimtil'es of u and v exist and satisfy the Cauchy-Riemann equations (I). 

Hence if ft::) is analytic ill a domain D, those partial deriI'Gtil'es exist and satisfr 
(l) at all points of D. 

PROOF By a~~umption. the derivative f' (.:) at .: exists. It is given by 

(2) f' (z) = lim fez + ilz) - fez) 
!>z~O ilz 

The idea of the proof is very simple. By the definition of a limit in complex (Sec. 13.3) 
we can let S~: approach zero along any path in a neighborhood of ;:.. Thus we may choose 
the two paths I and II in Fig. 332 and equate the results. By comparing the real parts we 
shall obtain the fir.;t Cauchy-Riemann equation and by comparing the imaginary parts the 
second. The technical details are as follows. 

We write .. k = ~x + i:1y. Then.: + .1.: = x + :1x + iCy + :1.\"), and in terms of /I and 
v the derivative in (2) becomes 

[lI(x + ilx, y + ily) + iv(x + ilx, )' + ily)] - [II(X, .1') + iv(x, y)] 
(3) f' (;:.) = lim 

..lz~O .!lx + i.!l y 

We first choose path I in Fig. 332. Thus we let ily ~ 0 first and then ilx ~ O. After ily 
is zero, il:: = ilx. Then (3) becomes. if we first write the two u-tenns and then the two 
v-terms, 

lI(X + .!lx, .r) - lI(X, .r) vex + .lx, r) - vex, r) 
f'(.:) = lim + i lim . . 

..lx~O .1.\ .l.x~O 6..\ 

y 

x 

Fig. 332. Paths in (:2) 
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Since f' (z) exists, the two real limits on the right exist. By definition, they are the partial 
derivatives of u and v with respect to x. Hence the derivative f' (z) of fez) can be written 

(4) 

Similarly, if we choose path II in Fig. 332. we let ~x ~ 0 first and then ~y ~ O. After 
~x is zero, ~:: = i:1y, so that from (3) we now obtain 

II(X, \' + .1,') - u(x, ,.) vex, " + .1 \') - vex, ") f' (::) = lim . . . - + i lim _. -
..ly~O I .1y .ly~O i.ly 

Since f' (.:) exists, the limits on the right exist and give the partial derivatives of u and v 
with respect to y; noting that 1Ii = -i, we thus obtain 

(5) j'(z) = -illy + Vy. 

The existence of the derivative f' (z) thus implies the existence of the four partial 
derivatives in (4) and (5). By equating the real parts liT and Vy in (4) and (5) we obtain 
the first Cauchy-Riemann equation (1). Equating the imaginary parts gives the other. This 
proves the first statement of the theorem and implies the second because of the definition 
of analyticity. • 

FOlmulas (4) and (5) are also quite practical for calculating derivatives f' (z), as we shall 
see. 

E X AMP L E 1 Cauchy-Riemann Equations 

THEOREM 2 

J(~) = ::2 is analytic for all ~. It follow, that the Cauchy-Riemann equation, mu,t be ,atisfied (as we have 
verified abuve). 

For f(::) = :: = x - iy we have /I = X, V = -.1' and see that the second Cauchy-Riemann equation is satisfied. 
/ly = -vx = O. but the tlrst is not: "x = I * Vy = -1. We conclude that f(::) = :: is not analytic. confirming 
Example 4 of Sec. 13.3. Note the savings in calculation! • 

The Cauchy-Riemann equations are fundamental because they are not only necessary 
but also sufficient for a function to be analytic. More precisely, the following theorem 
holds. 

Cauchy-Riemann Equations 

If two real-valued continllolls functions lI(X. y) and vex. y) of two real variables x 
and y have COlltillUOUS first partial derivatives that satisfy the Cauchy-Riemll1ln 
equlItions in some domain D, then the complex jilllctioll fez) = lI(X, y) + iv(x, y) is 
allalytic ill D. 

The proof is more involved than that of Theorem 1 and we leave it optionallsee App. 4). 
Theorems I and 2 are of great practical importance, since by using the 

Cauchy-Riemann equations we can now easily find out whether or not a given complex 
function is analytic. 
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E X AMP L E 2 Cauchy-Riemann Equations. Exponential Function 

Is i(:::) = II(X. y) + iv(x, y) = eX(cos y + i sin y) analytic? 

Solution. We have II = eX cos y, v = eX sin y and by differentiation 

ltx = eX cosy. v = eX cos \" y . 

lIy = -ex sin y. x . 
Vx = e smy. 

621 

We see that the Cauchy-Riemann equations are satisfied and conclude that I(~) is analytic for all ~. (f(~) will 
be the complex analog of eX known from calculus.) • 

E X AMP L ElAn Analytic Function of Constant Absolute Value Is Constant 

The Cauchy-Riemann equations also help in deriving geneml properties of analytic functions. 
For instance. show that if I(~) is analytic in a domain D and II(::) I = k = CO/1St in D. then I(:) = COIlst in 

D. (We shall make crucial use of thb in Sec. 18.6 in the proof of Theorem 3.1 

Solutioll. By assumption. IJI2 = lu + ivl2 = I? + v2 
= k2. By differentiation, 

IIllX + vVx = o. 
lllly + VVy = o. 

Now use Vx = -lly in the first equation and Vy = llx in the second. to gel 

(6) 
(a) llllx - Vlly = 0, 

(b) lilly + Vllx = O. 

To get rid of lly. multiply (6a) by II and (6b) by v and add. Similarly. to eliminate llx. multiply (6a) by -v and 
(6b I by II and add. l1lis yields 

(11
2 + V

2 )lIx = O. 

(11
2 + V

2
)lIy = O. 

If k2 = ll2 + v2 
= O. then II = v = 0; hence I = O. If k2 = ll2 + v2 * O. then IIx = lIy = O. Hence. by 

the Cauchy-Riemann equations. also Vx = Vy = O. Together this implies II = COllst and v = canst; hence 
I = canst. • 

We mention that if we use the polar fom1 z = r(cos 6 + i sin 6) and set 
fez) = u(r, 6) + iv(r, 6), then the Cauchy-Riemann equations are (Prob. 11) 

LIT = ve, 
r 

(7) (r> 0). 

v = T LI/I 
r 

Laplace's Equation. Harmonic Functions 
The great importance of complex analysis in engineering mathematics results mainly from 
the fact that both the real part and the imaginary part of an analytic function satisfy 
Laplace's equation, the most important PDE of physics. which Occurs in gravitation, 
electrostatics, fluid flow, heat conduction, and so on (see Chaps. 12 and 18). 
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THEOREM 3 
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Laplace's Equation 

If fez) = u(x, y) + iv(x, y) is lInalytic in II d0111l1in D. then both II and v sati.~f\' 

Laplace's equation 

(8) 

(V2 read "nabla squared") and 

(9) 

in D and h(lI'e continuous second partial derivatives in D. 

PROOF Differentiating Ux = Vy with respect to x and u y = -vx with respect to y, we have 

(10) 

Now the derivative of an analytic function is itself analytic. as we shall prove later (in 
Sec. 14.4). This implies that u and v have continuous partial derivatives of all orders: in 
particular, the mixed second derivatives are equal: vYT = vXY ' By adding (10) we thus 
obtain (8). Similarly, (9) is obtained by differentiating Ux = Vy with respect to y and 
lty = -vx with respect to x and subtracting, using uxy = uyx' • 

Solutions of Laplace's equation having conti1luous second-order partial derivatives 
are called harmonic functions and their theory is calIed potential theory (see also 
Sec. 12.10). Hence the real and imaginary parts of an analytic function are harmonic 
functions. 

If two harmonic functions u and v satisfy the Cauchy-Riemann equations in a domain 
D, they are the real and imaginary parts of an analytic function f in D. Then v is said to 
be a harmonic conjugate function of u in D. (Of course, this has absolutely nothing to 
do with the use of "conjugate" for z.) 

E X AMP L E 4 How to Find a Harmonic Conjugate Function by the Cauchy-Riemann Equations 

Verify that 1/ = x2 
- \,2 - Y is harmonic in the whole complex plane and find a harmonic conjugate function 

v of 1/. 

Solution. ,21/ = 0 by direct calculation. Now lIx = 2x and lIy = - 2.1' - I. Hence because of the 
Cauchy-Riemann equations a conjugate v of 1/ must satisfy 

Vy = lIx = 2x, v ~ -1/ ~ 2,· + 1. x y _ 

Integrating the first equation with respect to )' and differentiating the result with respect to .t. we obtain 

v = 2.\)' + h(x). 
dh 

Vx = 2y + dx . 

A comparison with the second equation shows that dh/dr: = 1. This gives hex) = x + c. Hence v = 2.\)' + X + c 
(c any real constant) is the most general hannonic conjugate of the given II. The conesponding analytic function is 

I(::.) = II + iv ~ x 2 
- )'2 - )' + ;(2.\)' + X + c) = ~2 + ;: + ;e. • 
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Example 4 illustrates that a conjugate of a given harmonic function is uniquelv determilled 
up to an arbitrary real additive constant. 

The Cauchy-Riemann equations are the most important equations in this chapter. Their 

relation to Laplace's equation opens wide ranges of engineering and physical applications, 

as we shall show in Chap. 18 . 

. ........ ~ 
CAUCHY-RIEMANN EQUATIONS 

Are the following functions analytic? [Use (1) or (7).] 

1. f(:;.) = :;.4 2. f(::.) = 1m (:;.2) 

3. e2x(cos y + i sin y) 4. f(:;.) = I/O - :;.4) 

5. e-X(cos y - i sin y) 6. fez) = Arg 7TZ. 

7. f(z) = Re z + 1m z 8. f(z.) = In Izl + i Arg z 

9. f(:;.) = i/::.8 10. f(:;.) = ::.2 + I/:;.2 

11. (Cauchy-Riemann equations in polar form) Derive 
(7) from (1). 

112-21/ HARMONIC FUNCTIONS 

Are the following functions harmonic? If your answer is 
yes, find a corresponding analytic function 
f(:;.) = u (x, y) + iv(x, y). 

12. u = x)' 13. v = xy 

14. v - yl(x2 + y2) 

16. v = In Izl 
18. Lt = I/(x2 + )'2) 

20. Lt = cos x cosh y 

15. u = In Izl 
17. II = x 3 - 3xy2 

19. U = (x2 _ )'2)2 

21. l/ = e-x sin 2)' 

122-241 Determine a, b, C such that the given functions 
are harmonic and find a harmonic conjugate. 

22. 3:]; 
U = e co~ ay 23. u = sin x cosh cy 

25. (Harmonic conjugate) Show that if II is harmonic and 
v is a harmonic conjugate of II, then II is a harmonic 
conjugate of -v. 

26. TEAM PROJECT. Conditions for fez) = COllst. Let 
f(:;.) be analytic. Prove that each of the following 
conditions is sutIicient for f(:;.) = COllst. 

(a) Re fez) = comt 

(b) [m f(:;.) = COIUT 

(c) f' (z) = 0 

(d) If(z)1 = COllst (see Example 3) 

27. (Two further formulas for the derivative). Formulas 
(4). (5), and (J I) (below) are needed from time to time. 
Derive 

(II) J'(;:;) = Ux - illy, f' (z) = Vy + iv x ' 

28. CAS PROJECT. Equipotential Lines. Write a 
program for graphing equipotential lines II = comt of 
a harmonic function II and of its conjugate v on the 
same axes. Apply the program to (a) II = x 2 - )'2, 

U = 2xy, (b) u = x 3 - 3xy2, U = 3x2y _ y3, 

(c) U = eX cos )', v = eX sin y. 

13.5 Exponential Function 
In the remaining sections of this chapter we discuss the basic elementary complex 
functions, the exponential function, trigonometric functions. logarithm, and so on. They 

will be counterparts to the familiar functions of calculus, to which they reduce when 

z = x is real. They are indispensable throughout applications, and some of them have 
interesting properties not shared by their real counterparts. 

We begin with one of the most important analytic functions, the complex exponential 
function 

also written exp Z. 

The definition of eZ in terms of the real functions eX, cos y, and sin y is 

(1) 
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This definition is motivated by the fact the eZ extends the real exponential function eX of 
calculus in a natural fashion. Namely; 

(A) eZ = eX for real z = x because cos Y = 1 and sin y = 0 when y = o. 
(B) eZ is analytic for all z. (Proved in Example 2 of Sec. 13.4.) 

(e) The derivative of eZ is eZ
• that is. 

(2) 

This follows from (4) in Sec. 13.4. 

REMARK. This defInition provides for a relatively simple discussion. We could defme eZ by 
the familiar series I + x + x2/2! + x3/3! + ... with x replaced by Z, but we would then have 
to discuss complex series at this very early stage. (We will show the connection in Sec. 15.4.) 

Further Properties. A function I(::) that is analytic for all :: is called an entire function. 
Thus, eZ is entire. Just as in calculus the fUllctional relation 

(3) 

holds for any 21 = Xl + iYl and Z2 = X2 + iYz. Indeed, by (1), 

Since eX1eX2 = eX1
+

X2 for these real functions, by an application of the addition fonnulas 
for the cosine and sine functions (similar to that in Sec. 13.2) we see that 

as asserted. An interesting special case of (3) is Zl = X, Z2 = iy; then 

(4) 

Furthennore, for Z = iy we have from (1) the so-called Euler formula 

(5) e
iy 

= cosy + i siny. 

Hence the polar form of a complex number, ;:: = r(cos e + i sin 0). may now be written 

(6) 

From (5) we obtain 

(7) 

as well as the important formulas (verify!) 

(8) e7Ti = -1, 
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Another consequence of (5) is 

(9) leiYI = leos y + i sin yl = V cos2 y + sin2 y = 1. 

That is, for pure imaginary exponents the exponential function has absolute value I, a 
result you should remember. From (9) and (1), 

(10) Hence argeZ = y ± 2nn (n = 0, 1,2," .), 

since !ezi = eX shows that (1) is actually ~ in polar form. 
From lezi = eX *- 0 in (0) we see that 

(11) for all z. 

So here we have an entire function that never vanishes, in contrast to (nonconstant) 
polynomials, which are also entire (Example 5 in Sec. 13.3) but always have a zero, as 
is proved in algebra. 

Periodicity of eZ with period 27Ti, 

(12) for all z 

is a basic property that follows from (1) and the periodicity of cos y and sin y. Hence all 
the values that w = eZ can assume are already assumed in the horizontal strip of width 
27T 

(13) -n<Y~7T 

This infinite strip is called a fundamental region of eZ
• 

E X AMP L E 1 Function Values. Solution of Equations. 

Computation of values from (I) provides no problem. For instance. verify that 

e1.4 - O.6i = e1.4 tcos 0.6 - i sin 0.6) = 4.055(0.8253 - 0.5646i) = 3.347 - 2.289; 

Arg e1.4 - 0 .6i = -0.6. 

To illustrate (3), take the product of 

e2 + i = e2(cos 1 + i sin I) and 

y 

x 

-Tr: 

Fig. 333. Fundamental region of the 
exponential function eZ in the z-plane 

(Fig. 333). 
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To solve the equation eZ = 3 + 4i, note first that lezi = eX = 5. X = In 5 = 1.609 is the real part of all 
solutions. Now, since eX = 5, 

eX cosy = 3. eX sin v = 4. cosy = 0.6. siny = 0.8. y = 0.927. 

Am. :: = 1.609 + 0.927i::': 211'11'; (n = O. 1.2, ... ). The~e are infinitely many solutions (due to the periodicity 
of eZ

). They lie on the vertical line x = 1.609 at a distance 27i" from their neighbors. • 

To summarize: many properties of eZ = exp z parallel those of eX; an exception is the 
periodicity of £f with 2ni, which suggested the concept of a fundamental region. Keep in 
mind that ~ is an entire function. (Do you still remember what that means?) 

1. Using the Cauchy-Riemann equations, show that eZ is 
entire. 

118-21\ Equations. Find all solutions and graph some of 
them in the complex plane. 

12-81 Values of eZ
• Compute eZ in the form u + iv and 

lezl, where ~ equals: 

2. 3 + 71'i 

4. Vz - !71'i 

6. (l + i)71' 

8. 971'i/2 

3. I + 2i 

5. 771'il2 

7. 0.8 - 5i 

19-121 
9. e-2z 

Real and Imaginary Parts. Find Re and 1m of: 

10. e
z3 

11. ez2 

113-171 
13. Vi 
15. V; 
17. -9 

Polar Form. Write in polar form: 

14. 1 + 
16. 3 + 4i 

18. e3
• = 4 19. eZ = -2 

20. eZ = 0 21. eZ = 4 - 3i 

22. TEAM PROJECT. Further Properties of the 
Exponential Function. (a) Analyticity. Show that c 
is entire. What about el/z? eZ? eX(cos ky + i sin ky)'? 
(Use the Cauchy-Riemann equations.) 

(b) Special values. Find all ;;: such that (i) e Z is real. 
(ii) le-zi < 1, (iii) eZ = 'if. 
(c) Harmonic function. Sho~- that 

u = e XY cos (x 2 /2 - )'2/2) is harmonic and find a 
conjugate. 
(d) Uniqueness. [t is interesting that f(z) = e Z is 
uniquely determined by the two properties 
f(x + iO) = eXand!'(;;:) = f(z).wherefisassumed 
to be entire. Prove this using the Cauchy-Riemann 
equations. 

13.6 Trigonometric and Hyperbolic Functions 
Just as we extended the real eX to the complex eZ in Sec. 13.5. we now want to extend 
the familiar real trigonometric functions to complex trigonometric flillctiollS. We can do 
this by the use of the Euler formulas (Sec. 13.5) 

eix = cos x + i sin x, e-ix = cosx - i sinx. 

By addition and subtraction we obtain for the real cosine and sine 

This suggest,> the following definitions for complex values z = x + iy: 
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(1) slnz = 

It is quite remarkable that here in complex. functions come together that are unrelated in 
real. This is not an isolated incident but is typical of the general situation and shows the 
advantage of working in complex. 

Furthermore, as in calculus we define 

sin z 
(2) tanz = 

cos z 
cos z 

cot;:: = 
sin z 

and 

I 
(3) sec z = 

cos z 
csc z = 

sin z 

Since eZ is entire, cos z and sin z are entire functions. tan z and sec z are not entire; they 
are analytic except at the points where cos;:. is zero; and cot z and csc z are analytic except 
where sin z is zero. Formulas for the derivatives follow readily from (~)' = eZ and (1)-(3); 

dS in calculus, 

(4) (cos ;:.)' -sin?. (sin z)' = cos z. (tan z)' = sec2 z, 

etc. Equation (I) also shows that Euler's formula is valid ill complex: 

(5) eiz = cos;:. + i sin z for all z. 

The real and imaginary parts of cos z and sin z are needed in computing values, and 
they also help in displaying properties of our functions. We illustrate this with a typical 
example. 

E X AMP L E 1 Real and Imaginary Parts. Absolute Value. Periodicity 

Show that 

(a) cos ~ = cos x cosh Y - i sin x sinh y 
(6) 

(b) sin z. = sin x cosh y + i cos x sinh y 

and 

(a) Icos :12 = cos2 x + sinh2 y 
(7) 

Ib) 

and give some applications of these forrnula~. 

Solution. From (1). 

cos z = ~(ei(x+iYJ + e -i(x+iYJ) 

= ~e -Y(cos x + i sin x) + ~eY(cos X - i sin xl 

= ~(eY + e-Y) cos x - ~i(eY - e-Y) sinx. 

This yields (6a) since. as is known fonn calculus, 

(8) 
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(6b) is obtained similarly. From (6a) and cosh2 y = I + sinh2 y we obtain 

Icos zl2 ~ (cos2 x) (I + sinh2 y) + sin2 x sinh2 y. 

Since sin2 x + cos2 x = I, this gives (7a). and (7bl is obtained similarly. 
For instance, cos (2 + 3i) = cos 2 cosh 3 - i sin 2 sinh 3 = -4.190 - 9.109i. 
From (6) we see that cos z and sin z are periodic with period 2n, just as in real. Periodicity of tan;: and 

cot z with period 7r now follows. 
Formula (7) points to an essential difference between the real and the complex cosine and sine; whereas 

Icos xl ~ I and Isin xl ~ I, the complex co~ine and sine functions are 110 10llger boullded but approach infinity 
in absolute value as y --'> x, since then sinh y ~ 00 in (7). • 

E X AMP L E 2 Solutions of Equations. Zeros of cos z and sin z 

Solve la) cos z = 5 (wluch has no real solution!), (b) cos z = 0, (e) sin z = o. 
Solution. (a) e2iz - 10iz + I = 0 from (1) by multiplication by eiz . This is a quadratic equation in eiz

, 

with solutions (rounded off to 3 decimals) 

i z = e -y+ix = 5 :':: V25=""l ~ 9.899 and 0.1O\. 

Thus e-Y = 9.899 or 0.\01, eix = I, Y = :'::2.292, x = 2wTi". AilS. Z ~ ±21l7r ± 2.292i (11 = 0, 1,2, .. '). 
Can you obtain this from (6a)? 
(b) cos x = 0, sinh y = 0 by (7a), y = O. Ans. z = ::':~(2n + 1)7r (11 = 0, 1,2, .. '). 
(C) sin x = 0, sinh y = 0 by (7b). Ans. z = :'::1l7r (11 = 0, I, 2, .. '). Hence the only zeros of cos z and 

sin;: are those of the real cosine and sine functions. • 

General formulas for the real trigonometric functions continue to hold for complex 
values. This follows immediately from the definitions. We mention in particular the 
addition rules 

(9) 

and the fOilliula 

(10) 

cos (Zl ± Z2) = cos Zl cos Z2 =+= sin Zl sin Z2 

sin (Zl ± Z2) = sin Zl cos Z2 ± sin Z2 cos Z] 

cos2 
Z + sin2 

Z = 1. 

Some further useful formulas are included in the problem set. 

Hyperbolic Functions 
The complex hyperbolic cosine and sine are defined by the formulas 

(11) 

This is suggested by the familiar definitions for a real variable [see (8)]. These functions 
are entire, with derivatives 

(12) (cosh z)' = sinh z, (sinh z)' = cosh z, 

as in calculus. The other hyperbolic functions are defined by 
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tanh z = 
sinh.: 

cosh z 
coth z = 

cosh z 
sinh .: 

(13) 
1 

sech z = 
cosh z 

, csch z = 
sinh z 

Complex Trigonometric alld Hyperbolic FUllctions Are Related. If in (11), we replace 
z by iz and then use (1), we obtain 

(14) cosh iz = cos z;, sinh iz = i sin z. 

Similarly, if in (1) we replace z by i;:. and then use (II), we obtain conversely 

(15) cos iz = cosh z, sin iz = i sinh z. 

Here we have another case of unrelated real functions that have related complex analogs. 
pointing again to the advantage of working in complex in order to get both a more unified 
formalism and a deeper understanding of special functions. This is one of the main reasons 
for the importance of complex analysis to the engineer and physicist. 

1. Prove that cos z, sin z, cosh z, sinh Z are entire 
functions. 

2. Verify by differentiation that Re cos z and 1m sin z are 
harmonic. 

13-61 FORMULAS FOR HYPERBOLIC FUNCTIONS 

Show that 

3. cosh z = cosh x cos Y + i sinh x sin y 

sinh z = sinh x cos y + i cosh x sin y. 

4. cosh (ZI + Z2) = cosh ZI cosh Z2 + sinh ZI sinh Z2 

sinh (ZI + Z2) = sinh Zl cosh Z2 + cosh ZI sinh Z2' 

5. cosh2 Z - sinh2 z. = 1 

6. cosh2 Z + sinh2 Z = cosh 2z 

17-151 Function Values. Compute (in the form u + iv) 

7. cos(l + i) 8. sin(1 + i) 

9. sin 5i, cos 5i 10. cos 37Ti 

11. cosh (-2 + 3i), cos (-3 - 2i) 

12. - i sinh (- 7T + 2i), sin (2 + 7Ti) 

13. cosh (2n + 1)7Tl, n = 1,2, ... 

14. sinh (4 - 3i) 15. cosh (4 - 67Ti) 

16. (Real and imaginary parts) Show that 

sin x cos x 
Re tan z = --=-------,=-­

cos2 X + sinh2 y , 

sinhy coshy 
1m tan z = --=--'---'-=-­

cos2 X + sinh2 y . 

117-211 Equations. Find all solutions of the following 
equations. 

17. cosh z = 0 18. sin z = 100 

19. cos Z = 2i 

21. sinh z = 0 

20. cosh z = - 1 

22. Find all z for which (a) cos z, (b) sin z has real values. 

123-25] Equations and Inequalities. Using the 
definitions, prove: 

23. cos z is even. cos (-z) = cos z, and sin z is odd, 
sin (-z) = -sin z. 

24. Isinh yl ~ lcos zl ~ cosh y, Isinh yl ~ Isin zl ~ cosh y. 
Conclude that the complex cosine and sine are not 
bounded in the whole complex plane. 

25. sin ZI cos Z2 = H sin (ZI + Z2) + sin (Zl - Z2)] 
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13.7 Logarithm. General Power 
We finally introduce the complex logarithm, which is more complicated than the real 
logarithm (which it includes as a special case) and historically puzzled mathematicians 
for some time (so if you first get puzzled-which need not happen!-be patient and work 
through this section with extra care). 

The natural logarithm of z = x + iy is denoted by In z (sometimes also by log z) and 
is defined as the inverse of the exponential function; that is, W = In z is defined for 
z =1= 0 by the relation 

(Note that z = 0 is impossible, since eW =1= 0 for all w; see Sec. 13.5.) [f we set 
w = u + iv and:: = reifl

, this becomes 

Now from Sec. 13.5 we know that eu +iv has the absolute value eU and the argument v. 
These must be equal to the absolute value and argument on the right: 

v = 8. 

eU = r gives u = In r, where In r is the familiar real natural logarithm of the positive 
number r = Izi. Hence w = u + iv = In z is given by 

(1) In:: = In,. + i8 (r = Izl > 0, 8 = arg z). 

Now comes an important point (without analog in real calculus). Since the argument of 
z is determined only up to integer mUltiples of 271", the complex 1latural logarithm In z 
(z * 0) is i1lfi1litely many-valued. 

The value of In:: conesponding to the principal value Arg z (see Sec. 13.2) is denoted 
by Ln :: (Ln with capital L) and is called the principal value of In::. Thus 

(2) Ln z = In Izl + i Arg z (z =1= 0). 

The uniqueness of Arg z for given z (=1= 0) implies that Ln z is single-valued, that is, a 
function in the usual sense. Since the other values of arg :: differ by integer multiples of 
271", the other values of In:: are given by 

(3) In z = Ln z ::'::: 2n71"i (n = 1. 2 .... ). 

They all have the same real part, and their imaginary paJ1s differ by integer multiples of 271". 

If:: is positive real, then Arg z = 0, and Ln z becomes identical with the real natural 
logarithm known from calculus. If z is negative real (so that the natural logarithm of 
calculus is not defined!), then Arg z = 71" and 

Ln z = In Izi + 71"i (z negative real). 
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From (l) and e1n 
r = r for positive real r we obtain 

(4a) 

as expected, but since arg (eZ
) = y ± 2nn is multi valued. so is 

(4b) In (c) = Z ± 21lni, n = 0, I,···. 

E X AMP L E 1 Natural Logarithm. Principal Value 

In 1 = 0, ±2wi, ±4wi, ... 

In 4 = 1.386 294 ± 211wi 

In (-1) = ± m, ±3w;. ±Swi, .. 

In (-4) = 1.386294 ± (211 + I)wi 

In i = wil2. - 3 w/2. S wi12 . .•. 

In 4; = 1.386294 + wi/2 ± 21lwi 

In (-4i) = 1.386294 - wi/2 ± 21lwi 

In (3 - 4i) = In S + i arg (3 - 4i) 

= 1.609438 - 0.927 29Si ± 21171'i 

v 

-0.9 + 6n 

-0.9 + 4n 

Ln 1= 0 

Ln 4 = 1.386294 

Ln (-I) = wi 

Ln (-4) = 1.386294 + wi 

Ln i = wi/2 

Ln 4; = 1.386 294 + wil2 

Ln (-4i) = 1.386 294 - wi/2 

Ln (3 - 4i) = 1.609438 - 0.927 29S; 

1 

• 1 
1 , 
1 

(Fig. 334) 

-0.9 + 2n + 
o I---....I....----il--'--

-0.9 + 2 u 
1 • 1 

-0.9 - 2n 

Fig. 334. Some values of In (3 - 4;) in Example 1 

• 

The familiar relations for the natural logarithm continue to hold for complex values, 
that is. 

(5) (a) In (~1::2) = In Zl + In ':2, 

but these relations are to be understood in the sense that each value of one side is also 
contained among the values of the other side: see the next example. 

E X AMP L E 2 Illustration of the Functional Relation (5) in Complex 

Let 

;:1=;:2=e"1Ti=-1. 

If we take the principal values 

Ln;::1 = LnZ2 = wi. 

then (Sa) holds provided we write In (:1:::2) = In I = 2wi; however. it is not true for the principal value, 
Ln (ZIZ2) = Ln 1 = O. • 
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THE 0 REM 1 Analyticity of the Logarithm 

For el'ery n = 0, ::t::: 1, ::t:::2, ... formula (3) defines a function, which is analytic, 
except at 0 and 011 the Ilegarire real axis, alld has the derivative 

(6) 
, I 

(ln~) =­
z. 

(z not 0 or negative real). 

PROOF We show that the Cauchy-Riemann equations are satisfied. From (I )-(3) we have 

In z = In r + ice + c) = .!. In (x2 + v2
) + i(arctan I. + c) 

2' x 

where the constant c is a multiple of 27r. By differentiation, 

x 
ux = 2 2=V= 2 

X + y y 1 + (ylx) x 

Hence the Cauchy-Riemann equations hold. [Confirm this by using these equations in 
polar form. which we did not use since we proved them only in the problems (to 
Sec. 13.4).j Formula (4) in Sec. 13.4 now gives (6). 

(- ;~) = 
x - iy 

x2 + y2 • z 

Each of the infinitely many functions in (3) is called a branch of the logarithm. The 
negative real axis is known as a branch cut and is usually graphed as shown in Fig. 335. 
The branch for 11 = 0 is called the principal branch of In z. 

Fig. 335. Branch cut for In z 

General Powers 
General powers of a complex number z = x + iy are defined by the formula 

(7) (c complex, z oF 0). 

Since In z is infinitely many-valued, ZC will, in general, be multi valued. The particular 
value 

is called the principal value of zC. 



SEC. 13.7 Logarithm. General Power 633 

If c = n = 1. 2, ... , then zn is single-valued and identical with the usual nth power 
of z. If c = -1, -2, ... , the situation is similar. 

If c = I/n, where n = 2, 3, ... , then 

(z oF 0), 

the exponent is determined up to multiples of 27Ti/n and we obtain the n distinct values 
of the nth root, in agreement with the result in Sec. 13.2. [f c = p/q, the quotient of two 
positive integers, the situation is similar, and ZC has only finitely many distinct values. 
However, if c is real irrational or genuinely complex, then ZC is infinitely many-valued. 

E X AMP L E 3 General Power 

ji = i In i = exp (i In i) = exp [i ( -i j ± 2n17i) ] = e -(",/2)+2n". 

All these values are real, and the principal value (n = 0) is e -",/2. 

Similarly, by direct calculation and multiplying out in the exponent, 

(I + i)2-i = exp [(2 - i) In (I + i)] = exp [(2 - i) {In V2 + !17i ± 21l17il] 

= 2e",/4"'2n"'[sin (~In 2) + i cos (~In 2)]. • 
It is a convention that for real positive z = x the expression ZC mean:" eC In x where In x 
is the elementary real natural logarithm (that is, the principal value Ln z (z = x > 0) in 
the sense of our definition). Also, if z = e, the base of the natural logarithm, ZC = eC is 
conventionally regarded as the unique value obtained from (1) in Sec. l3.5. 

From (7) we see that for any complex number a, 

(8) aZ = e" In a. 

We have now introduced the complex functions needed in practical work. some of them 
(e", cos z, sin z. cosh z, sinh z) entire (Sec. 13.5), some of them (tan z, cot z, tanh z. coth z) 
analytic except at certain points, and one of them (In z) splitting up into infinitely many 
functions, each analytic except at 0 and on the negative real axis. 

For the inverse trigonometric and hyperbolic functions see the problem set. 

~-il Principal Value Ln z. Find Ln z when z equals: 12. In e 13. In (-6) 

15. In (-e-') 1. - to 2. 2 + 2; 

3. 2 - 2i 4. -5 ~ O.li 

5. -3 - 4i 

7. 0.6 + O.Si 

9. 1 - i 

6. -100 

B. -ei 

110-161 All Values of In z. Find all values and graph 
some of them in the complex plane. 

10. In 1 n. In (-I) 

14. In (4 + 3i) 

16. In (e3i
) 

17. Show that the set of values of In (i2) differs from the 
set of values of 2 In i. 

11B-21/ Equations. Solve for z: 

lB. In z = (2 - !i)7T 19. In z = 0.3 + 0.7; 

20.lnz=e-7Ti 21. In z = 2 + ~7Ti 
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\ 22-2S \ General Powers. Showing the details of your 
work, find the principal value of: 

22. i2i, (2i)i 
24. (l - i)l+i 

26. (-I )1-2i 

2S. (3 - 4i)1I3 

23. 43 +i 

25. (l + il-' 
27. ;112 

29. How can you find the answer to Prob. 24 from the 
answer to Prob. 25? 

30. TEAM PROJECT. Inverse Trigonometric and 
Hyperbolic Functions. By definition. the inverse sine 
w = arcsin z is the relation such that sin w = z. The 
inverse cosine w = arccos:: is the relation such that 
cos W = ::. The in,-erse tangent, inverse cotangent, 
innrse hyperbolic sine, etc .. are defined and denoted 
in a similar fashion. (Note that all these relations are 
mllitivailled.) Using sin w = (e i '" - e- iW )/(2i) and 
similar representations of cos w, etc .. show that 

(a) arccos.;: = -i In (;: + Yz2 - 1) 

(b) arcsin z: = -i In (i.;: + ~) 
(c) arccosh z = In (z: + -w-=-I) 
(d) arcsinh;:: = In (z + W+l) 

i i + Z 
(e) arctan;:: = - In --

2 i - :: 

I I + z 
<n arctanh;:: = 2" In 1 - z 

(g) Show that w = arcsin:: is infinitely many-valued. 
and if WI is one of these values, the others are of the 
form WI ~ 11l7T and 7T - WI ~ 21l7T, 11 = 0, I, .... 
(The principal mlue of w = u + iv = arcsin z is 
defined to be the value for which -7T!2 ;;; U ;;; 7T!2 
if v ~ 0 and - 7T!2 < 1I < 7T!2 if v < 0.) 

-C-l-FA PT-"E~33_ R E-Vl..E-w=:QlJ EST ION SAN D PRO B L EMS 

1. Add. subtract. multiply. and divide 26 - 7i and 
3 + 4i as well as their complex conjugates. 

2. Write the two given numbers in Prob. I in polar form. 
Find the principal value of their arguments. 

3. What is the triangle inequality? Its geometric meaning? 
Its significance? 

4. If you know the values of {,fl, how do you get from 
them the values of ~ for any;:? 

5. State the definition of the derivative from memory. It 
looks similar to that in calculus. But what is the big 
difference? 

6. What is an analytic function? How would you test for 
anal yticity? 

7. Can a function be differentiable at a pomt without being 
analytic there? If yes, give an example. 

S. Are 1::1, .:. Re;::, 1m:: analytic? Give reason. 

9. State the definitions of eZ
, cos z. sin ;::. cosh z. sinh;:: and 

the relations between these functions. Do these relations 
have analogs in real? 

10. What properties of C are similar to those of eX ? Which 
one is different? 

II. What is the fundamental region of eZ ? Its significance? 

12. What is an entire function? Give examples. 

13. Why is In z much more complicated than In x? Explain 
from memory. 

14. What is the principal value of In z? 

15. How is the general power:;c defined? Give examples. 

[16-2D Complex Numbers. Find, in the fonn x + iy. 
showing the details: 

16. (1 + ;)12 17. (- 2 + 6;)2 

IS. 1/(3 - 7i) 19. (l - ;)/(1 + i)2 

20. \/-5 - 12i 21. (43 - 19i)/(8 + ;) 

122-261 Polar Form. Represent in polar form. with the 
principal argument: 

22. 1 - 3i 23. -6 + 6i 

24. YW/(4 + 2i) 25. -12i 

26. 2 + 2; 

\27-30\ 

27. V& 
29.~ 

Roots. Find and graph all values of 

2S. V'256 
30. VC"32-:------::-24-i 

[31-~ Analytic Functions. Find f(.::) = u(x.y) + ;v(x.y) 
with 1I or v as given. Check for analyticity. 

31. 11 = x/(x2 + y2) 32. v = e-3x sin 3y 

33. u = x 2 - 2xy - y2 34. 1I = cos 1x cosh 2y 

35. v = e
X2

-
y2 sin 2xy 

@6-391 Harmonic Functions. Are the following 
functiuns hannonic? If so, find a hannonic conjugate. 

36. x 2
y2 37. xy 

3S. e- x / 2 cos!y 39. x2 + y2 

\40-451 Special Function Values. Find the values of 

40. sin (3 + 47Ti) 41. sinh 47Ti 

42. cos (57T + 2;) 

44. tan (I + i) 

43. Ln CO.8 + 0.6i) 

45. cosh (I + 7Ti) 
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Complex Numbers and Functions 

For arithmetic operations with complex numbers 

(l) z = x + iy = re iIJ = r(cos e + i sin 8). 

r = Izl = \lx2 + )'2, e = arctan (y/x). and for their representation in the complex 
plane, see Secs. 13.1 and 13.2. 

A complex function f(:;) = u(x, y) + iv(x. y) is analytic in a domain D if it has 
a derivative (Sec. 13.3) 

(2) t' (z) = lim fez + Llz) - fez) 
.lz~o Llz 

everywhere in D. Also, fez) is analytic at a point z = '<:0 if it has a derivative in a 
neighborhood of Zo (not merely at Zo itself). 

If fez) is analytic in D. then u(x. y) and v (x. y) satisfy the (very important!) 
Cauchy-Riemann equations (Sec. 13.4) 

(3) 
au 
ax 

au 
dy , 

au 
ay 

au 
ax 

everywhere in D. Then II and v also satisfy Laplace's equation 

(4) UXX + Uyy = 0, 

everywhere in D. If 1I(x, y) and u(x. y) are continuous and have continuous partial 
derivatives in D that satisfy (3) in D. then fez) = u(x, y) + iu(x, y) is analytic in 
D. See Sec. 13.4. (More on Laplace's equation and complex analysis follows in 
Chap. 18.) 

The complex exponential function (Sec. 13.5) 

(5) e
Z = exp z = eX (cos y + i sin y) 

reduces to eT if z = x (y = 0). It is periodic with 27Ti and has the derivative eZ
• 

The trigonometric functions are (Sec. 13.6) 

I. . 
cos z = - (en + e-ZZ

) = cos x cosh V - i sin x sinh \' 2 --
(6) 

1. . 
sin z = - (eOZ - e-OZ) = sin x cosh \' + i cos x sinh \' 

2i --

and, furthermore, 

tan z = (sin z)Jcos z, cot Z = lItan:. etc. 
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The hyperbolic functions are (Sec. 13.6) 

(7) cosh z = !( eZ + e -Z) = cos iz, 

etc. The functions (5)-(7) are entire, that is, analytic everywhere in the complex 
plane. 

The natural logarithm is (Sec. 13.7) 

(8) In z = In Izl + i arg z = In Izl + i Arg z ::!: 2117Ti 

where z =F 0 and II = 0, 1, . . . . Arg z is the principal value of arg z, that is. 
-7T < Arg z ~ 7T. We see that In z is infinitely many-valued. Taking n = 0 gives 
the principal value Ln z of In z; thus Ln z = In Izl + i Arg z. 

General powers are defined by (Sec. 13.7) 

(9) (c complex. z =F 0). 



~CHAPTER 1 4 
~7 

/ Complex Integration 

Two main reasons account for the importance of integration in the complex plane. The 
practical reason is that complex integration can evaluate certain real integrals appearing 
in applications that are not accessible by real integral calculus. The theoretical reason is 
that some basic properties of analytic functions are difficult to prove by other methods. 
A striking property of this type is the existence of higher derivatives of an analytic function. 

Complex integration also plays a role in connection with special functions. such as the 
gamma function (see [GRll. p. 255), the error function. various polynomials (see [GRIOD 
and others. and the application of these functions in physics. 

In this chapter we define and explain complex integrals. The most important result in 
the chapter is Cauchy's integral theorem or the Callchy-Goursat theorem, as it is also 
called (Sec. 14.2). It implies Cauchy's integral formula (Sec. 14.3), which in tum implies 
the existence of all higher derivatives of an analytic function. Hence in this respeCl, 
complex analytic functions behave much more simply than real-valued functions of real 
variables, which may have derivatives only up to a certain order. 

A further method of complex integration, known as integration by residues, and its 
application to real integrals will need complex series and follows in Chap. 16. 

Prerequisite: Chap. 13 
References alld Answers to Prohlems: App. I Part D, App. 2. 

14.1 Line Integral in the Complex Plane 
As in calculus we distinguish between definite integrals and indefinite integrals or 
antiderivatives. An indefinite integral is a function whose derivative equals a given 
analytic function in a region. By inverting known differentiation formulas we may find 
many types of indefinite integrals. 

Complex definite integrals are called (complex) line integrals. They are wlitten 

f fez) dz. 
c 

Here the integrand fez) is integrated over a given curve C or a portion of it (an arc. but 
we shall say "curve" in either case, for simplicity). This curve C in the complex plane is 
called the path of integration. We may represent C by a parametric representation 

(1) z(t) = x(t) + iy(t) (a ~ t ~ b). 

637 
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The sense of increasing t is called the positive sense on C, and we say that C is oriented 
by (1). 

For instance, 2(t) = t + 3it (0 ~ t ~ 2) gives a portion (a segment) of the line)' = 3x. 
The function .:(t) = 4 cos t + 4i sin t (- 7T ~ t ~ 7T) represents the circle Izl = 4. and so 
on. More examples follow below. 

We assume C to be a smooth curve, that is, C has a continuous and nonzero derivative 

. d: . . 
z(t) = - = x(t) + i,,(t) dt .. 

at each point. Geometrically this means that C has everywhere a continuously turning 
tangent, as follows directly from the definition 

• . z(t + .It) - :(1) 
z{t) = hm 

~t~O !1t 
(Fig. 336). 

Here we use a dot since a prime' denotes the derivative with respect to z. 

Definition of the Complex Line Integral 
This is similar to the method in calculus. Let C be a smooth curve in the complex plane 
given by (1), and let fez) be a continuous function given (at least) at each point of C. We 
now subdivide (we "partition") the interval a ~ t ~ b in (1) by points 

where to < tl < ... < tn' To this subdivision there corresponds a subdivision of C by 
points 

Zn-l' Zn (= Z) (Fig. 337). 

/ z(t) 

o 
Fig. 336. Tangent vector i(t) of a curve C in the 

complex plane given by z(t). The arrowhead on the 
curve indicates the positive sense (sense of increasing t). 

Z 
m 

Fig. 337. Complex line integral 

z 

where Zj = :(tj)' On each portion of subdivision of C we choose an arbitrary point, say, 
a point (1 between Zo and 21 (that is, (1 = z(t) where t satisfies to ~ t ~ t1), a point (2 

between '::1 and 22' etc. Then we form the sum 

n 

(2) where 
m=1 

We do this for each 11 = 2, 3, ... in a completely independent manner. but so that the 
greatest 1!11ml = It.m - tm- 1 1 approaches zero as n ~ 00. This implies that the greatest 
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ILlZmI also approaches zero. Indeed, it cannot exceed the length of the arc of C from Zm-I 
to Zm and the latter goes to zero since the arc length of the smooth curve C is a continuous 
function of t. The limit of the sequence of complex numbers S2, S3 • ... thus obtained is 
called the line integral (or simply the imegral) of f(z) over the path of integration C with 
the oriemarion given by (l). This line integral is denoted by 

(3) I f(::) d::., 
c 

or by f f(z) d: 
c 

if C is a closed path (one whose terminal point Z coincides with its initial point ::'0, as for 
a circle or for a curve shaped like an 8). 

General Assumption. All paths of integration for complex line integrals are assllmed to 
be piecewise smooth, that is. they consist offinitely many smooth curves joined end to end. 

Basic Properties Directly Implied by the Definition 
1. Linearity. Integration is a linear operation, thar is, we can imegrare sums term by 

term and can take out constant factors from under the imegral sign. This mean~ that 
if the integrals of f 1 and .f 2 over a path C exist, so does the integral of kIf 1 + k2f 2 

over the same path and 

2. Sense reversal in integrating over the same path, from ::'0 to Z (left) and from Z to 
Z.o (right), introduces a minus sign as shown, 

(5) 
z Zo I f(:) dz = - I fez) dz. 

Zo z 

3. Partitioning of path (see Fig. 338) 

(6) I f(;:) d:: = I f(::.) d::. + I f(z) dz. 
C C1 C2 

Fig. 338. Partitioning of path [formula (6)] 

Existence of the Complex Line Integral 
Our assumptions that f(:) is continuous and C is piecewise smooth imply the exi'itence 
of the line integral (3). This can be seen as follows. 

As in the preceding chapter let us write f(z) = H(X. y) -t iv(x, y). We also set 

and 
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THEOREM 1 

CHAP. 14 Complex Integration 

Then (2) may be written 

(7) Sn = .L (u + iv)(·.hm + i!l.Ym) 

where u = u«(m, 7]",). v = V«(7m 7]",) and we sum over I7l from 1 to n. Performing the 
multiplication. we may now split up Sn into four sums: 

These sums are real. Since f is continuous, u and v are continuous. Hence, if we let n 
approach infinity in the aforementioned way, then the greatest !l.xm and .lYm will approach 
zero and each sum on the right becomes a real line integral: 

(8) lim SII = f f(z) dz = f u dx - f v dy + i [f u dy + f v dX] . 
n--+oc C C C C C 

This shows that under our assumptions on f and C the line integral (3) exists and its value 
is independent of the choice of subdivisions and intermediate poinb (m' • 

First Evaluation Method: 
Indefinite Integration and Substitution of Limits 
This method is the analog of the evaluation of definite integrals in calculus by the 
well-known formula 

b f f(x) dx = F(b) - F(a) [F' (x) = f(x)]. 
a 

It is simpler than the next method. but it is suitable for analytic functions only. To formulate 
it, we need the following concept of general interest. 

A domain D is called simply connected if every simple closed curve (closed curve 
without self-intersections) encloses only points of D. 

For instance, a circular disk is simply connected, whereas an annulus (Sec. 13.3) is not 
simply connected. (Explain!) 

Indefinite Integration of Analytic Functions 

Let f(;:.) be analytic in a simply connected domain D. Then there exists an 
indefinite integral of f(::.) in the domain D, that is, an analytic function F(::.) such that 
F' (::.) = f(::.) in D, and for all paths in D joining two poims 20 and ZI in D we have 

(9) f'f(z) dz = F(ZI) - F(zo) [F' (z) = f(z)]. 
20 

(Note that we can write 20 and ::'1 instead of C, since we get the same value for all 
those C from ::'0 to 21') 
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EXAMPLE 1 

EXAMPLE 2 

This theorem will be proved in the next section. 
Simple connectedness is quite essential in Theorem I, as we shall ~ee in Example 5. 
Since analytic functions are our main concern, and since differentiation formulas will often 

help in finding F(z) for a given fez) = F' (z), the present method is of great practical interest. 
If fez) is entire (Sec. 13.5), we can take for D the complex plane (which is certainly 

simply connected). 

f1+i 1 11+ i 1 2 2 
_2 do = - Z3 = - (1 + i)3 = - - + - i 

0-'3 0 3 33 • 
I

7Ti 

I ' .cos::: d::: = sin::: To • = 2 sin 7ri = 2i sinh r. = 23.097i 
-m -m • 
S-3m IS - 3 m 

E X AMP L E 3 f ez/2 d::: = 2eZ
/
2 = 2(e4-37Ti/2 - e4 + mt2) = 0 

8+m 8+m 

since eZ is periodic with period 2r.i. • 
E X AMP L E 4 I~i ~ = Ln i - Ln (-i) = i; - (- i;) = ir.. Here D is the cumplex plane without 0 and the negative 

THEOREM 2 

real axis (where Ln::: is not analytic). Obviously, D is a simply connected domain. • 

Second Evaluation Method: 
Use of a Representation of a Path 
This method is not restricted to analytic functions but applies to any continuous complex 
function. 

Integration by the Use of the Path 

Let C be a piecewise smooth path, represented by Z = z(t), where a 3 t 3 b. Let 
fez) be a continuous function on C. Then 

(10) 
b f f(;:;) d: = f f[z(t)]Z(t) dt 

C a 

PROOF The left side of (10) is given by (8) in tenns of real line integrals, and we show that the 
right side of (10) also equals (8). We have;:; = x + iy, hence z = x + iY. We simply 
wnte II for u[x(t), y(t)] and v for v[x(t). y(t)]. We also have d"t = x dt and dy = Y dt. 
Consequently, in (10) 

b b f f[z(t)]Z(t) dt = f (u + iv)(.t + (),) dt 
a a 

= f [u dx - v dy + i(u dy + V dx)] 
C 

= f (u dx - V dy) + if (u dy + V dx). 
c c • 
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COMMENT. In (7) and (8) of the existence proof of the complex line integral we referred 
to real line integrals. If one wants to avoid this, one can take (to) as a definition of the 
complex line integraL 

Steps in Applying Theorem 2 

(A) Represent the path C in the form z(t) (a ~ t ~ b). 

(B) Calculate the derivative z(t) = dz/dt. 

(C) Substitute zlt) for every z in .«z) (hence x(t) for x and y(t) for y). 

(D) Integrate .f[z(t)]z(t) over t from a to b. 

E X AMP L E 5 A Basic Result: Integral of 1/z Around the Unit Circle 

We show that by integrating 1I~ counterclockwise around the unit circle (the circle of radius I and center 0; see 
Sec. 13.3) we obtain 

(11) J, dz = 21Ti 
Jc z 

This is a vel)' importalll result that we shall need quite often. 

Solutioll. (A) We may represent the unit circle C in Fig. 327 of Sec. 13.3 by 

(C the unit circle, 
counterclockwise). 

z(t) = cos T + i sin r = eit 
(0 ~ r ~ 27T). 

so that counterclockwise integration corresponds to an increase of t from 0 to 27T. 

(B) Differentiation gives :(t) = ieit (chain rule!). 

(C) By substitution. f(~(t) = 1I~(t) = e -it. 

(D) From (10) we thus obtain the result 

f dz f2.,,-.. f2"'-
- = e -'tie't dt = i dt = 27Ti. 

c zoo 

Check this result by using ~(tl = cos t + i sin t. 
Simple cOllllectedlless is esselltial ill Tlzeorem 1. Equation (9) in Theorem I gives 0 for any closed path 

because then ;:1 = ;:0, so that F(;:1) - F(;:o) = O. Now 1/;: is not analytiC at z = O. But any simply connected 
domain containing the unit circle must contain ~ = 0, so that Theorem I does not apply-it is not enough that 
liz is analytic in an annulus. say. ~ < Izl < i, because an annulus is not simply connected! • 

E X AMP L E 6 Integral of 1/z m with Integer Power m 

Let fez) = (z - :Co)m where m is the integer and ;:0 a constant. Integl'ate counterclockwise around the circle C 
of radius p with center at ~o (Fig. 339). 

y 

x 

Fig. 339. Path in Example 6 
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Solutioll. We may repre,ent C in the form 

:e(t) = Zo + p(cos t + i sin t) = :0 + peit 
(0 "'" t "'" 2'IT). 

Then we have 

dz = ipi t dt 

and obtain 

By the Euler formula (5) in Sec. 13.6 the right side equals 

[ 

2w 2w ] 

ip>n+l fo COS(n1+l)tdt+if
o 

sin(m+l)rdt . 

If 111 = - I. we have pm+l = I, cos 0 = 1, sin 0 = O. We thus obtain 2'ITi. For integer nI '* 1 each of the two 
integrals is zero because we integrate over an interval of length 2'IT, equal to a period of sine and cosine. Hence 
the result is 

(12) 
(m = -1), 

(111 *" -) and integer). • 
Dependence on path. Now comes a very important fact. If we integrate a given function 
J(z) from a point Zo to a point Zl along different paths, the integrals will in general have 
different values. In other words. a complex lille illtegral depellds Ilot ollly Oil the elldpoillts 
o/the path but ill gelleral also Oil the path itself. The next example gives a first impression 
of this, and a systematic discussion follows in the next section. 

E X AMP L E 7 Integral of a Nonanalytic Function. Dependence on Path 

Integrate f(:) = Re: = " from 0 to I + 2i (a) along C* in Fig. 340, (b) along C consisting of C1 and C2· 

y 

2 z=1+2i 
I 

I 
I 

I 

C'I 
" C

z 
I 

I 

" C
1 

x 

Fig. 340. Paths in Example 7 

Solutioll. (a) C* can be represented by z(t) = r + 2it (0 "'" t"", I). Hence z(t) = I + 2i and f[z(t)] = xCt) = t 
on C*. We now calculate 

1 

f Re z d::: = f t(l + 2i) dt = ~(I + 2i) = ! + i. 
c* 0 

(b) We now have 

C1: z(t) = t. 

C2: Zll) = I + it, 

itt) = I, 

~(t) = i, 

f(::(t)) = x(t) = t 

f(zv» = X(I) = 1 

(0 "'" t "'" 1) 

(0"", t"", 2). 
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Using (6) we calculate 

1 2 f Re.: dz = f Re:: dz + f Re:: dz = f t dt + fl. i dt = ~ + 2i. 
C C 1 C2 0 0 

Note that this Tesult diffeTs from the result in (a). • 
Bounds for Integrals. ML -Inequality 
There will be a frequent need for estimating the absolute value of complex line integrals. 
The basic formula is 

(13) II/(z) dzl ~ ML (ML-inequality); 

L is the length of C and M a constant such that If(z) 1 ~ M everywhere on C. 

PROOF Taking the absolute value in (2) and applying the generalized inequality (6*) in Sec. 13.2. 
we obtain 

EXAMPLE 8 

'~ 
Fig.341. Path in 

Example 8 

Now ILlZml is the length of the chord whose endpoints are Z",,-l and Zm (see Fig. 337 on 
p. 638). Hence the sum on the right represents the length L * of the broken line of chords 
whose endpoints are zo, Zl, •.• , Zn (= Z). If n approaches infinity in such a way that the 
greatest ILltml and thus ILlZ'>n1 approach zero, then L * approaches the length L of the curve 
C, by the definition of the length of a curve. From this the inequality (13) follows. • 

We cannot see from (13) how close to the bound ML the actual absolute value of the 
integral is, but this will be no handicap in applying (13). For the time being we explain 
the practical use of (13) by a simple example. 

Estimation of an Integral 

Find an UppeT bound fOT the absolute value of the integral 

C the straight-line segment from 0 to I + i. Fig. 341. 

Solution. L = V2 and If(z) 1 = Iz21 ~ 2 on C gives by (13) 

I Ic Z2 dz I ~ 2V2 = 2.8284. 

I 2 2 I 2 The absolute value of the imegral is - - + - i = - Vz = 0.9428 (see Example I). 
333 • 

Summary on Integration. Line integrals of .Hz) can always be evaluated by (10), using 
a representation (I) of the path of integration. If f(z) is analytic, indefinite integration by 
(9) as in calculus will be simpler. 
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. ..... .- . - --.. --- - ....... 
11-91 PARAMETRIC REPRESENTATIONS 
Find and sketch the path and its orientation given by: 

1. zU) = (l + 3i)t (1 ~ t ~ 4) 

2. :.:(1) = 5 - 2it (- 3 ~ 1 ~ 3) 

3. zU) = 4 + i + 3eit (0 ~ t ~ 27T) 

4. z(t) = } + i + e-.,.it (0 ~ 1 ~ 2) 

5. z(t) = eit (0 ~ t ~ 7T) 

6. :.:(1) = 3 + 4i + 5eit (7T ~ 1 ~ 27T) 

7. :.:(1) = 6 cos 21 + 5i sin 2t (0 ~ T ~ 7T) 

8. :.:(t) = I + 2t + 8il2 (-1 ~ 1 ~ 1) 

9. :.:(t) = t + !it3 (-1 ~ 1 ~ 2) 

110-181 PARAMETRIC REPRESENTATIONS 

Sketch and represent parametrically: 

10. Segment from I + i to 4 - 2i 

11. Unit circle (c1ocl\.wise) 

12. Segment from a + ib to c + id 

13. Hyperbola xy = 1 from I + i to 4 + ~i 
14. Semi-ellipse x 21a2 + y21b2 = 1. Y ~ 0 

15. Parabola y = 4 - 4x 2 (-I ~ x ~ 1) 

16. I:.: - 2 + 3il = 4 (counterclockwise) 

17. Iz + a + ibl = r (clockwise) 

18. Ellipse 4(x - 1)2 + 9(y + 2)2 = 36 

119-291 INTEGRATION 

Integrdte by the first method or state why it does not apply 
and then use the second method. (Show the details of your 
work.) 

19. f Re:.: d:.:, C the shortest path from 0 to I + i 
c 

20. f Re z dz, C the parabola y = x2 from 0 to I + i 
c 

21. f e2z d:.:, C the shonest path from 7Ti to 27Ti 
c 

22. f sin z dz, C any path from 0 to 2i 
c 

23. f cos2 
:.: d:.: from -7Ti along Izl = 7T to 7Ti in the right 

c 
half-plane 

24. f (z + [1) dz, C the unit circle (counterclockwise) 
c 

25. f cosh 4:.: d:.:, C any path from - 7Ti/8 to 71i/8 
c 

645 

26. f z dz, C from -} + i along the parabola l' = x 2 to 
C 

I + i 

27. f sec2 
:.: d:.:, C any path from 7T/4 to 7Ti14 

c 

28. f Tm Z2 dz counterclockwise around the triangle with 
c 

vertices:.: = 0, I, i 

29. f :.:ez2/2 d:.:, C from i along the axes to I 
c 

30. (Sense reversal) Verify (5) for fez) = Z2, where Cis 
the segment from -1 - i to I + i. 

31. (Path partitioning) Verify (6) for f(:.:) = 11:::: and C1 

and C2 the upper and lower halfs of the unit circle 

32. (ML-inequality) Find an upper bound of the absolute 
value of the integral in Prob. 19. 

33. (Linearity) Illustrate (4) with an example of your own. 
Prove (4). 

34. TEAM PROJECT. Integration. (a) Comparison. 
Write a short repOit comparing the essential points of 
the two integration methods. 

(b) Comparison. Evaluate I/(:::) d::: by Theorem l 

and check the result by Theorem 2, where: 

(i) f(::.) = ::4 and C is the semicircle Izi = 2 from 
- 2i to 2i in the right half-plane, 

(ii) f(:.:) = e2z and C is the shonest path from 0 
to 1 + 2i. 

(e) Continuous deformation of path. Experiment 
with a family of paths with common endpoints, say, 
z(t) = 1 + ia sin t, 0 ~ t ~ 71. with real parameter a. 
Integrate nonanalytic functions (Re:c, Re (:.:2), etc.) and 
explore how the result depends on a. Then take analytic 
functions of your choice. (Show the details of your 
work.) Compare and comment. 

(d) Continuuus deformation of path. Choose 
another family. for example. semi-ellipses 
z(t) = a cos 1 + i sin I, -7T/2 ~ t ~ 71'/2, and 
experiment as in (c). 

35. CAS PROJECT. Integration. Write programs for the 
two integration methods. Apply them to problems of 
your choice. Could you make them into a joint program 
that also decides which of the two methods to use in a 
given case? 
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14.2 Cauchy's Integral Theorem 
We have just seen in Sec. 14.1 that a line integral of a function fez) generally depends 
not merely on the endpoints of the path, but also on the choice of the path itself. This 
dependence often complicates situations. Hence conditions under which this does not 
occur are of considerable importance. Namely. if .Hz) is analytic in a domain D and D is 
simply connected (see Sec. 14.1 and also below), then the integral will not depend on the 
choice of a path between given points. This result (Theorem 2) follows from Cauchy's 
integral theorem. along with other basic consequences that make Cauchy's integral 
theorem the most importallt theorem in this chapter and fundamental throughout complex 
analysis. 

Let us begin by repeating and illustrating the definition of simple connectedness 
(Sec. 14.1) and adding some more details. 

1. A simple closed path is a closed path (Sec. 14.1) thaJ does not intersect or touch 
itself (Fig. 342). For example, a circle is simple, but a curve shaped like an 8 is not 
simple. 

( 
\ 

Simple Simple Not simple Not simple 

Fig. 342. Closed paths 

2. A simply connected domain D in the complex plane is a domain (Sec. 13.3) such 
that every simple closed path in D encloses only points of D. Examples: The interior 
of a circle ("open disk"). ellipse. or any simple closed curve. A domain that is not 
simply connected is called mUltiply connected. Examples: An annulus (Sec. 13.3), 
a disk without the center, for example, 0 < Izl < 1. See also Fig. 343 . 
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' ..... _----'" 
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Fig. 343. Simply and multiply connected domains 

More precisely, a bounded domain D (thal is, a domain that lies entirely in some circle about the origin) is 
called p-fold connected if its boundary consists of p closed connected sets without common points. These sets 
can be curves, segments, or single points (such as z = 0 for 0 < Izl < I. for which p = 2). Thus, D has p - I 
"holes", where "hole" may also mean a segment or even a single point. Hence an annulus is doubly connected 
(p = 2). 
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THEOREM 1 Cauchy's Integral Theorem 

Iff(z) is analytic in a simply connected domain D. tllenfor every simple closed path 
C in D. 

(1) f fez) dz = O. 
c 

See Fig. 344. 

------- ... - ... "/'-0 " ,,-' \ 
-' -' I 

,,-' I 
/ / 

: D C ,,/ 

" ------------' 
..... _----

Fig. 344. Cauchy's integral theorem 

Before we prove the theorem. let us consider some examples in order to really understand 
what is going on. A simple closed path is sometimes called a colltour and an integral over 
such a path a contour integral. Thus, (1) and our examples involve contour integrals. 

E X AMP L E 1 No Singularities (Entire Functions) 

fez dz = O. 
c 

f cos zdz = 0, 
c 

for any closed path, since these functions are entire (analytic for all ~). 

E X AMP L E 2 Singularities Outside the Contour 

f sec ~d;: = O. 
c 

J, d::. 
Jc <.2 + 4 = 0 

(n = 0, 1 .... ) 

• 

where C is the unit circle, sec z = IIcos <. is not analytic at ;;: = ± 7rf2, ±37Tf2 • ... , but all these points lie 
outside C; none lies on C or inside C. Similarly for the second integral, whose integrand is not analytic at 
z = ::':2i outside C. • 

E X AMP L E 3 Nonanalytic Function 
2,,-f:: d;:. = I e-itiit dt = 27ri 

C 0 

where C: ~(t) = eit is the unit circle. This does not contradict Cauchy's theorem because f(z) = :: is not 
analytic. • 

E X AMP L E 4 Analyticity Sufficient, Not Necessary 

J, dz = U r 7
2 

C~ 

where C is the unit circle. This result does not follow from Cauchy'~ theorem. because f(::;) = 1/;:.2 is not analytic 
at z = O. Hence the condition that f be analytic ill D is sujficiellf rather thall neces.mr\' for ( I) to be true. • 
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E X AMP L E 5 Simple Connectedness Essential 

J, d: r --=- = 27ri 
c -

for counterclockwise imegrarion around rhe unit circle (see Sec. 14.1). C lies in the annulus ~ < 1:1 < ~ where 
If: is analytic. but this domain is not simply connected. so that Cauchy"s theorem cannot be applied. Hence the 
condition that tile doma;'1 D be simply connected is essential. 

In other word,. by Cauchy's theorem. if II:) is analytic on a simple closed path C and everywhere inside C, 
with no exception. not even a single point. then (I) holds. The point that causes trouble here is : = 0 where If: 
is not analytic • 

PROOF Cauchy proved his integral theorem under the additional assumption that the derivative 
f' (z) is continuous (which is true. but would need an extra proof). His proof proceeds as 
follows. From (8) in Sec. 14.1 we have 

f f(z) dz = f (u dx - v dy) + i f (u dy + v dx). 
c c c 

Since .f(z) is analytic in D, its derivative .f' (z) exists in D. Since .f' (z) is assumed to be 
continuous, (4) and (5) in Sec. 13.4 imply that u and v have continuous partial derivatives 
in D. Hence Green's theorem (Sec. 10.4) (with u and -v instead ofF! and F2 ) is applicable 
and gives 

f (u dx - v dy) = I I (-~ - ~) dr dy 
C R ax a) 

where R is the region bounded by C. The second Cauchy-Riemann equation (Sec. 13.4) 
shows that the integrand on the right is identically zero. Hence the integral on the left is 
zero. In the same fashion it follows by the use of the first Cauchy-Riemann equation that 
the last integral in the above formula is zero. This completes Cauchy's proof. • 

Goursat's proof without the cOllditioll that f' (z) is cOlltillllOUS1 is much more 
complicated. We leave it optional and include it in App. 4. 

Independence of Path 
We know from the preceding section that the value of a line integral of a given function 
.f(z) from a point Z1 to a point Z2 will in general depend on the path C over which we 
integrate, not merely on Z1 and Z2' It is imp0l1ant to characterize situations in which this 
difficulty of path dependence does not occur. This task suggests the following concept. 
We call an integral of .f(z) independent of path in a domain D if for every ::::1, Z2 in D 
its value depends (besides on f(::::), of course) only on the initial point ::::1 and the terminal 
point Z2, but not on the choice of the path C in D [so that every path in D from Z1 to ::::2 
gives the same value of the integral of f(z)]. 

ItDOUARD GOURSAT (1858-1936). French mathematician. Cauchy published rhe theorem in 1825. The 
removal of that condition by GourSal (see Transactions Amer. Math. Soc.. vol. I. 1900) is quite important. for 
instance, in connection with the fact thai derivatives of analytic functions are also analytic. as we shall prove 
soon. Goursat also made important contributions to PDEs. 
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THEOREM 2 Independence of Path 

If fez) is analytic in a simply connected domain D, then the integral of .f(z) is 
independent of path in D. 

PROOF Let ZI and Z2 be any points in D. Consider two paths C1 and C2 in D from Zl to Z2 without 
further common points, as in Fig. 345. Denote by ci the path C2 with the orientation 
reserved (Fig. 346). Integrate from :::1 over C1 to ;:2 and over C~ back to Zl' This is a 
simple closed path, and Cauchy's theorem applies under our assumptions of the present 
theorem and gives zero: 

(2') I f dz + I f dz = 0, 
e l c~ 

thus I f dz = - I f dz. 
C, c,; 

But the minus sign on the right disappears if we integrate in the reverse direction, from 
ZI to Z2, which shows that the integrals of fez) over C1 and C2 are equal. 

(2) I fC:;) dz = I .f(z) dz 
c, c, 

(Fig. 345). 

This proves the theorem for paths that have only the endpoints in common. For paths that 
have finitely many further common points, apply the present argument to each "loop" 
(portions of C1 and C2 between consecutive common points; four loops in Fig. 347). For 
paths with infinitely many commOn points we would need additional argumentation not 
to be presented here. • 

Fig. 345. Formula (2) Fig. 346. Formula (2') 

Principle of Deformation of Path 

Fig. 347. Paths with more 
common points 

This idea is related to path independence. We may imagine that the path C2 in (2) was 
obtained from C1 by continuously moving C1 (with ends fixed!) until it coincides with 
C2 . Figure 348 shows two of the infinitely many intermediate paths for which the integral 
always retains its value (because of Theorem 2). Hence we may impose a continuous 
deformation of the path of an integral, keeping the ends fixed. As long as our deforming 
path always contains only points at which .f(z) is analytic, the integral retains the same 
value. This is called the principle of deformation of path. 
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Fig. 348. 

c) ------ ... 
---~.... ...." , , 

" \ , \ , \ 
\ \ 
\ I 

... \ I 
.............. \1 

2) 

Continuous deformation of path 

E X AMP L E 6 A Basic Result: Integral of Integer Powers 

THEOREM 3 

From Example 6 in Sec. 14.1 and the principle of deformation of path it follows that 

(3) 
{

2m f (z - zor d" = 0 
(m = -I) 

(m '* - I and integer) 

for counterclockwise integration around allY simple closed path cOlltaillillg Zo ill its illterior. 
Indeed. the circle Iz - .::01 = P in Example 6 of Sec. 14.1 can be continuously defonned in two steps into a path 

as just indicated. namely. by first defomling. say. one semicircle and then the other one. (Make a sketch). • 

Existence of Indefinite Integral 
We shall now justify our indefinite integration method in the preceding section [formula 
(9) in Sec. 14.1]. The proof will need Cauchy's integral theorem. 

Existence of Indefinite Integral 

If f(::.) is analytic in a simply c01lnected domain D, tben there exists an indefinite 
integral F(z) of f(z) in D-thus, F'(z) = f(z)-which is analytic in D, and for all 
paths in D joining any two points ::'0 alld ::'1 in D, the integral of f(z) from ::'0 to ZI 

call be evaluated by fOl1llula (9) in Sec. 14.1. 

PROOF The conditions of Cauchy's integral theorem are satisfied. Hence the line integral of f(z) 
from any Zu in D to any z in D is independent of path in D. We keep Zo fixed. Then this 
integral becomes a function of z. call if F(z}, 

(4) F(z) = r f(z*) dz* 
Zo 

which is uniquely detennined. We show that this F(z) is analytic in D and F' (z) = .f(z). 
The idea of doing this is as follows. Using (4) we form the difference quotient 

F(z + .lz) - F(z) 1 [Z+l1Z Z ] 1 z+!lz 

(5) ll.- = A I f(z*) dz* - I f(::.*) d::.* = A _ f f(z*) dz*. 
'-. LlZ Zo Zo Ll-<, Z 

We now ~ubtract f(z) from (5) and show that the resulting expression approaches zero as 
ll.z ~ O. The details are as follows. 
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We keep z fixed. Then we choose z + fl.z in D so that the whole segment with 
endpoints z and z + fl.z is in D (Fig. 349). This can be done because D is a domain, 
hence it contains a neighborhood of z. We use this segment as the path of integration 
in (5). Now we subtract fez). This is a constant because z is kept fixed. Hence we can 
write 

Z+.'1z z+.'1z J fez) dz* = fez) J dz* = fez) fl.z. Thus 
1 z+.'1z 

fez) = A J fez) dz*. 
tiZ z z z 

By this trick and from (5) we get a single integral: 

F(z + fl.z) - F(z) 1 f Z
+.'1Z . 

fl. - f(::.) = A [f(z*) - fez)] dz"'. 
z tiZ Z 

Since .f(z) is analytic, it is continuous. An E > 0 being given, we can thus find a 8 > 0 
such that I.f(z*) - f(z) 1 < E when Iz* - zl < 8. Hence. letting Ifl.zl < 8. we see that the 
ML-inequality (Sec. 14.1) yields 

I 
F(z + fl.z) - F(z) I 1 I f Z

+.'1Z I 
fl.z - fez) = Ifl.zl z [.f(z*) - fez)] d-;;* :S 

By the definition of limit and derivative, this proves that 

, . F(z + fl.z) - F(z) 
F (z) = hm = .f{z) . 

.'1z->O fl.::. 

Since Z is any point in D, this implies that F(z) is analytic in D and is an indefinite integral 
or antiderivative of f(z) in D, written 

F(z) = ff(z) dz. 

Also, if c' (z) = fez), then F' (z) - c' (z) ~ 0 in D; hence F(z) - C(z) is constant in D 
(see Team Project 26 in Problem Set 13.4). That is, two indefinite integrals of fez) can 
differ only by a constant. The latter drops out in (9) of Sec. 14.1, so that we can use any 
indefinite integral of fez). This proves Theorem 3. • 

-------- ..... 
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Fig. 349. Path of integration 
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Cauchy's I ntegral Theorem for 
Multiply Connected Domains 
Cauchy's theorem applies to multiply connected domains. We first explain this for a 
doubly connected domain D with outer boundary curve C1 and inner C2 (Fig. 350). If 
a function fez) is analytic in any domain D* that contains D and its boundary curves, we 
claim that 

(6) f fez) d::. = f fez) dz 
C 1 C2 

(Fig. 350) 

both integrals being taken counterclockwise (or both clockwise, and regardless of whether 
or not the full interior of C2 belongs to D*). 

Fig. 350. Paths in (5) 

PROOF By two cuts C\ and C2 (Fig. 351) we cut D into two simply connected domains Dl and 
D2 in which and on whose boundaries .Hz) is analytic. By Cauchy's integral theorem the 
integral over the entire boundary of Dl (taken in the sense of the arrows in Fig. 351) is 
zero, and so is the integral over the boundary of D 2 , and thus their sum. [n this sum the 
integrals over the cuts C 1 and C 2 cancel because we integrate over them in both 
directions-this is the key-and we are left with the integrals over C1 (counterclockwise) 
and C2 (clockwise; see Fig. 351); hence by reversing the integration over C2 (to 
counterclockwise) we have 

f fdz-f fd::;=O 
C 1 C 2 

and (6) follows. • 
For domains of higher connectivity the idea remains the same. Thus, for a triply connected 
domain we use three cuts C b C 2, C 3 (Fig. 352). Adding integrals as before, the integrals 
over the cuts cancel and the sum of the integrals over C1 (counterclockwise) and C2 , C3 

(clockwise) is zero. Hence the integral over C1 equals the sum of the integrals over C2 

and C3 , all three now taken counterclockwise. Similarly for quadruply connected domains, 
and so on. 

~ - Ldr~~c 
Cl'~~J.2 

D2 C
j 

Fig. 351. Doubly connected domain 

C 
I 

Fig. 352. Triply connected domain 
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CAUCHY'S INTEGRAL THEOREM 
APPLICABLE? 

Integrate f(::) counterclockwise around the unit circle. 
indicating whether Cauchy's integral theorem applies. 
(Show the details of your work.) 

1. f(::) = Re:: 2. f(::) = 11(3:: - 1Ii) 

3. f(::) = ez2
/2 4. f(::) = II: 

5. f(::) = tan::2 

7. f(::) = 11(::8 - 1.2) 

9. f(::) = 1/(21<:13) 

11 •. f(z) = .:2 cot .: 

6. f(::) = sec (::/2) 

8. f(::) = 1/(4z - 3) 

10. f(::) = l 

112-171 COMMENTS ON TEXT AND EXAMPLES 

12. (Singularities) Can we conclude in Example 2 that 
the integral of 11(::2 + 4) taken over (a) Iz - 21 = 2, 
(b) I:: - 21 = 3 is zero? Give reasons. 

13. (Cauchy's integral theorem) Velify Theorem 1 for 
the integral of ::2 over the boundary of the square 
with vertices I + i, -I + i. -I - i, and I - i 
(counterclockwise). 

14. (Cauchy's integral theorem) For what contours C will 
it follow from Theorem I that 

(a) f d:: = 0, 
c :: 

,.( cos ::: 
(b) 'f _6 _ _2 d:: = O. 

c- -

f 
elfz 

(c) -2-- d:: = O? 
c:: + 9 

15. (Deformation principle) Can we conclude from 
Example 4 that the integral is also zero over the contour 
in Problem 13? 

16. (Deformation principle) If the integral of a function 
fez) over the unit circle equals 3 and over the circle 
Izl = 2 equals 5, can we conclude that fez) is analytic 
everywhere in the annulus I < Izl < 2? 

17. (Path independence) Verify Theorem 2 for [he 
integral of cos:: from 0 to (l + i}7T(a) overthe shortest 
path. (b) over the x-axis to 7T and then straight up to 
(l + i)7T. 

18. TEAM PROJECT. Cauchy's Integral Theorem. 
(a) Main Aspects. Each of the problems in Examples 
1-5 explains a basic fact in connection with Cauchy's 
theorem. Find five examples of your own, more 
complicated ones if possible. each illustrating one of 
those facts. 

(b) Partial fractions. Write f(::) in terms of partial 
fractions and integrate it counterclockwise over the unit 
circle, where 

2:: + 3i 
(i) f(::) = _2 + 1 

- 4 

(ii) 

653 

z + I 
f(::) = -=---­

:;:2 + 2:: 

(c) Deformation of path. Review (c) and (d) of Team 
Project 34, Sec. 14.\. in the light of the principle of 
deformation of path. Then consider another family of 
paths with common endpoints. say, ::(t) = r + ia(r - (2). 

o ~ ( ~ 1. and experiment with the integration of analytic 
and nonanalytic functions of your choice over these paths 
(e.g., ::. 1m::. ::2, Re .:2, 1m Z2, etc). 

119-301 FURTHER CONTOUR INTEGRALS 

Evaluate (showing the details and using partial fractions if 
necessary) 

,.( d:: II 19. 'f 2- _ i . C the circle z = 3 (counterclockwise) 
c -

20. f tanh::: d::, C the circle Iz - !7Til = ~ (clockwise) 
c 

21. f Re 2::: d:;:, C as shown 
c 

c 

-1 

f 7z - 6 
22. _2 _ 2- d::, C as shown 

c~ -

1 x 

_--_c 

23.,.( 2 d:: , C as shown 
Jcz - I 

y 

x 

x 

,.( e2z 

24. 'f -4- d::. C consists of 1:::/ = 2 (clockwise) and /<:/ = f 
c o. 

(counterclockwise) 
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J: cos 7 

25. r ~ dz, C consists of Izl = 1 (counterclockwise) 
c (. 

J: d:: 
28. r -2-- , C: (a) Iz + il 

c:: + 1 
I, (b) Iz - il 

and Izi = 3 (clockwise) (counterclockwise) 

26. f Ln (2 + ::) d::, C the boundary of the square with 
c f sin:: I I 29. --. d:;., C: z - 4 - 2i = 5.5 (clockwise) 

c:: + 21 
vertices :!: 1, :!: i 

27. J: 2 d:: • C: (a) Izi 
Jcz + 1 

!. (b) Iz - il 3 
2: f tan (::/2) 

30. 4 d::., C the boundary of the square with 
cZ - 16 

(counterclockwise) veltices :!: 1, ~i (clockwise) 

14.3 Cauchy's Integral Formula 

THEOREM 1 

The most important consequence of Cauchy's integral theorem is Cauchy's integral 
formula. This formula is useful for evaluating integrals, as we show below. Even more 
important is its key role in proving the surprising fact that analytic functions have 
derivatives of all orders (Sec. 14.4), in esrablishing Taylor series representations 
(Sec. 15.4), and so on. Cauchy's integral formula and irs conditions of validity may be 
stated as follows. 

Cauchy's Integral Formula 

Let fez) be analytic il1 a simply connected domain D. Then for allY POi11T ':0 ill D 
alld any simple closed path C in D that encloses Zo (Fig. 353), 

J: f(::) r -_-_- dz = 27Tif(zo) 
C<· ---0 

(Cauchy's integral formula) (1) 

the integration being taken cuullterc!ockwise. Alternatively (for representing f(zo) 

by a contour integral, divide (I) by 27Ti), 

(1*) 
1 J: fez) 

f(zo) = -. r --. dz 
27Tl C Z - Zo 

(Cauchy's integral formula). 

PROOF By addition and subtraction, fez) = f(zo) + [fez) - fC2{)]. Inserting this into (l) on the 
left and taking the constant factor f(.::o) out from under the integral sign, we have 

(2) 

The first term on the right equals f(;:.o)· 27Ti (see Example 6 in Sec. 14.2 with 111 = - I). 
This proves the theorem. provided the second integral on the right is zero. This is what 
we are now going to show. Its integrand is analytic, except at Zoo Hence by (6) in 
Sec. 14.2 we can replace Cby a small circle K of radius p and center.::o (Fig. 354), without 
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c o 
K 

Fig. 353. Cauchy's integral formula Fig. 354. Proof of Cauchy's integral formula 

altering the value of the integral. Since f(~) is analytic, it is continuous (Team Project 26, 
Sec. 13.3). Hence an E > 0 being given, we can find aD> 0 such that 1ft.:) - f(~o)1 < E 

for all z in the disk Iz - 201 < o. Choosing the radius p of K smaller than 0, we thus have 
the inequality 

1 

fez) - f(zo) 1 < ~ 
Z - 20 P 

at each point of K. The length of K is 27fp. Hence, by the ML-inequality in Sec. 14.1, 

I
l f(z~ _- f_(20) d-:I < E 1... - - 27fp = 27fE. 

K "-.(.0 P 

Since E (> 0) can be chosen arbitrarily small, it follows that the last integral in (2) must 
have the value zero, and the theorem is proved. • 

E X AMP L E 1 Cauchy's Integral Formula 

l _ ~ d::. = 2'ITieZI = 2'ITie2 = 46.4268; Jc ~ 2 z~2 

for any contour enclosing ::'0 = 2 (since eZ is entire). and zero for any contour for which ::'0 = 2 lies outside (by 
Cauchy's integral theorem). • 

E X AMP L E 2 Cauchy's Integral Formula 

f Z3 - 6 f ~Z3 - 3 
-2--. dz = --1-· dz 

C Z - I C Z - 2' 

= 2'ITi[~::.3 - 3]1 
z~i/2 

'IT 
= "8 - 6'ITi (::'0 = li inside C) . • 

E X AMP L E 3 Integration Around Different Contours 

Integrate 

Z2 + 1 ::.2 + I 
g(z) = -- - -----

Z2 - 1 (::. + 1)(z - 1) 

counterclockwise around each of the four circles in Fig. 355. 
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Solution. g(::) is not anal)1ic at -I and L These are the points we have to watch for. We consider each 
circle separately. 

(a) The circle I:: - 11 = I encloses the point ::0 = 1 where g(;:J is not analytic. Hence in (1) we have to 
write 

thus 

and (I) gives 

;:2 + I 
g(::) =-­

Z2 - I <: + 1 

_2 + 1 
fez) = ~ + I 

z - 1 ' 

f Z2 + I [ Z2 + 1 ] 
-2-- dz = 27Tif(l) = 27Ti --- = 27Ti. 

c z - I z + I z-l 

lb) gives the same as (a) by the principle of deformation of path. 

(c) The function glz) is as before, but fez) changes because we must take Zo = -I (instead of 1). This gives 
a factor z - ~o = z + 1 in (1). Hence we must write 

z - 1 z + I ' 

thus 

Compare this for a minute with the previous expression and then go on: 

f c

2+1 [-2+IJ 
--2-- d;: = '27Tif(- I) = 27Ti ~ = -hi 

c:: - I - I z~-l 

(d) gives O. Why? • 
y 

x 

Example 3 

Multiply connected domains may be handled as in Sec. 14.2. For instance, if fez) is 
analytic on C1 and C2 and in the ring-shaped domain bounded by C1 and C2 (Fig. 356) 
and ~o is any point in that domain, then 

(3) 1 f f(~) I f fez) f(-)=- --d-+- --d-
-0 2· - 2· -.. m ~z-~ m ~z-~ 

where the outer integral (over C1) is taken counterclockwise and the inner clockwise, as 
indicated in Fig. 356. 
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c] 
Fig. 356. Formula (3) 

Our discussion in this section has illustrated the use of Cauchy's integral formula in 
integration. In the next section we show that the formula plays the key role in proving 
the surprising fact that an analytic function has derivatives of all orders, which are thus 
analytic functions themselves. 

::a-III',--

11-41 CONTOUR INTEGRATION 

Integrate (Z2 - 4)/(Z2 + 4) counterclockwise around the 
circle: 

1. Iz - il = 2 

3. Iz + 3il = 2 

2. Iz - 11 = 2 

4. Izl = 71"!2 

l ::!.iI CONTOUR INTEGRATION 

Using Cauchy's integral formula (and showing the details), 
integrate counterclockwise (or as indicated) 

,( 7 + 2 
5. :r : _ 2 dz., C- Iz - 11 = 2 

C ,. 

,( e3z 

6. :r -3 -. dz, C- Izl = 1 
C z - I 

f sinh rr;:; 
7. -2-- dz, c-Izl = I 

cZ - 3z 

,( dz I I 8. :r Z2 _ l' C: Z - 1 = 71"/2 
c 

,( dz 
9. :r Z2 - 1 . 

c 
C: Iz + 11 = 1 

10. ,( ~ dz, C- Iz - 2il = 4 
:rc z - 2z 

,( cosz 
11. :r -- dz, 

c 2z 
C: Izl = ~ 

,( tanz 
12. :r -- d;:;, C the boundary of the triangle with 

c z - i 
vertices 0 and ± 1 + 2i 

,( e-3 r.z 

13. :r --_ dz. 
c2z + I 

vertices ±1, ±i 

C the boundary of the square with 

f Ln (z + 1) 
14. 2 dz, C consists of Iz - 2il = 2 

c z + 1 
( counterclockwise) and Iz - 2il = ~ (clockwise) 

,( Ln (z. - 1) 
15. :r d;:;, C: Iz - 41 = 2 

c z-5 

f sm" 
16. 2 ~. d:., Cconsistsoflzl =3 (counterclockwise) 

cZ - 21Z 

and Izl = 1 (clockwise) 

f cosh2 z. 
17. 2 dz, C as in Prob. 16 

c(z-l-i)z 

18. Show that f (z - Z1)-\Z - Z2)-1 dz = 0 for a simple 
c 

closed path C enclosing Z1 and Z2, which are arbitrary_ 

19. CAS PROJECT. Contour Integration. Experiment 
to find out to what extent your CAS can do contour 
integration (a) by using the second method in Sec. 14.1, 
(b) by Cauchy's integral formula. 

20. TEAM PROJECT. Cauchy's Integral Theorem. 
Gain additional insight into the proof of Cauchy's 
integral theorem by producing (2) with a contour 
enclosing ;:;0 (as in Fig. 353) and taking the limit as in 
the text. Choose 

,( sin;:; 
(b) :r --1- dz, 

c z - 271" 

and (c) two other examples of your choice. 
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14.4 Derivatives of Analytic Functions 

THEOREM 1 

In this section we use Cauchy's integral formula to show the basic fact that complex 
analytic functions have derivatives of all orders. This is very surprising because it differs 
strikingly from the situation in real calculus. Indeed, if a real function is once 
differentiable. nothing follows about the existence of second or higher detivatives. Thus. 
in this respect, complex analytic functions behave much more simply than real functions 
that are once differentiable. 

The existence of those derivatives will result from a general integral formula, as follows. 

Derivatives of an Analytic Function 

If fez) is analytic in a domain D, then it has derivatives of all orders in D. which 
are then also analytic functions in D. The values of these derivatives at a point Zo 
in D are given by the fOl7llulas 

, 1 J. fez) 
f (zo) = -2 . r (7 _ 7 )2 dz 

7TI C ~ ,·0 

(l ') 

(I ") 

lind in general 

(1) 
n' f fez) 

tn)(Zo) = -2 . . d::. 
7TI C (z - zo)n+l 

(n = 1,2, ... ); 

here C is any simple closed path i11 D that encloses Zo and whose full interior belongs 
to D; and we integrate counterclockwise arollnd C (Fig. 357). 

Fig. 357. Theorem 1 and its proof 

COI\IMENT. For memorizing (I). it is useful to observe that these formulas are obtamed 
formally by differentiating the Cauchy formula (l *), Sec. 14.3, under the integral sign 
with respect to zoo 
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PROOF We prove (1 '), starting from the definition of the delivative 

f'(~ ) - I' f(zo + .6.z) - f(~) 
'0 - 1m 
~ "'2-->0 .6.z 

On the right we represent f(zo + .6.z) and f(zo) by Cauchy's integral formula: 

f(zo + .6.z) - f(zo) = _1_ [1 fez) dz - 1 ~ dZ] . 
.6.z 27Ti.6.z Jc z - (Zo + .6.z) Jc z - Zo 

We now write the two integrals as a single integral. Taking the common denominator 
gives the numerator f(z){z - Zo - [z - (zo + ilz)]} = fez) .6.z, so that a factor ilz drops 
out and we get 

f(zo + .6.z) - f(zo) = _1_ 1 fez) dz . 
.6.z 27Ti Jc (z - Zo - .6.z)(z - zo) 

Clearly, we can now establish (1') by showing that, as .6.z ---'> 0, the integral on the right 
approaches the integral in (1 '). To do this, we consider the difference between these two 
integrals. We can write this difference as a single integral by taking the common 
denominator and simplifying the numerator (as just before). This gives 

f _ !(z)_ _ dz - f ~z: 2 dz = f f(z).6.z 2 dz. 
c (z Zo .6..:.)(z zo) c (z ':'0) c (z - Zo - .6.z)(z - zo) 

We show by the ML-inequality (Sec. 14.1) that the integral on the right approaches zero 
as .6.z ---'> O. 

Being analytic, the function fez) is continuous on C, hence bounded in absolute value, 
say, If(z)1 ~ K. Let d be the smallest distance from Zo to the points of C (see Fig. 357). 
Then for all z on C, 

17 - 712> d2 
..... .....0 = , hence 

Furthermore, by the triangle inequality for all z on C we then also have 

d ~ Iz - zol = Iz - Zo - .6.;:: + .6.21 ~ Iz - Zo - .6.zl + l.6.zl· 

We now subtract lilzl on both sides and let l.6.zl ~ dl2, so that -lilzl ~ -d/2. Then 

id ~ d - l.6.zl ~ Iz - Zo - .6.zl· Hence 
2 

-:---------,- ::; -

Iz - Zo - .6.zl d 

Let L be the length of C. If l.6.zl ~ dl2, then by the ML-inequality 
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This approaches zero as !:::..Z ---,> O. Formula (1 ') is proved. 
Note that we used Cauchy's integral formula (1 *), Sec. 14.3, but if all we had known 

about f(zo) is the fact that it can be represented by (1 *), Sec. 14.3, our argument would 
have established the existence of the derivative t' (zo) of fez). This is essential to the 
continuation and completion of this proof, because it implies that (1") can be proved by 
a similar argument, with f replaced by f', and that the general formula (1) follows by 
induction. • 

E X AMP L E 1 Evaluation of Line Integrals 

From (1 '), for any contour enclosing the point 71"i (counterclockwise) 

f _c_o_s 2-.-:0
2 

dz = 271"i(cos Z)'I = -271"i sin 71"i = 271" sinh 71" 
c (z - m) z~.".i • 

E X AMP L E 2 From (1 "), for any contour enclosing the point - i we obtain by counterclockwise integration 

f. Z4 - 3z
2 

+ 6 4 2"1 2 r + ·3 dz = 71"i(z - 3z + 6) . = 71"i[12z - 61z~-i = -1871"i. 
c (Z I) z~-, • 

E X AMP L E 3 By (1'), for any contour for which 1 lies inside and ±2i lie out~ide (counterclockwise), 

f :z 2 dz = 271"i(-/-)'I 
c (z - 1) (z + 4) z + 4 z~l 

. e
z
(z2 + 4) - e

Z
2z I 6e71" . . 

= 271"1 2 2 = -- 1 = 2.0501. 
(z + 4) z~l 25 • 

Cauchy's Inequality. Liouville's and Morera's Theorems 
As a new aspect, let us now show that Cauchy's integral theorem is also fundamental in 
deliving general results on analytic functions. 

Cauchy's Inequality. Theorem I yields a basic inequality that has many applications. 
To get it, all we have to do is to choose for C in (1) a circle of radius r and center Zo and 
apply the ML-inequality (Sec. 14.1); with If(z)1 ~ M on C we obtain from (I) 

1 
(n) 7 1 - ~ If. fez) 71 :5= f Co) - 2 r (7 _ )n+l d_ 

7T c~ Zo 

This gives Cauchy'S inequality 

(2) 

To gain a first impression of the importance of this inequality, let us prove a famous 
theorem on entire functions (definition in Sec. 13.5). (For Liouville, see Sec. 5.7.) 
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THEOREM 2 Liouville's Theorem 

If an entire function is bounded in absolute value in the whole complex plane, then 
this function must be a constant. 

PROOF By assumption, If(z)1 is bounded, say, If(z)1 < K for all z. Using (2), we see that 
If' (zo)1 < Klr. Since fez) is entire, this holds for every r, so that we can take r as large 
as we please and conclude that f' (zo) = O. Since Zo is arbitrary, f' (z) = Ux + ivx = 0 
for all z (see (4) in Sec. 13.4), hence Ux = Vx = 0, and uy = Vy = 0 by the Cauchy-Riemann 
equations. Thus u = const, v = const, and f = u + iv = const for all z. This completes 

THEOREM 3 

~~ . 
Another very interesting consequence of Theorem 1 is 

Morera's2 Theorem (Converse of Cauchy's Integral Theorem) 

If fez) is continuous in a simply connected domain D and if 

(3) f fez) dz = 0 
c 

for every closed path in D, then fez) is analytic in D. 

PROOF In Sec. 14.2 we showed that if fez) is analytic in a simply connected domain D. then 

F(z) = r f(z*) dz* 
Zo 

is analytic in D and F' (z) = fez). In the proof we used only the continuity of fez) and the 
property that its integral around every closed path in D is zero; from these assumptions 
we concluded that F(z) is analytic. By Theorem 1, the derivative of F(z) is analytic, that 
is, fez) is analytic in D, and Morera's theorem is proved. • 

11-81 CONTOUR INTEGRATION 3. 
eZ cos Z 

4. 
cos z 

Imegrate counterclockwise around the circle Izl = 2. (n is 
a positive integer, a is arbitrary.) Show the details of your 
work. 

cosh 3z 
1. 

sin z 
2. 4 

(z - 7fil2) 

5. 

7. 

(z - 7f12)2 ?n+l 

sinh az Ln (z + 3) + cos z 

Z4 
6. 

(z + 1)2 

Zn eZ 

(z - a)n+l 
8. 

(z - a)n 

2GlACINTO MORERA (1856-190Y), Italian mathematician who worked in Genoa and Turin. 
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[9-131 INTEGRATION AROUND DIFFERENT 
CONTOURS 

Integrate around C. Show the details. 

(I + 2:::) cosz 
9. 2' C the unit circle. counterclockwise 

(2:: - 1) 

10. 
sin 4z 

( 4 
3 ' C consists of 1.:1 z - ) 5 (counterclockwise) 

and I:: - 31 = ~ (clockwise) 

tan 7rZ 
11. --2-' C the ellipse 16 x2 + v2 = L counterclockwise :: . 

e2z 

12. , C consists of Iz - i I = 3 ( counterclockwise) 
z(:: - 2i)2 

and Izl = 1 (clockwise) 

ez / 2 

13. (_ _ 4' C the circle I:: - 2 - i I = 3, counterclockwise _, a) 

14. TEAM PROJECT. Theory on Growth 

(a) Growth of entire functions. If fez) is not a 
constant and is analytic for all (finite) z, and Rand M 
are any positive real numbers (no matter how large), 
show that there exist values of z for which Izl > Rand 
If(z)1 > M. 

(b) Growth of polynomials. If fez) is a polynomial 
of degree n > 0 and M is an arbitrary positive real 
number (no matter how large), show that there exists 
a positive real number R such that If(z)1 > M for all 

Izl >R. 

(c) Exponential function. Show that fez) = eZ has 
the property characterized in (a) but does not have that 
characterized in (b). 

(d) Fundamental theorem of algebra. rf fez) is a 
po/ynDmial in z, IUlt a constant, then fez) = 0 for at 
least one value (If z. Prove this, using (a). 

15. (Proof of Theorem 1) Complete the proof of Theorem 
1 by performing the induction mentioned at the end. 

o .- S T ION SAN D PRO B L EMS 

1. What is a path of integration? What did we assume 
about paths? 

2. State the definition of a complex line integral from 
memory. 

3. What do we mean by saying that complex integration 
is a linear operation? 

4. Make a list of integration methods discussed. lllustrate 
each with a simple example. 

5. Which integration methods apply to analytic functions 
only? 

6. What value do you get if you integrate liz 
counterclockwise around the unit circle? (You should 
memorize this basic result.) If you integrate liz 2, 

1/z3, ... ? 

7. Which theorem in this chapter do you regard as most 
important? State it from memory. 

S. What is independence of path? What is the principle of 
deformation of path? Why is this important? 

9. Do not confuse Cauchy's integral theorem and Cauchy's 
integral formula. State both. How are they related? 

10. How can you extend Cauchy's integral theorem to 
doubly and triply connected domains? 

11. If integrating fez) over the boundary circles of an 
annulus D gives different values, can fez) be analytic 
in D? (Give reason.) 

12. Is I fJ(Z) dz I = fel f(::)1 dz? How would you find a 

bound for the integral on the left? 

13. Is Re J fez) dz = J Re fez) dz? Give examples. 
e e 

14. How did we use integral formulas for derivatives in 
integration? 

15. What is Liouville's theorem? Give examples. State 
consequences. 

116-301 INTEGRATION 
Integrate by a suitable method: 

16. 4z3 + 2z from - i to 2 + i along any path 

17. 5z - 3/z counterclockwise around the unit circle 

IS. :: + liz counterclockwise around I:: -I 3il = 2 

19. e2z from -2 + 37ri along the straight segment to 
-2 + 57ri 

20. e
z2

/(z - 1)2 counterclockwise around Izi = 2 

21. z1(z2 + 1) clockwise around Iz + il = 1 

22. Re:: from 0 to 4 and then vertically up to 4 + 3i 

23. cosh 4z from 0 to 2i along the imaginary axis 

24. eZ/z over C consisting of 1.::1 = I (counterclockwise) and 
Izl = ! (clockwise) 

25. (sin z)/z clockwise around a circle containing z = 0 in 
its interior 

26. 1m z counterclockwi~e around /:::1 = r 

27. (Ln z)/(z - 202 counterclockwise around /z - 2i/ = 1 

2S. (tan 7r:::)/(z - 1)2 counterclockwise around /z - 1/ = 0.2 

29. Izi + z clockwise around the unit circle 

30. (z - i)-3(Z3 + sin z) counterclockwise around any 
circle with center i 



Summary of Chapter 14 663 

Complex Integration 

The complex line integral of a function fez) taken over a path C is denoted by 

J fez) dz 
c 

f fez) 
c 

(1) or. if C is closed. also by (Sec. 14.1). 

If fez) is analytic in a simply connected domain D, then we can evaluate (1) as in 
calculus by indefinite integration and substitution of limits, that is, 

(2) J fez) dz = F(z1) - F(zo) 
c 

[F' (z) = fez)] 

for every path C in D from a point Zo to a point Z1 (see Sec. 14.1). These assumptions 
imply independence of path, that is, (2) depends only on Zo and Z1 (and on fez), 
of course) but not on the choice of C (Sec. 14.2). The existence of an F(z) such:that 
F' (z) = fez) is proved in Sec. 14.2 by Cauchy's integral theorem (see below).i 

A general method of integration, not restricted to analytic functions, uses the 
equation z = z(t) of C, where a ~ t ~ b, 

b J fez) dz = J f(z(t))z(t) dr 
c a 

(

0 = dZ) z . 
dl 

(3) 

Cauchy's integral theorem is the most important theorem in this chapter. It states 
that if fez) is analytic in a simply connected domain D, then for every closed path 
C in D (Sec. 14.2), 

(4) f fez) dz = o. 
c 

Under the same assumptions and for any Zo in D and closed path C in D containing 
<:0 in its interior we also have Cauchy's integral formula 

(5) 
1 ,( fez) 

f(zo) = -2 . r -- dz. 
7T'1 C Z - Zo 

Furthermore, under these assumptions fez) has derivatives of all orders in D that 
are themselves analytic functions in D and (Sec. 14.4) 

(n) _ n! ~ fez) 
f (zo) - -2 . r ( __ )n+1 dz 

7T'1 C Z '-0 

(6) (n = 1,2.· .. ). 

This implies Morera's theorem (the converse of Cauchy's integral theorem) and 
Cauchy's inequality (Sec. 14.4), which in turn implies Liouville's theorem that an 
entire function that is bounded in the whole complex plane must be constant. 
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Power Series, Taylor Series 

Complex power series, in particular, Taylor series, are analogs of real power and Taylor 
series in calculus. However, they are much more fundamental in complex analysis than 
their real counterparts in calculus. The reason is that power series represent analytic 
functions (Sec. 15.3) and, conversely, every analytic function can be represented by power 
series, called Taylor series (Sec. 15.4). 

Use Sec. 15.1 for reference if you are familiar with convergence tests for real series­
in complex this is quite similar. The last section (15 .5) on uniform convergence is optional. 

Prerequisite: Chaps. 13, 14. 
Sections thar may be omitted in a shorter course: 14.1, 14.5. 
References and Answers 10 Problems: App. I Part D, App. 2. 

15.1 Sequences, Series, Convergence Tests 

664 

In this section we define the basic concepts for complex sequences and series and discuss 
tests for convergence and divergence. This is very similar to real sequences and series in 
calculus. If you feel at home with the latter and want to take for granted that the ratio 
test also holds ill complex, skip this section and go to Sec. 15.2. 

Sequences 
The basic definitions are as in calculus. An ii!finite sequence or, briefly, a sequence, is 
obtained by assigning to each positive integer 11 a number Zn, called a term of the sequence, 
and is wlitten 

ZI' 22, ••• or or briefly 

We may also write 20, Z1, ••• or :::2, :::3, ••• or start with some other integer if convenient. 
A real sequence is one whose terms are real. 

Convergence. A convergent sequence 21. Z2, ••• is one that ha~ a limit c, written 

lim Zn = C or simply Zn~ c. 
n~oo 

By definition of limit this means that for every E > 0 we can find an N such that 

(1) Izn - cl < E for all 11 > N; 
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geometrically, all terms Zn with n > N lie in the open disk of radius E and center c 
(Fig. 358) and only finitely many terms do not lie in that disk. [For a real sequence, (1) 
gives an open interval of length 2E and real midpoint c on the real line; see Fig. 359.] 

A divergent sequence is one that does not converge. 

y : 

x C-E C C +E x 

Fig. 358. Convergent complex sequence Fig. 359. Convergent real sequence 

E X AMP L E 1 Convergent and Divergent Sequences 

The sequence {inln} = Ii, -112, -;/3, 114, ... } is convergent with limit O. 
The sequence {in} = [i. -I. -i. I .... } is divergent. and so is {zn} with zn = (1 + On. • 

E X AMP L E 2 Sequences of the Real and the Imaginary Parts 

THEOREM 1 

The sequence [zn) with zn = xn + iYn = I - Iln2 + ;(2 + 41n) is 6i, 3/4 + 4i, 8/9 + 1Oi/3, 15/16 + 3i, . 
(Sketch it.) It converges with the limit c = I + 2;. Observe that {x",} has the limit 1 = Re c and {Yn} has the 
limit 2 = 1m c. This is typical. It illustrates the following theorem by which the convergence of a complex 

sequence can be referred back to that of the two real sequences of the real parts and the imaginary parts. • 

Sequences of the Real and the Imaginary Parts 

A sequence Z1, Z2, ... , Zn, . .. of complex numbers Zn = Xn + iYn (where 
n = 1, 2, ... ) converges to c = a + ib if and only if the sequence of the real parts 
Xl> X2 , • • • converges to a and the sequence of the imaginary parts Yl> )'2' ... 

converges to b. 

PROOF Convergence zn ~ C = a + ib implies convergence Xn ~ a and Yn ~ b because if 
IZn - cl < E, then Zn lies within the circle of radius E about c = a + ib, so that 
(Fig. 360a) 

y 

": -!l~ 
b-E ~ 

I : I 

a-E a a+E 

Cal 

x 

IYn - bl < E. 

y 

b+~ -@ b 

b-~ 

I : I 

Eft a \ E 
a-:2 a+:2 

Chl 

Fig. 360. Proof of Theorem 1 

x 
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Conversely. if Xn ~ a and Yn ~ b as n ~ x. then for a given E > 0 we can choose N 
so large that, for every II > N, 

E 

Ix - al <-
n 2' 

E 

Iv - bl < - . . n 2 

These two inequalities imply that Zn = xn + iYn lies in a square with center c and side 
E. Hence, zn must lie within a circle of radius E with center c (Fig. 360b). • 

Series 
Given a sequence Z10 Z2, ... , ::m, ... , we may form the sequence of the sums 

and in general 

(2) 

sn is called the nth partial sum of the i/~fillite series or series 

(3) 
cc 

2: Zm = Z1 + Z2 + 
m~1 

(11 = 1. 2 ... '). 

The Z10 Z2, •.. are called the terms of the series. (Our usual summation letter is 11, 

unless we need 11 for another purpose, as here, and we then use m as the summation 
letter.) 

A convergent series is one whose sequence of partial sums converges. say, 

lim Sn = S. 
n--.oo 

Then we write 
x 

S = 2: ::m = ZI + 22 + 
m~1 

and call s the sum or value of the series. A series that is not convergent is called a divergent 
series. 

If we omit the terms of sn from (3), there remains 

(4) Rn = Zn+1 + Zn+2 + Zn+3 + 

This is called the remainder o/the series (3) after the term Zn' Clearly, if (3) converges 
and has the sum s, then 

thus 

Now Sn ~ S by the definition of convergence; hence Rn ~ O. In applications, when s is 
unknown and we compute an approximation Sn of s, then IRnl is the error, and Rn ~ 0 
means that we can make /Rn/ as small as we please, by choosing 11 large enough. 

An application of Theorem I to the partial sums immediately relates the convergence 
of a complex series to that of the two series of its real parts and of its imaginary parts: 
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THEOREM 2 

THEOREM 3 

Real and Imaginary Parts 

A series (3) with Zm = Xm + iYm converges and has the sum s = u + iv if and only 
ifx] + X2 + ... converges and has the sum u and Yt + Y2 + ... converges and 
has the sum v. 

Tests for Convergence and Divergence of Series 
Convergence tests in complex are practically the same as in calculus. We apply them 
before we use a series, to make sure that the series converges. 

Divergence can often be shown very simply as follows. 

Divergence 

if a series Zl + Z2 + ... converges, then lim Zm. = O. Hence if this does not hold, 
the series diverges. 

m,~oo 

PROOF [f Zl + Z2 + ... converges, with the sum s, then, since Zn, = Sm - Sm-1' 

THEOREM 4 

lim Zm = lim (sm - Sm-1) = lim Sm - lim Sm-1 = S - S = o. • 
rrz,--...:..x 71l __ 00 'H1 __ (X) -1'11-----"'00 

CAUTION! Zm ~ 0 is necessary for convergence but not sufficient, as we see from the 
harmonic series I + ! + ~ + f + ... , which satisfies this condition but diverges, as is 
shown in calculus (see, for example, Ref. [GRll] in App. I). 

The practical difficulty in proving convergence is that in most cases the sum of a series 
is unknown. Cauchy overcame this by showing that a series converges if and only if its 
partial sums eventually get close to each other: 

Cauchy's Convergence Principle for Series 

A series Zl + Z2 + ... is convergent if and only iffor every given E> 0 (no matter 
how small) we can find an N (which depends on E, in general) such that 

(5) Izn+1 + Zn+2 + ... + Zn+pl < E for every n > Nand p = 1. 2, ... 

The somewhat involved proof is left optional (see App. 4). 

Absolute Convergence. A series Zl + Z2 + ... is called absolutely convergent if the 
series of the absolute values of the terms 

co 

is convergent. 
If Zl + Z2 + ... converges but 1z11 + IZ21 + ... diverges, then the series Zl + Z2 + ... 

is called, more precisely, conditionally convergent. 
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E X AMP L E 3 A Conditionally Convergent Series 

THEOREM 5 

The series I - i + ! - ! + - ... converges. but only conditionally since the harmonic series diverges, as 
mentioned above (after Theorem 3). • 

If a series is absolutely convergent, it is convergent. 

This follows readily from Cauchy's principle (see Team Project 30), This principle also 
yields the following general convergence test. 

Comparison Test 

If a series::l + Z2 + ... is given and we C([nfind a convergent series bl + b2 + ... 
with nonnegative real fenns such that IZII ~ bI> IZ21 ~ b2 , .•• , then the given series 
converges, even absolutely. 

PROOF By Cauchy's principle, since bl + b2 + ... converges, for any given E > 0 we can find 
an N such that 

for every n > Nand p = 1,2, .... 

From this and IZII ;0; bI> 1z21 ~ b2 • .•. we conclude that for those n and p, 

Hence, again by Cauchy's principle, Izil + IZ21 + ... converges, so that Zl + Z2 + 
is absolutely convergent. • 

A good comparison series is the geometric series. which behaves as follows. 

THEOREM 6 Geometric Series 

The geometric series 

00 

(6*) 2, qm = I + q + q2 + ... 
m=O 

converges with the sum I/O - q) if Iql < I and diverges if Iql ~ 1. 

PROOF If Iql ~ 1. then !qml ~ I and Theorem 3 implies divergence. 
Now let Iql < l. The nth partial sum is 

sn = I + q + 
From this, 

On subtraction, most terms on the right cancel in pairs, and we are left with 
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THEOREM 7 

Now 1 - q =1= 0 since q =1= 1, and we may solve for S/l.' finding 

(6) 
1 - qn+l 

1 - q l-q l-q 

Since Iql < L the last tenn approaches zero as II ~ rx. Hence if Iql < L the series is 
convergent and has the sum 11(1 - q). This completes the proof. • 

Ratio Test 
This is the most important test in our further work. We get it by taking the geometric 
series as comparison series b1 + b2 + ... in Theorem 5: 

Ratio Test 

If a series <:1 + <:2 + ... with Zn =1= 0 (/1 
eve,)" n greater than some N, 

I, 2, ... ) has the property that for 

(7) I Z~:1 I ~ q < I (n > N) 

(where q < I is fixed), this series cunverges absolutely. If for every n > N, 

(8) I Z::1 I ~ 1 (n > N), 

the series diverges. 

PROOF If (8) holds. then IZn+ll ~ Iznl for n > N, so that divergence of the series follows from 
Theorem 3. 

If (7) holds, then Izn+ll ~ IZnl q for Il > N, in particular, 

etc., 

and in general, IZN+pl ~ IzN+llqP-l. Since q < 1, we obtain from this and Theorem 6 

Absolute convergence of Zl + <:2 + ... now follows from Theorem 5. • 
CAUTION! The inequality (7) implies IZn+llznl < 1, but this does not imply 
convergence, as we see from the harmonic series, which satisfies ::'n+llzn = n/(n + 1) < I 
for alln but diverges. 

If the sequence of the ratios in (7) and (8) converges, we get the more convenient 



670 CHAP. 1S Power Series, Taylor Series 

THEOREM 8 Ratio Test 

if a series Z1 + Z2 + ... with Zn * 0 (n = 1,2, ... ) is such that 2.! I Zn+1 I = L, 
~ ~ 

(a) If L < 1, the series converges absolutely. 

(b) if L > 1, the series diverges. 

(c) {f L = 1, the series may converge or diverge, so that the test fails and 
permits no conclusion. 

PROOF (a) We write kn = IZn+1/2nl and let L = I - b < 1. Then by the definition of limit, the 
kn must eventually get close to 1 - b, say, kn ~ q = 1 - ~b < 1 for alln greater than 
some N. Convergence of 21 + Z2 + ... now follows from Theorem 7. 

(b) Similarly, for L = I + c> 1 we have kn ;:::; I + ~c > I for alln > N* (sufficiently 
large), which implies divergence of Z1 + Z2 + ... by Theorem 7. 

(c) The harmonic series I + ~ + ~ + ... has Zn+1/Zn = 11/(11 + I), hence L = 1, and 
diverges. The series 

1 1 
1+ + + + + ... 

4 9 16 25 
has 

Zn+1 

hence also L = 1, but it converges. Convergence follows from (Fig. 361) 

I I fndX 1 
Sn = I + - + ... + - ~ 1 + - = 2 - - , 

4 n2 
1 X2 n 

so that S10 S2, ••• is a bounded sequence and is monotone increasing (since the terms of 
the series are all positive); both properties together are sufficient for the convergence of 
the real sequence S10 S2, •••. (In calculus this is proved by the so-called integral test. 
whose idea we have used.) • 

y 

\ 

Area 1 

o 2 3 4 x 

Fig. 361. Convergence of the series 1 + t + i + k + ... 

E X AMP L E 4 Ratio Test 

Is the following seIies convergent or divergent? (First guess, then calculate.) 

n=O 

(100 + 75i)n I 
L = 1 + (100 + 75;) + - (100 + 75;)2 + ... 

n! 2! 
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Solution. By Theorem 8, the series is convergent, since 

I 
Zn+l I = ;100 + 75il

n
+l/(n + I)! = 1100 + 75il 

Zn 1100 + 75il n
/11! 11 + 1 

125 

11 + 1 
L = O. • 

E X AMP L E S Theorem 7 More General than Theorem 8 

THEOREM 9 

Let an = il23n and bn = lI23n+ 1. Is the following selies convergent or divergent? 

1 iIi I 
ao + bo + al + b1 + ... = i + 2 + "8 + 16 + 64 + 128 + ... 

Solution. The ratios of the absolute values of successive terms are!,!,!,!, .... Hence convergence follows 
from Theorem 7. Since the sequence of these ratios has no limit, Theorem 8 is not applicable. • 

Root Test 
The ratio test and the root test are the two practically most important tests. The ratio test 
is usually simpler, but the root test is somewhat more general. 

Root Test 

If a series ::1 + Z2 + ... is such that for every n greater thall some N, 

(9) (n > N) 

(where q < I is .fixed), this series converges absolutely. If for infinitely mall)' n, 

(10) 

the series diverges. 

PROOF If (9) holds, then Iznl ~ qn < I for all n > N. Hence the series 1:::11 + IZ21 + ... converges 

THEOREM 10 

by comparison with the geometric series, so that the series ZI + Z2 + ... converges 
absolutely. If (10) holds, then Iznl ~ 1 for infinitely many n. Divergence Of::l +::2 + ... 
now follows from Theorem 3. • 

CAUTION! Equation (9) implies Vfz:J < 1, but this does not imply convergence, as 
we see from the harmonic series, which satisfies ~ < I (for n > 1) but diverges. 

If the sequence of the roots in (9) and (10) converges, we more conveniently have 

Root Test 

If a series ZI + Z2 + ... is such that lim Vfz:J = L, then: 
r~co 

(a) The series converges absolute( .. ' if L < 1. 

(b) The series diverges if L > 1. 

(c) ff L = 1, the test fails; that is, no conclusion is possible. 
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PROOF The proof parallels that of Theorem 8. 

(a) Let L = 1 - a* < 1. Then by the definition of a limit we have 

~ < q = 1 - ~a* < 1 for all n greater than some (sufficiently large) N*. Hence 
IZnl < qn < I for all n > N*. Absolute convergence of the series ZI + Z2 + ... now 
follows by the comparison with the geometric series. 

(b) If L > 1, then we also have VfzJ > I for all sufficiently large n. Hence IZnl > 
for those n. Theorem 3 now implies that ZI -f;, Z2 + ... diverges. 

(c) Both the divergent harmonic series and the convergent series 
1 + ~ +! t 116 + 2~ + .. give L = 1. This can be seen from (In n)/n ---7 0 and 

11-101 SEQUENCES 

Are the following sequences Zl, Z2, ... , Zn> ... bounded? 
Convergent? Find their limit points. (Show the details of 
your work.) 

1. Zn = (_l)n + il2" 

3. Zn = (-1)n/(n + i) 

5. Zn = Ln «2 + i)n) 

7. Zn = sin (n'1T/4) + in 

9. Zn = (0.9 + 0.li)2n 

2. Zn = e-nwi /4 

4. Zn = (I + i)n 

6. Zn = (3 + 4i)n/n! 

8. Zn = [(1 + 3i)rVioT 
10. Zn = tS + Si)-n 

11. Illustrate Theorem 1 by an example of your own. 

12. (Uniqueness of limit) Show that if a sequence 
converges. its limit is unique. 

13. (Addition) If ZI, Z2, ... converges with the limit [and 
ZI *, Z2 *, ... converges with the limit [*, show that 
Zl + Zl *':::2 + Z2*' ... converges with the limit [ + [*. 

14. (Multiplication) Show that under the assumptions of 
Prob. L3 the sequence ZlZ1*' Z2Z2*' ... converges 
with the limit U*. 

15. (Boundedness) Show that a complex sequence is 
bounded if and onl y if the two corresponding sequences 
of the real parts and of the imaginary parts are bounded. 

116-241 SERIES 

Are the following series convergent or divergent? (Give a 
reason.) 

(10 - ISi)n 
16.2:---­

n! 
n=O 

rye ·n 

18. :L -2-
1
--. 

n - 21 
n=O 

20.2: 
n=2 In n 

cc (-I)n(1 + 2i)2n+l 

17. ~o (2n + I)! 

CC I 
19.2: Vn 

n~l n 

o . 
e e(2/nHn n o . 

e • 

CC (n 1)3 
22. 2: -'- (1 + on 

n~O (3n)! 

n - i 
23.2: 

3n + 2i 
n=O 

25. What is the difference between (7) and just stating 

IZn+l/Znl < I? 

26. Illustrate Theorem 2 by an example of your choice. 

27. For what n do we obtain the term of greatest absolute 
value of the series in Example 4? About how big is it? 
First guess, then calculate it by the Stirling formula in 
Sec. 24.4. 

28. Give another example showing that Theorem 7 is more 
general than Theorem 8. 

29. CAS PROJECT. Sequences and Series. (a) Write a 
program for graphing complex sequences. Apply it to 
sequences of your choice that have interesting 
"geometrical" properties (e.g., lying on an ellipse, 
spiraling toward its limit, etc.). 

(b) Write a program for computing and graphing 
numeric values of the first n partial sums of a series 
of complex numbers. Use the program to experiment 
with the rapidity of convergence of series of your 
choice. 

30. TEAM PROJECT. Series. ta) Absolute convergence. 
Show that if a series converges absolutely, it is 
convergent. 

(b) Write a short report on the basic concepts and 
properties of series of numbers, explaining in each case 
whether or not they carry over from real series 
(discussed in calculus) to complex series, with reasons 
given. 
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CC n + i 

2: 2nn 
n=l 

(c) Estimate of the remainder. Let Izn+llznl ~ q < 1, 
so that the series Zl + Z2 + ... converges by the ratio 
test. Show that the remainder Rn = Zn+l + Zn+2 + ... 
satisfies the inequality IRnl ~ Izn+ll/(I - q). 

(d) Using (c), find how many terms suffice for 
computing the sum s of the series 

with an error not exceeding 0.05 and compute s to this 
accuracy. 
(e) Find other applications of the estimate in (c) 

15.2 Power Series 
Power series are the most important series in complex analysis because we shall see that 
their sums are analytic functions, and every analytic function can be represented by power 
series (Theorem 5 in Sec. 15.3 and Theorem 1 in Sec. 15.4). 

A power series in powers of z - Zo is a series of the form 

(1) 2: an(z - zo)n = ao + al(z - zo) + a2(Z - zoi + 
n~O 

where z is a complex variable, ao, ab . . . are complex (or real) constants, called the 
coefficients of the series, and zo is a complex (or real) constant, called the center of the 
series. This generalizes real power series of calculus. 

If Zo = 0, we obtain as a particular case a power series in powers of z: 

(2) 
GO 

2: anz
n = ao + alZ + a2z2 + 

n~O 

Convergence Behavior of Power Series 
Power series have variable terms (functions of z), but if we fix z, then all the concepts 
for series with constant terms in the last section apply. Usually a series with variable 
terms will converge for some z and diverge for others. For a power series the situation is 
simple. The series (l) may converge in a disk with center Zo or in the whole z-plane or 
only at zo0 We illustrate this with typical examples and then prove it. 

E X AMP L E 1 Convergence in a Disk. Geometric Series 

The geometric series 

converges absolutely if Izl < I and diverges if Izl ~ 1 (see Theorem 6 in Sec. 15.1). • 
E X AMP L E 1 Convergence for Every z 

The power series (which will be the Maclaurin series of eZ in Sec. 15.4) 

00 zn ,2 Z3 

L -, =1+z+-+-+'" 
n. 2! 3! 

n=O 
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is ab~olutely convergent for every ~, In fact. by the ratio test. for any fixed ::. 

as • 
E X AMP L E 3 Convergence Only at the Center. (Useless Series) 

THEOREM 1 

The following power series converges only at z = 0, but diverges for every z *" 0, as we shall show. 

00 

L n!zn = 1 + Z + 2::2 + 6;:3 + ... 
n=O 

In fact, from the ratio test we have 

I 
(II + I)!zn+l I 
---n-- = (n + I) Izl -4 x 

n!z 

Convergence of a Power Series 

as 

(a) Every power series (1) converges at the center Zo. 

(;: fixed and *" 0). • 

(b) rr (1) converges at a point Z = Zl *- zo, it converges absolutely for every Z 

closer to Zo than Zl, that is, Iz - zol < IZI - zol. See Fig. 362. 

(C) If (1) diverges at a z = Z2, it diverges for every zfarther away from Zo 
than Z2' See Fig. 362. 

y 

-----/' .... " Divergent , , 
I ;'-- .... qz] \ 

I Cony. \ \ 

\ , 
I 0 I I 

" Zo,' ~Z2 
..... _-"" , , 

' .... _----' 
Fig. 362. Theroem 1 

:x: 

PROOF (a) For z = Zo the series reduces to the single tenn ao. 

(b) Convergence at z = Zl gives by Theorem 3 in Sec. 15.1 an(ZI - zo)n ~ 0 as n ~ 00. 

This implies boundedness in absolute value, 

for every n = 0, 1 ..... 

Multiplying and dividing an(z - Zo)n by (Zl - zo)n we obtain from this 
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Summation over Il gives 

(3) 

Now our assumption Iz - 201 < 1:1 - ~ol implies that I(z - z.o)/(Zl - zo)1 < 1. Hence the 
series on the right side of (3) is a converging geometric series (see Theorem 6 in 
Sec. 15.1). Absolute convergence of (1) as stated in (b) now follows by the comparison 
test in Sec. 15.1. 

(c) If this were false, we would have convergence at a Z3 farther away from Zo than Z2' 

This would imply convergence at Z2, by (b), a contradiction to our assumption of 
divergence at Z2' • 

Radius of Convergence of a Power Series 
Convergence for every z (the nicest case, Example 2) or for no z *- Zo (the useless case, 
Example 3) needs no further discussion, and we put these cases aside for a moment. We 
consider the smallest circle with center Zo that includes all the points at which a given 
power series (I) converges. Let R denote its radius. The circle 

Iz - zol = R (Fig. 363) 

is called the circle of convergence and its radius R the radius of convergence of (l). 

Theorem I then implies convergence everywhere within that circle, that is, for all z for 
which 

(4) Iz - zol < R 

(the open disk with center:o and radius R). Also. since R is as small as possible. the series 
(l) diverges for all z for which 

(5) Iz - ~ol > R. 

No general statements can be made about the convergence of a power series (1) on the 
circle of convergence itself. The series (I) may converge at ~ome or all or none of these 
points. Details will not be essential to us. Hence a simple example may just give us the 
idea. 

C3
DiVergent 

co::;;r 
Zo 

Fig. 363. Circle of convergence 
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E X AMP L E 4 Behavior on the Circle of Convergence 

THEOREM 1 

On the circle of convergence (radius R = 1 in all three series), 

L ~ nln2 converges everywhere since L 1/,,2 converges. 

L ~nl" converges at -1 (by Leibniz's test) but diverges at 1, 

diverges everywhere. • 
Notations R = oc and R = O. To incorporate these two excluded cases in the present 
notation, we write 

R = x if the series 0) converges for all z (as in Example 2), 

R = 0 if (1) converges only at the center z = ~o (as in Example 3). 

These are convenient notations, but nothing else. 

Real Power Series. In this case in which powers, coefficients. and center are real. 
formula (4) gives the convergence interval Ix - xol < R of length 2R on the real line. 

Determination of the Radius of Convergence from the Coefficients. For this 
important practical task we can use 

Radius of Convergence R 

Suppose that the sequence lan+1lanl, n = 1. 2, ... , converges with limit L *. !f 
L * = 0, thell R = x; that is, the power series (1) converges for all ~. If L * *" 0 
(hence L * > 0), then 

(6) R= = lim I~I 
L* n~CXl an+l 

(Cauchy-Hadamard formula l
). 

If lan+l/anl ~ x, then R = 0 (convergence only at the center 20). 

PROOF For (1) the ratio of the terms in the ratio test (Sec. 15.1) is 

The limit is L = L*lz - zol. 

Let L* *" 0, thus L* > O. We have convergence if L = L*lz - :01 < 1, thus Iz - zol < IIL*, 
and divergence if k - !ol > IIL*. By (4) and (5) this shows that IIL* is the convergence 
radius and proves (6). 

If L * = 0, then L = 0 for every z, which gives convergence for all z by the ratio test. 
If lan+l/anl ~ co, then lan+l/anllz - zol > I for any z *" Zo and all sufficiently large n. 
This implies divergence for all z *" Zo by the ratio test (Theorem 7, Sec. 15.1). • 

INamed after the French mathematicians A. L. CAUCHY (see Sec. 2.5) and JACQUES HADAMARD 
(1865-1963). Hadamard made basic contributions to the theory of power series and devoted his lifework to 
partial differential equations. 
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Formula (6) will not help if L * does not exist, but extensions of Theorem 2 are still 
possible, as we discuss in Example 6 below. 

E X AMP L E 5 Radius of Convergence 
oc (211)! 

By (6) the radIUs of convergence of the power ~eries L --2 (z - 3i)n is 
,,~O (n!) 

R = lim -- = lim . = lim 
[ 

(211)! I (2n + 2)! ] [(211)! «n + 1)!)2 ] (11 + 1)2 

n~'X (1I!)2 «11 + 1)!)2 n~oc (2n + 2)! (1I!)2 n~x (211 + 2)(211 + 1) 

1 

4 

The series converges in the open disk Iz - 3;1 < ! of radius! and center 3;. • 
E X AMP L E 6 Extension of Theorem 1 

Find the radius of convergence R of the power series 

Solution. The sequence of the ratios 1/6. 2(2 + !), 1/(8(2 + !» .... doe~ not converge. so that Theorem 
2 is of no help. It can be shown that 

(6*) R = 1/L, 

This still does not help here, since (V/i~) does not converge because V);J = ~ = 112 for odd II. 
whereas for even II we have 

Vfa:J = V2 + 112n~ 1 as n ---+ 00, 

."r.--: 
so that V lanl has the two limit points 112 and I. It can further be shown that 

(6**) R = 1/T, T the greatest limit point of the sequence {Vj:J}. 

Here T = I. so that R = I. Answer. The series converges for Izl < 1. • 
Summary. Power series converge in an open circular disk or some even for every z (or 
some only at the center. but they are useless): for the radius of convergence. see (6) or 
Example 6. 

Except for the useless ones, power series have sums that are analytic functions (as we 
show in the next section); this accounts for their importance in complex analysis. 

. • = .. - 33-3;=---- -

1. (Powers missing) Show that if ~ a"z'YI has radius of 
convergence R (assumed finite), then ~ a,,:!''' has radius 
of convergence "\'R. Give examples. 

2. (Convergence behavior) Illustrate the facts shown by 
Examples 1-3 by further examples of your own. 

13-181 RADIUS OF CONVERGENCE 

Find the center and the radius of convergence of the 
following power series. (Show the details.) 

(z + i)n x 11" 
3. 2: 4. 2: - (z + 2i)n 

/1
2 n~O n! n=l 

00 Il! 
5. 2: n (z + l)n 

n~O n 

9. 2: (n - i)"z" 
n=O 

(_1)n+1 
11. 2: zn 

n=l 11 

2: 
2100., 

6. --z" 
n=O 11! 

8.2: (-I)" 
_2n 

22"(11!)2 -
n~O 

x (2:::)2" 10.2: ---

n=O 
(211)! 

2: 
4" 12. (::: - 5)" 

n=O 
(1 + i)" 
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13. 2: 11(11 - 1)(: - 3 + 2i)n 
such that all three formulas (6). (6*), and (6**) will 
come up. 

n=2 

co I)n 
14.2: S :271 

n~O (211). 
15. 2: 2n (z - i)4" 

n=O 

20. TEAM PROJECT. Radius of Convergence. (a) 
Formula (6) for R contains iOn/On+li, not iOn+l/Oni. 

How could you memorize this by using a qualitative 
argument? 

:JC ('>+3·)n 
16. 2: ~5 _ i' (z - 7T)n 

n=O 

(b) Change of coefficients. What happens to 
R (0 < R < 00) if you (i) multiply all On by k * O. 
(ii) multiply On by k fl * O. (iii) replace On by lion? 

(c) Example 6 extends Theorem 2 to nonconvergent 
cases of O .. /On+l' Do you understand the principle of 
"mixing" by which Example 6 was obtained? Use this 
principle for making up further examples. 

:x; (411)! 
18. 2: ~ (: + 7Ti)" 

n~O 2 (II!) 

19. CAS PROJECT. Radius of Convergence. Write a 
program for computing R from (6), (6*), or (6"'*). in 
this order, depending on the existence of the limits 
needed. Test the program on series of your choice and 

(d) Does there exist a power series in powers of z that 
converges at z = 30 + 10i and diverges at z = 31 - 6i? 
(Give reason.) 

15.3 Functions Given by Power Series 
The main goal of this section is to show that power series represent analytic functions 
(Theorem 5). Along our way we shall see that power series behave nicely under addition, 
multiplication, differentiation. and integration. which makes these series very useful in 
complex analysis. 

To simplify the formulas in this section. we take :0 = 0 and write 

(1) 

This is no restriction because a series in powers of £ - Zo with any Zo can always be 
reduced to the fonn (I) if we set i - Zo = z. 

Terminology and Notation. If any given power selies (1) has a nonzero radius of 
convergence R (thus R > 0), its sum is a function of z. say fez). Then we write 

(2) 
x 

fez) = 2: a"z''' = ao + alz' + a2z2 + 
,,~o 

(izi < R). 

We say that fez) is represented by the potrer series or that it is developed in the power 
series. For instance. the geometric series represents the function fez) = lI( I - z) in the 
interior of the unit circle IzI = 1. (See Theorem 6 in Sec. 15.1.) 

Uniqueness of a Power Series Representation. This is our next goal. It means that 
a jUllctioll f(:;:;) cannot be represented by two different power series with the same 
center. We claim that if fez) can at all be developed in a power series with center zoo the 
development is unique. This important fact is frequently used in complex analysis (as well 
as in calculus). We shall prove it in Theorem 2. The proof will follow from 
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THEOREM 1 Continuity of the Sum of a Power Series 

If afunction fez) CUll he represented by a power series (2) with radius of convergence 
R > 0, then fez) is continuous at ;:: = o. 

PROOF From (2) with:: = 0 we have f(O) = ao. Hence by the definition of continuity we must 
show that limz~o fez) = f(O) = ao. That is, we must show that for a given E> 0 there 
is a 8 > 0 such that k:1 < 8 implies If(z) - aol < E. Now (2) converges absolutely for 
Izl ;:; r with any r such that 0 < r < R, by Theorem 1 in Sec. 15.2. Hence the series 

THEOREM 1 

co 1 co 

L lanlrn-l = - L lanlrn 
n= I r n~l 

converges. Let S*-O be its sum. (S = 0 is trivial.) Then for 0 < Izl ;:; r. 

and Izls < E when Izi < 8, where 8 > 0 is less than r and less than EIS. Hence 
lzls < 8S < (EIS)S = E. This proves the theorem. • 

From this theorem we can now readily obtain the desired uniqueness theorem (again 
assuming ':0 = 0 without loss of generality): 

Identity Theorem for Power Series. Uniqueness 

Let the power series ao + alZ + (/2Z2 + ... and bo + bIZ + b2z2 + ... both be 
convergent for l:::l < R, where R is positive, and let them both have the same SUlII for 
all these z. Then the series are identical, that is, ao = bo, al = bI> a2 = b2, .... 

Hence if afullction f(;:;) can be represellted by a power series with any cellfer ZO, 
this representation is unique. 

PROOF We proceed by induction. By assumption, 

(Izl < R). 

The sums of these two power series are continuous at z = 0, by Theorem 1. Hence if we 
consider 1::1 > 0 and let z ~ 0 on both sides, we see that ao = bo: the assertion is true 
for n = O. Now assume that an = bn for n = 0, 1, ... , m. Then on both sides we may 
omit the terms that are equal and divide the result by zm+l (*- 0); this gives 

Similarly as before by letting z ~ 0 we conclude from this that am+l 

completes the proof. 
bm + l . This 

• 
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THEOREM 3 

CHAP. 15 Power Series, Taylor Series 

Operations on Power Series 
Interesting in itself, this discussion will serve as a preparation for our main goal, namely, 
to show that functions represented by power series are analytic. 

Termwise addition or subtraction of two power series with radii of convergence RI 
and R2 yields a power series with radius of convergence at least equal to the smaller of 
RI and R2. Proof Add (or subtract) the partial sums Sn and s:; term by term and use 
lim (sn ::!: s:;) = lim Sn ::!: lim s:;. 

Termwise multiplication of two power series 

and 

f(;::) = L akzk = ao + (lIZ + 
k~O 

g(Z) = L bmz m = bo + bIZ + 
m~O 

means the multiplication of each term of the first series by each term of the second series 
and the collection of like powers of z. This gives a power series, which is called the 
Cauchy product of the two series and is given by 

= L (aobn + albn- l + ... + (lnbO)zn. 
n~O 

We mention without proof that this power series converges absolutely for each Z within 
the circle of convergence of each of the two given series and has the sum s(;::) = f(;::)g(z). 

For a proof. see [D5] listed in App. 1. 

Termwise differentiation and integration of power series is permissible, as we show 
next. We call derived series qf the power series (I) the power series obtained from (1) 
by termwise differentiation, that is, 

(3) 
x 

L nanZn
-

1 = al + 2a2z + 3a3z2 + 
n~l 

Termwise Differentiation of a Power Series 

The derived series of a power series has the same radius of convergence af the 
original series. 

PROOF This follows from (6) in Sec. 15.2 because 

lim = hm --- lim -- = hm --. nlanl . n . I an I . I {In I 
n~x (11 + 1) lan+ll n~ n + I ~= an+l n~::>:) an +l 

or, if the limit does not exist, from (6**) in Sec. 15.2 by noting that \Yn ~ I as Il ~::xl. • 
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E X AMP L E 1 Application of Theorem 3 

THEOREM 4 

THEOREM 5 

Find the mdius of convergence R of the following series by applying Theorem 3. 

~ (n) zn = Z2 t- 3;::3 + 6:;;4 ~ IOz5 + . 
n~2 2 

Solution. Differentiate the geometric series twice term by term and mUltiply the result by z2f2 This yields 
the given series. Hence R = 1 by Theorem 3. • 

Termwise Integration of Power Series 

The power series 

an 1 al 2 a2 3 
--- ~n+ = a 7 + - z + - z + ... 
n + I <.. o~ 2 3 

obtained by integrating the series ao + al::' + a2z2 + 
same radius of convergence as the original series. 

The proof is similar to that of Theorem 3. 

tenll by term has the 

With Theorem 3 as a tool, we are now ready to establish our main result in this section. 

Power Series Represent Analytic Functions 

Analytic Functions. Their Derivatives 

A power series with a non:;:,ero radius of convergence R represents an analytic 
function at eve I)· point interior to its circle of convergence. The derivatives of this 
function are obtained by differentiating the original series tenn by tenn. All the 
series thus obtained have the same radius of convergence as the original series. 
Hence, by the first statement, each of them represents an a7lalytic function. 

PROOF (a) We consider any power series (1) with positive radius of convergence R. Let fez) be 
its sum and fl(:) the sum of its derived series; thus 

(4) and 
00 

fl(::') = L nan z-n -
1

. 

n~l 

We show that fez) is analytic and has the derivative f1(z) in the interior of the circle of 
convergence. We do this by proving that for any fixed z with Izl < Rand /1;:. ~ 0 the 
difference quotient [fez + /1;::) - f(::.)]//1z approaches fl(z). By termwise addition we first 
have from (4) 

Note that the summation starts with 2, since the constant term drops out in taking the 
difference fez + /1.;:) - fez), and so does the linear term when we subtract f 1 (z) from the 
difference quotient. 
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(b) We claim that the series in (5) can be written 

(0) 2: anLl::[(:: + LlZ)n-2 + 2z(z + .lZ)"-3 + + (n - 2)Zn-3(;:: + LlZ) 
n=2 + (11 - 1 )::n-2]. 

The somewhat technical proof of this is given in App. 4. 

(e) We consider (6). The brackets contain 11 - I terms, and the largest coefficient is 
11 - 1. Since (11 - 1)2 ~ 11(11 - 1), we see that for Izl ~ Ro and Iz + ~;::I ~ Ro, Ro < R. 
the absolute value of this series (6) cannot exceed 

(7) 

This series with lin instead of lanl is the second derived series of (2) at Z = Ro and converges 
absolutely by Theorem 3 of this section and Theorem I of Sec. 15.2. Hence our present 
series (7) converges. Let the sum of (7) (without the factor ILlzl) be K(Ro). Since (6) is 
the right side of (5), our present result is 

Letting .lz ~ 0 and noting that Ro « R) is arbitrary, we conclude that f(;::) is analytic at 

any point interiorto the circle of convergence and its derivative is represented by the derived 
series. From this the statements about the higher derivatives follow by induction. • 

Summary. The results in this section show that power series are about as nice as we 
could hope for: we can differentiate and integrate them term by term (Theorems 3 and 4). 
Theorem 5 accounts for the great importance of power series in complex analysis: the 
sum of such a series (with a positive radius of convergence) is an analytic function and 
has derivatives of all orders, which thus in turn are analytic functions. But this is only 
part of the story. In the next section we show that, conversely, every given analytic function 
f(:::') can be represented by power series, called Taylor series and being the complex 
analog of the real Taylor series of calculus. 

11-10 I RADIUS OF CONVERGENCE BY 
DIFFERENTIATION OR INTEGRATION 

:x; (-I)n (::)2n+l 4'L-- -
211+17r 

Find the radius of convergence in two ways: (a) directly by 
the Cauchy-Hadamard formula in Sec. 15.2. (b) from a 
series of simpler telms by using Theorem 3 or Theorem 4. 

cc 11(11 - 1) 
1. L 3n (.;: - 2i)n 

n=2 

-l-n 
2·L---

n=1 n(n + 1) 

n=O 

_ LOG 3n n(11 + 1) 
!:I (7 - 1)2n . 5"-

n=l 

6. i; (11) (±)n 
n=k k 

(-7)" 
7. L ---'------'---- ..2n 

n= 1 11(11 + 1)(11 + 2) 

:x; 

:x; 211(21l _ I) 
8. L ---- ..2n-2 

nn 
n=l 
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cc [(11 + 1e)]-1 9. L zn+k 
n~O Ie 

DC (n + 111) 10. L z" 
n~O I1l 

11. (Addition and subtraction) Write our the details of 
the proof on terrnwise addition and subtraction of 
power series. 

12. (Cauchy product) Show that 
(1 - Z)-2 = L';;~O (n + l)zn tal by using the Cauchy 
product, (b) by differentiating a suitable series. 

13. (Cauchy product) Show that the Cauchy product of 
L~~O zn/n! multiplied by itself gives L~~O (2zyn/n!. 

14. (On Theorem 3) Prove that Vn ~ I as n ~ ex; (as 
claimed in the proof of Theorem 3). 

15. (On Theorems 3 and 4) Find further examples of your 
own. 

116-201 APPLICATIONS OF THE IDENTITY 
THEOREM 

State clearly and explicitly where and how you are using 
Theorem 2. 

16. (Bionomial coefficients) Using 
(1 + z)P(J + z)q = (1 + z)p+q. obtain the basic 
relation 
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17. (Odd function) If .f(z) in (1) is odd (i.e., 
.f(-z) = -.f(z», show that an = 0 for even n. Give 
examples. 

18. (Even functions) If .f(z) in (1) is even (i.e., 
.f( - z) = .f(z», show that an = 0 for odd n. Give 
examples. 

19. Find applications of Theorem 2 in differential equations 
and elsewhere 

20. TEAM PROJECT. Fibonacci nmnbers.2 tal The 
Fibonacci numbers are recursively defined by 
ao = al = 1. an +l = an + an-l if n = 1. 2 ..... 
Find the limit of the sequence (an+l/an)' 

(b) Fibonacci's rabbit problem. Compute a list of 
a1 . .... a12' Show that a12 = 233 is the munber of 
pairs of rabbits after l2 months if initially there is 1 
pair and each pair generates I pair per month, 
beginning in the second month of existence (no deaths 
occuning). 

(c) Generating function. Show that the generating 

junction of the Fibonacci numbers is 
.f(z) = I/(1 - z - Z2); that is, if a power series (l) 

represents this .f(z), its coefficients must be the 
Fibonacci numbers and conversely. Hint. Start from 
.f(z) (1 - z - Z2) = I and use Theorem 2. 

15.4 Taylor and Maclaurin Series 
The Taylor series3 of a function fez), the complex analog of the real Taylor series is 

(1) where 

or, by (l), Sec. 14.4, 

(2) 1 f f(::;*) a - -- dz*. 
n - 21Tl' C (z* - zdn + 1 

In (2) we integrate counterclockwise around a simple closed path C that contains ::'0 in 

its interior and is such that f(:::) is analytic in a domain containing C and every point 

inside C. 
A Maclaurin series3 is a Taylor series with center zo = O. 

2LEONARDO OF PISA, called FIBONACCI (= son of Bonaccio), about 1180-1250, Italian mathematician. 
credited with the first renaissance of mathematics on Christian soil. 

3BROOK TAYLOR (1685-1731), English mathematician who introduced real Taylor series. COLIN 
MACLAURIN (1698--1746), Scots mathematician, professor at Edinburgh. 
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The remainder of the Taylor series (1) after the telm an(z - zo)n is 

(3) 

(proof below). Writing out the corresponding pmtial sum of (1). we thus have 

z - zo, (z - ZO)2 " 
fez) = f(2o) + -l-! - f (zo) + 2! f (zo) + ... 

(4) 

This is called Taylor's formula with remainder. 

We see that Taylor series are power series. From the last section we know that power 
series represent analytic functions. And we now show that eve I}' analytic function can be 
represented by power series, namely, by Taylor series (with various centers). This makes 
Taylor series very important in complex analysis. Indeed. they me more fundamental in 
complex analysis than their real counterparts me in calculus. 

THEOREM 1 Taylor's Theorem 

Let fez) be analytic in a domain D, and let z = 20 be any point in D. Then there 
exists precisely one Taylor series (1) with center ':0 that represents fez). This 
representation is mlid in the largest open disk with center.:o in which fez) is analytic. 
The remainders Rn(z) of (1) can be represented in the f0171l (3). The coefficients 
satisfy the inequality 

(5) 
M lal:::S;-n - rn 

Irhere M is the 1I1(n:ill1ll1ll of If(z)1 011 a circle Iz - :01 = r ill D whose interior is 
also in D. 

PROOF The key tool is Cauchy's integral formula in Sec. 14.3; writing z and z* instead of 20 and 
z (so that z* is the vmiable of integration), we have 

(6) 
1 f f(z*) 

fez) = -. --- dz*. 
21Tl C z* - z 

z lies inside C, for which we take a circle of radius r with center Zo and interior in D 
(Fig. 364). We develop 1/(z* - z) in (6) in powers of z - z{). By a standard algebraic 
manipulation (worth remembering!) we first have 

(7) 
1 

z* - z z* - zo - (z - z{)) 
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For later use we note that since z* is on C while z is inside C, we have 

(7*) I z-zol<] 
z* - 20 

(Fig. 364). 

y 

x 

Fig. 364. Cauchy formula (6) 

To (7) we now apply the sum formula for a finite geometric sum 

(8*) 
I - qn+l 

1 + q + ... + qn = --'----­
I - q I - q 

qn+l 

i-q 
(q =1= 1), 

which we use in the form (take the last term to the other side and interchange sides) 

I 
(8) 

I - q 

qn-t-l 
I + q + ... + qn + 

]-q 

Applying this with q = (z - zo)/(z* - zo) to the right side of (7), we get 

I 
z* - .,. z* - Zo [

] + z - Zo ( Z - Zo )2 ( Z - 20 )nJ 
z* - Zo + Z* - Zo + + z* - Zo 

+ I ( z - Zo )n+l 
z* - Z Z* - Zo 

We insert this into (6). Powers of z - Zo do not depend on the variable of integration z*. 
so that we may take them out from under the integral sign. This yields 

I f f(z*) Z - <'0 1 f(z*) 
fez) = - dz* + -- r dz* + ... 

. 21Ti c z* - zo· 21Ti c (z* - 20)2 

(z - zo)n f f(z*) ... + dz* + Rn(z) 
21Ti c (z* - zo)n+l 

with Rn(z) given by (3). The integrals are those in (2) related to the derivatives, so that 
we have proved the Taylor formula (4). 

Since analytic functions have derivatives of all orders, we can take n in (4) as large as 
we please. If we let n approach infinity, we obtain (I). Clearly, (I) will converge and 
represent f(z) if and only if 

(9) lim Rn(z) = O. 
n-->oo 
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THEOREM 2 
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We prove (9) as follows. Since .:* lies on C. whereas.: lies inside C (Fig. 364). we have 
1.:* - zI > O. Since fez) is analytic inside and on C, it is bounded, and so is the function 
f(::.*)/(z* - z). say. 

I f(::.*) I ---- ~M 
z* - z 

for all z"" on C. Also. C has the radius r = k* - zol and the length 27Tr. Hence by the 
ML-ineguality (Sec. 14.1) we obtain from (3) 

1 - In+l If f(z*) d::.*1 IRnl = 
z - '.0 

27T c (.:* - .:o)n+l(z* - .:) 
(10) 

..,:; 
Iz - zoln+l - 1 _ -I z - Zo r+ 1 

M n+l 27T1" - M ---
27T r r 

Now Iz - ':01 < r because 2 lies inside C. Thus Iz - 20111" < L so that the right side 
approaches 0 as n ~ x. This proves the convergence of the Taylor series. Uniqueness 
follows from Theorem 2 in the last section. Finally, (5) follows from 0) and the Cauchy 
inequality in Sec. 14.4. This proves Taylor's theorem. • 

Accuracy of Approximation. We can achieve any preassinged accuracy in 
approximating f(::.) by a paI1ial sum of ( I ) by choosing n large enough. This is the practical 
aspect of formula (9). 

Singularity, Radius of Convergence. On the circle of convergence of 0) there is at 
least one singular point of fez), that is, a point 2 = c at which fez) is not analytic (but 
such that every disk with center c contains points at which fez) is analytic). We also say 
that f(::.) is singular at c or has a singUlarity at c. Hence the radius of convergence R of 
(1) is usually equal to the distance from z.() to the nearest singular point of f(::.). 

(Sometimes R can be greater than that distance: Ln.: is singular on the negative real 
axis, whose distance from Zo = - 1 + i is ], but the Taylor series of Ln ::. with center 
Zo = -] + i ha<; radius of convergence V2.) 

Power Series as Taylor Series 
Taylor series are power series-Df course! Conversely, we have 

Relation to the Last Section 

A pml'er series with a non::,ero radills of convergence is the Taylor series of its SUI1I. 

PROOF Given the power series 

Then f(zo) = ao. By Theorem 5 in Sec. 15.3 we obtain 

f' (::.) = al + 2a2(Z - ':0) + 3a3(;:' - ZO)2 + ... , 
f"(z) = 2a2 + 3' 2(::. - ':0) + ... , 

thus 

thus 

f'(.::o) = (/1 

f"(::.o) = 2! a2 



SEC. 15.4 Taylor and Maclaurin Series 687 

and in generalln)(zo) = n! an' With these coefficients the given series becomes the Taylor 
series of fez) with center zoo • 

Comparison with Real Functions. One surpnsmg property of complex analytic 
functions is that they have derivatives of all orders, and now we have discovered the other 
surprising property that they can always be represented by power series of the form (I). 
This is not true in general for real/unctions; there are real functions that have derivatives 
of all orders but cannot be represented by a power series. (Example: f(x) = exp ( - l/x2

) 

if x*"O and f(O) = 0; this function cannot be represented by a Maclaurin series in an 
open disk with center 0 because all its derivatives at 0 are zero.) 

Important Special Taylor Series 
These are as in calculus, with x replaced by complex z. Can you see why? (Answer. The 
coefficient formulas are the same.) 

X AMP L E 1 Geometric Series 

. LE 

LeI I(z) = 11(1 - z). Then we have In)(::;) = n!/(1 - ::;)n+l, In)(O) = II!. Hence the Maclaurin expansion of 
11(1 - ::;) is the geometric series 

00 

(11) 
1 - z 

= 2: zn = I + z + z2 + ... 
n=O 

(Izl < I). 

I(::;) is singular at z = I: this point lies on the circle of convergence. • 
Exponential Function 

We know that the exponential function eZ (Sec. 13.5) is analytic for all z, and (ez)' = eZ
• Hence frum (I) with 

Zo = 0 we obtain the Maclaurin series 

(12) 

This series is also obtained If we replace x In the familiar Maclaurin series of eX by z. 
Funhermore. by setting z = iy in (12) and separating the series into the real and imaginary pans (see 

Theorem 2. Sec. 15.1) we obtain 

Since the series on the right are the familiar Maclaurin series of the real functions cos y and sin .1', this shows 
that we have rediscovered the Euler formula 

(13) e
iy = cos y + i sin y. 

Indeed, one may use (12) for definillg eZ and derive from (12) the basic propenies of eZ
• For instance, the 

differentiation formula (eZ
)' = eZ follows readily from (12) by termwise differentiation. • 



R CHAP. 15 Power Series, Taylor Series 

E X AMP L E:I Trigonometric and Hyperbolic Functions 

By substituting (12) into (1) of Sec. 13.6 we obtain 

x .,2n ~2 A 

COSz = :L (_1)n ~ '" '" 1 - + - + ... 
n=O (_11). 2! 4! 

(14) 
00 z2n+l Z3 Z5 

sin z = :L (_l)n ==z- + -+ 
n=O 

(2n + 1)! 3! 5! 

When ~ = \. these are the familiar Maclaurin series of the real functions cos x and sin x. Similarly, by substituting 
(12) into (II), Sec. 13.6. we obtain 

Z2n ~2 _4 

cosh z = 2.: 1 + + + ... 
n=O 

(2n)! 2! 4! 
(15) 

:x; z2n+l Z3 _5 

sinh Z = 2.: =z+ + • 
n=O 

(211 + I)! 3! 5! 

)( AMP L E 4 Logarithm 

From (\) it follows that 

_2 _3 

(16) Ln (1 + z) = z - "'2 + - + ... 
3 

Clzi < 1). 

Replacing;;; by -z and multiplying both sides by -1, we get 

(17) 
1 .2_3 

-Ln(l -;;;) = Ln ~ = z + '2 + '3 + .. (kl < 1). 

By adding both series we obtain 

(18) 
1 + ;;; ( ~3 <;5 ) 

Ln -- = 2 z + - + - + ... 
1 - z 3 5 

(1;;;1 < 1). • 

Practical Methods 
The following examples show ways of obtaining Taylor series more quickly than by the 
use of the coefficient formulas. Regardless of the method used. the result will be the same. 
This follows from the uniqueness (see Theorem 1 t 

., L E r Substitution 

Find the Maclaurin series of f(;;;) = 1I( I + ;;;2). 

Solution. By substituting -Z2 for;: in (11) we obtain 

(19) 
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E X AMP L E 6 Integration 

Find the Maclaurin series of fez) = arctan z. 

Solution. We have f' (z) = 11(1 + Z2). Integrating (19) term by term and using flO) = 0 we get 

oc (_I)n 2n+l Z3 Z5 
arctan Z = ~ ~I z = z - -3 + -5 - + ... 

n=O _II 
(izi < I); 

this series represents the principal value of w 

lui < -rr12. 

u + iv = arctan z defined as that value for which 

E X AMP L E 7 Development by Using the Geometric Series 

Develop lI(e - z) in powers of z - zo, where e - 20 *' O. 

Solutioll. This was done in the proof of Theorem I, where e = z*. The beginning was simple algebra and 
then the use of (II) with z replaced by (z - zo)/(e - zo): 

( 
z - 7 ) 

(e-ZQ) I-~ 
c - Zo 

c - Zo 

~ (Z-Zo)n 
n~O e - Zo e-z e - Zo - (z - zo) 

e - Zo (
Z--)2 ) e-:: + .... 

This series converges for 

I z - Zo I --- <I, 
e - Zo 

that is, Iz - 201 < Ie - zol· • 
E X AMP L E 8 Binomial Series, Reduction by Partial Fractions 

Find the Taylor series of the following function with center Zo = L 

f(z) = 3 2 
Z + Z - 8z - 12 

Solution. We develop f(~) in partial fractions and the first fraction in a binomial series 

(20) 

___ = (1 + Z)-m = ~ (-m) Zn 

(I + Zr n=O n 

m(m + 1) m(m + l)(m + 2) 
1 - mz + Z2 - Z3 + ... 

2! 3! 

with 111 = 2 and the second fraction in a geometric series, and then add the two series term by term. This gives 

f(z) = __ 1_ + _2_ = I _ 2 = 2. ( I ) _ I 
(z + 2l z - 3 [3 + (z - 1)]2 2 - (z - I) 9 [I + !(z - 1)]2 I - ~(z - 1) 

i ~ (-2) (z ~ I )n _ ~ (z; I )n = ~ [(-1)~:2+ I) - 2~ ] (Z _ I)n 

n~O Il n~O n~O 3 

8 31 23 2 275 3 
9 54 (z - 1) - 108 (z - I) - 1944 (z - I) 

We see that the first series converges for Iz - II < 3 and the second for Iz - II < 2. This had to be expected 
because I/(z + 2)2 is singular at -2 and 2/(z - 3) at 3. and these points have distance 3 and 2. respectively, 
from the center Zo = L Hence the whole series converges for Iz - II < 2. • 
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_ ••• w .... ·._ ... " _ ...... .-. • ..--• .- .......... · ..... lA--.. ___ ........ 

I~~ TAYLOR AND MACLAURIN SERIES 

Find the Taylor or Maclaurin series of the given function 
with the given point as center and detennine the radius of 
convergence. 

1. 

3. 

5. 

7. 

9. 

11. 

-2z 0 2. I/(I - (3), 0 e , 

e Z
, -2i 4. cos2 

Z, 0 

sin z, 7r12 6. 1/z. 

1/(1 - z), 8. Ln (I - z). 

-z2(2 e , 0 10. 2 f 2 eZ e-t dt, 
0 

Z6 - Z4 + Z2 - I, 12. sinh (z - 2i), 

HIGHER TRANSCENDENTAL 
FUNCTIONS 

0 

2i 

Find the Maclaurin series by tennwise integrating the 
integrand. (The integrals cannot be evaluated by the usual 
methods of calculus. They define the error function erf z, 
sine integral Si(z). and Fresnel integrals4 S(z) and C(z). 
which occur in statistics, heat conduction. optics, and other 
applications. These are special so-called higher 
transcendental functions.) 

Z • 

2 LZ 

2 13. erfz = • f e-t dt f SID t 
14. Si(z) = -- dt 

o t V7r 0 

Z 

15. S(z) = f sin t 2 dt 
o 

17. CAS PROJECT. sec, tan, arcsin. (a) Euler numbers. 
The Maclaurin series 

E22 E44 
(21) sec z = Eo - - z + - z - + ... 

2! 4! 

defines the Elller numbers E 2n- Show that Eo = 1, 
E2 = -I, E4 = 5, E6 = -61. Write a program that 
computes the E2n from the coefficient formula in (1) 
or extracts them as a list from the series. (For tables 
see Ref. [GRI]. p. 810. listed in App. 1.) 

(b) Bernoulli numbers. The Maclaurin series 

(22) 
z 

e' - 1 

defines the Bernoulli numbers Bn. Using undetermined 
coefficients, show that 

I 
Bl = , B2 = - B3 = O. 

(23) 
2 6 

I 1 
B4 = -- B5 = 0, B6 = -

30 42 

Write a program for computing Bn. 

(c) Tangent. Using (1), (2), Sec. 13.6, and (22), show 
that tan z has the following Maclaurin series and 
calculate from it a table of Bo, ... , B2O: 

2i 4i 
(24) tan z = e2iz _ 

- i 

n=l 

18. (Inverse sine) Developing uV I - Z2 and integrating, 
show that 

arcsin z = z + (±) ~ + (~:!) ~ 
+ (~) _7 +. 

2'4' 6 7 
(izl < 1). 

Show that this series represents the principal value of 
arcsin z (defined in Team Project 30. Sec. 13.7). 

19. (Undetennined coefficients) Using the relation 
sin z = tan Z cos Z and the Maclaurin series of sin z and 
cos z, find the first four nonzero terms of the Maclaurin 
series of tan z. (Show the details.) 

20. TEAM PROJECT. Properties from Maclaurin 
Series. Clearly, from series we can compute function 
values. In this project we show that properties of 
functions can often be discovered from their Taylor or 
Maclaurin series. Using suitable series, prove the 
following. 

(a) The fonnulas for the derivatives of e2
, cos z, sin z, 

cosh Z, sinh z, and Ln (1 + z) 

(b) 4(iZ + e-iz) = cos Z 

(c) sin z =1= 0 for all pure imaginalY Z = iy *" 0 

4AUGUSTIN FRESNEL (1788-1827), French physicist and engineer, known for his work in optics 
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15.5 Uniform Convergence. Optional 

DEFINITION 

We know that power series are absolutely convergent (Sec. 15.2, Theorem 1) and, as 
another basic property, we now show that they are ul1ifOlmly convergent. Since uniform 
convergence is of general importance, for instance, in connection with termwise integration 
of series, we shall discuss it quite thoroughly. 

To define uniform convergence, we consider a series whose terms are any complex 
functions f o(z), f 1 (z) . ... : 

oc 

(1) L fm(z) = fo(z) + fl(z) + f2(z) + .... 
m~O 

(This includes power series as a special case in which f m(Z) = am (Z - Z-O)"m.) We assume 
that the series (1) converges for all z in some region G. We call its sum s(z) and its nth 
partial sum sn(z); thus 

Convergence in G means the following. If we pick a z = ZI in G, then, by the definition 
of convergence at 210 for given E > 0 we can find an N1(E) such that 

If we pick a 22 in G, keeping E as before, we can find an N2( E) such that 

and so on. Hence, given an E > 0, to each Z in G there corresponds a number Nzt E). 

This number tells us how many terms we need (what Sn we need) at a Z to make 
Is(:) - sn(z)1 smaller than E. Thus this number NiE) measures the speed of 
convergence. 

Small Ni E) means rapid convergence. large NzC E) means slow convergence at the point 
z considered. Now, if we can find an N(E) larger than all these NzCE) for all z in G, we 
say that the convergence of the series (1) in G is uniform. Hence this basic concept is 
defined as follows. 

Uniform Convergence 

A series (1) with sum s(z) is called uniformly convergent in a region G if for every 
E > 0 we can find an N = N( E), not depelldillg Oil Z, such that 

for all n > N( E) alld all z ill G. 

UniformilY of convergence is thus a property that always refers to an it~tillite set in 
the z-plane, that is, a set consisting of infinitely many points. 



692 CHAP. 15 Power Series, Taylor Series 

E X AMP L E 1 Geometric Series 

1 'UOREM 1 

Show that the geometric series 1 + Z + Z2 + ... is (a) uniformly convergent in any closed disk Izl ~ r < I. 
(b) not uniformly convergent in its whole disk of convergence Izl < 1. 

Solution. (a) For z in that closed disk we have 11 - zl ~ I - r (sketch it). This implies that 
1111 - zl ~ l/(1 - r). Hence (remember (8) in Sec. 15.4 with q = z) 

I 00 I I n+l I n+l 
Is(z) - sn(z)1 = L zm = ; _ z ~ ; _ r . 

m=n+l 

Since r < I, we can make the right side as small as we want by choosing n large enough, and since the right 
side does not depend on z (in the closed disk considered), this means that the convergence is uniform. 

(b) For given real K (no maner how large) and 11 we can always find a z in the disk Izl < 1 such thaI 

I 
zn+l I = Izln+l > K 

1 - z 11 - zl ' 

simply by taking z close enough tu 1. Hence no single N( E) will suffice to make Is(z) - sn(z)1 smaller than a 
given E > 0 throllghollt the whole disk. By definition, this shows that the convergence of the geometric series 
in Izl < I is not uniform. • 

This example suggests thatfor a power series, the unifomlity of convergence may at most 
be disturbed near the circle of convergence. This is true: 

Uniform Convergence of Power Series 

A power series 

(2) 
m=O 

with a nonzero radius of convergence R is uniformly convergent in every circular 
disk Iz - Zol 2 I' of radius I' < R. 

PROOF For Iz - zol 2 I' and any positive integers nand p we have 

Now (2) converges absolutely if Iz - zol = I' < R (by Theorem 1 in Sec. 15.2). Hence it 
follows from the Cauchy convergence principle (Sec. 15.1) that. an E> 0 being given. 
we can find an N( E) such that 

for n > N( E) and p = I, 2, .... 

From this and (3) we obtain 

for all z in the disk Iz - zol 2 r. every n > N(E), and every p = 1,2, .... Since N(E) is 
independent of z, this shows uniform convergence, and the theorem is proved. • 

Theorem 1 meets with our immediate need and concern, which is power series. The 
remainder of this section should provide a deeper understanding of the concept of uniform 
convergence in connection with arbitrary series of variable terms. 
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THEOREM 2 

Properties of Uniformly Convergent Series 
Unifonu convergence derives its main importance from two facts: 

1. [f a series of continuous tenus is unifonuly convergent, its sum is also continuous 
(Theorem 2, below). 

2. Under the same assumptions, tenuwise integration is permissible (Theorem 3). 

This raises two questions: 

1. How can a converging series of continuous tenus manage to have a discontinuous 
sum? (Example 2) 

2. How can something go wrong in termwise integration? (Example 3) 
Another natural question is: 

3. What is the relation between absolute convergence and unifonu convergence? The 
surprising answer: none. (Example 5) 

These are the ideas we shall discuss. 

If we add finitely many continuous functions, we get a continuous function as their sum. 
Example 2 will show that this is no longer true for an infinite series, even if it converges 
absolutely. However, if it converges uniformly, this cannot happen, as follows. 

Continuity of the Sum 

Let the series 

2: f",(z) = fo(z) + fl(Z) + ... 
m=O 

be ull(fonnly convergent in a region C. Let F(z) be its sum. Then if each term f m(Z) 

is continuous at a point ZI in C, the junction F(z) is continuous at ZI' 

PROOF Let sn(:::) be the nth partial sum of the series and Rn(::,J the corresponding remainder: 

sn = f 0 + f 1 + ... + f n' Rn = fn+l + fn+2 + ... 

Since the series converges uniformly, for a given E> 0 we can find an N = N(E) such 
that 

for all Z in C. 

Since SN(Z) is a sum of finitely many functions that are continuous at 21' this sum is 
continuous at ZI' Therefore. we can find a [) > 0 such that 

Using F = SN + RN and the triangle inequality (Sec. 13.2), for these z we thus obtain 

This implies that F(z) is continuous at Zl. and the theorem is proved. 
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2 Series of Continuous Terms with a Discontinuous Sum 

Consider the series 

This is a geometric series with q = 1/(1 + x2
) times a factor x2

. Its /lth partial sum is 

2[ I I I ] sn(x) = x I + ---2 + 2 2 + ... + 2' 
I + x (I + x ) (I + x )n 

We now use the trick by which one finds the sum of a geometric series, namely, we multiply 
sn(x) by -q = -I/(I + x 2

), 

- __ 1-2 ST/(x) = -x2 [ __ 1-2 + ... + 2 + 12 1 ] 
I + x I + x (I + x )n (1 + X )n+ . 

(x real) 

Adding thIs to the previous formula, simplifying on the left, and canceling most terms on the right, we obtain 

thus 

X 2 2 [ 
---2 Sn(x) = x I 
I+x 

The exciting Fig. 365 "explains" what is going on. We see that if x *' 0, the sum is 

Sex) = lim sn(x) = I + x2, 
°1l_X 

but for x = 0 we have s,,(O) = I - I = 0 for all /1, hence s(O) = O. So we have the surprising fact that the 
sum is discontinuous (at x = 0), although all the tenns are continuous and the series converges even absolutely 
(its terms are nonnegative. thus equal to their ab~olute value!). 

Theorem 2 now tells us that the convergence cannot be uniform in an interval containing x = O. We can also 
verify this directly. Indeed. for x 0/= 0 the remainder ha, the absolute value 

I 
IRn(x)1 = Is(x) - sn(x)1 = 2 n 

(I + x) 

and we see that for a given E « I) we cannot find an N depending only on E such that IRnl < E for all n > Nf E) 

and all x, say, in the interval 0 ~ x ~ I. 

y 

8 2 8 

8
4 

1.5 

8 64 

) 
8 16, 

,1 
I ~ 8

1 

1/ 
-1 0 x 

"'iR.365. Partial sums in Example 2 
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I ermwise Integration 
This is our second topic in connection with unifonn convergence, and we begin with an 
example to become aware of the danger of just blindly integrating tenn-by-tenn. 

X AMP L E 3 Series for which Termwise Integration is Not Permissible 

Let IImtX) = IIIxe -.".,?- and consider the series 

"HOREM 

where 

in the interval 0 ~ x ~ 1. The nth partial sum is 

Hence the series has the sum F(x) = lim sn(x) = lim IIn (x) = 0 (0 ~ x ~ 1). From this we obtain 
n-+oo n--+oo 

I I F(x) dx = O. 
o 

On the other hand. by integrating term by term and using fI + f2 + ... + fn = sn' we have 

oc 1 n 1 Ii 
:L I f mIx) dx = lim :L I f mIx) ~x = lim Sn(X) dx. 

-rn=1 0 n--+oom=l 0 n--+x 0 

Now sn = £I" and the expression on the right becomes 

1 1 

lim I unCx) dx = lim I Ilxe -n.i' dx = lim -2
1 

(1 - e -n) = 21 . 
n--+x 0 n--+oo 0 n--+Xi 

but not O. This shows that the serie, under consideration cannot be integrated term by term from x = 0 to 

X = I. • 

The series in Example 3 is not unifonnly convergent in the interval of integration, and 
we shall now prove that in the case of a unifonnly convergent series of continuous 
functions we may integrate term by tenn. 

Termwise Integration 

Let 
00 

Hz) = 2: I m(z) = Io(z) + fl(Z) + 
m=O 

be a uniformly convergent series of continuous functions in a region G. Let C be 
any path in G. Then the series 

(4) 

is convergent and has the sum I F(z) dz.. 
c 
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PROOF From Theorem 2 it follows that F(z) is continuous. Let s,.(::) be the 11th partial sum of the 
given series and R,,(::') the corresponding remainder. Then F = Sn + Rn and by integration, 

THEOREM 4 

THEOREM 5 

J F(z) elz = J s,.(z) liz + J Rn (::.) elz. 
c c c 

Let L be the length of C. Since the given series converges uniformly, for every given 
E > 0 we can find a number N such that IRn(z)1 < ElL for all Il > N and all ::. in G. By 
applying the ML-inequality (Sec. 14.1) we thus obtain 

E 
< - L = E 

L 
for all n > N. 

Since Rn = F - Sn, this means that 

for all fl > N. 

Hence, the series (4) converges and has the sum indicated in the theorem. • 
Theorems 2 and 3 characterize the two most important properties of uniformly convergent 
selies. Also, since differentiation and integration are inverse processes, Theorem 3 implies 

Termwise Differentiation 

Let the series f o(z) + f 1 (z) + f 2(Z) + ... be convergent in a region G and let F(z) 
be its sum. Suppose that the series f~(z) + f~(::.) + f~(z) + ... converges ulliformly 
in G anel its terms are cOluinuollS in G. Then 

F'(z) = f~(::.) + f~(::.) + f~(z) + for all ::. in G. 

~------------------------------------------------------------------~ 

Test for Uniform Convergence 
Uniform convergence is usually proved by the following comparison test. 

Weierstrass' M-Test for Uniform Convergence 

COil sider a series oftlze f01711 (1) ill a region G of the ::.-plane. Suppose that one can 
find a convergent series qf cOllstallf terms, 

(5) 

such that If .. .(z)I ~ M", for all z in G and every 111 = 0, 1, .. , Then (1) IS 

unifo17nZy cOllvergent ill G. 

5 KARL WEIERSTRASS (1815-1897), great German mathematician. who~e lifework was the development 
of complex analysis based on the concept of power selies (see the footnote in Sec. 13.4). He aho made basic 
contributions to the calculus. the calculus of variations. approximation theory. and differential geometry. He 
obtained the concept of uniform convergence in 1841 (published 1894. sid); the first publication on the concept 
was by G. G. STOKES (see Sec 10.9) in 1847. 
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The simple proof is left to the student (Team Project 18). 

E X AMP L E 4 Weierstrass M-Test 

Does the following series converge uniformly in the disk Izl ::":' I? 

Solution. Uniform convergence follows by the Weierstrass M-test and the convergence of LIIm2 (see 
Sec. 15.1. in the proof of Theorem 8) because 

I 
_'m + I 

/11
2 + cosh mlzl 

2 
<­- 2 

III 

No Relation Between Absolute and 
Uniform Convergence 

• 

We finally show the surprising fact that there are series that converge absolutely but not 
uniformly, and others that converge uniformly but not absolutely, so that there is no 
relation between the two concepts. 

E X AMP L E 5 No Relation Between Absolute and Uniform Convergence 

The series in Example 2 converges absolutely but not uniformly, as we have shown. On the other hand, the series 

(_l)m-l 

.\"2 + m 
m=l 

+ (x real) 

converge, uniformly on the whole real line but not absolutely. 
Proof By the familiar Leibniz test of calculus ~see App. A3.3) the remainder Rn does not exceed its first 

term in absolute value, since we have a series of alternating terms whose absolute values form a monotone 
decreasing sequence with limit zero. Hence given E > 0, for all x we have 

This proves uniform convergence, since N~ E) does not depend on x. 

The convergence is not ab,olute because for any fixed x we have 

k 
>­

m 

where k is a suitable consrant. and kL 11m diverges. 

/1-8/ UNIFORM CONVERGENCE 

Prove that the given series converges uniformly In the 
indicated region. 

1 . .L (z - 2i)2n, /z - 2i/ ::":' 0.999 
n=O 

00 ...,2n+l 

2.2: 
n=Q (2n + I)! ' 

I 
ifn > N~E) ~ -

E 

• 
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_n 

5. L ;12 ' Izl;§: I 
n~l 

6. L 
zn 

Izl ;§: I 
n=l 

n2 cosh Ilkl 

7. L tanhn Izl Izl ;§: 1010 
/1

2 + I n=O 

00 cos nlzl 
8. L ~ , Izl ;§: 1020 

n=l 

[9-161 POWER SERIES 

Find the region of uniform convergence. (Give reason.) 
x (~+ I - 2;)n x (Z _ ;)2n 

9. L 4" 10. L (2/l)! 
n=O n=O 

<Xl (n) 12. L (2z - i)n 
n-2 2 

14. L (3n tanh 11);;:2n 

n=l 

_2n 

15. L ~ 2 

n-l Y'n 
16. L 

(_l)n?n 

(2n)! 
n=O 

17. CAS PROJECT. Graphs of Partial Sums. (a) Figure 
365. Produce this exciting figure using your software 
and adding fm1her curves. say, those of S256' SI024' etc. 

(b) Power series. Study the nonuniformity of 
convergence experimentally by plotting partial sums near 
the endpoints of the convergence interval for real z = x. 

18. TEAM PROJECT. Uniform Convergence. 
(a) Weierstrass M-test. Give a proof. 

(b) Termwise differentiation. Derive Theorem 4 
from Theorem 3. 

(c) Subregions. Prove that uniform convergence of a 
series in a region C implies unifonn convergence in 
any portion of C. Is the converse true? 

.--. . ..-. to. _____ .. 

1. What are power series? Why are these series very 
important in complex analysis? 

2. State from memory the ratio test, the root test, and the 
Cauchy-Hadamard fomlLlla for the radius of 
convergence. 

3. What is absolute convergence? Conditional convergence? 
Uniform convergence? 

(d) Example 2. Find the precise region of 
convergence of the series in Example 2 with x replaced 
by a complex variable z. 
(e) Figure 366. Show that x2 ~;;'~1 (1 + x2 )-m = 1 
if x =F 0 and 0 if x = O. Verify hy computation that the 
partial sums .1'10 S2' S3, look as shown in Fig. 366. 

-1 

y 

1 

o 

s 

Fig. 366. Sum 5 and partial 
sums III Team Project 18(e) 

119-201 HEAT EQUATION 

x 

Show that (9) in Sec. 12.5 with coefficients (10) is a solution 
of the heat equation for t > 0, assuming that f(x) is continuous 
on the interval 0 ;§: x ;§: L and has one-sided derivatives at 
all interior points of that interval. Proceed as follows. 

19. Show that IB"I is bounded, say IB"I < K for all n. 
Conclude that 

if t ~ to > 0 

and. by the Weierstrass test. the series (9) converges 
uniformly with respect to x and t for f ~ fo, 0 ;§: x ;§: L. 

Using Theorem 2. show that II(X, t) is continuous for 
1 ~ 10 and thus satisfies the boundary conditions (2) 
for f ~ fo. 

20. Show that Iillln/iltl < An2 Ke-An2to if 1 ~ to and the 
series of the expressions on the right converges. by the 
ratio test. Conclude from this. the Weierstrass test, and 
Theorem 4 that the series (9) can be differentiated term 
by term with respect to t and the resulting series has 
the sum duliN. Show that (9) can be differentiated twice 
with respect to x and the resulting series has the sum 
a2u/ilx2

. Conclude from this and the result to Prob. 19 
that (9) is a solution of the heat equation for all 
t ~ to. (The proof that (9) satisfies the given initial 
condition can be found in Ref. [CIO] listed in App. 1.) 

STIONS AND PROBLEMS 

4. What do you know about the convergence of power 
series? 

5. What is a Taylor series? What was the idea of obtaining 
it from Cauchy's integral formula? 

6. Give examples of practical methods for obtaining 
Taylor series. 

7. What have power series to do with analytic functions? 
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8. Can propel1ies of functions be discovered from their 
Maclaurin series? If so, give examples. 

~1-301 TAYLOR AND MACLAURIN SERIES 
Find the Taylor or Maclaurin series with the given point as 
center and determine the radius of convergence. (Show 
details.) 

9. Make a list of Maclaurin series of c. cos z. sin z, 
cosh z, sinh z, Ln (1 - z) from memory. 

10. What do you know about adding and multiplying power 
series? 

21. e". 7ri 

23. 1/(1 - z), -1 

25. 11(1 - d, 0 

22. Ln z. 2 

24. 11(4 - 3z), 1 + i 
26. l1z2, i 111-201 RADIUS OF CONVERGENCE 

Find the radius of convergence. Can you identify the sum 
as a familiar function in some of the problems? (Show the 27. liz, -i 28. I"t- 1(et - 1) dt, 0 

o 
details of your work.) 

~ (3z)n 
11. L...-­

n! 
n=O 

Z2n+l 

13'L 
n~O 2n + 1 

n=O 

n=l 

14. L (-I)n zn 

n~O (2n)! 

(-I)n 
16. L (z - 2y2n+l 

n~O (2n + I)! 

(2z)2n 
18. L -­

n~O (217)! 

(z - i)" 
20. L 

n~O (3 + 4i)n 

29. cos Z, ~7r 30. sin2 z, 0 

31. Does every function fez) have a Taylor series? 

32. Does there exist a Taylor series in powers of z - 1 - i 
that diverges at 5 + 5i but converges at 4 + 6i? 

33. Do we obtain an analytic function if we replace x by z 
in the Maclaurin series of a real function f(x)? 

34. Using Maclaurin series. show that if fez) is even. its 
integral (with a suitable constant of integration) is 
odd. 

35. Obtain the first few terms of the Maclaurin series of 
tan z by using the Cauchy product and 

sin z = cos z tan z. 

Power Series, Taylor Series 

Sequences. series, and convergence tests are discussed in Sec. 15.1. A power series 
is of the form (Sec. 15.2) 

.... , (I) 
n~O 

Zo is its center. The series (1) converges for Iz - zol < R and diverges for 
Iz - ;:';01 > R, where R is the radius of convergence. Some power series converge 
for all z (then we write R = (0). In exceptional cases a power series may converge 

only at the center; such a series is practically useless. Also, R = lim la"lan + 11 if this 
limit exists. The series (I) converges absolutely (Sec. 15.2) and uniformly 
(Sec. 15.5) in every closed disk Iz - zol ~ r < R (R > 0). It represents an analytic 
function fez) for Iz - Zol < R. The derivatives t(z). f"(;::.), ... are obtained by 

termwise differentiation of (1 ). and these series have the same radius of convergence 
R as (1). See Sec. 15.3. 
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Conversely, every analytic function .f(::.) can be represented by power series. These 
Taylor series of .f(z) are of the form (Sec. 15.4) 

x 1 
.f(z) = L I"" tnl(zo)(z - z.o)n 

n=O 11. 
(Iz - zol < R), (2) 

as in calculus. They converge for all z in the open disk with center Zo and radius 
generally equal to the distance from :::0 to the nearest singularity of .f(:::) (point at 
which .f(z) ceases to be analytic as defined in Sec. 15.4). If .f(z) is entire (analytic 
for all :::; see Sec. 13.5). then (2) converges for all ;:. The functions eZ

, cos z, sin:::, 
etc. have Maclaurin series, that is, Taylor series with center 0, similar to those in 
calculus (Sec. 15.4). 



CHAPTER 1 6 

/ Laurent Series. 
Residue Integration 

Laurent series generalize Taylor series. Indeed, whereas a Taylor series has positive integer 
powers (and a constant term) and converges in a disk, a Laurent series (Sec. 16.1) is a 
series of positive and negative integer powers of z - '::0 and converges in an annulus (a 
circular ring) with center Zoo Hence by a Laurent series we can represent a given function 
f(z) that is analytic in an annulus and may have singularities outside the ring as well as 
in the "hole" of the annulus. 

We know that for a given function the Taylor series with a given center '::0 is unique. 
We shall see that, in contrast, a function f(z) can have several Laurent series with the 
same center '::0 and valid in several concentric annuli. The most important of these series 
is that which converges for 0 < Iz - zol < R. that is, everywhere near the center ::'0 except 
at Zo itself. where Zo is a singular point of f(z). The series (or finite sum) of the negative 
powers of this Laurent series is called the principal part of the singularity of f(z) at Zo, 

and is used to classify this singularity (Sec. 16.2). The coefficient of the power 1/(;: - zo) 

of this series is called the residue of f(z) at zoo Residues are used in an elegant and 
powerful integration method, called residue integration, for complex contour integrals 
(Sec. 16.3) as well as for certain complicated real integrals (Sec. 16.4). 

Prerequisite: Chaps. 13, 14, Sec. 15.2. 
Sections that may be omitted in a shorter course: 16.2, 16.4. 
References and Answers to Problems: App. 1. Part 0, App. 2. 

16.1 Laurent Series 
Laurent series generalize Taylor series. If in an application we want to develop a function 
f(z) in powers of Z - Zo when f(z) is singular at Zo (as defined in Sec. 15.4). we cannot 
use a Taylor series. Instead we may use a new kind of series, called Laurent series, 1 

consisting of positive integer powers of::. - Zo (and a constant) as well as negative integer 
powers of z - ':::0; this is the new feature. 

Laurent series are also used for classifying singularities (Sec. 16.2) and in a powerful 
integration method ("residue integration", Sec. 16.3). 

A Laurent series of f(::.) converges in an annulus (in the "hole" of which f(.:::) may have 
singularities), as follows. 

IPIERRE ALPHONSE LAURENT (1813-1854). French military engineer and mathematician, published the 
theorem in 1843. 

701 
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THEOREM 1 

CHAP. 16 Laurent Series. Residue Integration 

Laurent's Theorem 

Let fez) be analytic in a domain c()ntaining two concentric circles C1 and C2 with 
center Zo and the annulus betrveen them (blue in Fig. 367). Then fez) can be 
represented by the Laurent series 

(1) 

... + 
z - Zo 

consisting of nonnegative lind negative powers. The coefficients of this Laurent series 
are given by the integrals 

(2) 

taken coullterclockwise around allY simple closed path C that lies in the annulus 
and encircles the inner circle, as in Fig. 367. [The variable of integration is denoted 
by z* since z is used in (1).] 

This series converges and represents fez) in the enlarged open allnulus obtained 
from the given annulus by continuously increasing the outer circle C1 and decreasing 
C2 until each of the fiFO circles reaches a point where fez) is singular. 

III the important special case that :.':0 is the ollly singular point of fez) inside C2 , 

this circle can be shrunk to the point zo, giving convergence in a disk except at the 
center. In this case the series (or finite sum) of the negative powers of (1) is called 
the principal part of the singularity of fez) at zoo 

.-- -

I 

\ 
\ 

\ 

Fig. 367. Laurent's theorem 

COMMENT. Obviollsly, instead of (1). (2) we may write (denoting bn by a_n ) 

(1') 
n=-:JO 
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where all the coefficients are now given by a single integral formula, namely, 

(2') 
1 T f(z*) a = -- d-* 

n 2wi c (z* - Zo)n+1 ~ 
(n = 0, ±l, ±2, .. '). 

PROOF We prove Laurent's theorem. (a) The nonnegative powers are those of a Taylor series. 
To see this, we use Cauchy's integral fOlmula (3) in Sec. 14.3 with z* (instead of z) as 
the variable of integration and z instead of ~o. Let g(z) and h(::.) denote the functions 
represented by the two terms in (3), Sec. 14.3. Then 

(3) 
1 T f(z*) I T f(z*) 

fez) = g(z) + hU;) = -. -- d::* - -. -- dz*. 
2Wl c, z* - ::. 2m C

2 
z* - Z 

Here::. is any point in the given annulus and we integrate counterclockwise over both C1 

and C2 , so that the minus sign appears since in (3) of Sec. 14.3 the integration over C2 is 
taken clockwise. We transform each ofthese two integrals as in Sec. 15.4. The first integral 
is precisely as in Sec. 15.4. Hence we get precisely the same result, namely, the Taylor 
series of g(z), 

(4) 
I T f(:;::*) = 

g(z) = --. --- dz* = :L an(z - zo)n 
2Wl z* - Z c, n~O 

with coefficients [see (2), Sec. 15.4, counterclockwise integration] 

(5) 
I T f(z*) a = -- d-* 

n ? ( ok )n+1 ~. 
_WI c, z· - Zo 

Here we can replace C1 by C (see Fig. 367), by the principle of deformation of path, since 
Zo, the point where the integrand in (5) is not analytic, is not a point of the annulus. This 
proves the formula for the an in (2). 

(b) The negative powers in (1) and the formula for bn in (2) are obtained if we consider 
h(z) (the second integral times -J/(2wi) in (3). Since z lies in the annulus, it lies in the 
exterior of the path C2 . Hence the situation differs from that for the first integral. The 
essential point is that instead of [see (7*) in Sec. 15.4] 

(6) (a) I z-::'°I<1 
z* - Zo 

we now have (b) 
1 

z* - Zo 1 < 1. 
z - Zo 

Consequently, we must develop the expression I/(z* - z) in the integrand of the second 
integral in (3) in powers of (::.* - Zo)/(z - Zo) (instead of the reciprocal of this) to get a 
convergent series. We find 

1 

z* - z ::.* - Zo - (z - ::'0) 

-1 

(1 _ z* - zo) . 
(z - Zo) 

z - Zo 
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Compare this for a moment with (7) in Sec. 15.4. to really understand the difference. Then 
go on and apply formula (8), Sec. 15.4. for a finite geometric sum. obtaining 

1 1 { z* - Zo (z* - Zo )2 ---=---- 1+ + + ... + 
Z* - Z ;: - Zo z - ':0 ::. - Zo 

__ 1 (Z* - zO)n+l 

z-z* Z-2o 

Multiplication by -f(.:*)/27Ti and integration over C2 on both sides now yield 

1 f f(z*) 
l1(z) = - --. --- dz* 

27Tl e
2 

z* - z 

_1_. {_1_ 1 f(z*) dz* + 1 1 (z* - 2o)f(z*) dz* + ... 
27TI Z - Zo re2 (z - ZO)2 re2 

+ 1 1 (z* - zo)nf(z*) dZ""'-} + Rn*(z) 
(z - zo)n+l r e2 

with the last term on the right given by 

(7) R*( 1 1 (z* - ::o)n+l f(z*) dz*. 
n z) = ?( )n+l r ok _7rIZ-2o e

2 
z-z' 

As before. we can integrate over C instead of C2 in the integrals on the right. We see that 
on the right, the power 1/(z - zo)n is multiplied by bn as given in (2). This establishes 
Laurent's theorem, provided 

(8) lim R~(z) = O. 
~x 

(c) COllvergellce proof of (8). Very often (1) will have only finitely many negative powers. 
Then there is nothing to be proved. Otherwise, we begin by noting that f(z*)/(z - z*) in 
(7) is bounded in absolute value, say. 

I f(z*) I < M 
z - z* 

for all z* on C2 

because f(z*) is analytic in the annulus and on C2, and z* lies on C2 and z outside, so 
that z - z* =/= O. From this and the ML-inequality (Sec. 14.1) applied to (7) we get the 
inequality (L = length of C2 , Iz* - zol = radius of C2 = const) 

~ 

l oki 1 ~ ML 
R;"(z) ~ 2 1 In+l Iz* - zoln+l ML = -

7T Z - Zo 27T I z* - 20 In+l 

Z - Zo 
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From (6b) we see that the expression on the right approaches zero as n approaches infinity. 
This proves (8). The representation (1) with coefficients (2) is now established in the given 
annulus. 

(d) C01lverge1lce of (1) i1l the e1llarged a1l1lulus. The first series in (1) is a Taylor 
series [representing g(z)]; hence it converges in the disk D with center Zo whose radius 
equals the distance of the singularity (or singularities) closest to zoo Also, g(z) must be 
singular at all points outside CI where fez) is singular. 

The second series in (I), representing h(z), is a power series in Z = 1/(z - Zo). Let the 
given annulus be 1"2 < Iz - zol < r l , where 1"1 and r2 are the radii of CI and C2, respectively 
(Fig. 367). This corresponds to 1/r2 > Izi > lirl' Hence this power series in Z must 
converge at least in the disk Izi < 1/r2' This corresponds to the exterior Iz - Zol > r2 of 
C2. so that h(z) is analytic for all z outside C2. Also, h(z) must be singular inside C2 where 
fez) is singular, and the series of the negative powers of (I) converges for all z in the exterior 
E of the circle with center Zo and radius equal to the maximum distance from <'0 to the 
singularities of fez) inside C2. The domain common to D and E is the enlarged open annulus 
characterized near the end of Laurent's theorem, whose proof is now complete. • 

Uniqueness. The Laurent series of a given analytic function fez) in its annulus of 
cOllvergence is ullique (see Team Project 24). However. fez) may have different Laurent selies 
ill two anlluli with the same center; see the examples below. The uniqueness is essential. As 
for a Taylor series, to obtain the coefficients of Laurent series, we do not generally use the 
integral formulas (2); instead, we use various other methods, some of which we shall illustrate 
in our examples. If a Laurent series has been found by any such process, the uniqueness 
guarantees that it must be the Laurent series of the given function in the given annulus. 

E X AMP L E 1 Use of Maclaurin Series 

Find the Laurent series of z -5 sin:: with center O. 

Solutio1l. By (14). Sec. 15.4. we obtain 

-5. ~ (-I)n 2n-4 I I I I 2 

:: SIn Z =:::0 (2n + I)! Z = ;:4 - 6;? + 120 - 5040 z + - ... (Izl > 0). 

Here the "annulus" of convergence is the whole complex plane without the origin and the pl'incipal part of 
the series at 0 is Z-4 - ~Z-2. • 

E X AMP L E 2 Substitution 

Find the Laurent series of z2e1/z with center O. 

Solution. From l12) in Sec. 15.4 with.:: replaced by liz we obtain a Laurent senes whose principal part is 
an infinite series, 

E X AMP L E 3 Development of 1/(1 - z) 

Develop 1/(1 - z) (a) in nonnegative powers of~, (b) in negative powers of z. 

Solutio1l. 

(a) 
I x 

-=L-n 
1- z -

n=O 

(Izl > 0) .• 

(valid if Izl < I). 

(b) 
I - z 

-] = I I I 
z(l - Z-l) = - n~o zn+l = - ~ - :;2 -... (valid if Izl > I) .• 
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E X AMP L E 4 Laurent Expansions in Different Concentric Annuli 

Find all Laurent series of 1I(~3 - ~ 4) with center O. 

Solution. Multiplying by IIz3
, we get from Example 3 

a:J I 
(I) -3--4 = L: ;;:n-3 = 

Z3 
+-

2 
Z -z n=O 

I x 

(II) -3--4 = - L: n+4 
z - Z n-O Z 

E X AMP L E 5 Use of Partial Fractions 
-2z + 3 

Solution. In terms of partial fractions, 

I 
f(::.) = -~ 

Z 

I 
+ -+I+z+'" 

Z 

3 
;; _ ... 

::.-2 

(a) and (b) in Example 3 take care of the first fraction. For the second fraction, 

x I 
(c) 

2 (I - ~ z) 

= L: 2n+l zn 
z-2 n=O 

= - L: 
2n 

(d) z - 2 
z (I -~) ';"n+l 

n=O ..... 

(I) From (a) and (c), valid for Izl < I (see Fig. 368), 

fez) = n~o (1 + 2nl+1) zn = % + % z + ~ Z2 + ... 

(II) From (c) and (b), valid for 1 < Izl < 2, 

= 1 a:J I 
1(z) = L: 2n+l ;;:n - L: 7n+1 = 2 

n=O n=O ~ 

(Ill) From ~d) and (b). valid for Izl > 2, 

00 1 2 
fez) = - L: (2n + I) n+l = - -

n=O Z Z 

y 

II 
...... III 

" I 

3 9 

x 

Fig. 368. Regions of convergence in Example 5 

(0 < Izl < 1). 

(Izl > 1). • 

(1::.1 < 2), 

(izi > 2). 

• 

If fez) in Laurent's theorem is analytic inside C2, the coefficients bn in (2) are zero by 
Cauchy's integral theorem, so that the Laurent series reduces to a Taylor series. Examples 
3(a) and 5(1) illustrate this. 
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~1=6J LAURENT SERIES NEAR A SINGULARITY 

ATO 

Expand the given function in a Laurent series that 
converges for 0 < Id < R and determine the precise region 
of convergence. (Show the details of your work.) 

l 
1. 

Z4 - Z5 
2. ;: cos-

Z 

e-z cosh 2;: 
3. _3 4. 

Z2 -<. 

Z-3e llz2 e
Z 

5. 6. 
Z2 - Z3 

17-141 LAURENT SERIES NEAR A SINGULARITY 

AT Zo 

Expand the given function in a Laurent series that 
converges for 0 < I:: - ::01 < Rand detennine the precise 
region of convergence. (Show details.) 

eZ sin ::: 
Zo = ~7T 7. -- , Zo = I 8. 

(z - ~7T)3 z- I 

9. 
cos.::: 

Z2 + ':::0 = i 10. 
7T)4 

, Zo = 7T 
I (::: -

ll. 2 ' ::0 = -; 
(z + i) - (z + i) 

Z3 

12. 2 
(Z + i) 

Zo = -i 

2. 1 
14. ::: smh -, ::0 = 0 

Z 

Z2 - 4 
13. , Zo = I 

Z - I 
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115-231 TAYLOR AND LAURENT SERIES 

Find all Taylor and Laurent series with center:: = ;:0 and 
determine the precise regions of convergence. 

15. 
Z3 

, :::0 = 0 16. 
Z2 

, :::0 = 
I - 1 -

Z2 
18. 17. , :::0 = 0 - Zo = 

I - ~4 -
" ~ 

_3 - 2;::.2 sinh;:; (. 

19. i)2 ::0 = i 20. 
1)4 ::0 = 

(;: - (:: -

4z - I 
21. 

Z4 
, :::0 = 0 22. _2 ::0 = ; 

- I ~. 

sin Z 
-~7T 23. 

~7T 
':::0 = 

Z + 

24. TEAM PROJECT. Laurent Series. (a) Uniqueness. 
Prove that the Laurent expansion of a given analytic 
function in a given annulus is unique. 
(b) Accumulation of singularities. Does tan (II:) 

have a Laurent series that converges in a region 
o < Izl < R? (Give a reason.) 
(c) Integrals. Expand the following functions in a 
Laurent series that converges for Izl > 0: 

I (et-I 
2 L--- dr, 
::: 0 1 

I IZ 

sin t - --dt. 
Z3 0 t 

25. CAS PROJECT. Partial Fractions. Write a program 
for obtaining Laurent series by the use of partial 
fractions. Using the program, verify the calculations in 
Example 5 of the text. Apply the program to two other 
functions of your choice. 

16.2 Singularities and Zeros. Infinity 
Roughly, a singular point of an analytic function fez) is a ::0 at which f(::) ceases to be 
analytic, and a ::ero is a z at which fez) = O. Precise definitions follow below. In this 
section we show that Laurent series can be used for classifying singularities and Taylor 
series for discussing zeros. 

Singularities were defined in Sec. 15.4, as we shall now recall and extend. We also 
remember that. by definition, a function is a single-valued relation, as was emphasized 
in Sec. 13.3. 

We say that a function fez) is singular or has a singularity at a point;:: = Zo if fez) is 
not analytic (perhaps not even defined) at z = zo, but every neighborhood of z = Zo 

contains points at which fez) is analytic. We also say that z = Zo is a singular point of fez). 
We call z = Zo an isolated singularity of fez) if z = Zo has a neighborhood without 

further singularities of fez). Example: tan z has isolated singularities at ± 7T12, ±37T/2, etc.; 
tan (lIz) has a nonisolated singularity at o. (Explain!) 
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Isolated singularities of fez) at z = Zo can be classified by the Laurent series 

(1) (Sec. 16.1) 

valid in the immediate neighborhood of the singular point z = zo, except at Zo itself, that 
is, in a region of the form 

o < Iz - zol < R. 

The sum of the first series is analytic at z = zo, as we know from the last section. The 
second series, containing the negative powers, is called the principal part of (1), as we 
remember from the last section. If it has only finitely many terms, it is of the form 

(2) + ... + 

Then the singularity of fez) at z = Zo is called a pole, and m is called its order. Poles of 
the first order are also known as simple poles. 

If the principal part of (I) hac; infinitely many terms, we say that fez) has at z = Zo an 
isolated essential singularity. 

We leave aside nonisolated singularities. 

E X AMP L E 1 Poles. Essential Singularities 

The function 

3 
fez) = z(z - 2)5 + (z - 2)2 

has a simple pole at z = 0 and a pole of fifth order at z = 2. Examples of functions having an isolated essential 
singularity at z = 0 are 

and 

~-l)'" 
sin - - L 

z - n-O (211 + 1)!in +1 z 

I 
+ 5' 5 - + .... 

3!Z3 .Z 

Section 16.1 provides further examples. For instance, Example I shows that z -5 sin;: has a fourth-order pole 
at O. Example 4 shows that l/(z3 - Z 4) has a third-order pole at 0 and a Laurent series with infinitely many 
negative powers. This is no contradiction, since this series is valid for Izl > 1; it merely tells us that in classifying 
singularities it is quite important to consider the Laurent series valid ill tile immediate Ileigllborllood of a singular 
point. In Example 4 this is the series (I), which has three negative powers. • 

The classification of singularities into poles and essential singularities is not merely a 
formal matter, because the behavior of an analytic function in a neighborhood of an 
essential singularity is entirely different from that in the neighborhood of a pole. 

E X AMP L E 2 Behavior Near a Pole 

fez) = I/z2 has a pole at z = 0, and If(z)1 ~ x as ;;; ....... 0 in any manner. This illustrates the foIlowin" 
eo 

theorem. • 
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THEOREM 1 Poles 

If f(z) is analytic and has a pole at z = Zo, then If(z)1 ~ (Xl as Z ~ Zo i17 anv manner. 

The proof is left to the student (see Prob. 12). 

E X AMP L E 3 Behavior Near an Essential Singularity 

THEOREM 2 

The function fez) = el/z has an essential singularity at z = O. It has no limit for approach along the imaginary 
axis; it becomes infinite if z ..... 0 through positive real values, but it approaches zero if <: --+ 0 through negative 
real values. It takes on any given value c = coia '* 0 in an arbitrarily small E-neighborhood of;:: = O. To see 
the letter. we set z = reill

, and then obtain the following complex equation for rand 8. which we must ~olve: 

ellz = e<'cos 0 - i sin tJ)/r = cOeia 

Equating the absolute values and the arguments, we have e'cos mh· = co' that is 

cos8= rlnco, and -sin 8 = ar 

respectively. From these two equations and cos2 8 + sin2 8 = r2(ln cO)2 + a 2r2 = I we obtain the formulas 

and 
a 

tan8= ---. 
Inca 

Hence r can be made arbitrarily small by adding multiples of 27T to a, leaving c unaltered. This illustrates the 
very famous Picard's theorem (with z = 0 as the exceptional value). For the rather complicated proof. see Ref. 
[D4J. voL 2. p. 258. For Picard. see Sec. 1.7. • 

Picard's Theorem 

If f(z) is analytic alld has all isolated essential singularity at a point zo, it takes Oil 

eve I}' value, with at most olle exceptional value, in an arbitrarily small E-neighborhood 

oJzo· 

Removable Singularities. We say that a function f(::) has a removable sillgulartty at 
z = Zo if f(z) is not analytic at z = Zo, but can be made analytic there by assigning a 
suitable value f(zo). Such singularities are of no interest since they can be removed as 
just indicated. Example: fez) = (sin z)/z becomes analytic at z = 0 if we define f(O) = I. 

Zeros of Analytic Functions 
A zero of an analytic function fez) in a domain D is a :: = :::0 in D such that f(zo) = O. 
A zero has order n if not only f but also the derivatives f', fIt, ... , f n - ll are all 0 at 
Z = Zo but fn)(Zo) *- O. A fIrst-order zero is also called a simple zero. For a second-order 
zero, f(Zo) = f' (zo) = 0 but f"(zo) *- O. And so on. 

E X AMP L E 4 Zeros 

The function L + ;::2 has simple zeros at :!:i. The function (1 - -;;4)2 has second-order zeros at:!: I and :!:i. The 
function (::: - a)3 has a third-order zero at Z = a. The function eZ has no zeros (see Sec. 13.5). The function 
sin z has simple zeros at 0, :!:7T, :!:27T, ... , and sin2 z has second-order zeros at these points. The function 
I - cos Z has second-order zeros at 0, :!:27T. :!:47T, ... , and the function (I - cos Z)2 has fourth-order zeros 
at these points. • 
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Taylor Series at a Zero. At an nth-order zero ::: = :::0 of f(:::), the derivatives f' (Zo), ..• , 
['n-1)(:::o) are zero, by definition. Hence the first few coefficients (/o, ... , an-l of the 
Taylor series (1), Sec. 15.4, are zero, too, whereas lin =1= 0, so that this series takes the 
form 

f(:::) = lIn(:: - zo)n + {/n+l(:: - ':0)'1+1 + ... 
(3) 

= (z - ::o)n [an + (/n+l(Z - <::0) + (/n+2(::: - :::0)2 + ... ] 

This is characteristic of such a zero, because if f(::) has such a Taylor series, it has an 
nth-order zero at ::: = :::0' as follows by differentiation. 

Whereas nonisolated singularities may occur, for zeros we have 

- ---------------------------------------------------------------, 
Zeros 

The zeros of an analytic filllction f(;::) (¥= 0) are isolated; that is, each of them has 
a neighborhood that c01l1aills no further :::eros of fez). 

I ROO F The factor (::: - :::0)" in (3) is zero only at ::: = :::0' The power series in the brackets 
[ ... ] represents an analytic function (by Theorem 5 in Sec. 15.3), call it g(z). Now 
g(Zo) = an =1= 0, since an analytic function is continuous, and because of this continuity, 
also g(:::) =1= 0 in some neighborhood of z = :::0' Hence the same holds of f(:::). • 

--R": • 4 

This theorem is illustrated by the functions in Example 4. 
Poles are often caused by zeros in the denominator. (Example: tan z has poles where 

cos::: is zero.) This is a major reason for the imp0l1ance of zeros. The key to the connection 
is the following theorem, whose proof follows from (3) (see Team Project 24). 

Poles and Zeros 

Let fez) be analytic at z = Zo and have a zero of nth order at z = :::0' Then lIf(z) 
has a pole of 1I1h order at .: = :::0; and so does h(:::)lf(:::), provided he:::) is allalytic 
at Z = 20 and 17(:::0) =1= 0. 

Riemann Sphere. Point at Infinity 
When we want to study complex functions for large Izl, the complex plane will generally 
become rather inconvenient. Then it may be better to use a representation of complex 
numbers on the so-called Riemann sphere. This is a sphere S of diameter 1 touching the 
complex z-plane at z = ° (Fig. 369), and we let the image of a point P (a number z in the 
plane) be the intersection P* of the segment PN with S, where N is the "North Pole" 
diametrically opposite to the origin in the plane. Then to each z there corresponds a point 
on S. 

Conversely, each point on S represents a complex number z, except for N, which does 
not con'espond to any point in the complex plane. This suggests that we introduce an 
additional point, called the point at infinity and denoted CG ("infinity") and let its image 
be N The complex plane together with :JO is called the extended complex plane. The 
complex plane is often called the finite complex plane, for distinction, or simply the 
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N 

Fig. 369. Riemann sphere 

complex plane as before. The sphere S is called the Riemann sphere. The mapping of 
the extended complex plane onto the sphere is known as a stereographic projection. 
(What is the image of the Northern Hemisphere? Of the Western Hemisphere? Of a straight 
line through the origin?) 

Analytic or Singular at Infinity 
If we want to investigate a function .fez) for large 1z1, we may now set.;: = 1111" and investigate 
.f(z) = .fO/w) == g(w) in a neighborhood of w = O. We define .f(z) to be analytic or singular 
at infinity if g(w) is analytic or singular. respectively, at w = O. We also define 

(4) g(O) = lim g(w) 
zo->o 

if this limit exists. 
Furthermore, we say that f(z.) has an nth-order zero at infinity if f(l/w) has such a zero 

at w = O. Similarly for poles and essential singularities. 

E X AMP L E 5 Functions Analytic or Singular at Infinity. Entire and Meromorphic Functions 

The function f(z.) = 11z2 is analytic at x since g(w) = f(l/w) = .r2 is analytic at w = 0, and fez) has a second­
order zero at x. The function .t(;:) = 2

3 is singular at x and has a third-order pole there since the function 
g(w) = .to/w) = 1Iw3 has such a pole at w = O. The function eZ has an essential singularity at Cf) since eV", 

has such a singularity at II' = O. Similarly, cos z and sin z have an essential singularity at x. 
Recall that an entire function is one that is analytic everywhere in the (finite) complex plane. Liouville's 

theorem (Sec. l4...l) tells us that the only boullded entire functions are the constants, hence any nonconstant 
entire function must be unbounded. Hence it has a singularity at x, a pole if it is a polynomial or an essential 
singularity if it is not. The functions just considered are typical in this respect. 

An analytic function whose only singularities in the finite plane are poles is called a meromorphic function. 
Examples are rational function, with nonconstant denominator, tan ;:, cot z, sec z, and eSc z. • 

In this section we used Laurent series for investigating singularities. In the next section 
we shall use these series for an elegant integration method . 

.. .. -
[1-101 SINGULARITIES 

Determine the location and kind of the singularities of the 
following functions in the finite plane and at infinity. In the 
case of poles also state the order. 

1. tan2
7TZ 

3. cot Z2 

5. cos z - sin z 

2 3 
2. z + 

4. Z3e l/(Z-1l 

6. lI(cos z - sin z) 
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sin 3z 
7. (Z4 _ 1)4 

4 2 
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21. (1 - cos Z)2 

8 
8. -- + 2 

Z - 1 (z - 1) (;: - l)3 

23. (Zeros) If f(:) is analytic and has a zero of order 11 at 
z = :0' show that f2(Z) has a zero of order 211. 

24. TEAM PROJECT. Zeros. la) Derivative. Show that 
if f(:) has a zero of order 11 > I at: = :0' then I' (:) 
has a zero of order 11 - 1 at ::'0. 

9. cosh [lie + 1)] 10. e ll(Z-l)/(eZ - 1) 

11. (Essential singularity) Discuss e llz2 in a similar way 
as e llz is discussed in Example 3. 

(b) Poles and zeros. Prove Theorem 4. 

(e) Isolated k-points. Show that the points at which 
a nonconstant analytic function fez) has a given value 
k are isolated. 

12. (Poles) Verify Theorem I for f(:) = :::-3 - Z-I. Prove 
Theorem 1. 

113-221 ZEROS 

Determine the location and order of the zeros. 

(d) Identical functions. If ftC;:) are analytic in a 
domain D and equal at a sequence of points Zn in D 
that converges in D, show that fl(:) == .f2(::') in D. 

13. (z + 16i)4 

15. :::-3 sin3 7fZ 

17. (3z2 + l)e- Z 

19. (,2 + 4)(eZ 
- l)2 

14. (Z4 - 16)4 

16. cosh2
::: 

18. (Z2 - 1)2(e
Z2 

- L) 

20. (sin z - 1)3 

25. (Riemann sphere) Assuming that we let the image of 
the x-axis be meridians 0° and 180°, describe and 
sketch (or graph) the images of the following regions 
on the Riemann sphere: (a) Izl > LOO. (b) the lower 
half-plane, (c) ! ~ 1::.1 ~ 2. 

16.3 Residue Integration Method 
The purpose of Cauchy's residue integration method is the evaluation of integrals 

T. fez) dz 
c 

taken around a simple close path C. The idea is as follows. 
If fez) is analytic everywhere on C and inside C, such an integral is zero by Cauchy's 

integral theorem (Sec. 14.2), and we are done. 
If fez) has a singularity at a point z = Zo inside C, but is otherwise analytic on C and 

inside C, then fez) has a Laurent series 

fez) = 2:: an(z - zo)n + 
n~O 

z - Zo 

that converges for all points near z = Zo (except at z = Zo itself), in some domain of the 
form 0 < Iz - zol < R (sometimes called a deleted neighborhood, an old-fashioned term 
that we shall not use). Now comes the key idea. The coefficient hI of the first negative 
power lI(z - zo) of this Laurent series is given by the integral formula (2) in Sec. 16.1 
with 11 = 1, namely, 

hI = -2
1 

. T. fez) dz. 
7ft C 

Now, since we can obtain Laurent series by various methods, without using the integral 
formulas for the coefficients (see the examples in Sec. 16.1), we can find hI by one of 
those methods and then use the formula for hI for evaluating the integral, that is, 

(1) 
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Here we integrate conunterclockwise around a simple closed path C that contains z = Zo 
in its interior (but no other singular points of fez) on or inside C!). 

The coefficient hi is called the residue of fez) at z = Zo and we denote it by 

(2) hI = Res fez). 
Z=Zo 

E X AMP L E 1 Evaluation of an Integral by Means of a Residue 

Integrate the function f(z) = Z -4 sin z counterclockwise around the unit circle C. 

Solution. From (14) in Sec. 15.4 we obtain the Laurent series 

sin z 1 I Z z3 
f(z.) = -4- = "3 - -3'z + -5' - 71 + - ... z z . . . 

which converges for Izl > 0 (that is, for all z 1= 0). This series shows that J(z) has a pole of third order at z = 0 
and the residue b i = -113!. From (1) we thus obtain the answer 

J. sin z TTi r -4- dz = 27fib1 = - ""3 
c z 

E X AMP L E 2 CAUTION! Use the Right Laurent Series! 

Integrate f(z) = I/(z3 Z4) clockwise around the circle C: Izl = 112. 

• 

Solution. z3 - z4 = .:3(1 - z) shows that J(z) is singular at z = 0 and z = l. Now z = 1 lies outside C. 
Hence it is of no interest here. So we need the residue of ftz) at O. We find it from the Laurent series that 
converges for 0 < Izl < l. This is series (I) in Example 4, Sec. 16.1, 

1 1 I 1 
---=-+-+ +I+z+'" 
Z3 - Z4 l Z2 Z 

(0 < Izl < I). 

We see from it that this residue is 1. Clockwise integration thus yields 

J. dz r -3--4 = -27fi Res f(z) = -27fi. 
cZ-z z-o 

C4UTlON! Had we used the wrong series (II) in Example 4, Sec. 16.1, 

(Izl > 1), 

we would have obtained the wrong answer, 0, because this series has no power liz. • 
Formulas for Residues 
To calculate a residue at a pole, we need not produce a whole Laurent series, but, more 
economically, we can derive formulas for residues once and for all. 

Simple Poles. Two formulas for the residue of f(:::;) at a simple pole at Zo are 

(3) Res fez) = hI = lim (z - zo)f(z) 
Z=Zo Z----7Zo 

and, assuming that f(;:,) = p(z)lq(z), p(zo) =1= 0, and q(z) has a simple zero at Zo (so that 
fez) has at;:,o a simple pole, by Theorem 4 in Sec. 16.2), 

(4) p(z) 
Res fez) = Res -
Z=20 2=20 q(z) 
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PRO 0 F For a simple pole at z = Zo the Laurent series (1), Sec. 16.1, is 

(0 < Iz - zol < R). 

Here bl '* O. (Why?) Multiplying both sides by z - ':0 and then letting z ~ ':0' we obtain 
the formula (3): 

lim (z - ;;;o)f(z) = bi + lim (z - Zo)[ao + al(Z - zo) + ... ] = b i 
Z---i>Zo Z-+Zo 

where the last equality follows from continuity (Theorem L. Sec. 15.3). 
We prove (4). The Taylor series of q(::.) at a simple zero ':0 is 

, (.: - zol 
q(z) = (z - zo)q (zo) + 2! q"(zo) + 

Substituting this into f = plq and then f into (3) gives 

. p(z). (z - ':o)p(,:) 
Res fez) = lim (z - ::'0) -- = hm 
Z~Zo Z-+Zo q(z) Z-+Zo (.: - zo}[q'(;::o) + (z - ::.o)q"(zo)!2 + ... ] 

z - Zo cancels. By continuity, the limit of the denominator is q' (zo) and (4) follows .• 

E X AMP L E 3 Residue at a Simple Pole 

f(:) = (9: + 0/(:3 + ;::) has a simple pole at i because :2 + I = (: + i )(z - i). and (3) gives the residue 

9;:: + i 9: + i [ 9: + i ] !Oi 
Res = lim (: - i) . . = ---. = - = -5;. 
z~i ;::{;::2 + I) z~i ;::(;:: + I){:: - I) ;::{;:: + I) z~i -2 

By (4) with p{i) = 9; + i and l/ (;::) ~ 3;::2 + I we confirm the result. 

9;;: + i [9;:: + i ] !Oi 
Res 2 = -2-- = - = -5i. 
z~; :(;:: + I) 3~ + 1 Fi - 2 • 

Poles of Any Order. The residue of fez) at an mth-order pole at Zo is 

(5) 1 {d"'-I [ ]} ~~~ fez) = (m _ I)! !~~o dzm-I (z - zoynf(z) . 

In particular, for a second-order pole (m = 2), 

(5*) 

PROOF The Laurent series of f(z) converging near Zo (except at Zo itself) is (Sec. 16.2) 

where b1n '* O. The residue wanted is b l . Multiplying both sides by (z - zoyn gives 
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We see that hI is now the coefficient of the power (z - ;::0)',,-1 of the power series of 
g(;::) = (z - ::'o),"f(;::). Hence Taylor's theorem (Sec. 15.4) gives (5): 

hI = 
(m - l)! 

g'm-ll (:0) 

1 d"'-I 
-- [(7 - 7 )'''f(7)] • (m - l)! dzm-I "" ~o '.' 

E X AMP L E 4 Residue at a Pole of Higher Order 

THEOREM 1 

f(::;) = 50::;/(::;3 + 2::;2 - 7::; + 4) has a pole of second order at ;: = 1 because the denominator equals 
(;: + 4)(;: - 1)2 (verify!). From (5*) we obtain the residue 

d ( 50;: ) = lim - --
.~1 d;: z + 4 

200 
= -2 = 8. 

5 

Several Singularities Inside the Contour. 
Residue Theorem 

• 

Residue integration can be extended from the case of a single singularity to the case of 
several singularities within the contour C. This is the purpose of the residue theorem. The 
extension is surprisingly simple. 

Residue Theorem 

Let f(;::) he analytic imide a simple closed path C alld 011 C. except forfillite!y many 
singular points ::'1, Z2, •.. , z" inside C. Then the integral of f(z.) taken cO/lIlterclockll"ise 
around C equals 27Ti times the sum of the residues of f(;::) {{f Z.I, ••• , Zk: 

k 

(6) fefc::,) d::. = 27Ti 2:: ~~s fez). 
j~I J 

c 

Fig. 370. Residue theorem 
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PROOF We enclose each of the singular points Zj in a circle Cj with radius small enough that those 
k circles and C are all separated (Fig. 370). Then fez) is analytic in the multiply connected 
domain D bounded by C and Ch ... , Ck and on the entire boundary of D. From Cauchy's 
integral theorem we thus have 

(7) f fez) dz + f fez) dz + f fez) dz + ... + f fez) dz = 0, 
C ~ ~ ~ 

the integral along C being taken counterclockwise and the other integrals clockwise (as in 
Figs. 351 and 352, Sec. 14.2). We take the integrals over C1, ... , Ck to the right and 
compensate the resulting minus sign by reversing the sense of integration. Thus, 

(8) f fez) dz = f fez) dz + f fez) dz + ... + f fez) dz 
C C, C2 Ck 

where all the integrals are now taken counterclockwise. By (1) and (2), 

f fez) dz = 27Ti Res fez), 
~ z=~ 

j = 1, ... , k, 

so that (8) gives (6) and the residue theorem is proved. • 
This important theorem has various applications in connection with complex and real 
integrals. Let us first consider some complex integrals. (Real integrals follow in the next 
section.) 

E X AMP L E 5 Integration by the Residue Theorem. Several Contours 

Evaluate the following integral counterclockwise around any simple closed path such that (a) 0 and 1 are inside 
C, (b) 0 is inside, I outside, (c) I is inside, 0 outside, (d) 0 and I are outside. 

1, 4 - 3;: r -2-- d;: 
C ;: - Z 

Solution. The integrand has simple poles at 0 and I, with residues [by (3)] 

4-3;: [4-3;:J Res --- = --- = -4. 
Z~O z(z - 1) z - I Z~O 

4-3z [4-3zJ Res --- = --- = I. 
z~l z(z - I) Z z~l 

[Confirm this by (4).] Ans. (a) 21Ti(-4 + 1) = -61Ti, (b) -81Ti, (c) 21Ti, (d) O. 

E X AMP L E 6 Another Application of the Residue Theorem 

Integrate (tan Z)/(Z2 - I) counterclockwise around the circle C: Izl = 312. 

• 

Solution. tan;:; is not analytic at ±1T/2, ±31T12, ... , but all these points lie outside the contour C. Because 
of the denominator Z2 - I = (z - 1)(z + I) the given function has simple poles at ± I. We thus obtain from 
(4) and the residue theorem 

f tanz (tanz 
-2-- dz = 21Ti Res -2-- + Res 

C Z - I z~l Z - 1 z~-l 

~an;: ) 
z - I 

= 21Ti -- + --(
tanzl tan;: I ) 
2;: z~l 2;:: z~-l 

= 21Ti tan 1 = 9.7855i. • 
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E X AMP L E 7 Poles and Essential Singularities 

Evaluate the following integral, where C is the ellipse 9x2 + i = 9 (counterclockwise, sketch it). 

1 (4::.
eTrZ 

+ ze'n'/Z) d::. Jc z - 16 

717 

Solution. Since::.4 
- 16 = 0 at ±2i and ±2. the first tenn of the integrand has simple poles at ±2i inside 

C, with residues [by (4); note that e27Ti = 1] 

Res 
z=-2i 

ze= 1 

16 

and simple poles at ±2, which lie outside C, so that they are of no interest here. The second term of the integrand 
has an essential singularity at 0, with residue 71'2/2 as obtained from 

AilS. 271';(-16 - 16 + !71'
2

) = 7r! 71"2 - !)i = 30.22 Ii by the residue theorem. 

. : c ; 

1. Verify the calculations in Example 3 and find the other 
residues. 

2. Verify the calculations in Example 4 and find the other 
residue. 

!3:@ RESIDUES 

Find all the singular points and the corresponding residues. 
(Show the details of your work.) 

1 
3. 2 4+z 

sin z 
5. 

7. cot Z 

11. tan z 

cos z 
4.~ 

6. 
Z2 + I 

Z2 - z 

8. sec z 
1/3 

10. 
;:4 - 1 

12. 
Z2 

Z4 - l 

13. CAS PROJECT. Residue at a Pole. Write a program 
for calculating the residue at a pole of any order. Use 
it for solving Probs. 3-8. 

~ RESIDUE INTEGRATION 

Evaluate (counterclockwise). (Show the details.) 

14. f 
c 

sin 7rZ 
--4- dz, 

z 
C: /z - i/ = 2 

15. f e lfz dz, C: Izl = 1 
c 

tc d7 
c: Iz - 11 = 1.4 16. 

sinh !7rz 

17. f tan TTZ dz. c: Izl = I 
c 

18. f tan 7rZ dz. C: Izl = 2 
c 

tc eZ 

c: Izl 19. --dz. = 4.5 
cos "-

20. f coth z dz. C: Izl = I c 
tc e' 

C: Iz - il = 1.5 21. --dz. 
cos 7rZ 

22. tc coshz 

Z2 - 3iz 
dz, C: Izl = ] 

23. fc 
tan 7rZ 

C: Iz + ~il = I -_-3- dz, 
<. 

24. f 
c 

I - 4::. + 6z2 

(Z2 + !){2 - z) dz. c: /z/ = I 

30::.2 
- 23z + 5 

(2z - ])2(3z - 1) dz, C: /z/ = I 25. f 
c 

(Izl > 0). 

• 
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16.4 Residue Integration of Real Integrals 
It is quite surprising that certain classes of complicated real integrals can be integrated 
by the residue theorem, as we shall see. 

Integrals of Rational Functions of cos () and sin () 
We first consider integrals of the type 

(1) 
2 ... 

J = f F(cos e, sin e) de 
o 

where F(cos e, sin 6) is a real rational function of cos e and sin e [for example, 
(sin2 e)/(5 - 4 cos e)] and is finite (doe5. not become infinite) on the interval of integration. 
Setting eill = z, we obtain 

(2) 
(z + +) 
(z - +) 

Since F is rational in cos e and sin e, Eq. (2) shows that F is now a rational function of 
;;;, say, f(.:). Since d;;;lde = ieill

, we have de = cl.:/i;:. and the given integral takes the form 

(3) J = J. f(::) ~.: 
Jc IZ 

and, as e ranges from 0 to 27T in (I), the vaIiable z = eil! ranges counterclockwise once 
around the unit circle Izi = 1. (Review Sec. 13.5 if necessary.) 

E X AMP L ElAn Integral of the Type (1) 

Show b} the pre,ent method that ,-271" de Jo V2 - cos e = 17T. 

Solution. We use cos fJ = ~(: + 1/:) and de = d:/i::.. Then the integral becomes 

= f i d::. 
c __ (_2- 7V2-+ I) 

2 ~ - .. 

2 J. d-

= - i Jc (::. - V2 - 1)(;: - V2 + 1) . 

We see that the integrand has a simple pole at ::'1 = V2 + I outside the unit circle C. so that it is of no interest 
here. and another simple pole at::2 = '\ '2 - I (where::. - V2 + I = 0) inside C with residue [by (3), Sec. 16.3] 

z~~~ (~- V2 - I):Z - V2 + I) = [ Z - ~ - I 1~V'2-1 

2 

Answer: 27Ti( -2/i)( -1/2) = 27T. (Here -21i is the factor in front of the last integral.) • 
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As anOlher large class, let us consider real integrals of the form 

(4) IX f(x) dx:. 
-x 

Such an integral, whose interval of integration is not finite is called an improper integral, 
and i( has the meaning 

(5') 
X 0 b 

I f(x) dx = lim I f(x) dx: + lim f f(x) dt. 
-x a_-:c a b-----')ox 0 

If both limits exist, we may couple (he (wo independent passages (0 -00 and x. and write 

(5) 
DO R 

I f(x) dx = lim I f(x) dx. 
-00 R-----')occ -R 

The limit in (5) is called the Cauchy principal value of the integral. It is written 

pr. v. I= f(x) dx. 
-x 

It may exist even if the limits in (5') do not. EXllmple: 

R (R2 R2) 
lim I x dol = lim - - - = 0, 
R~x -R R~x 2 2 

but 
b 

lim f xdx = x. 
b_x 0 

We assume that the function f(t) in (4) is a real rational function whose denominator 
is different from zero for all real x and is of degree at least (Wo units higher than the 
degree of (he numerator. Then the limits in (5') exist. and we may start from (5). We 
consider the corresponding contour integral 

(5*) f fez) d::. 
c 

around a path C in Fig. 371. Since .f(x) is rational, fez) has finitely many poles in the 
upper half-plane, and if we choose R large enough, then C encloses ali these poles. By 
the residue theorem we then obtain 

R f f(:o d::. = f f(::.) d::. + I f(x) dx = 27Ti 2: Res f(::.) 
c s -R 

Yj 

_L,T\ 
-R I R x] 

Fig. 371. Path C of the contour integral in (5*) 
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where the sum consists of all the residues of f(z) at the points in the upper half-plane at 
which f(z) has a pole. From this we have 

(6) 
R I f(x) dx = 27Ti ~ Res f(z) - I f(z) dz. 
-R S 

We prove that, jf R --') x, the value of the integral over the semicircle S approaches 
zero. If we set.: = Rei/!, then S is represented by R = const, and as z ranges along S. the 
variable e ranges from 0 to 7T. Since. by assumption, the degree of the denominator of 
f(z) is at least two units higher than the degree of the numerator, we have 

k 
If(z)1 < Izl2 (Izl = R > Ro) 

for sufficiently large constants k and Ro. By the ML-inequality in Sec. 14.1, 

II I k k7T 
f(z) dz < '2 TTR = -

s R R 

Hence, as R approaches infinity. the value of the integral over S approaches zero. and (5) 
and (6) yield the result 

(7) {>O f(x) dx = 27Ti ~ Res f(z) 
-00 

where we sum over all the residues of f(::.) at the poles of f(z) in the upper half-plane. 

E X AMP L E 2 An Improper Integral from 0 to 00 

Using (7), show that 

J
oe d-.: 

o 1+ x4 = 2\12 . 

7T 

y 

x 

Fig. 372. Example 2 

Solutioll. Indeed. fez) = 11(1 + Z4) has four simple poles at the poims Imake a sketch) 

Zl = e .... iJ4~ "7 _ 3wiJ4 
"'2 - e , 

The first two of these poles lie in the upper half-plane (Fig. 372). From (4) in the last section we find the residues 
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. [ 1 ] [ 1 ] _ 1 -3"';/4 _ 1 rri/4 Res fez) = 4 , = ~ - - e - - - e . 
Z~Zl (1 + z) Z~Zl 4z: Z~Zl 4 4 

Res fez) = [ 1 4' ] = [~J = ..!.. e-97Ti
/
4 = ..!.. e-wi

/
4

• 
Z~Z2 (1 + z) Z~Z2 4z Z~Z2 4 4 

(Here we used e"'; = -I and e -2"'; = 1.) By (1) in Sec. 13.6 and (7) in this section, 

cc 

f dr: 27Ti '/4 '/4 27Ti 7T 7T 7T 
-ro 1 + x4 = - 4 (e= - e--m ) = - 4 '2i'sin '4 = 7Tsin '4 = V2 . 

Since 1/(1 + x 4) is an even function, we thus obtain, as asserted, 

7T • 2V2 . 

Fourier Integrals 
The method of evaluating (4) by creating a closed contour (Fig. 371) and "blowing it up" 
extends to integrals 

(8) fro f(x) cos sx dx 
-00 

and fro f(x) sin sx tb 
-cc 

(s real) 

as they occur in connection with the Fourier integral (Sec. 11.7). 
If f(x) is a rational function satisfying the assumption on the degree as for (4), we may 

consider the corresponding integral 

f fez) eisz dz 
c 

over the contour C in Fig. 371 on p. 719. Instead of (7) we now get 

(9) f= f(x)eisx dx = 27Ti ~ Res [f(z)eisZ] 
-ro 

(s real and positive) 

(s > 0) 

where we sum the residues of f(z)eisz at its poles in the upper half-plane. Equating the 
real and the imaginary parts on both sides of (9), we have 

foo f(x) cos sx dx = -27T ~ 1m Res [f(z)eisZ], 
-00 

(10) (s> 0) 

fro f(x) sin sx d>o: = 27T ~ Re Res [f(z)eisZ]. 
-co 

To establish (9), we must show [as for (4)] that the value of the integral over the 
semicircle S in Fig. 371 approaches 0 as R -7 00. Now s > 0 and S lies in the upper 
half-plane y ~ O. Hence 

(s> 0, y ~ 0). 

From this we obtain the inequality /f(z)eisz
/ = /f(z)//eisz / ~ /f(z)/ (s > 0, y ~ 0). This 

reduces our present problem to that for (4). Continuing as before gives (9) and (10). • 
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E X AMP L E 3 An Application of (10) 

Show that I"" cos SX 7T -ks 
--- d~= - e 

-x k 2 + x 2 k 

cc 

I SIn.1X 
-2--2 d~=O 

-0:; k +x 
(S > O. k > 0). 

Solution. In fact, eisz/(k 2 + ;:2) has only one pole in the upper half·plane, namely. a simple pole at:: = ik. 
and from (4) in Sec. 16.3 we obtain 

Thus 

e
isz 

[ e
isz 

] e -ks Res --- = - = -.- . 
z~ik k2 + Z2 2:: z~ik 2fk 

:x: isx -ks 

I e. e 7T -ks 
-cc J... 2 + x2 d-.: = 27Tf 2ik = k e . 

Since eisx 
= cos sx + ; sin nc. this yield_ the above results lsee also (5) in Sec. 11.7.] 

Another Kind of Improper Integral 
We consider an improper integral 

(11) 
B I f(x) dx 

A 

whose mtegrand becomes infinite at a point a in the interval of integration. 

lim If(x)1 = 00. x __ a 

By definition. this integral (11) means 

(12) 
B Q-E B 

I f(x) d"l: = lim I f(x) dx + lim I f(x) dx 
A E_O A ~-O a+~ 

• 

where both E and TJ approach zero independently and through positive values. It may happen 
that neither of these two limits exists if E and TJ go to 0 independently, but the limit 

(13) lim [IO-;(x) dx + IB f(x) dX] 
E_O A a+E 

exists. This is called the Cauchy principal value of the integral. It is written 

For example, 

B 

pro V. I f(x) dL 
A 

pI. V. II {~~ = lim [I- E 

dr + II dx ] = 0: 
-1 .t E_O -1 x 3 

E x 3 

the principal value exists, although the integral itself has no meaning. 
In the case of simple poles on the real axis we shall obtain a formula for the principal 

value of an integral from -00 to 00. This formula will result from the following theorem. 
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THEOREM 1 Simple Poles on the Real Axis 

If f(:::;) has a simple poLe at z = a on the real axis, then (Fig. 373) 

lim I fez) dz = 7ri Res fez). 
7---+0 C

2 
2=a 

0, 
a-r a a+r x 

Fig. 373. Theorem 1 

PROOF By the definition of a simple pole (Sec. 16.2) the integrand fez) has for 0 < Iz - al < R 
the Laurent series 

f(:::;) = + gC:), b i = Res fez). 
:::;-a 2=a 

Here g(z) is analytic on the semicircle of integration (Fig. 373) 

and for all z between C2 and the x-axis, and thus bounded on C2 , say, Ig(z) I ~ M. By 
integration. 

I f(:::;) d:::; = f7i" b!e ireiB dB + I g(;;::) d:::; = b I 7ri + I g(:::;) dz. 
C2 ore C2 C2 

The second integral on the right cannot exceed M7rr in absolute value. by the ML-inequality 
(Sec. 14.1). and ML = M7rr~ 0 as r~ o. • 

Figure 374 shows the idea of applying Theorem l to obtain the principal value of the 
integral of a rational function f(x) from -:lJ to:xl. For sufficiently large R the integral over 
the entire contour in Fig. 374 has the value J given by 27ri times the sum of the residues 
of f(:::;) at the singularities in the upper half-plane. We assume that f(x) satisfies the degree 

Fig. 374. Application of Theorem 1 
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condition imposed in connection with (4). Then the value of the integral over the large 
semicircle S approaches 0 as R ~ x. For r ~ 0 the integral over C2 (clockwise!) 
approaches the value 

K = - 7Ti Res f(z) 
2=a 

by Theorem I. Together this shows that the principal value P of the integral from -00 to 
00 plus K equals J; hence P = J - K = J + 7Ti Resz~a f(z). [f f(z) has several simple 
poles on the real axis, then K will be -7Ti times the sum of the corresponding residues. 
Hence the desired formula is 

oc 

(14) pro V. I f(x) dx = 27Ti L Res f(z) + 7Ti L Res f(z) 
-oc 

where the first sum extends over all poles in the upper half-plane and the second over all 
poles on the real axis, the latter being simple by assumption. 

E X AMP L E 4 Poles on the Real Axis 

Find the principal value 

I
x d, 

pr. V. _= (x2 _ 30t + 2)(x2 + I) 

Solutioll. Since 

x 2 - 3x + 2 = (x - I )(x - 2), 

the integrand f(x), considered for complex ~, has simple poles at 

z= I, 

z = 2. 

:: = i, 

[ 
1 ] Res f(:d = 

z~l (z - 2)(~2 + I) z~l 

2 ' 

[ 
1 ] Res f(::) = 2 

z~2 (:: - 1)(:: + I) z~2 

I 

5 ' 

Resj(::) = [2 1 ] 
z~i (:: - 3.;: + 2)(;: + i) z~i 

3 - i 
=6+2;= 20' 

and ar .: = -; in the lower half-plane, which is of no interest here. From (14) we get the answer 

Ix d, ( 3 - i) (1 I ) W 

pro V. -x (x2 _ 3x + 2)(x2 + I) = 2wi w- + wi -"2 + 5" = 10 • 

More integrals of the kind considered in this section are included in the problem set. Try 
also your CAS, which may sometimes give you false results on complex integrals. 
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.. 1 ... 1.1 __ ... _-=- _ .. -.-.. ....... . _ ....... 
11-81 INTEGRALS INVOLVING COSINE AND SINE 

Evaluate the following integrals. (Show the details of your 
work.) 

r~ dO 
1. 

o 7 + 6 cos 0 

t~ dO 
3. 

o 37 - 12 cos 0 

rw dO 
5. 

0 5 - 4 sin (! 

f27< cos fJ 
7. -----dO. 

o 13 - 12 cos 20 

Him. cos 20 = 

8. t" 
o 

2 

+4cosO 
dO 

17 - 8 cos (! 

IW dO 
2. 

o 2 + cos 0 

t w dO 
-'. 8 - 2 sin 0 0 

t~ sin2 0 
6. 

o 5 - 4 cos (! 

IMPROPER INTEGRALS: 

dO 

INFINITE INTERVAL OF INTEGRATION 

Evaluate (showing the details): 

L: dx t' ~dx 9. 
x2 + 

10. 
-x x + I 

I: ell: L: dx 
tl. 

x6 + I 
12. 

(x2 - 2x + 5)2 

I
x dx 

13. -00 -c""Cx2O--+-4-)""""2 14. L: -x-'-4-~-x-I-6 

I"" X3 

15. ---8 dx 
-"" 1 + x 

16. L: -(X-;2;-+-1-~-;X"""2-+-9-) 

17. L: -(X-,.2;:----;-~-+-2-,)2;:- dx 

I
x x2 + I 

18. -4-- dx 
-x x + I 

"" . 

I smx 
19. -4-- dx 

_::>0 X + 1 

I= cosx 
20. -4-- dx 

-00 x + I I
co 

sin 3x 
21. -4-- dx 

-00 x + 1 

I
co 

cos 4x 
22. -x -x"O;"4-+-5-'x2::--+-4 dx 
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123-271 IMPROPER INTEGRALS: 
POLES ON THE REAL AXIS 

Find the Cauchy principal value (showing details): 

:>0 2 

I
oo 

x+2 
23. -3-- dx 

-cc x + x 
24. I -!--dx 

_:>0 x - I 

I
oo 

x+5 
25. -3-- dx 

-00 x - x 

26. I
CC dx 

-00 -x-;;4-+-3-x"""2---4 

27. L: 
28. TEAM PROJECT. Comments on Real Integrals. 

(a) Formula nO) follows from (9). Give the details. 
2 

(b) Use of auxiliary results. Integrating e-z around 
the boundary C of the rectangle with vertices -a, a, 
a + ib, -a + ib, letting a --> co, and using 

show that 

L"" 2 -v:,; _b2 
e-X cos 2bx dx = -- e . 

o 2 

(This integral is needed in heat conduction in Sec. 
12.6.) 

(c) Inspection. Solve Probs. 15 and 21 without 
calculation. 

29. CAS EXPERIMENT. Check your CAS. Find out to 
what extent your CAS can evaluate integrals of the 
form (1), (4). and (8) correctly. Do this by comparing 
the results of direct integration (which may come out 
false) with those of using residues. 

30. CAS EXPERIMENT. Simple Poles on the Real 
Axis. Experiment with integrals f~co f(x) dx. 
f(x) = [(x - al)(x - a2) ... (x - ak)r1. aj real and 
all different, k > L Conjecture that the principal value 
of these integrals is O. Try to prove this for a special 
k, say, k = 3. For general k. 
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= .1 S T ION SAN 0 PRO B L EMS 

1. Laurent series generalize Taylor senes. Explain the 
details. 

2. Can a function have several Laurent series with the same 
center? Explain. If your answer is yes, give examples. 

3. What is the principal part of a Laurent series? Its 
significance? 

4. What is a pole? An essential singularity,? Give 
examples. 

5. What is Picard's theorem? Why did it occur in this 
chapter? 

6. What is the Riemann sphere? The extended complex 
plane? Tts significance? 

7. Is elk2 analytic or singular at infinity? cosh;:.? (;:. - 4)3? 
Explain. 

8. What is the residue? Why is it important? 

9. State formulas for residues from memory. 

10. State some further methods for calculating residues. 

11. What is residue integration? To what kind of complex 
integrals does it apply? 

12. By what idea can we apply residue integration to real 
integrals from -x to x,? Give simple examples. 

13. What is a zero of an analytic function? How are zeros 
classified? 

14. What are improper integrals? Cauchy principal values? 
Give examples. 

15. Can the residue at a singular point be O? At a simple 
pole'? 

16. What is a meromorphic function? An entire function? 
Give examples. 

117-281 COMPLEX INTEGRALS 

Integrate counterclockwise around C. (Show the details.) 

tan ;:. 
17. -4 ' c: Izl = 1 

z 

sin 2;:. 
18. ~, c: 1::1 

IOz 
19. 2;:. + i ' C: k - 2il = 3 

iz+ 
20. Z2 _ i;:. + 2 ' C: /z - 1/ = 3 

21. c~sh 5z , C: k - il = 2 
z + 4 

4z3 + 7z 
22. , C: k + 11 = 1 

cos ;:. 

23. cot 8;:., C: 1:.::1 = 0.2 

,:2 sin z 
24. 4_2 _ 1 ,C: Iz - 11 = 2 

25. 
cos Z 

z'n ,11 = I 2 ... C- H .,., ., ..... 

Z2 + 1 1 
26. ;;.2 _ C: -x2 + v2 = 

2;:. 2 . 

15z +9 
, C: Iz - 31 = 27. 

Z3 
2 

- 9z 

15;:. +9 
, C: Izi 28. _3 _ =4 

9z 

129- 35 1 REAL INTEGRALS 

Evaluate by the methods of this 
details): 

[7T de 
29. 

0 25 - 24 cos e 

f7T de 
30. , k > 1 

0 k + cos e 

{7T de 
31. 

1 - ~ sin e 0 

{7T sin e 
32. de 

0 3 + cos e 

[: x 
33. + x 2 )2 

dx 
(l 

::>0 dx 
34. L + X 2)2 (1 

f~ + 2X2 
35. + 4X4 

dr 

chapter (showing the 

36. Obtain the answer to Prob. 18 in Sec. 16.4 from the 
present Prob. 35. 
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Laurent Series. Residue Integration 

A Laurent series is a series of the form 

(I) (Sec. 16.1) 

or, more briefly written [but this means the same as (1)!] 

(1 *) 
I f(:;;*) 

on = -- ,( n+l dz* 
27Ti Jc (z* - Zo) 

n=-oo 

where n = 0, ± I, ±2, .... This series converges in an open annulus (ring) A with 
center Zoo In A the function fez) is analytic. At points not in A it may have 
singularities. The first series in (1) is a power series. In a given annulus, a Laurent 
~eries of fez) is unique. but fez) may have different Laurent series in different annuli 
with the same center. 

Of particular importance is the Laurent series (I) that converges in a neighborhood 
of Zo except at:;;o itself, say, for 0 < Iz - ':01 < R (R > 0, suitable). The series (or 
finite sum) of the negative powers in this Laurent series is called the principal part 
of fez) at Zo. The coefficient hI of 1/(:;; - zo) in this series is called the residue of 
f(::) at Zo and is given by [see (1) and (1 *)] 

(2) hI = Res fez) = _1_. f f(z*) dz*. 
Z~Zo 27T1 C 

Thus ,( f(z"') d.:* = 27Ti Res fez). 
~ Z=~ 

hI can be used for integration as shown in (2) because it can be found from 

(3) ~~~ fez) = (m ~ I)! !~~o (~:~11 [(z - zo)'''f(:;;)]), (Sec. 16.3), 

provided f(z.) has at Z.O a pole of order m; by definition this means that that principal 
part has 1/(z - zo)'n as its highest negative power. Thus for a simple pole (111 = 1), 

Res fez) = lim (z - ':o)f(z); 
Z=Zo Z~Zo 

also, 
p(.:) p(zo) 

Res -- = -,--. 
2~2U q(.:) q (zo) 

If the principal part is an infinite series, the singularity of fez) at Zo is called an 
essential singularity (Sec. 16.2). 

Section 16.2 also discusses the extended complex plane, that is, the complex plane 
with an improper point x (,'infinity") attached. 

Residue integration may also be used to evaluate certain classes of complicated 
real integrals (Sec. 16.4). 
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CHAPTER 1 7 

Conformal Mapping 

If a complex function w = f(~) is defined in a domain D of the ~-plane, then to each point 
in D there corresponds a point in the lI'-plane. In this way we obtain a mapping of D onto 
the range of values of .f(::;) in the w-plane. We shall see that if f(::;) is an analytic function, 
then the mapping given by tv = fez) is conformal (angle-preserving), except at points 
where the derivative t' (z) is zero. 

Conformality appeared early in history in connection with constructing maps of the 
globe, which can be conformal (can give directions correctly) or "equiareal" (give areas 
correctly, except for a scale factor). but cannot have both properties, as can be proved 
(see [GR8] in App. 1). 

Conformality is the most important geometric property of analytic functions and gives 
the possibility of a geometric approach to complex analysis. Indeed, just as in calculus 
we use curves of real functions y = f(x) for studying "geometric" propelties of functions, 
in complex analysis we can use conformal mappings for obtaining a deeper understanding 
of properties of functions, notably of those discussed in Chap. 13. 

Indeed. we shall first define the concepts of conformal mapping and then consider 
mappings by those elementary analytic functions in Chap. 13. 

This is one purpose of this chapter. A second purpose, more important to the engineer 
and physicist, is the use of conformal mapping in connection with potential problems. In 
fact, in this chapter and in the next one we shall see that conformal mapping yields a 
standard method for solving boundary value problems in (two-dimensional) potential 
theory by transforming a complicated region into a simpler one. Corresponding 
applications will concern problems from electrostatics, heat flow. and fluid flow. 

In the last section (17.5) we explain the concept of a Riemann surface, which fits well 
into the present discussion of "geometric" ideas. 

Prerequisite: Chap. 13. 
Sections that may be omitted ill a shorter course: 17.3 and 17.5 
References and Answers to Problems: App. I Part D, App. 2. 
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17.1 Geometry of Analytic Functions: 
Conformal Mapping 

A complex function 

(I) w = fez) = u(x. y) + iv(x. y) (z = x + iy) 

of a complex variable z gives a mapping of its domain of definition D in the complex 
~-plane illto the complex w-plane or Ol1to its range of values in that plane. l For any point 
Zo in D the point Wo = f(zo) is called the image of z{) with respect to f. More generally, 
for the points of a curve C in D the image points form the image of C; similarly for other 
point sets in D. Also, instead of the mapping by a fUllction w = f(z) we shall say more 
briefly the mappillg w = fez). 

EXAMPLE 1 Mapping w = I(z) = Z2 

Using polar forms z ~ ,.eiH and w ~ Rei</>, we have w ~ ;:2 = ,.2e2ifl. Comparing moduli and arguments 
gives R = ,.2 and cf> = 20. Hence circles r = "0 are mapped onto circles R = "0

2 and rays 0 = 00 onto rays 
cf> = 200 , Figure 375 shows this for the region I ~ Izl ~ 3/2. rr/6 ~ 0 ~ TT/3. which is mapped onto the region 
I ~ Iwl ~ 9/4. TT/3 ~ 0 ~ 2TT13. 

In Cartesian coordinates we have ::: ~ x + iy and 

Hence vertical lines x = C = COilS! are mapped onto 1I = c2 
- y2, V = 2cy. From this we can eliminate y. We 

obtain y2 = c 2 - u and v 2 = 4c2y2. Together, 

(Fig. 376). 

These parabolas open to the left. Similarly. hmizuntallines y ~ k = COliS! are mapped onto parabolas opening 
to the right. 

y 

2 

/ 

/ 
/ 

/ 

x 

\ 
\ 

\ 
\ 

\ 
\ 

v 

(z-plane) (w-plane) 

/ 

I 
/ 

I 

I 
I 

(Fig. 376) .• 

u 

Fig, 375. Mapping w = Z2. Lines Izi = const, arg z = const and their images in the w-plane 

IThe general terminology is as follows. A mapping of a set A into a set B is called surjective or a mapping 
of A onto B if every element of B is the image of at least one element of A. It is called injective or one-to-one 
ifdi~erent elements ot A have different images in B. Finally, it is called bijective if it is both sUljective and 
mJeclIve. 
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v 
y=2 

-5 

\ 

/ 
/ 

x=2 

y=l 

Fig. 376. Images of x = const, Y = const under w = Z2 

Conformal Mapping 
A mapping w = fez) is called conformal if it pre~erves angles between oriented curves 
in magnitude as well as in sense. Figure 377 shows what this means. The angle 
a (0 ~ a ~ 7T) between two intersecting curves C1 and C2 is defined to be the angle 
between their oriented tangents at the intersection point z{). And conformalit), means that 
the images C1* and C2* of C1 and C2 make the same angle as the curves themselves in 
both magnitude and direction. 

THEOREM 1 Conformality of Mapping by Analytic Functions 

The mapping w = f(:;:') by an a1lalytic jimctioll f is confonnal, except at critical 
points, that is, poiTlts at which the derivative f I is zero. 

PROOF n· = :2 has a critical point at z = O. where f' (z) = 2z = 0 and the angles are doubled 
(see Fig. 375), so that conformality fails. 

The idea of proof is to consider a curve 

(2) C: z(1) = x(t) + i)'(t) 

in the domain of fez) and to show that w = .Hz) rotates all tangents at a point Zo (where 
f' (zo) "* 0) through the same angle. Now z(1) = dzldt = .i(1) + i .\i(t) is tangent to C in 
(2) becau'ie this is the limit of (::1 - zo)/!.lt (which has the direction of the secant 21 - ::0 

(z-plane) (w-plane) 

Fig. 377. Curves C1 and C2 and their respective images 
ct and C2* under a conformal mapping w = [(z) 

--
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in Fig. 378) as ZI approaches Zo along C. The image C* of C is w = f(z(1)). By the chain 
rule, Ii· = t' (z(t»z(t). Hence the tangent direction of C* is given by the argument (use 
(9) in Sec. 13.2) 

(3) arg w = arg t' + arg z 

where arg z gives the tangent direction of C. This shows that the mapping rotates all 
directions at a point Zo in the domain of analyticity of f through the same angle arg f' (:::0), 
which exists as long as f' (zo) "* O. But this means conformality, as Fig. 377 illustrates 
for an angle a between two curves. whose images C1 * and C2 * make the same angle 
(because of the rotation). • 

I. 

Tangent 
/ 

CurveC 

Fig. 378. Secant and tangent of the curve C 

In the remainder of this section and in the next ones we shall consider various conformal 
mappings that are of practical interest, for instance, in modeling potential problems. 

E X AMP L E 2 Conformality of w = zn 

The mapping w = zn, n = 2,3, ... , is conformal, except at Z = 0, where ,/ = llZn-l = O. For n = 2 this is 
shown in Fig. 375: we see that at 0 the angles are doubled. For general n the angles at 0 are multiplied by a 
factor II under the mapping. Hence the sector 0 :;" e :;" 'Trln is mapped by ;::n onto the upper half·plane u ~ 0 
~~. . 

x u 

Fig. 379. Mapping by w = zn 

E X AMP L E 3 Mapping w = z + 1/z. Joukowski Airfoil 

In terms of polar coordinates this mapping is 

1 
tv = tl -t iu = r(cos fI -t i sin fI) -t - (cos fI - i sin fI). 

r 

By separating the real and imaginary parts we thus obtain 

l/ = a cos e, u=bsinfl where a=r+ 
r r 

Hence circles Izl = r = const * I are mapped onto ellipses x21a2 + ilb2 = l. The circle r = 1 is mapped 
onto the segment -2 :;" u :;" 2 of the u-axis. See Fig. 380. 
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y 

Now the derivative of w is 

v 

Fig. 380. Example 3 

(::: + 1)(;:: - 1) 

_2 

u 

which is 0 at Z = ± I. These are the points at which the mapping is not conformal. The two circles in Fig. 381 
pas, through z = -I. The larger is mapped onto a Jo"kowski ui/.foi/. The dashed circle passes through both -I 
and I and is mapped onto a curved segment. 

Another interesting application of w = Z + liz lthe flow around a cylinder) will be considered in Sec. 18.4 .• 

/ , 
I 

y 

'" C \ 
II 

J 
x 

Fig. 381. Joukowski airfoil 

--0--
2 u 

E X AMP L E 4 Conformality of w = eZ 

From (10) in Sec. 13.5 xwe have lezi = eX and Arg::: = y. Hence eZ maps a vertical straight line x = Xo = COllst 

onto the circle Iwl = e 0 and a horizontal straight line)" = )"0 = CO/1St onto the ray arg ". = )"0. The rectangle 
in Fig. 382 i, mapped onto a region bounded by circles and rays as shown. 

The fundamental region -71 < Arg;:: ~ 71 of eZ in the :::-plane is mapped bijectively and conformally onto 
the entire w-plane without the origin w = 0 (because eZ = 0 for no :::). Figure 383 shows that the upper half 
o < y ~ 71 of the fundamental region is mapped onto the upper half-plane 0 < arg w ~ 71. the left half being 
mapped inside the unit disk Iwl ~ 1 and the right half outside (why"!). • 

Y~~~~l_ 
1 D _____ C 

05 _____ J 
. A B 

o o 1 X -3 

Fig. 382. Mapping by w = eZ 

y 

1t 

o -1 0 u 

(z-planeJ (w-plane) 

Fig. 383. Mapping by w = eZ 
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E X AMP L E 5 Principle of Inverse Mapping. Mapping w = Ln z 

Principle. The mapping by the inverse z = f-\w) of w = f(::) is obtained by illterchlillging the roles of the 
z-p/ane and the w-p/ane in the mapping by II' = 1(:;;). 

Now the principal value w = f(::) = Ln :;; of the natural logarithm has the inverse z = [-1(11") = eW
• From 

Example -=I (with the notations::: aud lI" interchanged!) we know that [-\w) = eW maps the fundamental region 
of the exponential function onto the :;;-plane without:;; = 0 (becau~e eW * 0 for every w). Hence II" = fl:;;) = Ln :;; 
maps the ::-plane without the origin and cut along the negative real axis (where (j = 1m Ln::: jumps by 21T) 
confonnally onto the horizontal strip -1T < V :§ 1T of the II"-plane. where w = II + iv. 

Since the mapping If = Ln::: + 21Ti differs from w = Ln z by the translation 21Ti (veI1icalIy upward). this 
function maps the z-plane (cut as before and 0 omitted) onto the strip 1T < V :§ 31T. Similarly for each of the 
infinitely many mappings II' = In:;; = Ln:: :':: 21l1Ti (11 = O. I. 2 .... ). The corresponding horizontal strips 
of width 21T (images of the :;;-plane under these mappings) together cover the whole w-plane without 
overlapping. • 

Magnification Ratio. By the definition of the derivative we have 

(4) lim If(Z) - .f(zo) 1 = If' (20)1· 
Z~Zu Z - Zo 

Therefore, the mapping w = f(:::.) magnifies (or shortens) the lengths of short lines by 

approximately the factor If' (zo)l. The image of a small figure conforms to the original 
figure in the sense that it has approximately the same shape. However, since f' (z) varies 
from point to point, a large figure may have an image whose shape is quite different from 

that of the original figure. 
More on the Condition f'(z) -=I=- O. From (4) in Sec. 13.4 and the Cauchy-Riemann 

equations we obtain 

(5') I , 12 1 au au 12 f (z) = -. + i-
ax ax 

that is, 

(5) If' (z)12 = 

( ~1l)2 + (~U)2 
a.l ax 

all au 
a.l ay 

all au 

ax iJy a(lI, u) 
---

au au a(x, y) 

ax ay 

au au 
ay ax 

This determinant is the so-called Jacobian (Sec. 10.3) of the transformation w = f(z) 
written in real form u = u(x, y), u = u(x, y). Hence f' (zo) =1= 0 implies that the Jacobian 

is not 0 at ::0' This condition is sufficient that the mapping w = f(z) in a sufficiently small 
neighborhood of:::.o is one-to-one or injective (different points have different images). See 
Ref. [GR4] in App. 1. 

==== -... = ~. =".-.--==-
1. Verify all calculations in Example I. 

2. Why do the images of the curves /;;:1 = COIlsl and 
arg :: = COllst under a mapping by an analytic function 
f(:) intersect at right angles, except at points at which 
f'(:) = O? 

3. Doe, the mapping w = Z = x - iy preserve angles in 
size as well as in sense? 

14-6/ MAPPING OF CURVES 

Find and sketch or graph the image of the given curves 
under the given mapping. 

4. x = I. 2. 3, 4, y = I, 2, 3, 4; w = :2 
5. Curves as in Prob. 4, w = iz (Rotation) 

6. Izl = 1/3.112. 1,2,3; Arg z = 0, ::'::17/4, ::'::1712, ::'::31712, 
::'::17; w = liz 
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17-151 MAPPING OF REGIONS 

Find and sketch or graph the image of the given region 
under the given mapping. 

7. -7T/4 < Arg z < 7T/4. Izl < 1/2. w = Z3 

8. x ~ 1, \I' = liz 

9. Izl > I, W = 3~ 

10. 1m ~ > O. II" = I 

11. x ~ 0, y ~ 0, 1;:1 ~ 4; w = Z2 

12. -1 ~x~ 1,-7T<Y<7T:H'=ez 

13. In 3 < x < In 5, lI" = e' 

14. -7T < Y ~ 37T. II" = e Z 

15. 2 ~ 1:::1 ~ 3, 7T/4 ~ e ~ 7T/2; w = Ln ~ 

16. CAS EXPERI:\IENT. Orthogonal Nets. Graph the 
orthogonal net of the two families of level curves 
Re f(z) = COIISt and 1m f(~) = comt, where 
(a) f(z) = Z4, (b) .Hz) = 11;::, (c) f(z) = 11:::2, 
(d) f(~) = (~ + i)/(l + d. Why do these curves 
generally intersect at right angles? In your work. 
experiment to get the best possible graphs. Also do the 
same for other functions of your own choice. Observe 
and record shortcomings of your CAS and means to 
overcome such deficiencies. 

11?,-23I FAILURE OF CONFORMALITY 

Find all points at which the following mappings are not 
conformal. 

17. ;:(Z4 - 5) 18. ~2 + 1/;:2 

19. cos 7T::: 20. cosh 2::: 

21. ;:2 + a;: + b 22. exp (Z5 - 80;:) 

23. (z - a)3. (.;::3 - a)2 

124-281 MAGNIFICATION RATIO, JACOBIAN 

Find the magnification ratio M. Describe what it tell, you 
about the mapping. Where is M equal to I? Find the 
Jacobian J. 

24. w = !Z2 25. w= eZ 

26. Il" = Z3 27. w= Lnz 

28. 11'= l/~ 

29. Magnification of Angles. Let f(:::) be analytic at ;:0' 

Suppose that .f' (zo) = O •... , tlc-IJ(~o) = O. Then 
the mapping lI" = f(z) magnifies angles with vertex at 
~o by a factor k. Illustrate this with examples for 
k = 2, 3, 4. 

30. Prove the statement in Prob. 29 for general k = I. 
2, .... Hint. Use the Taylor series. 

17.2 Linear Fractional Transformations 
Conformal mappings can help in modeling and solving boundary value problems by first 
mapping regions confommlly onto another. We shall explain this for standard regions 

(disks. half-planes, strips) in the next section. For this it is useful to know properties of 

special basic mappings. Accordingly, let us begin with the following very important class. 
Linear fractional transformations (or Mobius transformations) are mappings 

(1) w= 
a::. + b 

cz + d 
(ad - be =1= 0) 

where a, b, c, d are complex or real numbers. Differentiation gives 

(2) I 
H" 

a(c::. + d) - c(az + b) 

(c::. + d)2 

ad - be 

(c;:: + d)2 

This motivates our requirement ad - be =1= O. It implies conformality for all z and excludes 

the totally uninteresting case w' == 0 once and for all. Special cases of (I) are 

tr=::.+b (Tmns/atio11S ) 

(3) 
w = a::: with lal = 1 (Rotations) 

w = a::: + b (Linear tmmjorl1latiolls) 

w = liz (Inversion in the IInit circle). 
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E X AMP L E 1 Properties of the Inversion w = l/z (Fig. 384) 

THEOREM 1 

In polar forms z = rew and w = Rei" the inversion 11' = liz. is 

.~ I I. 
Rel~ = -.- = - e-'w 

retE} r 
and gives R= <1>= -e. ,. 

Hence the unit circle k:1 = r = I is mapped onto the unit circle Iwl = R = I; II" = i<b = e -ill. For a general ~. 
the image w = 1/;: can be found geometrically by marking Iwl = R = IIr on the segment from 0 to ;: and then 
reflecting the mark in the real axis. (MaJ-.e a sketch.) 

Figure 384 shows that w = 1/z maps horizontal and vertical straight lines onto circles or straight lines. Even 
the following is true. 

n' = 1/;: maps el'en' stmight lille or circle Dllto {/ circle Dr straight lille. 

I I I 
L ---L...l 
I I I 

y 

.--T1 
+--+--1---.1-----1 

-2 -1 I I 1 2 
L ---+-+ +-I-+_---"I 

~-l 
I I 

I I I I 

v 

x 

Fig. 384. Mapping (Inversion) w = l/z 

Proof. Every straight line or circle in the ;:-plane can be written 

(A. B C, [) real). 

A = 0 gives a straight line and A '* 0 a circle. In terms of z and:': this equation becomes 

-+" 
A-::+B~+ C~+D=O. 

-- 2 2i 

Now lI' = 11;:. Substitution of:: = IIII' and multiplication by II'W gives the equation 

w+w w-w 
A + B --- + C--- + [)ww = 0 

2 2i 

or. in terms of II and v. 

A + BII - Cv + DC/(2 + v2 ) = O. 

This represents a circle (if D '* 0) or a straight line (if D = 0) in the w-plane. • 
The proof in this example suggests the use of z and Z instead of x and y. agelleral prillciple 
that is often quite useful in practice. 

Surprisingly, evn)' linear fractional transformation has the properly just proved: 

Circles and Straight Lines 

Every linear fractional trani/ormation (I) maps the totality of circles and STraighT 
lines in the z-plane onto the totalitv of circles lind straight lines in the w-plane, 
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PROOF This is trivial for a translation or rotation. fairly obvious for a uniform expansion or 
contraction. and true for w = 1/z, as just proved. Hence it also holds for composites of 
these special mappings. Now comes the key idea of the proof: represent (1) in terms of 
these special mappings. When e = 0, this is easy. When e =1= 0, the representation is 

1 a ad - be 
w=K--- + 

cz + d e 
where K= ----

e 

This can be verified by substituting K. taking the common denominator and simplifying: 
this yields (1). We can now set 

WI = ez, 

and see from the previous formula that then 11' = lV4 + ale. This tells us that (1) is indeed 
a composite of those special mappings and completes the proof. • 

Extended Complex Plane 
The extended complex plane (the complex plane together with the point IX in Sec. 16.2) 
can now be motivated even more naturally by linear fractional transformations as follows. 

To each z for which ez + d =1= 0 there conesponds a unique w in (I). Now let e =1= O. 
Then for z = -dIe we have ez + d = 0, so that no w conesponds to this ;:. This suggests 
that we let IV = ex.; be the image of z = -dIe. 

Also, the inverse mapping of (1) is obtained by solving (I) for z; this gives again a 
linear fractional transformation 

dw - b 
(4) z= 

-ew + a 

When e =1= 0, then en' - a = 0 for w = ale, and we let ale be the image of;: = 00. With 
these settings, the linear fractional transformation (1) is now a one-to-one mapping of the 
extended z-plane onto the extended w-plane. We also ~ay that every linear fractional 
transformation maps "the extended complex plane in a one-to-one manner onto itself." 

Our discussion suggests the following. 

General Remark. If z = 00. then the right side of (1) becomes the meaningless expression 
(a· oo + b)/(c· 00 + d). We assign to it the value w = ale if e =1= 0 and w = 00 if e = O. 

Fixed Points 
Fixed points of a mapping w = .f(z) are points that are mapped onto themselves, are "kept 
fixed" under the mapping. Thus they are obtained from 

w = .f(z) = z. 

The identity mapping w = z has every point as a fixed point. The mapping w = Z has 
infinitely many fixed points, w = liz has two, a rotation has one. and a translation none 
in the finite plane. (Find them in each case.) For (1), the fixed-point condition w = z is 

(5) 
az + b 

z= 
ez + d ' 

thus ez2 
- (a - d)z - b = O. 
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This is a quadratic equation in z whose coefficients all vanish if and only if the mapping 
is the identity mapping w = z (in this case, a = d oF 0, b = c = 0). Hence we have 

THEOREM 2 Fixed Points 

A linear fractional transformation, not the identity, has at most two fixed points. fr 
a linear fi'actional transformation is known to have three or more fixed points, it 
must be the identity mapping w = z. 

To make our present general discussion of linear fractional transfonnations even more 
useful from a practical point of view, we extend it by further facts and typical examples, 
in the problem set as well as in the next section. 

-.. -............ - ... .... .. . ...... , . 
1. Verify the calculations in the proof of Theorem 1. 

2. (Composition ofLFTs) Show that substituting a linear 
fractional transformation (LFf) into a LFf gives a 
LFT. 

3. (Matrices) If you are familiar with 2 X 2 matrices, 
prove that the coefficient matrices of (1) and (4) are 
inverses of each other, provided ad - be = I, and 
that the composition of LFfs corresponds to the 
multiplication of the coefficient matrices. 

14-71 INVERSE 

Find the inverse;: = ;:(w). Check the result by solving ;:(w) 

for II". 

4;: + i 3;: 
4. 1\' = 5. IV = 

-3;;: + 2- - i 

7 + i 2;: + 5; 
6. H' - 7. II' = ---

Z - ; 4z 

18-141 FIXED POINTS 

Find the fixed points. 

8. w = 81z5 

10. w = z + 4i 

12. 
z - I 

w=--
z + 1 

3z + 2 
14. w=---

z - 1 

9. w = (4 + i)z 

11. w = (z - i)2 

13. w= 
2iz - 1 

z + 2i 

15. Find a LFT whose (only) fixed points are -2 and 2. 

16. Find a LFT (not w = z) with fixed points 0 and l. 

17. Find all LFfs with fixed points -I and 1. 

18. Find all LFfs whose only fixed point is O. 

19. Find all LFfs with fixed points 0 and 00. 

20. Find all LFfs without fixed points in the finite plane. 

17.3 Special Linear Fractional Transformations 
In this section we shall see how to determine linear fractional transformations 

(I) 
az + b 

w= 
eZ + d 

(ad - be *- 0) 

for mapping certain standard domains onto others and how to discuss properties of (I). 
A mapping (1) is determined by a. b, c, d. actually by the ratios of three of these 

constants to the fourth because we can drop or introduce a common factor. This makes it 
plausible that three conditions determine a unique mapping (I): 
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THE 0 REM 1 Three Points and Their Images Given 

Three given distinct poil1ts :1' Z2, :::3 can always be mapped onto three prescribed 
distinct poillts WI> W2, W3 by one, and only Olle, linear fractional transforlllation 
W = .f(z). This mapping is given implicitly by the equation 

(2) 
tV - WI H'2 - H'3 

W - W3 W2 - WI 

(rt" one of these poillts is the point x, the qllotiellt of the two differences cOl/taining 
this point must be replaced by l.) 

PROOF Equation (2) is of the form F(w) = G(:) with linear fractional F and G. Hence 
w = F-\G(z» = .f(z) , where F- 1 is the inverse of F and is linear fractional (see (4) in 
Sec. 17.2) and so is the composite F- 1(G(z» (by Prob. 21). that is. w = fez) is linear 
fractional. Now if in (2) we set w = Il·l. W2, W3 on the left and :: = Zl. Z2, :3 on the right. 
we see that 

F(Wl) = 0. 

G(:l) = 0, 

F(W2) = I, 

G(:2) = 1. 

From the first column, F(Wl) = G(':l), thus WI = F-l(G(Zl» = f(Zl)' Similarly, W2 = f(Z2), 
W3 = f(::3)' This proves the existence of the desired linear fractional transfOimation. 

To prove uniqueness, let w = g(z) be a linear fractional transformation, which also 
maps Zj onto Wj' j = 1,2,3. Thus Wj = g(Zj)' Hence g-llw) = Zj. where Wj = f(zj)' 

Together, g-lUlzj » = Zj' a mapping with the three fixed points Zl, :2, :3' By Theorem 2 
in Sec. 17.2, this is the identity mapping, g -l<f(:Z» = z for all z. Thus fl:) = g(z) for all 
z, the uniqueness. 

The last statement of Theorem I follows from the General Remark in Sec. 17.2. • 

Mapping of Standard Domains by Theorem 1 
Using Theorem 1. we can now find linear fractional transformations according to the 
following 

Principle. Prescribe three boundary points ZI> Z2, Z3 of the domain D in the z-plane. 
Choose their images WI> W2, tl'3 on the boundary of the image D* of D in the w-plane. 
Obtain the mapping from (2). Make sure that D is mapped onto D*, not onto its 
complement. In the latter case, interchange two w-points. (Why does this help?) 

E X AMP L E 1 Mapping of a Half-Plane onto a Disk (Fig. 385) 

Find the linear fractional transformation (1) that maps Z1 = -1, Z2 = 0':3 = I onto W1 = -I. H'2 = -i, 
11'3 = I. respectively. 

Solutioll. From (2) we obtain 

thus 

w-(-I) -i-I 

11"-1 -;-(-1) 

~-(-l) 0-1 

z-I 0-(-1)' 

z -; 
w=---

-iz + 1 . 
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u 

,,-y=o 

~ /X=~ 
x=o 

I 

Fig. 385. Linear fractional transformation in Example 1 

Let us show that we can determine the specific properties of such a mapping without much calculation. For 
: = x we have \I" = (x - il/(-ir + I). thus Iwl = I. so that the x-axis maps onto the unit circle. Since;: = i 
gives IV = O. the upper half-plane maps onto the interior of that circle and the lower half-plane onto the exterior. 
;: = O. i. x go onto \I" = -i. O. i. so that the positive imaginmy axis maps onto the segment S: II = 0, -1 ~ v ~ 1. 
The vertical lines r = COllst map onto circles (by Theorem 1, Sec. 17.2) through w = i (the image of;: = x) 

and perpendicular to 111'1 = I (by conformality; see Fig. 385). Similarly. the horizontal lines y = cOllstmap onto 
circles through lI' = i and perpendicular to S (by conforrnality). Figure 385 gives these circles for y ~ O. and 
for y < 0 they lie outside the unit disk shown. • 

E X AMP L E 2 Occurrence of 00 

Determine the linear fractional tram'[ormation that maps ZI = 0, Z2 = 1, <=3 = JO onto 11'1 = -1, 11'2 = -i, 
11'3 = 1. respectively. 

Solution. From (2) we obtain the desired mapping 

U" = 
;: - i 

z + i 

This is sometimes called the Cayley trallsformatioll.2 In this case. (2) gave at first the quotient (I - x)/(:: - x), 
which we had to replace by 1. • 

E X AMP L E 3 Mapping of a Disk onto a Half-Plane 

Find the linear tractional transformation that maps ::1 = -1, ::2 = i. Z3 = I onto "'I = O. '1'2 = i, "'3 = x, 

respectively. such that the unit disk is mapped onto the right half-plane. (Sketch disk and half-plane.) 

Solution. From (2) we obtain. after replacing (i - x)/(\\' - x) by I 

;: + 1 
\1"=---

;: - 1 • 
Mapping half-planes onto half-planes is another task of practical interest. For instance, 
we may wish to map the upper half-plane y ~ 0 onto the upper half-plane v ~ O. Then 
the x-axis must be mapped onto the u-axis. 

2 
ARTHUR CAYLEY (1821-1895). English mathematician and professor at Cambridge. is known for his 

important work in algebra. matrix theory. and ditferential equations. ~ . 



740 CHAP. 17 Conformal Mapping 

E X AMP L E 4 Mapping of a Half-Plane onto a Half-Plane 

Find the linear fractional transfonnation that maps ZI = -2, :2 = 0, ;:3 = 2 onto WI :x:, '1'2 = 1/4, 
w3 = 3/8, respectively. 

Solution. You may verify that (2) gives the mapping function 

Z + 1 
w=--

2z + 4 

What is the image of the x-axis? Of the y-axis? • 
Mappings of disks onto disks is a third class of practical problems. We may readily 
verify that the unit disk in the z-plane is mapped onto the unit disk in the w-plane by the 
following function, which maps Zo onto the center w = O. 

(3) 
z - Zo 

w= --­
ez - 1 ' 

e = zo, 

To see this, take Izl = I, obtaining, with e = Zo as in (3), 

Iz - zol = Iz - el 

= Izllz - el 

= Izz - c zl = 11 - e zl = Ie z - II. 

Hence 

Iwl = Iz - Zol/lcz - II = I 

IZol < I. 

from (3), so that Izl = 1 maps onto Iwl = 1, as claimed, with Zo going onto O. as the 
numerator in (3) shows. 

Formula (3) is illustrated by the following example. Another interesting case will be 
given in Prob. 10 of Sec. 18.2. 

E X AMP L E 5 Mapping of the Unit Disk onto the Unit Disk 

Taking Zo = ~ in (3), we obtain (verify!) 

2z - 1 
w=---

z-2 
(Fig. 386). • 

, 

~ 
/: I : \ 

I I I \ 
I ~ 

v 

J1o----r--o~~ 
I i / 1 x 

~\-,~:--..--+!-;;;~ 

u 

Fig. 386. Mapping in Example 5 
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E X AMP L E 6 Mapping of an Angular Region onto the Unit Disk 

Certain mapping problems can be solved by combining linear fractional transformations with others. For instance, 
to map the angular region D: -71/6 ~ arg z ~ 71/6 (Fig. 387) onto the unit disk Iwl ~ I, we may map D by 
Z = Z3 onto the right Z-half-plane and then the latter onto the disk 111'1 ~ I by 

,/ 

\ 
11:/6 

(z-plane) 

Z - I 
w=i Z + I ' combined 

(Z-plane) 

~3 _ I 
w=i--­

~3 + 1 • 

(w-plane) 

Fig. 387. Mapping in Example 6 

This is the end of our discussion of linear fractional transformations. In the next section 
we tum to conformal mappings by other analytic functions (sine, cosine, etc.). 

1. Derive the mapping in Example 2 from (2). 
2. (Inverse) Find the inverse of the mapping in Example 

1. Show that under that inverse the lines x = COlist are 
the images of circles in the w-plane with centers on the 
line v = 1. 

3. Verify the formula (3) for disks. 
4. Derive the mapping in Example 4 from (2). Find its 

inverse and prove by calculation that it has the same 
fixed points as the mapping itself. Is this surprising? 

5. (Inverse) If w = f(z) is any transformation that has an 
inverse, prove the (trivial!) fact that f and its inverse 
have the same fixed points. 

6. CAS EXPERIMENT. Linear Fractional 
Transformations (LFTs). (a) Graph typical regions 
(squares, disks, etc.) and their images under the LFTs in 
Examples 1-5. 
(b) Make an experimental study of the continuous 
dependence of LFTs on their coefficients. For instance, 
change the LFT in Example 4 continuously and graph 
the changing image of a fixed region (applying 
animation if available). 

/7-15/ LFTs FROM THREE POINTS AND 
THEIR IMAGES 

Find the LFT that maps the given three points onto the three 
given points in the respective order. 

7. -1. 0, I onto -0.6 - 0.8i, -1, -0.6. + 0.8i 

8. 0, 1,2 onto I,!, ! 
9. 2i. -2;.4 onto -4 + 2i, -4 - 2i, 0 

10. i, -I, I onto -1, -i. i 

11. O. I, <Xl onto 00, 1,0 

12. 0, -i, i onto -1. 0, 00 

13. 2i, i, 0 onto ~i, 2i, 00 

14. O. 2i. -2i onto - I, O. 00 

15. -1,0, I onto 0, I, -I 

16. Find all LFTs w(:.':) that map the x-axis onto the £I-axis. 

17. Find a LFT that maps 1:.0:1 ~ I onto Iwl ~ 1 so that 
z = i/2 is mapped onto w = O. Sketch the images of 
the lines x = COlist and y = COllst. 

18. Find an analytic function that maps the second quadrant 
of the z-plane onto the interior of the unit circle in the 
w-plane. 

19. Find an analytic function w = i(z) that maps the region 
o ~ arg z ~ 71/4 onto the unit disk Iwl ~ 1. 

20. (Composite) Show that the composite of two LFrs is 
a LFT. 
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17.4 Conformal Mapping by Other Functions 
So far we have discussed the mapping by zn, eZ (Sec. 17.1) and linear fractional 
transformations (Secs. 17.2, 17.3), and we shall now tum to the mapping by trigonometric 
and hyperbolic analytic functions. 

y 

r rl 
" f--~ -2 
f--Rl f--

. 
I I 

(z-plane) 

" x 
2 

I 

Fig. 388. 

v 

(w-plane) 

Mapping w = u + iv = sin z 

Sine Function. Figure 388 shows the mapping by 

(I) w = u + iv = sin z = sin x cosh y + i cos x sinh y 

Hence 

(2) II = sin x cosh y, v = cos x sinh y. 

u 

(Sec. 13.6). 

Since sin ~ is periodic with period 21T, the mapping is certainly not one-to-one if we 
consider it in the full z-plane. We restrict:: to the vertical strip S: -~1T ~ X ~ ~1T in 
Fig. 388. Since f' (z) = cos z = 0 at z = ±!1T, the mapping is not conformal at these two 
critical points. We claim that the rectangular net of straight lines x = const and y = const 
in Fig. 388 is mapped onto a net in the w-plane consisting of hyperbolas (the images of 
the vertical lines x = const) and ellipses (the images of the horizontal lines y = const) 
intersecting the hyperbolas at right angles (confOimality!). Corresponding calculations are 
simple. From (2) and the relations sin2 x + cos2 X = I and cosh2 y - sinh2 y = I we obtain 

(Hyperbolas) 

(Ellipses). 

Exceptions are the vertical lines x = ±!1T, which are "folded" onto u ~ - 1 and 
u ~ I (v = 0), respectively. 

Figure 389 illustrates this further. The upper and lower sides of the rectangle are mapped 
onto semi-ellipses and the vertical sides onto -cosh I ~ If ~ -I and I ~ u ~ cosh I 
(v = 0), respectively. An application to a potential problem will be given in Prob. 5 of 
Sec. 18.2. 
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y v 

C 1 B 

D A C* B" 
n; n; x 

-2 2 
E* F* U 

E -1 F 

Fig. 389. Mapping by w = sin z 

Cosine Function. The mapping w = cos.: could be discussed independently, but since 

(3) w = cos Z = sin (z + !7T), 

we see at once that this is the same mapping as sin z preceded by a translation to the right 
through !7T units. 

Hyperbolic Sine. Since 

(4) \I" = sinh z = -i sin (i.:), 

the mapping is a counterclockwise rotation Z = i.: through!7T (i.e .. 900
). followed by the 

sine mapping Z* = sin Z. followed by a clockwise 900 -rotation w = -iZ*. 

Hyperbolic Cosine. This function 

(5) w = cosh z = cos (d 

defines a mapping that is a rotation Z = i.: followed by the mapping tv = cos Z. 
Figure 390 shows the mapping of a semi-infinite strip onto a half-plane by w = cosh z. 

Since cosh 0 = I, the point z = 0 is mapped onto w = I. For real.: = x ~ 0, cosh.: is 
real and increases with increasing x in a monotone fashion. starting from I. Hence the 
positive x-axis is mapped onto the portion 1I ~ I of the lI-axis. 

For pure imaginary z = iy we have cosh iy = cos y. Hence the left boundary of the strip 
is mapped onto the segment I ~ u ~ - I of the lI-axis, the point z = 7Ti conesponding to 

w = co.,h i7T = cos 7T = -I. 

On the upper boundary of the strip. y = 7T, and since sin 7T = 0 and cos 7T = -I, it follows 
that this part of the boundary is mapped onto the portion 1I ~ -1 of the u-axis. Hence 
the boundary of the strip is mapped onto the lI-axis. It is not difficult to see that the interior 
of the strip is mapped onto the upper half of the w-plane. and the mapping is one-to-one. 

This mapping in Fig. 390 has applications in potential theory, as we shall see in 
Prob. 12 of Sec. 18.3. 

~b ~,h; --
x -1 0 1 U 

Fig. 390. Mapping by w = cosh z 
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Tangent Function. Figure 391 shows the mapping of a vertical infinite strip onto the 
unit circle by w = tan z, accomplished in three steps as suggested by the representation 
(Sec. 13.6) 

smz 
w=tanz= 

cos Z 

(eiz - e-iz)/i 

eiz + e-iz 

Hence if we set Z = e2iz and use lIi = -i, we have 

Z-1 
(6) w = tan z = - iW. W= 

Z+ I . 

(e2iZ 
- I )/i 

e2iz + I 

We now see that w = tan z is a linear fractional transformation preceded by an exponential 
mapping (see Sec. 17.1) and followed by a clockwise rotation through an angle!7T (900

). 

The strip is S: -~7T < X < ~7T, and we show that it is mapped onto the unit disk in the 
w-plane. Since Z = e 2iz = e-2y+2ix, we see from (10) in Sec. 13.5 that Izi = e-2y , 

Arg Z = 2x. Hence the vertical lines x = - 7T/4, 0, 7T/4 are mapped onto the rays 
Arg Z = -7T!2, 0, 7T/2, respectively. Hence S is mapped onto the right Z-half-plane. Also 
IZl = e-2y < 1 if y > 0 and Izi > 1 if y < O. Hence the upper half of S is mapped inside 
the unit circle Izi = 1 and the lower half of S outside Izi = L as shown in Fig. 391. 

Now comes the linear fractional transformation in (6), which we denote by g(Z): 

Z-l 
(7) W = g(Z) = 

Z+l 

For real Z this is real. Hence the real Z-axis is mapped onto the real W-axis. FUl1hermore, 
the imaginary Z-axis is mapped onto the unit circle IwJ = I because for pure imaginary 
Z = iY we get from (7) 

I 
iY - I I 

Iwi = Ig(iY)1 = iY + 1 = 1. 

The right Z-half-plane is mapped inside this unit circle Iwi = 1, not outside, because 
Z = I has its image g(l) = 0 inside that circle. Finally, the unit circle IZI = 1 is mapped 

y 

v 

, .. - -, , .. - -, , , , , 
I 

, 
I 

, 
I \ I \ 

I I 
x I I \ I u 

\ I \ I 
I I , 

~ 
, 

~ , , 
'- .. ' '- .. ' 

(z-plane) (Z-plane) (W-plane) (w-plane) 

Fig. 391. Mapping by w = tan z 
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onto the imaginary W-axis. because this circle is Z = eie!>. so that (7) gives a pure imaginary 

expression. namely, 

eie!>/2 _ e-icbl2 

eicb/2 + e- i e!>/2 

i sin (¢/2) 

cos (¢12) 

From the W-plane we get to the w-plane simply by a clockwise rotation through nIl; see (6). 

Together we have shown that w = tan.: maps S: - nl4 < Re z < nl4 onto the unit 

disk Iwl = 1, with the four quarters of S mapped as indicated in Fig. 391. This mapping 
is conformal and one-to-one. 

11-71 CONFORMAL MAPPING w = e' 
Find and sketch the image of the given region under w = e2

• 

1. 0;;; x;;; 2, -71';;; y ;;; 71' 

2. - I ;;; x ;;; 0, 0 ;;; y ;;; 71'12 

3. -0.5 < x < 0.5, 371/4 < Y < 571'/4 

4. -3 < x < 3, 71'14 < Y < 371'/4 

5. 0 < x < 1. 0 < Y < 71' 

6. x < 0, - 71'12 < Y < 71'12 

7. x arbitrary, 0 ~ y ~ 2IT 

8. CAS EXPERIMENT. Conformal Mapping. If your 
CAS can do conformal mapping, use it to solve 
Prob. 5. Then increase y beyond IT, say, to 5071' or 10071. 
State what you expected. See what you get as the 
image. Explain. 

19-121 CONFORMAL MAPPING w = sinz 
Find and sketch or graph the image of the given region 
under w = sin z. 
9. 0 ;;; x ;;; 71', 0 ;;; y ~ J 

10. 0 < x < 71'/6, y arbitrary 

11. 0 < x < 271', J < Y < 5 

12. - 71'/4 < x < 71'/4, 0 < Y < 3 

13. Determine all points at which H" = sin Z IS not 
conformal. 

14. Find and sketch or graph the images of the lines x = O. 
±71'/6, ±71'/3. ±71'/2 under the mapping H" = sin z. 

15. Find an analytic function that maps the region R 

bounded by the positive x- and .v-axes and the hyperbola 
X)' = 71'12 in the first quadrant onto the upper half-plane. 
Hint. First map the region onto a horizontal strip. 

16. Describe the mapping H" = cosh z in terms of the 
mapping w = sin z and rotations and translations. 

17. Find all points at which the mapping w = cosh 71;;: is 
not conformal. 

118-221 CONFORMAL MAPPING w = cos z 
Find and sketch or graph the image of the given region 
under w = cos ;;:. 

18. 0 < x < 71'12. 0 < Y < 2 

19. 0 < x < 71'. 0 < \. < I 

20. - I ~ x ;;; 1. 0 ~ y ~ 

21. 71' < x < 271'. y < 0 

22. 0 < x < 271. l/2 < Y < 

23. Find the images of the lines \' = C = COllst under the 
mapping w = cos .<:. 

z - I 
24. Show that w = Ln -- maps the upper half-plane 

z + I 

onto the horizontal strip 0 ~ 1m w ~ 71' as shown in 
the figure. 

A 

(=) 

BCD E 
! ) I 

-1 0 (=) 
(z-plane) 

1[i 
6----
c" 

D*(=J E" = A * B*(=J 
6----
o 

(w-planeJ 

Problem 24 

25. Find and sketch the image of R: 2 ;;; Izl ~ 3, 
71'/4 ~ () ~ 71'12 under the mapping w = Ln z. 
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17.5 Riemann Surfaces. Optional 
Riemann sUifaces are sUifaces on willch multivalued relations, such as w = v':: or w = In z, 
become single-valued, that is, functions in the usual sense. We explain the idea. which is 
simple-but ingenious, one of the greatest in complex analysis. 

The mapping given by 

(I) w = u + iv = .:2 (Sec. 17.1) 

is conformal. except at ;: = 0, where w' = 2.:: = O. At Z = 0, angles are doubled under 
the mapping. Thus the right .:-half-plane (including the positive y-axis) is mapped onto 
the full w-plane, cut along the negative half of the £I-axis; this mapping is one-to-one. 
Similarly for the left z-half-plane (including the negative y-axis). Hence the image of the 
full .:-plane under w = Z2 "covers the w-plane twice" in the sense that every w *- 0 is the 
image of two z-points: if ZI is one. the other is -Zl. For example. z = i and -i are both 
mapped onto w = - 1. 

Now comes the crucial idea. We place those two copies of the cut w-plane upon each 
other so that the upper sheet is the image of the right half .::-plane R and the lower sheet 
is the image of the left half .::-plane L. We join the two sheets crosswise along the cuts 
(along the negative u-axis) so that if;: moves from R to L. its image can move from the 
upper to the lower sheet. The two origins are fastened together because w = 0 is the image 
of just one .::-point, z = o. The surface obtained is called a Riemann surface (Fig. 392a). 
w = 0 is called a "winding point" or branch point. w = Z2 maps the full z-plane onto 
tills surface in a one-to-one manner. 

By interchanging the roles of the variables z and w it follows that the double-valued 
relation 

(2) w=~ (Sec. 13.2) 

becomes single-valued on the Riemann surface in Fig. 392a, that is, a function in the usual 
sense. We can let the upper sheet conespond to the principal value of -vz. Its image is 
the right w-half-plane. The other sheet is then mapped onto the left w-half-plane. 

(a) Riemann surface of Vi (b) Riemann surface of "Vz 
Fig. 392. Riemann surfaces 

Similarly, the triple-valued relation w = \YZ becomes single-valued on the three-sheeted 
Riemann surface in Fig. 392b, which also has a branch point at z = o. 
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The infinitely many-valued natural logarithm (Sec. 13.7) 

w = In ~ = Ln ~ + 21l'lTi (11 = 0, ±l. ±2 .... ) 

becomes single-valued on a Riemann surface consisting of infinitely many sheets. w = Ln::. 
corresponds to one of them. This sheet is cut along the negative x-axis and the upper edge 
of the slit is joined to the lower edge of the next sheet, which con·esponds to the argument 

'IT' < () ~ 317. that is, to 

w = Ln::. + 2ITi. 

The principal value Ln ~ maps its sheet onto the horizontal strip -17 < v ~ 17. The function 
l1' = Ln ~ + 2 m maps its sheet onto the neighboring strip 17 < V ~ 317, and so on. The 
mapping of the points z *- 0 of the Riemann surface onto the points of the w-plane is 
one-to-one. See also Example 5 in Sec. 17.1. 

1. Consider H· = ~. Find the path of the image point U' 

of a point::. thal moves twice around the unit circle. 
starting from the initial position::. = 1. 

2. Show that the Riemann surface of w = ~ consists of 
11 sheets and has a branch point at ::. = o. 

3. Make a sketch. similar to Fig. 392, of the Riemann 
surface of ~. 

4. Shov. that the Riemann surtace of II· = Y(:: - 1)(: - 2) 
has branch points at ::. = I and::. = 2 and consi~ts of 

two sheets that may be cut along the line segment from 
I to 2 and joined crosswise. HillT. Introduce polar 
coordinates:: - I = rleiH1. : - 2 = r 2e

i62
. 

15-101 RIEMANN SURFACES 
Find the branch points and the number of sheets of the 
Riemann surface. 

5. \/3: + 5 

7. 5 + V'2: + i 

9. eV2 

6. \/(1 - ?)(4 - ::2) 

8. In (3: - 4i) 

10. W 

£ .-- =..IfES T ION SAN 0 PRO B L EMS 

1. How did we define the angle of imersection of two 
oriented curves, and what does it mean to say that a 
mapping is conformal? 

2. At what points is a mapping w = f(::) by an analytic 
function not confonnal? Gi ve examples. 

3. What happens to angles at::o under a mapping w = f(:) 

if J' (Zo) = 0, f"(::o} = o. f"'(::.o) *- O? 
4. What do "surjective." "injective." and "'bijective" 

mean? 
5. What mapping gave the 10ukowski airfoil? 
6. What are linear fractional transformations (LFTs)? Why 

are they important in connection with the extended 
complex plane? 

7. Why did we require that ad - be *- 0 for a LFT? 
8. What are fixed points of a mapping? Give examples. 
9. Can you remember mapping properties of II· = sin::.? 

cos:? e Z? 

10. What is a Riemann surface? Why was it imroduced? 
Explain the simplest example. 

111-161 MAPPING w = Z2 

Find and sketch the image of the given curve or region under 
1V = Z2. 

11. Y = -1, y = I 

13. Izl = 4.5, larg zl < nl4 

15. ! < x < 1 

12. xy = -4 

14.0 < Y < 2 
16. 1m:: > 0 

117-22/ MAPPING w = l/z 

Find and sketch the image of the gi ven curve or region under 
w = II::. 

17. x = -1 18. Y = 1 
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19. Iz - ~I = ~ 
21. larg zl < 7T/4 

20. Izl < ~, )' < 0 

22. Izl < I, x < 0, Y > 0 

135-40 1 Fixed Points. Find all fixed points of 

z + 2 
35. w=--

123-281 FAILURE OF CON FORMALITY ~ + 1 

2i~ - 1 
36. \1'= --­

: + 2i 

Where is the mapping by the given function not conformal? 
(Give reason.) 

37. 
3z + 2 

u·=---
z-I 

i~ + 5 
38.11'= --

5~ + i 
23. 5;:7 + 7;:5 

25. sin 2~ + cos 2~ 

27. exp (;:4 + Z2) 

24. cosh 2~ 

26. cos 71'Z2 

28. z + l/~ (z =/= 0) 

39. 
(2 + i) z + I 

40. lI' = ~4 + ~ - 81 "',. = 
z - ; 

141-451 GIVEN REGIONS 

129-341 LINEAR FRACTIONAL Find an analytic function II' = .f(z) that maps: 
TRANSFORMATIONS (LFTs) 

Find the LFT that maps 
41. The infinite strip 0 < Y < 71'/3 onto the upper half-plane 

v> O. 

29. 0, 1, 2 onto 0, i, 2i, respectively 42. The intelior of the unit circle Izl = I onto the exterior 
of the circle Iw + 11 = 5. 30. -1. 1, 2 onto O. 2, 312, respectively 

31. 1, -1, -i onto I, -I, i, respectively 
43. The region x > 0, Y > 0, xy < k omo the strip 

O<v<1. 
32. -1, -I, i onto 1 - i, 2, 0, respectively 44. The semi-disk Izl < 1. x > 0 onto the exterior of the 

unit circle 111'1 = 1. 33. 0, GO. -2 onto O. 1. "". respectively 

34. O. i, 2i onto 0, x, 2i 45. The sector 0 < arg Z < 71'/3 onto the region u < 1. 

Conformal Mapping 

A complex function w = f(::.) gives a mapping of its domain of definition in the 
complex z-plane onto its range of values in the complex no-plane. If fez) is analytic, 
this mapping is conformal, that is, angle-preserving: the images of any two 
intersecting curves make the same angle of intersection, in both magnitude and sense, 
as the curves themselves (Sec. 17.1). Exceptions are the point" at which!' (z) = 0 
("critical points," e.g. z = 0 for w = Z2). 

For mapping properties of eZ
, cos z, sin z, etc. see Secs. 17.1 and I7.4. 

Linear fractional transformations, also called Mobius tran~formations 

(1) 
az + b 

(Secs. 17.2, 17.3) w= 
cz + d 

(ad - bc *- 0) map the extended complex plane (Sec. 17.2) onto itself. They solve 
the problems of mapping half-planes onto half-planes or disks, and disks onto disks 
or half-planes. Prescribing the images of three points determines (I) uniquely. 

Riemann surfaces (Sec. 17.5) consist of several sheets connected at certain points 
called brallch poil1ls. On them, multi valued relations become single-valued, that is, 
functions in the usual sense. Examples. For w = Vz we need two sheets (with 
branch point 0) since this relation is doubly-valued. For no = In::. we need infinitely 
many sheets since this relation is infinitely many-valued (see Sec. 13.7). 
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/ Complex Analysis and 
Potential Theory 

Laplaces's equation V2~ = 0 is one of the most important PDEs in engineering 
mathematics, because it occurs in gravitation (Secs. 9.7, 12.10), electrostatics (Sec. 9.7), 
steady-state heat conduction (Sec. 12.5), incompressible fluid flow, etc. The theory of 
solutions of this equation is called potential theory (although "potential" is also used in 
a more general sense in connection with gradients; see Sec. 9.7). 

In the "two-dimensional case" when ~ depend~ only on two Cartesian coordinates x 
and y, Laplace's equation becomes 

From Sec. 13.4 we know that then its solutions ~ are closely related to complex analytic 
functions ~ + i '\{t. This relation is the main reason for the importance of complex analysis 
in physics and engineering. (We use the notation <l> + i'\{t since u + iv will be needed 
in conformal mapping.) 

In this chapter we shall consider this connection and its consequences in detail and 
illustrate it by modeling typical examples from electrostatics (Secs. 18.1. 18.2), heat 
conduction (Sec. 18.3). and hydrodynamics (Sec. 18.4). This will lead to boundary value 
problems, some of which involving functions whose mapping properties we have studied 
in Chap. 17. Further relating to that chapter. in Sec. 18.2 we explain conformal mapping 
as a method in potential theory. 

In Sec. 18.5 we derive the important Poisson formula for potentials in a circular disk. 
Finally, in Sec. 18.6 we show that results on analytic functions can be used to 

characterize general properties of harmonic functions (solutions of Laplace's equation 
whose second partial derivatives are continuous). 

Prerequisite: Chaps. 13, 14. 17. 
References and Answers to Problems: App. 1 Part D, App. 2. 

749 
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18.1 Electrostatic Fields 
The electrical force of attraction or repulsion between charged particles is governed by 
Coulomb's law. This force is the gradient of a function ¢, called the electrostatic 
potential. At any points free of charges, ¢ is a solution of Laplace's equation 

The surfaces ¢ = const are called equipotential surfaces. At each point P at which the 
gradient of ¢ is not the zero vector, it is perpendicular to the surface ¢ = const through 
P; that is. the electrical force has the direction perpendicular to the equipotential surface. 
(See also Secs. 9.7 and 12.10.) 

The problems we shall discuss in this entire chapter are two-dimensional (for the reason 
just given in the chapter opening), that is, they model physical systems that lie in 
three-dimensional space (of course!). but are such that the potential <P is independent of 
one of the space coordinates. so that ¢ depends only on two coordinates. which we call 
x and y. Then Laplace's equation becomes 

(1) 

Equipotential surfaces now appear as equipotential lines (curves) in the xy-plane. 
Let us illustrate these ideas by a few simple basic examples. 

E X AMP L E 1 Potential Between Parallel Plates 

Find the potential If> of the field between two parallel conducting plates extending to infinity (Fig. 393). which 
are kept at potentials If>l and <1>2. respectively. 

Soluti01l. From the shape of the plates it follows that <I> depends only on x. and Laplace', equation becomes 
<1>" = O. By integrating twice we obtain <I> = 0\' + b. where the constants 1I and b are determined by the given 
boundary values of (I> on the plates. For example. if the plates correspond to x = -I and x = I, the solution is 

The equipotential surfaces are parallel planes. • 

x x 

Fig. 393. Potential in Example 1 Fig. 394. Potential in Example 2 
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E X AMP L E 2 Potential Between Coaxial Cylinders 

Find the potential <I> between two coaxial conducting cylinders extending to infinity on both ends (Fig. 394) 
and kept at potentials <1>1 and <1>2' respectively. 

Solution. Here <I> depends only on r = \1.,2 + l, for reasons of symmetry, and Laplace's equation 
r2lf.,"'r + ru,. + lIee = 0 [(5). Sec. 12.9] with tlee = 0 and II = <I> becomes r'I)" + <1>' = O. By separating variable~ 
and integrating we obtain 

<1>" 

<1>' r 
In <1>' = -In r + a. , a 

<I> =-. 
r 

<I> = a In,. + b 

and a and b are determined by the given values of <l> on the cylinders. Although no infinitely extended conductors 
exist, the field in our idealiLed conductor will approximate the field in a long finite conductor in that part which 
is far away from the two ends of the cylinders. • 

E X AMP L E 3 Potential in an Angular Region 

Y Find the potential <I> between the conducting plates in Fig. 395. which are kept at potentials <1>1 <the lower plate) 

x 

Fig. 395. Potential 
in Example 3 

and <1>2' and make an angle a. where 0 < a::;;: 7T. lin the figure we have a = 1200 = 27T/3.) 

Solution. e = Arg ~ (: = 1: + iy * 0) b constant on rays e = conST. It is harmonic since it is the imaginary 
part of an analytic function, Ln ~ (Sec. 13.7). Hence the solution is 

<I>(x. y) = 0+ b Arg<: 

with a and b determined from the two boundary conditions (given values on the plates) 

Complex Potential 

)' e = arctan _. • 
x 

Let CP(x, y) be hannonic in some domain D and qr(x, y) a hannonic conjugate of cP in D. 
(See Sec. 13.4. where we wrote 1I and v, now needed in conformal mapping from the next 
section on: hence the change to cP and qr.) Then 

(2) F(z) = CP(x, y) + iqr(x, y) 

is an analytic function of z = x + iy. This function F is called the complex potential 
corresponding to the real potential CPo Recall from Sec. 13.4 that for given CP, a conjugate 
qr is uniquely determined except for an additive real constant. Hence we may say the 
complex potential, without causing misunderstandings. 

The use of F has two advantages. a technical one and a physical one. Technically. F is 
easier to handle than real or imaginary parts, in connection with methods of complex 
analysis. Physically, -qr has a meaning. By conformality, the curves qr = const intersect 
the equipotential lines cP = const in the xy-plane at right angles [except where F' (z) = 0]. 
Hence they have the direction of the electrical force and. therefore, are called lines of force. 
They are the paths of moving charged particles (electrons in an electron microscope, etc.). 

E X AMP L E 4 Complex Potential 

In Example I, a conjugate is 'I' = 01'. It follows that the complex potential is 

F(;:) = a: + b = ax + b + iay, 
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and the lines of force are horizontal straight lines y = comt parallel to the t-axis. • 
E X AMP L E 5 Complex Potential 

In Example 2 we have <1> = a In r + b = a In Izl + h. A conjugate is q, = a Arg z. Hence the complex 
potential is 

F(z) = a Ln z + b 

and the lines of force are straight lines through the origin. F(;:) may also be interpreted as the complex potential 
of a source line (a wire perpendicular to the xy-plane) whose trace in the xr-plane is the origin. • 

E X AMP L E 6 Complex Potential 

In Example 3 we get F(:::) by noting that i Ln ::: = i In kl - Arg:::, multiplying this by -b. and adding a: 

F(:;;) = a - ib Ln z = a + b Arg::: - ib In Id. 

We see from this that the lines of force are concentric circles Izi = COllst. Can you sketch them? • 
Superposition 
More complicated potentials can often be obtained by superposition. 

E X AMP L E 7 Potential of a Pair of Source Lines (a Pair of Charged Wires) 

Determine the potential of a pair of oppositely charged source lines of the same 5trength at the point~ - = c and 
z = -c on the real axis. 

Soluti01l. From Examples 2 and 5 it follows that the pOlential of each of the source lines is 

<1>1 = Kin Iz - cl and <1>2 = -K In Iz + cl, 

re5pectively. Here the real constant K measures the strength (amount of charge). These are the real parts of the 
complex potentials 

and 

Hence the complex pOlential of the combination of the two source lines is 

(3) F(z) = F 1 (:::) + F 2 (:::) = K fLn (~ - c) - Ln (::: + c»). 

The equipotential lines are the curves 

<1> = Re F(z) = K In I Z - c I = consc. 
Z + c 

thus I ~7- -+ (c.· I ...... = ("01lSt. 

These are circles, as you may show by direct calculation. The lines of force are 

"IjJ = [m F(z) = K[ Arg (z - c) - Arg (z + c)l = const. 

We write this briefly (Fig. 396) 

Now 81 - 82 is the angle between the line segments from:: to c and -c (Fig. 396). Hence the lines of force 
are the curves along each of which the line segment S: -c ~ t ~ C appears under a consram angle. These curves 
are the totality of circular arcs over S. as is (or should be) known from elementary geometry. Hence the lines 
of force are circles. Figure 397 shows some of them together with some equipotential lines. 

In addition to the interpretation as the potential of two source lines, this potential could also be thought of a~ 
the potential between two circular cylinders whose axes are parallel but do not coincide. or a5 the potential 
between two equal cylinders that lie outside each other. or as the potential hetween a cylinder and a plane waH. 
Explain this, using Fig. 397. • 

The idea of the complex potential as just explained is the key to a close relation of potential 
theory to complex analysis and will recur in heat flow and fluid flow. 
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z 

-c c 

Fig. 396. Arguments in Example 7 

= .. ........ =:1- .. ----•. ·'''''''-'·W· Z
- •• 

11-41 POTENTIAL 
Find and sketch the potential. Find the complex potential: 

1. Between parallel plates at x = - 3 and 3. potentials 
140 V and 260 V. respectively 

2. Between parallel plates at t = -4 and 10. potentials 
4.4 kV and 10 kV. respectively 

3. Between the axes (potential 110 V) and the hyperbola 
xy = I (potential 60 V) 

4. Between parallel plates at y = x and x + k. potentials 
o and 100 V. respectively 

15-81 COAXIAL CYLINDERS 

Find the potential between two infinite coaxial cylinders of 
radii r1 and rz having potentials VI and Vz, respectively. 
Find the complex potential. 

5. rl = 0.5, rz = 2.0, VI = -IIOV. V2 = llOV 

6. 1'1 = 1, r2 = 10. VI = 100 V. V2 = I kV 

7. 1'1 = I, 1"z = 4. VI = 200 V. V2 = 0 

8. 1'1 = 0.1. 1'2 = 10. VI = 150 V. V2 = 50 V 

9. Show that <1> = el'Tr = (l/'Tr) arctan (ylx) is harmonic in 
the upper half-plane and satisfies the boundary condition 
<1>(x, 0) = I if x < 0 and 0 if x > O. and the cOlTesponding 
complex potential is F(z) = -(i/'Tr) Ln z. 

10. Map the upper half z-plane onto the unit disk Iwl ~ I so 
that 0, x. - I are mapped onto I, i, -i, respectively. What 
are the boundary conditions on Iwl = I resulting from 
the potential in Prob. 9'! What is the potential at w = O? 

n. Verify by calculation that the equipotential lines in 
Example 7 are circles. 

12. CAS EXPERIMENT. Complex Potentials. Graph 
the equipotential lines and lines offorce in (a)-(d) (four 
graphs, Re F(z) and 1m F(z) on the same axes). Then 
explore further complex potentials of your choice with 
the purpose of discovering configurations that might 
be of practical interest. 
(a) F(z) = :;:2 

(e) F(z) = liz 

(b) F(z) = iz 2 

(d) F(:;:) = ifz 

Fig. 397. Equipotential lines and lines 
of force (dashed) in Example 7 

113-151 POTENTIALS FOR OTHER 
CONFIGURATIONS 
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13. Show that F(z) = arccos z (defined in Problem Set 
13.7) gives the potential in Figs. 398 and 399. 

Fig. 398. Slit 

Fig. 399. Other apertures 

14. Find the real and complex potentials in the sector 
-'Tr16 ~ e ~ 'Tr16 between the boundary e = ± 'Tr16 
(kept at 0) and the curve X3 - 3xy2 = I, kept at 110 V. 

15. Find the potential in the first quadrant of the x)'-plane 
between the axes (having potential 220 V) and the 
hyperbola xy = I (having potential 110 V). 
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18.2 Use of Conformal Mapping. Modeling 

THEOREM 1 

Complex potentials relate potential theory closely to complex analysis, as we have just 
seen. Another close relation results from the use of conformal mapping in modeling and 
solving boundary value problems for the Laplace equation, that is, in finding a solution 
of the equation in some domain assuming given values on the boundary ("Dirichlet 
problem"; see also Sec. 12.5). Then conformal mapping is used to map a given domain 
onto one for which the solution is known or can be found more easily. This solution is 
then mapped back to the given domain. This is the idea. That it works is due to the fact 
that harmonic functions remain harmonic under conformal mapping: 

Harmonic Functions Under Conformal Mapping 

Let <1>* be harmonic in a domain D* il1 the tv-plane. Suppose that H' = u + iv = fez) 
is analytic in a domain D in the z-plane and maps D cOflformally onto D*. Then 
the jUllction 

(1) <1>(x, y) = <1>*(II(X, y), vex, y» 

is harmollic in D. 

PROOF The composite of analytic functions is analytic, as follows from the chain IUle. Hence, 
taking a harmonic conjugate 1]r*(u, v) of <1>*, as defined in Sec. 13.4, and forming the 
analytic function F*(w) = <1>*(u, v) + i1]r*(u, v), we conclude that F(z) = F*(J(z» is 
analytic in D. Hence its real part <1>(x, y) = Re F(z) is hannonic in D. This completes the 
proof. 

We mention without proof that if D* is simply connected (Sec. 14.2), then a harmonic 
conjugate of <1>* exists. Another proof of Theorem 1 without the use of a harmonic 
conjugate is given in App. 4. • 

E X AMP L E 1 Potential Between Noncoaxial Cylinders 

Model the electrostatic potential between the cylinders C I : IzI = I and C2 : J;: - 2/51 = 2/5 in Fig. 400. Then 
give the solution for the case that CI is grounded, VI = 0 V, and C2 has the potential V2 = 110 v. 

Solution. We map the unit disk Izl = I onto the unit disk Iwl = I in such a way that C2 is mapped onto 
some cylinder C2 *: Iwl = '-0' By (3), Sec. 17.3, a linear fractional transfonTlation mapping the unit disk onto 
the unit disk is 

z - b 
(2) u·= ---

b::: - 1 

x u 

(a) z-plane (bl w·plane 

Fig. 400. Example 1 
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where we have chosen b = ~o real without restriction. ~o is of no immediate help here because centers of circles 
do not map onto centers of the images. in general. However. we now have two free constants band 1'0 and shall 
succeed by imposing two reasonable conditions, namely, that 0 and 4/5 (Fig. 400) should be mapped onto 1'0 

and -ro, respectively. This gives by (2) 

O-b 
'"0 = 0 _ I = h. and with this, 

4/5 - b 

-ro = 4bl5 - I 
415 - ro 

4"0/5 - I 

a quadratic equation in "0 with solutions "0 = 2 (no good because "0 < I) and "0 = 112. Hence our mapping 
function (2) with b = 112 becomes that in Example 5 of Sec. 17.3, 

(3) 

From Example 5 in Sec. 18.1. writing lI" for z we have as the complex potential in the lI"-plane the function 
F*{II') = a Ln w + k and from this the real potential 

<1>''(u. v) = Re F*{II') = a In [wi + k. 

This is our model. We now determine a and k from the boundary conditions. If [wi = I, then <1>* = {/ In I + k = O. 
hence k = O. If [wi = ro = 112. then <1>" = {/ In (I/2) = 110. hence (/ = 110/ln (l12) = -158.7. Substitution 
of (3) now gives the desired ~olution in the given domain in the :::-plane 

The real potential is 

")- - I 
F(:::) = F*(f(~» = 1I Ln ~- _ 2 . 

I
?, - I I 

<1>{x. y) = Re F(:::) = {/ In ~"_ 2 . (/ = -158.7. 

Can we "see" this re,ult? Well. <1>(x. Y) = COIlst if and only if [(2::: - 1)/(::: - 2)[ = COllst. that is. [wi = CUllst 

by (2) with b = 112. These circles are images of circles in the :::-plane because the inverse of a linear fractional 
transformation is linear fractional (see (4). Sec. 17.2). and any such mapping maps circles onto circles (or 
straight lines). by Theorem I in Sec. 17.2. Similarly for the rays arg II' = COllst. Hence the equipotential lines 
<1>{x, y) = const are circles. and the lines of force are circular arcs (dashed in Fig. 400). These two familie< of 
curves intersect orthogonally. that is, at right angles. as shown in Fig. 400. • 

E X AMP L E 1 Potential Between Two Semicircular Plates 

Model the potential between two semicircular plates PI and P2 in Fig. 40Ia having potentials -3000 V and 
3000 V. respectively. Use Example 3 in Sec. 18.1 and conformal mapping. 

Solution. Step 1. We map the unit disk in Fig. 40la onto the right half of the II'-plane (Fig. 401b) by using 
the linear fractional transformation in Example 3, Sec. 17.3: 

I+z. 
II' = I(:::) = 

1-::: 

v 
2 kV 

3 kV -

1 kV 

o 
u 

, 
-3 kV -_..-'\ 

-2 kV 

(a) z-plane (b) w-plane 

Fig. 401. Example 2 
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The boundary Izl = I is mapped onto the boundary II = 0 lthe v-axis). with z = -I. i. I going onto w = O. i, "", 
respectively, and: = -i onto w = - i. Hence the upper semicircle of Izl = I is mapped onto the upper half, 
and the lower semicircle onto the lower half of the v-axis. so that the boundary conditions in the w-plane are 
as indicated in Fig. 401b. 

Step 2. We determine the potential <1>*(1/, v) in the right half-plane of the w-plane. Example 3 in Sec. 18.1 with 
a = 7T, VI = -3000. and V2 = 3000 [with <1>*(11. v) instead of <1>(x. y)] yields 

6000 
<1>*(u, v) = -- cpo 

7T 

v 
cp = arctan - . 

11 

On the positive half of the imaginary axis (cp = 7T12), this equals 3000 and on the negative half -3000. as it 
should be. <1>' is the real part of the complex potential 

" 6000 i 
F'(lI') = - --- Ln w. 

7T 

Step 3. We substitllle the mapping function into F* to get the complex potential F(::.) in Fig. 40la in the 
form 

6000i 1+;: 
F(;:) = F*(f(;:» = - -- Ln -- . 

'if 1-:;: 

The real part of this is the potential we wanted to determine: 

6000 I+z 
<1>(x, y) = Re F(;:) = -- 1m Ln --

7T I - ;: 

6000 I+z 
--Arn --

71 0 1 -:: 

As in Example I we conclude that the equipotential lines <1>(x. y) = const are circular arcs because they correspond 
to Arg [(I + ::.)/(1 - ;:)] = COIISt. hence to Arg w = COliS/' Also, Arg w = COIISt are rays trom 0 to x, the images 
of Z = -I and;: = I. respectively. Hence the equipotential lines all have -I and I (the points where the 
boundary potential jumps) as their endpoints lFig. 401a). The lines of fonce are circular aln, too, and since they 
must be orthogonal to the equipotential lines, their centers can be obtained as intersections of tangents to the 
unit circle with the ,,-axis, (Explain!) • 

Further examples can easily be constructed. Just take any mapping w = J(:) in Chap. 17. 
a domain D in the z-plane, its image D* in the w-plane. and a potential <1>* in D~'. Then 
(1) gives a potential in D. Make up some examples of your own. involving, for instance. 
linear fractional transformations. 

Basic Comment on Modeling 

We formulated the examples in this section as models on the electrostatic potential. It 
is quite important to realize that this is accidental. We could equally well have phrased 
everything in terms of (time-independent) heat flow; then instead of voltages we would 
have had temperatures, the equipotential lines would have become isotherms (= lines 
of constant temperature), and the lines of the electrical force would have become lines 
along which heat flows from higher to lower temperatures (more on this in the next 
section). Or we could have talked about fluid flow; then the electrostatic lines of force 
would have become streamlines (more on this in Sec. 18.4). What we again see here is 
the unifyillg power of mathematics: different phenomena and systems from different 
areas in physics having the same types of model can be treated by the same mathematical 
methods. What differs from area to area is just the kinds of problems that are of practical 
interest. 
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=:.:I:_=.: ..... 'A~.====: .... 
1. Verify Theorem 1 for <1>':'(11. U) = 112 - U2• 

W = fez) = eZ and any domain D. 

2. Verify Theorem I for <1>*(lI. u) = lIU, W = .Hz) = eZ
• 

and D: x ::::2 0,0::::2 Y ::::2 7T, Sketch D and D*. 
3. Carry out all steps of the second proof of Theorem I 

(given in App. 4) in detaiL 
4. Derive (3) from (2). 
5. Let D'~ be the image of the rectangle D: 

o ~ x ::::2 ~ 7T, 0 ::::2 Y ::::2 1 under IV = sin z, and 
<1>*(11, U) = 112 - u2• Find the corresponding 
potential <1> in D and its boundary values. 

6. What happens in Prob. 5 if you replace the potential 
by the conjugate <1>* = 2ltu? Sketch or graph some of 
the equipotential lines <1> = canst. 

7. CAS PROJECT. Graphing Potential Fields. 
(a) Graph equipotential lines in Probs. 1 and 2. 

(b) Graph equipOtential lines if the complex potential 
is F(z) = i;:.2. F(z) = eZ

• F(;:.) = iez, F(z) = eiz. 

(c) Graph equipotential surfaces corresponding to 
F(z) = In z as cylinders in space. 

8. TEAM PROJECT. Noncoaxial Cylinders. Find the 
potential between the cylinders C1 : Izl = I (potential 
VI = 0) and C2 : Iz - cl = c (V2 = 110 V), where 
o < c < ~. Sketch or graph the equipotential curves 
and their orthogonal trajectories for c = 0.1, 0.2, 0.3, 
OA. Try to think of the further extension C1: Izi = 1, 
C2 : I::: - cI = p *- c. 

9. Find the potential <1> in the region R in the first quadrant 
of the z-plane bounded by the axes (having potential 
VI) and the hyperbola y = l/x (having potential 0) in 
two ways. (i) directly, (ii) by mapping R onto a suitable 
infinite strip, 
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10. (Extension of Example 2) Find the linear fractional 
transfonnation z = g(Z) that maps IZI ::::2 I onto Izi ~ 1 
with Z = il2 being mapped onto Z = O. Show that 
ZI = 0.6 + 0.8i is mapped onto z = -I and 
Z2 = -0.6 + 0.8i onto::: = I, so that the equipotential 
lines of Example 2 look in Izi ::::2 1 as shown in Fig. 402. 

x 

Fig. 402. Problem 10 

11. The equipotential lines in Prob. 10 are circles. Why? 

12. Show that in Example 2 the .v-axis is mapped onto the 
unit circle in the w-plane. 

13. Find the complex and real potentials in the upper 
half-plane with boundary values 0 if x < 4 and 10 kV 
if x > 4 on the x-axis. 

14. (Angular region) Applying a suitable conformal 
mapping. obtain from Fig. 401 b the potential <1> in the 
angular region -!7T < Arg z < !7T such that <l> = - 3 kV 
if Arg z = -!7T and <1> = 3 kV if Arg z = !7T. 

15. At z = ± 1 in Fig. 401 a the tangents to the equipotential 
lines shown make equal angles (7T/6). Why? 

Laplace's equation also governs heat flow problems that are steady, that is, time-independent. 
Indeed, heat conduction in a body of homogeneous material is modeled by the heat 

equation 

where the function T is temperature, Tt = aT/at, t is time. and c2 is a positive constant 

(depending on the material of the body; see Sec. 12.5). Hence if a problem is steady, so 

that Tt = O. and two-dimensional, then the heat equation reduces to the two-dimensional 

Laplace equation 

(1) 

so that the problem can be treated by our present methods. 
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T(x, y) is called the heat potential. It is the real part of the complex heat potential 

F(::.) = T(x. y) + i'llF(x. y). 

The curves T(x, y) = cOllsl are called isotherms (= lines of constant temperature) and 
the curves 'IlF(x, y) = const heat flow lines, because along them, heat flows from higher 
to lower temperatures. 

It follows that all the examples considered so far (Secs. 18.1. 18.2) can now be 
reinterpreted as problems on heat now. The electrostatic equipotential lines <I>(x, Y) = COIlSt 

now become isotherms T(x, y) = C01lst, and the lines of electrical force become lines of 
heat flow, as in the following two problems. 

E X AMP L E 1 Temperature Between Parallel Plates 

Find the temperature between two parallel plates x = 0 and x = d in Fig. 403 having temperatures 0 and 100°e. 
respectively. 

Solution. As in Example I of Sec. 18.1 we conclude that T(x, .1') = ax + b. From the boundary conditions, 
h = 0 and a = 1001d. The answer is 

T(x.yl = 
IOU 

d 
\" [0C]. 

The corresponding complex potential is F(:::) = (1 001d) z. Heat tlows hori70ntally in the negative x-direction 
along the lines y = cOllsr. • 

E X AMP L E 1 Temperature Distribution Between a Wire and a Cylinder 

Find the temperature field around a long thin wire of radius /'1 = I mm that is electrically heated to Tl = 500°F 
and is sUlTounded by a circular cylinder of radius 1'2 = 100 mm. which is kept at temperature T2 = 60°F by 
cooling it with air. See Fig. 404. (The wire is at the origin of the coordinme system.) 

Solution. T depends only on r. for reason~ of symmetry. Hence. as in Sec. 18.1 (Example 2). 

T(x, .1') = a In r + h. 

The boundary conditions are 

Tl = 500 = a In 1 + b, T2 = 60 = a In 100 + b. 

Hence b = 500 (since In 1 = 0) and a = (60 - b)/ln JOO = -95.54. The answer is 

T(x, y) = 500 - 95.54 In I' [OF]. 

The isotherms are concentric circles. Heal flows from the wire radially outward to the cylinder. Sketch T as a 
function of r. Does it look physically reasonable? • 

Fig. 403. Example 1 

I 
I 

--f®J--
, , 

Fig. 404. Example 2 

x 

YI 
Insulated 

u~-- ~ ~-I,X \ 
hl~ 
I T=50°C 1 x 

o 
Fig. 405. Example 3 
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Mathematically the calculations remain the same in the transition to another field of 
application. Physically, new problems may arise, with boundary conditions that would 
make no sense physically or would be of no practical interest. This is illustrated by the 
next two examples. 

E X AMP L E 3 A Mixed Boundary Value Problem 

Find the temperature distribution in the region in Fig. 405 (cross section of a solid quaI1er-cylinder), whose 
vertical pOI1ion of the boundary is at 20De, the horizontal pOI1ion at 50De, and the circular portion is insulated. 

Solution. The insulated portion of the boundary must be a heat flow line, since by the insulation, heat is 
prevented from crossing such a curve, hence heat must flow along the curve. Thus the isotherms must meet 
such a curve at right angles. Since T is constant along an isotherm, this means that 

(2) 
aT 

=0 
all 

along an insulated poI1ion of the boundary. 

Here aT/iin is the nonnal derivative of T, that is, the directional derivative (Sec. 9.7) in the direction normal 
(perpendicular) to the insulated boundary. Such a problem in which Tis prescribed on one portion of the boundary 
and aT/an on the other portion is called a mixed boundary value problem. 

In our case, the normal direction to the insulated circular boundary curve is the radial direction toward the 
origin. Hence (2) becomes aT/ilr = 0, meaning that along this curve the ~olution must not depend on r. Now 
Arg;: = 0 satisfies (1). as well as this condition, and is constant (0 and r./2) on the straight portions of the 
boundary. Hence the solution is of the form 

T(x, y) = aO + b. 

The boundary conditions yield a . r./2 + h = 20 and a . 0 + b = 50. This gives 

60 
T(x, y) = 50 - - 0, 

r. 

y 
0= arctan 

x 

The isotherms are portions of rays 0 = COllSt. Heat flows from the x-axis along circles r = const (daShed in 

Fig. 405) Lo the y-axis. • 

y! 

;;~\t~ Zf t"lt =~ 
T = O°C -1 "---Insulated 1 T = 20°C x " "---Insulated 2 

(a) z-plane (b) w-plane 

Fig. 406. Example 4 

E X AMP L E 4 Another Mixed Boundary Value Problem in Heat Conduction 

u 
0 
'" II 

" Eo, . 
" 

u 
2 

Find the temperature field in the upper half-plane when the x-axis is kept at T = oDe for x < -I, is insulated 
for -I < x < I, and is kept at T = 200 e for x> I (Fig.406a). 

Solution. We map the half-plane in Fig. 406a onto the veI1ical strip in Fig. 406b. find the temperature T*(u. v) 
there, and map it back to get the temperature T(x. y) in the half-plane. 

The idea of using that strip is suggested by Fig. 388 in Sec. 17.4 with the roles of;: = x + iy and w = u + iv 
interchanged. The figure shows that z = sin w maps our present strip onto our half-plane in Fig. 406a. Hence 
the inverse function 

w = I(:::) = arcsin::: 
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maps that half-plane onto the strip in the w-plane. This is the mapping function that we need according to 
Theorem I in Sec. 18.2. 

The insulated segment -] < x < ] on the x-axis maps onto the segment -wl2 < II < wl2 on the lI-axi~. 
The rest of the x-axis maps onto the two vertical boundary portions 1I = - wl2 and w/2, u > 0, of the strip. 
This gives the transformed boundary conditions in Fig. 406b for T*(u. u). where on the insulated hori70ntal 
boundary, iJT*/iJ/I = iJT*/iJu = 0 because u is a coordinate normal to that ~egment. 

Similarly to Example I we obtain 

20 
T*(u. u) = 10 + - 1/ 

which satisfies all the boundary conditions. This is the real part of the complex potential F"(I\') = 10 + (20/w)w. 

Hence the complex potential in the ~-plane is 

20 
F(~) = F*<.f(~» = 10 + arcsin ~ 

w 

and T[x, y) = Re F(z) is the solution. The isotherms are 1/ = const in the strip and the hyperbolas in the :.-plane. 
perpendicular to which heat flows along the dashed ellipses from the 20°-portion to the cooler 0°-portion of the 
boundary. a physically very reasonable result. • 

This section and the last one show the usefulness of conformal mappings and complex 

potentials. The latter will also playa role in the next section on fluid flow. 

1. CAS PROJECT. Isotherms. Graph isothenns and 
lines of heat flow in Examples 2-4. Can you see from 
the graphs where the heat flow is very rapid? 

2. Find the temperature and the complex potential in an 
infinite plate with edges y = x - 2 and y = x + 2 kept 
at - 10°C and 20De, respectively. 

3. Find the temperature between two parallel plates \" = 0 
and )" = d kept at temperatures ODC and 100De, 
respectively. (i) Proceed directly. (ii) Use Example I 
and a suitable mapping. 

4. Find the temperature T in the sector 0 ~ Arg z ~ w/3, 
Izl ~ 1 if T = 20°C on the x-axis, T = 50°C on 
y = V3 x, and the curved portion is insulated. 

5. Find the temperature in Fig. 405 if T = -20DC on the 
y-axis, T = 100DC on the x-axis, and the circular 
portion of the boundary is insulated as before. 

6. Interpret Prob. 10 in Sec. 18.2 as a heat flow problem 
(with boundary temperatures, say, 20DC and 300°C). 
Along what curves does the heat flow? 

7. Find the temperature and the complex potential in the 
first quadrant of the ;:-plane if the y-axis is kept at 
100°C, the segment 0 < x < I of the x-axis is insulated 
and the portion x > I of the x-axis is kept at 200De. 
Hint. Use Example 4. 

8. TEAM PROJECT. Piecewise Constant Boundary 
Temperatures. (a) A basic building block is shown 
in Fig. 407. Find the corresponding temperature and 
complex potential in the upper half-plane. 

(b) Conformal mapping. What temperature in the 
first quadrant of the ;:-plane is obtained from la) by the 

mapping w = a + Z2 and what are the transfonned 
boundary conditions? 

(c) Superposition. Find the temperature T'" and the 
complex potential F* in the upper half-plane satisfying 
the boundary condition in Fig. 408. 

(d) Semi-infinite strip. Applying H' = cosh;: to (c), 

obtain the solution of the boundary value problem in 
Fig. 409. 

v 

o ----~ 
a T*=T

1 
U 

Fig. 407. Team Project 8(a) 

v 

-1 1 
-- o· 0---
T*=O T' =To T*=O u 

Fig. 408. Team Project 8(c) 

:1 T=O 

T=Tol 

00 
T=O x 

Fig. 409. Team Project 8(d) 
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19-141 TEMPERATURE DISTRIBUTIONS IN 
PLATES 

11. 12.Y~ 

~COO~~ Find the temperature T(x, y) in the given thin metal plate 
whose faces are insulated and whose edges are kept at the 
indicated temperatures or are insulated as shown. o T= lOO°C x 

9. 10. y 13. oc., VlnSulated 
~ :\. 

~45D ';t 

T = 50 D C""""''''--''''''x 

14. 

18.4 Fluid Flow 
Laplace's equation also plays a basic role in hydrodynamics, in steady nonviscous fluid 
flow under physical conditions discussed later in this section. In order that methods of 
complex analysis can be applied, our problems will be two-dimensional, so that the 
velocity vector V by which the motion of the fluid can be given depends only on two 
space variables x and y and the motion is the same in all planes parallel to the xy-plane. 

Then we can use for the velocity vector V a complex function 

(1) 

giving the magnitude IVI and direction Arg V of the velocity at each point z = x + iy. 
Here VI and V2 are the components of the velocity in the x and y directions. V is tangential 
to the path of the moving particles, called a streamline of the motion (Fig. 410). 

We show that under suitable assumptions (explained in detail following the examples), 
for a given flow there exists an analytic function 

(2) P(z) = <I>(x, y) + i"'l'(x, y), 

called the complex potential of the flow, such that the streamlines are gIVen by 
"'l'(x, y) = const, and the velocity vector or, briefly, the velocity is given by 

(3) V = VI + iV2 = p' (z) 

Fig. 410. Velocity 
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where the bar denotes the complex conjugate. \)f is called the stream function. The 
function ¢ is called the velocity potential. The curves ¢(x. y) = const are called 
equipotential lines. The velocity vector V is the gradient of ¢; by definition, this means 
thaI 

(4) 

Indeed, for F = ¢ + i\)f, Eq. (4) in Sec. 13.4 is F' = ¢x + i\)fx with \)fx = -¢y by the 
second Cauchy-Riemann equation. Together we obtain (3): 

Furthermore. since F(z) is analytic, ¢ and \)f satisfy Laplace's equation 

(5) 

Whereas in electrostatics the boundaries (conducting plates) are equipotential lines, in 
fluid flow the boundaries across which fluid cannot flow must be streamlines. Hence in 
fluid flow the stream function is of particular importance. 

Before discussing the conditions for the validity of the statements involving (2)-(5), let 
us consider two flows of practical interest, so that we first see what is going on from a 
practical point of view. Further flows are included in the problem set. 

E X AMP L E 1 Flow Around a Corner 

The complex potential F(:::) = :::2 = x2 - y2 + 2ixy models a flow with 

Equipotential lines <I> = x 2 - y2 = COllst (Hyperbolas) 

Streamlines 'It = 2xv = const (Hyperbolas). 

From (3) we obtain the velocity vector 

v = 2~ = 2(x - iy), that is, 

The speed (magnitude of the velocity) is 

The flow may be interpreted as the flow in a channel bounded by the positive coordinates axes and a hyperbola. 
say, xy = I (Fig. 411). We note that the speed along a streamline S has a minimum at the point P where the 
cross section of the channel is large. • 

--o x 

Fig. 411. Flow around a corner (Example 1) 
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E X AMP L E 2 Flow Around a Cylinder 

THEOREM 1 

Consider the complex potential 

1 
F(::.) = <D(x, y) + jqr(x. y) = ::. + -=-

Using the polar form:: = reiO. we obtain 

F(::.) = reiO + -; e -ill (,. + ~ ) cos () + i (,. - + ) sin (). 

Hence the 'treamlines are 

qr(x, y) = (r - ~ ) sin () = COIISt. 

In particular. '1'(.1. y) = 0 gives r - 11,. = 0 or sin () = O. Hence this streamline consists of the unit circle (r = IIr 
gives r = 1) and the x-axis «(I = 0 and () = 1T). For large 1::1 the term II: in F(:) is small in absolute value, so 
that for these ~ the flow is nearly uniform and parallel to the x-axis. Hence we can interpret this as a t10w around 
a long circulm cylinder of unit radius that is perpendicular to the ::-plane and intersects it in the unit circle Izl = I 
and whose axis cOlTesponds to ::. = O. 

The flow has two stagnation points (that is, points at which the velocity V is zero). at;: = :!:: 1. This follows 
from (3) and 

, I 
F (::.) = I - "2' hence (See Fig. 412,) • 

--
x 

Fig. 412. Flow around a cylinder (Example 2) 

Assumptions and Theory Underlying (2)-(5) 

Complex Potential of a Flow 

If the dOlllaill of flow is simply connected and the flow is irrotatiollal lind 
i1lcompressible, tben the statements inl'Olving (2)--(5) bold. In particular, then the 
flow has a complex potential F(;:). which is an analytic function. (Explanation of 
tenns below.) 

PROOF We prove this theorem, along with a discussion of basic concepts related to fluid flow. 

(a) First Assumption: Irrotational. Let C be any smooth curve in the z-plane given 
by .::(s) = xes) + iy(s), where s is the arc length of C. Let the real variable Vt be the 
component of the velocity V tangent to C (Fig. 413). Then the value of the real line integral 

(6) 
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y 

x 

Fig. 413. Tangential component of the 
velocity with respect to a curve C 

taken along C in the sense of increasing s is called the circulation of the fluid along C, 
a name that will be motivated as we proceed in this proof. Dividing the circulation by the 
length of C, we obtain the mean velocit:/ of the flow along the curve C. Now 

Vt = Ivi cos a (Fig. 413). 

Hence Vt is the dot product (Sec. 9.2) of V and the tangent vector dzlds of C (Sec. 17.1); 
thus in (6), 

( dx dY) Vt ds = VI - + V2 - ds = VI dx + V2 dy. 
ds ds 

The circulation (6) along C now becomes 

(7) J Vt ds = J (VI dx + V2 dy). 
c c 

As the next idea, let C be a closed curve satisfying the assumption as in Green's theorem 
(Sec. 10.4), and let C be the boundary of a simply connected domain D. Suppose further 
that V has continuous partial derivatives in a domain containing D and C. Then we can 
use Green's theorem to represent the circulation around C by a double integral. 

(8) fc (VI d"r + V2 dy) = lj (da:
2 

- iJa:
l

) dx dy. 

The integrand of this double integral is called the vorticity of the flow. The vorticity 
di vided by 2 is called the rotation 

(9) 1 (aV2 aVI) w(x, y) = - - - - . 
2 ax ay 

b 

1 DefillitiollS: b ~ a J f(x) dr = mean value of f on the interval a ~ x ~ b, 
a 

± J f(s) ds = mean value of f on C (L = length of C). 
c 

± J J f(x, y) dr dy = mean value of f on D (A = area of D). 

D 
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We assume the flow to be irrotational, that is, w(x, y) == 0 throughout the flow; thus, 

(10) 
aVI = o. 
ay 

To understand the physical meaning of vorticity and rotation, take for C in (8) a circle. 
Let r be the radius of C. Then the circulation divided by the length 27Tr of C is the mean 
velocity of the fluid along C. Hence by dividing this by r we obtain the mean angular 
velocity Wo of the fluid about the center of the circle: 

1 Jf ( aV2 aVI) 1 Jf Wo = -- -- - -.- dx dy = -- w(x. y) dx dy. 
27Tr2 ax rly 7Tr2 

D D 

If we now let r - 0, the limit of Wo is the value of w at the center of C. Hence w(x, y) 
is the limiting angular velocity of a circular element of the fluid as the circle shrinks to 
the point (x, y). Roughly speaking, if (l spherical element of the fluid were suddenly 
solidified and the surrou1lding fluid simultaneously annihilated, the elemellt would rotate 
WiTh the angular velocity w. 

(b) Secolld Assumption: Incompressible. Our second assumption is that the fluid is 
incompressible. (Fluids include liquids, which are incompressible, and gases, such as air, 
which are compressible.) Then 

(11) 

in every region that is free of sources or sinks, that is, points at which fluid is produced 
or disappears. respectively. The expression in (11) is called the divergence of V and is 
denoted by div V. (See also (7) in Sec. 9.8.) 

(c) Complex Velocity Potelltial. If the domain D of the flow is simply connected 
(Sec. 14.2) and the flow is irrotational, then (10) implies that the line integral (7) is 
independent of path in D (by Theorem 3 in Sec. lO.2, where FI = VI, F2 = V2, F3 = 0, 
and.: is the third coordinate in space and has nothing to do with our present z). Hence if 
we integrate from a fixed point (a, b) in D to a variable point (x. y) in D, the integral 
becomes a function of the point (x, y), say, el>(x. y): 

(12) 
lx, yJ 

(Nx. y) = J (VI dx + V2 dy). 
(a, b) 

We claim that the flow has a velocity potential el>, which is given by (12). To prove this. 
all we have to do is to show that (4) holds. Now since the integral (7) is independent of 
path. VI dt + V2 dy is exact (Sec. lO.2). namely, the differential of el>. that is. 

ael> ael> 
VI dx + V2 dy = - dx + - dy. 

ax ay 

From this we see that VI = ael>/ax and V2 = ael>/ay, which gives (4). 
That el> is harmonic follows at once by substituting (4) into (11), which gives the first 

Laplace equation in (5). 
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We finally take a harmonic conjugate 'l! of <D. Then the other equation in (5) holds. 
Also, since the second partial derivatives of ¢ and 'l! are continuous, we see that the 
complex function 

F(:;) = ¢(x. y) + i'l!(x. y) 

is analytic in D. Since the curves 'l!(x, y) = const are perpendicular to the equipotential 
curves ¢(x, y) = const (except where F' (z) = 0), we conclude that 'l!(x, y) = const are 
the streamlines. Hence 'l! is the stream function and F(::) is the complex potential of the 
flow. This completes the proof of Theorem I as well as our discussion of the important 
role of complex analysi<; in compressible fluid flow. • 

L ..... _-. ..._ ....... 
_ .... -ill .. lA -: 

11-151 FLOW PATTERNS: STREAMLINES, 
COMPLEX POTENTIAL 

The~e problems should encourage you to experiment with 
various functions FC:), many of which model interesting 
flow patterns. 

1. (Parallel flow J Show that F(~) = -; K~ (K positive 
real) describes a uniform flow upward. which can be 
interpreted as a uniform flow between two parallel lines 
(parallel planes in three-dimensional space). See 
Fig. 414. Find the velocity vector, the streamlines. and 
the equipotential lines. 

x 

Fig. 414. Parallel flow in Problem 1 

2. (Conformal mapping) Obtain the now in Example I 
from that in Prob. 1 by a suitable conformal mapping. 

3. Find the complex potential of a uniform flow parallel 
to the x-axis in the positive x-direction. 

4. What happens to the flow in Prob. I if you replace z 
by ~e-ia with constant 0'. e.g., 0' = 7f/4? 

5. What is the complex potential of an upward parallel 
flow in the direction of y = 2x? 

6. (Extension of Example l) Sketch or graph the flow in 
Example I on the whole upper half-plane. Show that 
you can interpret it as as flow against a horizontal wall 
(the x-axis). 

7. What F(z) would be suitable in Example I if the angle 
of the comer were 7f/3? 

8. Sketch or graph the streamlines and equipotential lines 
of F(:;.) = ;:3. Find V. Find all points at which V l~ 

parallel to the x-axis. 

9. Find and graph the streamlines of F(:) = :2 + 2:. 
Interpret the flow. 

10. Show that F(:) = i:2 models a flow around a comer. 
Sketch the streamlines and equipotential lines. Find V. 

11. (Potential F(z) = lIz) Show that the streamlines of 
F(~) = l/~ are circles through the origin. 

12. (Cylinder) What happens in Example 2 if you replace 
::: by Z2? Sketch and interpret the resulting flow in the 
first quadrant. 

13. Change F(~) in Example 2 slightly to obtain a flow 
around a cylinder of radius 1"0 that gives the flow in 
Example 2 if 1"0 ~ I. 

14. (Aperture) Show that F(:) = arccosh : gives confocal 
hyperbolas as streamlines, with foci at ::: = ::':: I. and the 
flow may be interpreted as a flow through an aperture 
(Fig. 415). 

15. (Elliptical cylinder) Show that F(~) = arccos: gives 
confocal ellipses as streamlines. with foci at : = ::':: 1. 
and that the now circulates around an elliptic cylinder 
or a plate (the segment from -1 to I in Fig. 416). 

Fig. 415. Flow through an aperture in Problem 14 
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Fig. 416. Flow around a plate in Problem 15 

x 

Fig. 417. Point source 

Fig. 418. Vortex flow 

16. TEAM PROJECT. Role of the Natural Logarithm 
in Modeling Flows. (a) Basic flo\\s: Source and sink. 
Show that F(:;;) = (cl27T) In:;; with constant positive 
real c gives a flow directed radially outward (Fig. 417), 
so that F models a point source at ~. = 0 (that is, a 
source line x = 0, y = 0 in space) at which t1uid is 
produced. c is called the strength or discharge of the 
source. If c is negati ve real. show that the flo,,' is 
directed radially inward. so that F models a sink at 
:;; = 0, a point at which fluid disappears. Note that 
:;; = 0 is the singular point of F(:;;). 

(b) Basic flows: Vortex. Show that n:;;) = -(Ki/27T) 

In::: with positive real K gives a t10w circulating 
counterclockwise around::: = 0 (Fig. 418), :;; = 0 is 
called a vortex. Note that each time we travel around 
the vonex. the potential increases by K. 

(c) Addition of flOl\s. Show that addition of the 
velocity vectors of two flows gives a flow whose 
complex potential is obtained by adding the complex 
potentials of those flows. 

767 

(d) Source and sink combined. Find the complex 
potentials of a now with a source of strength 1 at 
::: = -0 and of a flow with a sink of strength I at 
::: = 1I. Add both and sketch or graph the streamlines. 
Show that for small 101 these lines look similar to those 
in Prob. II. 

(e) Flow with circulation around a cylinder. Add the 
potential in (b) to that in Example 2. Show that this gives 
a flow for which the cylinder wall 1::.:1 = I is a streamline. 
Find the speed and show that the stagnation points are 

iK 

47T 

if K = 0 they are at ± 1; as K increases they move up 
on the unit circle until they unite at :;; = i (K = 47T, see 
Fig. 4(9), and if K > 47T they lie on the imaginary axis 
(one lies in the field of flow and the other one lies inside 
the cylinder and has no physical meaning). 

Fig. 419. Flow around a cylinder without 
circulation (K = 0) and with circulation 
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18.5 Poisson's Integral Formula for Potentials 
So far in this chapter we have seen that complex analysis offers powerful methods for 
modeling and solving two-dimensional potential problems based on conformal mappings 
and complex potentials. A further method results from complex integration. As a most 
important result it yields Poisson's integral formula (5) for potentials in a standard domain 
(a circular disk) and from (5) a useful series (7) for these potentials. Hence we can solve 
problems for disks and then map solutions conforma\ly onto other domains. 

Poisson's formula will follow from Cauchy's integral formula (Sec. 14.3) 

(I) 
1 f F(z*) 

F(::J = -. -- d~*. 
27Tt C z* - ;: 

Here C is the circle z* = Reia lcounterclockwise. 0 ~ a ~ 27T), and we assume that F(z*) 
is analytic in a domain containing C and its full interior. Since dz* = iReia da = iz* da, 
we obtain from (l) 

(2) 
I 2~ * 

F(z) = -] F(z*) _z_ da 
27T 0 z* - Z 

Now comes a little trick. If instead of z inside C we take a Z outside C. the integrals (1) 
and (2) are zero by Cauchy's integral theorem (Sec. 14.2). We choose Z = z* E* /~ = R2/~, 
which ic; outside C because Izi = R2/lzl = R2/r > R. From (2) we thus have 

1 ]2,,- -* I ]2~ z* o = - F(z*) <. da = - F(z*) ---- da 
27T 0 Z* - Z 27T 0 z*E* 

z* ---
Z 

and by straightforward simplification of the last expression on the right, 

1 2~ -

o = -] F(::*) ~ da. 
27T 0 Z - z* 

We subtract this from (2) and use the following formula that you can verify by direct 
calculation (zz* cancels): 

(3) 
z* z .:*z* - z.;: 

z* - Z .;: - z* (z* - z)(z* - f) 

We then have 

(4) 
1 ]2~ .::*2"* - z.;: 

F(.::) = -2 F(z*) da. 
7T 0 (z* - z)(~* - ~) 

From the polar representations of z and z* we see that the quotient in the integrand is real 
and equal to 

R2 - 2Rr cos «() - a) + r2 
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We now write F(z) = cI>(r, 8) + i'l'(r, 8) and take the real part on both sides of (4). 
Then we obtain Poisson's integral formula2 

(5) 
I 27T R2 - r2 

cI>(,., 8) = 27T L cI>(R, a) R2 _ 2Rr cos (8 _ a) + ,.2 da. 

This formula represents the harmonic function cI> in the disk Izl ~ R in terms of its values 
cI>(R, a) on the boundary (the circle) Izl = R. 

Formula (5) is still valid ifthe boundary function cI>(R. a) is merely piecewise continuous 
(as is practically often the case: see Fig. 401 in Sec. 18.2 for an example). Then (5) gives 
a function harmonic in the open disk. and on the circle Izl = R equal to the given boundary 
function. except at points where the latter is discontinuous. A proof can be found in 
Ref. [D1] in App. 1. 

Series for Potentials in Disks 
From (5) we may obtain an important series development of cI> in terms of simple harmonic 
functions. We remember that the quotient in the integrand of (5) was derived from (3). 

We claim that the right side of (3) is the real pat10f 

z* + Z 

z* - z 

(z* + z)(':* - z) 

(z* - z)(z* - Z) 

z*z* - zz - z*z + ~z* 

Indeed, the last denominator is real and so is z*z* zz m the numerator, whereas 
-z*z + zz* = 2i 1m (zz*) in the numerator is pure imaginary. This verifies our claim. 
Now by the use of the geometric series we obtain (develop the denominator) 

(6) 
z* + z 
-* - ~ <. ,. 

1 + (z/z*) 

1 - (z/z*) 

Since z = rei(J and z* = ReiD<. we have 

Re [( z~ TJ = Re [;: einfie-mD< J ( ; r cos (n8 - na). 

On the right, cos (118 - na) = cos n8 cos na + sin n8 sin na. Hence from (6) we obtain 

(6*) 

,.* + -Re ----,. 
-* - -,. (. 

1 + 2 ~1 Re (z~ r 
+ 2 ~1 (; r (cos n8 cos lla + sin n8 sin na). 

2SLMEON DENIS POISSON (1781-1840), French mathematician and physicist, professor In Paris from 1809. 
His work includes potential theory, partial differential equations (Pois~on equation, Sec. 12.1), and probability 
(Sec. 24.7). 
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This expression is equal to the quotient in (5), as we have mentioned before, and by 
inserting it into (5) and integrating term by term with respect to a from 0 to 27T we obtain 

(7) cI>(r, 8) = ao + ~1 (~ r (lln cos nfl + bn sin nfl) 

where the coefficients are [the 2 in (6*) cancels the 2 in 1/(27T) in (5)] 

(8) 

2.". 

ao = f cI>(R, a) da, 
27T 0 

1 27T 

an = - f cI>(R, a) cos lIa da, 
7T 0 

1 27T 

bn = - f cI>(R. a) sin na da. 
7T 0 

11 = 1,2 ..... 

the Fourier coefficients of cI>(R, a); see Sec. 11.1. Now for r = R the series (7) becomes 
the Fourier series of cI>(R, a). Hence the representation (7) will be valid whenever the 
given cI>(R. a) on the boundary can be represented by a Fourier series. 

E X AMP L E 1 Dirichlet Problem for the Unit Disk 

Find the electrostatic potential <P(r, 0) in the unit disk r < I having the boundary values 

{

-Cd'7T 

<P(l, a) = 
al7T 

if -7T < a < 0 
(Fig. 420). 

if 0 < a < To 

Solution. Since <PO, a) is even. bn = O. and from (8) we obtain ao =! and 

an = ~ [- I~.". -; cos /la da + L"" -; cos l1a da] = 112:2 (cos 117T - 1). 

Hence. an = -4/(1l2 7T
2

) if 11 is odd. an = () if 11 = 2.4, ... , and the potential is 

I 4 [ r3 r
5 

] 
<P(r 0) = - - - ,. cos 0 + - cos 38 + - cos 58 + ... 

, 2 7T2 32 52 

Figure 421 shows the unit disk and some of the equipotential lines (curves <P = const). • 

x 

-71 o 71 a 

Fig. 420. Boundary values in Example 1 Fig. 421. Potential in Example 1 
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1. Verify (3). 

---.­_ ..... 

2. Show that every term in (7) is a harmonic function in 
the disk r < R. 

3. Give the details of the derivation of the series (7) from 
the Poisson formula (5). 

14-131 HARMONIC FUNCTIONS IN A DISK 

Using (7), find the potential <P(r, 8) in the unit disk r < I 
having the given boundary values <P(l, 8). Using the sum 
of the fIrst few terms of the series. compute some values 
of <P and sketch a figure of the equipotential lines. 

4. <P(l, 8) = sin 28 

S. <P(1, e) = 2 sin2 fJ 

6. <P(l, 8) = cos2 58 

7. <P(\, 8) = 8 if -7T < 8 < 7T 

8. <P(I, 8) = 8 if 0 < 8 < 27T 

9. <P(I. 8) = sin3 28 

10. <P(l, 8) = cos4 8 

11. <P(I, 8) = 82 if -7T < 8 < 7T 

12. <P(L 8) = 1 if -!7T < 8 < !7T. 
<P(l, 8) = 0 it!7T < 8 < ~7T 

13. <P(L 8) = 8 if -!7T < 8 < !7T, 
<P(1. 8) = 7T - 8 it!7T < 8 < ~7T 
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14. TEAM PROJECT. Potential in a Disk. (a) Mean 
value property. Show that the value of a harmonic 
function <P at the center of a circle C equals the mean 
of the value of <P on C (see Sec. 18.4, footnote I, for 
definitions of mean values). 

(b) Separation of variables. Show that the terms of 
(7) appear as solutions in separating (he Laplace 
equation in polar coordinates. 

(c) Harmonic conjugate. Find a series for a harmonic 
conjugate 'It of <P from (7). 

(d) Power series. Find a series for F(::.) = <P + i'lt. 

15. CAS EXPERIMENT. Series (7). Write a program for 
series developments (7). Experiment on accuracy by 
computing values from partial sums and comparing 
them with values that you obtain from your CAS graph. 
Do (his (a) for Example I and Fig. 421, (b) for <P in 
Prob. 8 (which is discontinuous on the boundary!), 
(c) for a <P of your choice with continuous boundary 
values. (d) for <P with discontinuous boundary values. 

18.6 General Properties of Harmonic Functions 

THEOREM 1 

General properties of hamlOnic functions can often be obtained from properties of analytic 
functions in a simple fashion. Specifically, important mean value properties of harmonic 
functions follow readily from those of analytic functions. The details are as follows. 

Mean Value Property of Analytic Functions 

Let fez) be analytic in a simply connected domain D. Then the value of F(z) at a 
point Zo in D is equal to the mean value of Hz) on any circle in D with center at zoo 

PROOF In Cauchy's integral formula (Sec. 14.3) 

(1) 
I 1 F(z.) 

F(Zo) = --. r ----=-=- dz 
27Tt C Z ";0 

we choose for C the circle z = ::'0 + reia in D. Then::. - z.o = reia, dz = ireia dO', and 
(1) becomes 

(2) 
1 27T 

F(zo) = -2 f F(::,o + reia
) dO'. 

7T 0 
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The right side is the mean value of F on the circle (= value of the integral divided by the 
length 27T of the interval of integration). This proves the theorem. • 

For harmonic functions, Theorem 1 implies 

THEOREM 2 Two Mean Value Properties of Harmonic Functions 

Let <P(x, y) be harmonic in a simply connected d()main D. Then the value of 
<P(x, y) at a point (xo, Yo) in D is equal to the mean value of <P(x, Y) Oil any circle 
ill D with center at (xo, Yo). This value is also equal to the mean value of <P(x, y) 
0/1 any circular disk in D with center (xo, Yo). [See footnote I in Sec. 18.4.] 

PROOF The first part of the theorem follows from (2) by taking the real parts on both sides, 

THEOREM 3 

I 27T 

<P(xo, Yo) = Re F(xo + (\'0) = -2 i <P(xo + r cos 0', Yo + r sin 0') dO'. 
7T 0 

The second part of the theorem follows by integrating this formula over r from 0 to ro 
(the radius of the disk) and dividing by r0212. 

1 "0 r7T 
(3) <P(xo, Yo) = --2 i L <P(xo + ,. cos 0', Yo + r sin 0')" dO' dr. 

7Tro 0 0 

The right side is the indicated mean value (integral divided by the area of the region of 
integration). • 

Returning to analytic functions, we state and prove another famous consequence of 
Cauchy's integral formula. The proof is indirect and shows quite a nice idea of applying 
the ML-inequality. (A bounded regio/1 is a region that lies entirely in some circle about 
the origin.) 

Maximum Modulus Theorem for Analytic Functions 

Let F(z) be analytic and nonCOllstant i/1 a dOlllain containing (/ bounded region R 
and its boundary. Then the absolute value IF(z)1 cannot have a maximum at a/1 
il1terior point of R. Consequently, the maximulIl of IF(z)1 is taken on the boundnry 
of R. If F(z) -=1= 0 in R, the same is true with respect to the minimum l!lIF(z)l. 

PROOF We assume that IF(z)1 has a maximum at an interior point:::o of R and show that this leads 
to a contradiction. Let IF(zo)1 = M be this maximum. Since F(z) is not constant, IF(:::)I is 
not constant, as follows from Example 3 in Sec. 13.4. Consequently. we can find a circle 
C of radius r with center at zo such that the interior of C is in R and IF(z)1 is smaller than 
M at some point P of C. Since iF(z) I is continuous, it will be smaller than M on an arc 
C1 of C that contains P (see Fig. 422), say, 

IF(z) I ~ M - k (k > 0) for all z on C1. 
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THEOREM 4 

Fig. 422. Proof of Theorem 3 

Let C1 have the length L 1 . Then the complementary arc C2 of C has the length 27TT - L1 . 

We now apply the ML-inequality (Sec. 14.1) to (I) and note that Iz - zol = r. We then 
obtain (using straightforward calculation in the second line of the formula) 

1 I J F(::.) I 1 I J F(z) I M = IF(zo)I ;;:: - -=-=-- dz + - -_- d::. 
27T C1 " Zo 27T C2 Z Zo 

that is, M < M, which is impossible. Hence our a<;sllmption is false and the first statement 
is proved. 

Next we prove the second statement. If F(z) *- 0 in R, then lIF(z) is analytic in R. 
From the statement already proved it follows that the maximum of 11 IF(z) I lies on the 
boundary of R. But this maximum corresponds to the minimum of IF(z)l. This completes 
the proof. • 

This theorem has several fundamental consequences for harmonic functions, as follows. 

Harmonic Functions 

Let <1>(x, y) be lza17110nic in a domain containing a simply connected bounded region 
R and its bOllndary curve C. Then: 

(I) (Maximum principle) If <1>(x, y) is not COli stant, it has neither a maximum 
nor a minimulIl in R. Consequently, the I1ULyimU111 and the minimulll are taken on 
the boundary of R. 

(II) ~f <1>(.1', y) is constant on C, thell <1>(.1", y) is a constant. 

(III) If h(x, y) is harmonic in R alld on C and !f h(x, y) = <1>(x, y) on C, then 
h(x, y) = <1>(x, y) everywhere in R. 

PROOF (I) Let 'IJf(x, y) be a conjugate harmonic function of <1>(x, y) in R. Then the complex 
function F(::;) = <1>(x, y) + i'lJf(x, y) is analytic in R, and so is G(z) = eF(Z). Its absolute 
value is 

I G(;:) I = eRe F(z) = e'Nx. y). 

From Theorem 3 it follows that IG(z)1 cannot have a maximum at an interior point of R. 
Since e<P is a monotone increasing function of the real variable <1>, the statement about the 
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maximum of <D follows. From this, the statement about the minimum follows by replacing 
<1> by -<D. 

(II) By (I) the function <D(.\, y) takes its maximum and its minimum on C. Thus, if 
<D(.\", y) is constant on C, its minimum must equal its maximum, so that <D(.\", y) must be 
a constant. 

(III) If II and <D are harmonic in R and on C. then h - <D is also harmonic in Rand 
on C, and by assumption, II - <D = 0 everywhere on C. By (II) we thus have /J - <D = 0 
everywhere in R. and (Ill) is proved. • 

The last statement of Theorem 4 is very important. It means that a IW17110nic jilllction is 
uniquely determi1led in R by its values Oil the boundary (?f" R. Usually, <1>(.\, y) is required 
to be harmonic in R and continuous on the boundary of R. that is, 

lim <D(x, y) = <D(xo, Yo), where (xo, Yo) is on the boundary and (x, y) is in R. 
X-Xo 
y~yo 

Under these assumptions the maximum principle (I) is still applicable. The problem of 
determining <D(x, y) when the boundary values are given is called the Dirichlet problem 
for the Laplace equation in two variables, as we know. From (Ill) we thus have, as a 
highlight of our discussion. 

Uniqueness Theorem for the Dirichlet Problem 

If lor a given region and given boulldary mlues the Dirichlet problem for the Laplace 
equatio/l in two l'ariables has a solutioll. the solution is ullique . 

.... -~ .. --- ..­.-.-----
1. Integrate kl2 around the unit circle. Does your result 

contradict Theorem I? 

12-" 1 VERIFY THEOREM 1 for the given F(::), ::0' and 
circle of radius l. 

2. (::: + 1)3':::0 = 2 

3. (::: - 2)2. ::0 = ~ 

4. 10:::4
'':0 = 0 

15-71 VERIFY THEOREM 2 for the given cI>(x. y). 
(xo. Yo) and Circle of radius I. 

5. (x - 2)(y - 2), (4. -4) 

6. x 2 
- .'"2. (3, 8) 

7. x 3 
- 3xy2, (I, I) 

8. Derive Theorem 2 from Poisson's integral formula. 

9. CAS EXPERIMENT. Graphing Potentials. Graph 
the potentials in Probs. 5 and 7 and for three other 

functions of your choice as smfaces over a rectangle 
or a disk in the xy-plane. Find the locations of maxima 
and minima by inspecting these graphs. 

10. TEAM PROJECT. Maximum Modulus of Analytic 
Functions. (a) Verify Theorem 3 for (i) F(:::) = ::2 and 
the square 4 ~ x ~ 6. 2 ~ Y ~ 4, (ii) F(:::) = e1z and 
any bounded domain. (iii) F(:::) = sin:: and the unit 
disk. 
(b) F(x) = cos x (x real) has a maximum I at O. 
How does it follow that this cannot be a maximum of 
IFez.) I = Icos:::1 in a domain containing Z = O? 

(c) F(::) = 1 + 1::12 is not Lero in the disk Izi ~ 4 and 
has a minimum at an interior point. Does this contradict 
Theorem 3? 
(d) If F(:::) is analytic and not constant in the closed 
unit disk D: 1<:1 ~ 1 and IF(.;;)I = C = COIlSt on the unit 
circle. show that F(.:) must have a zero in D. Can you 
extend this to an arbitrary simple closed curve? 
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Ill-13 I MAXIMUM MODULUS 

Find the location and si7e of the maximum of IF(;:)I in the 
unit disk 1:<:1 ;::; I. 

11. F(;:) = ;:2 - 1 
12. F(;:) = a;: + b la, b complex) 

13. F(;:) = cos 2;: 

14. Verify the maximum principle for <1>(x. y) = eX cos y 
and the rectangle a ;::; x ;::; b. 0 ;::; y ;::; 2'iT. 
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15. (Conjugate) Do ¢ and a harmonic conjugate \)! of (I) in 
a region R have their maximum at the same point of R? 

16. (Conformal mapping) Find the location (ul . VI) of the 
maximum of <1>* = ell cos V in R*: Iwl ;::; 1. V ~ 0, 
where w = 1I + iv. Find the region R that is mapped 
onto R* by w = f(;:) = ;:2. Find the potential in R 

resulting from <1>* and the location (xl' .\'1) of the 
maximum. Is (lib VI) the image of (Xl' YI)? If so, is 
this ju~t by chance? 

====== -- •. = .-.... -. ... : . . .-- .~ • • , -:..ll£STIONS AND PROBLEMS 

1. Why can potential problems be modeled and solved by 
complex analysis? For what dimensions? 

2. What is a harmonic function? A harmonic conjugate? 

3. Give a few example~ of potential problems considered 
in this chapter. 

4. What is a complex potential? What does it give 
physically'? 

5. How can conformal mapping be used in connection with 
the Dirichlet problem? 

6. What heat problems reduce to potential problems? Give 
a few examples. 

7. Write a short essay on potential theory in fluid flow 
from memory. 

8. What is a mixed boundary value problem? Where did 
it occur? 

9. State Poisson's formula and its derivation from 
Cauchy's formula. 

10. State the maximum modulus theorem and mean value 
theorems for harmonic functions. 

11. Find the potential and complex potential between the 
plates y = x and y = x + 10 kept at 10 V and 110 V, 
respecti vel y. 

12. Find the potential between the cylinders 1:1 = I cm 
having potential 0 and Id = 10 em having potential 20 
kV. 

13. Find the complex potential in Prob. 12. 

14. Find the equipotential line U = 0 V between the 
cylinders Id = 0.2S cm and 1:1 = 4 cm kept at -220 V 
and 220 V. respectively. (Guess first.) 

15. Find the potential between the cylinders Izl = 10 cm 
and 1:::1 = 100 cm kept at the potentials 10 kV and 0, 
respectively. 

16. Find the potential in the angular region between the 
plates Arg ::: = 'iT16, kept at 8 k V, and Arg ;: = 'iT13, kept 
dt 6kV. 

17. Find the equipotential lines of F(;:) = i Ln z.. 

18. Find and sketch the equipotential lines of 
F(:::) = (l + i)/:::. 

19. What is the complex potential in the upper half-plane 
if the negative half of the x-axis has potential I kV and 
the positive half is grounded? 

20. Find the potential on the ray)' = x, x > 0, and on 
the positive half of the x-axis if the positive half of 
the .v-axis is at 1200 V and the negative half IS 

grounded. 

21. Interpret Prob. 20 as a problem in heat conduction. 

22. Find the temperature in the upper half-plane if the 
portion x > 2 of the x-axis is kept at SO"C and the other 
portion at O°C. 

23. Show that the isotherm~ of Fr;:) = _;:::2 + ;: are 
hyperbolas. 

24. If the region between two concentric cylinders of radii 
2 cm and 10 cm contains water and the outer cylinder 
is kept at 20°C, to what temperature must we heat the 
inner cylinder in order [0 have 30°C at distance 5 cm 
from the axis? 

25. What are the streamlines of Fr:::) = i/;:? 

26. What is the complex potential of a flow around a 
cylinder of radius 4 without circulation? 

27. Find the complex potential of a source at ::: = 5. What 
are the streamlines? 

28. Find the temperature in the unit disk 1:1 ;::; I in the form 
of an infinite series if the left semicircle of Izi = 1 has 
the temperature of SO°C and the right semicircle has the 
temperature DoC. 

29. Same task as in Prob. 2~ if the upper semicircle is at 
40°C and the lower at DoC. 

30. Find a series for the potential in the unit disk with 
boundary values <1>( I, 0) = 02 (-'iT < 0 < 'iT). 
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• ... ~ ... ,,~--
Complex Analysis and Potential Theory 

Potential theory is the theory of solutions of Laplace's equation 

(1) 

Solutions who~e second pattial derivatives are continuous are called harmonic 
functions. Equation (I) is the most important PDE in physics, where it is of interest 
in two and three dimensions. It appears in electrostatics (Sec. 18.1), steady-state heat 
problems (Sec. 18.3), fluid flow (Sec. 18.4), gravity, etc. Whereas the three-dimensional 
case requires other methods (see Chap. 12), two-dimensional potential theory can 
be handled by complex analysis. since the real and imaginary parts of an analytic 
function are harmonic (Sec. 13.4). They remain harmonic under conformal mapping 
(Sec. 18.2), so that conformal mapping becomes a powerful tool in solving 
boundary value problems for (1), as is illustrated in this chapter. With a real potential 
<P in (1) we can associate a complex potential 

(2) F(z) = <P + i\If (Sec. 18.1). 

Then both families of curves <P = const and \If = COllst have a physical meaning. 
In electrostatics, they are equipotential lines and lines of electrical force (Sec. 18.1). 
In heat problems. they are isotherms (curves of constant temperature) and lines of 
heat flow (Sec. 18.3). In fluid flow, they are equipotential lines of the velocity 
potential and stream lines (Sec. 18.4). 

For the disk. the solution of the Dirichlet problem is given by the Poisson formula 
(Sec. 18.5) or by a series that on the boundary circle becomes the Fourier series of 
the given boundary values (Sec. 18.5). 

Hatmonic functions. like analytic functions, have a number of general properties: 
particularly important are the mean value property and the maximum modulus 
property (Sec. 18.6), which implies the uniqueness of the solution of the Dirichlet 
problem (Theorem 5 in Sec. 18.6). 
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Software (p. 778-779) 
CHAPTER 19 

CHAPTER 20 

CHAPTER 21 

Numerics in General 

Numeric Linear Algebra 

Numerics for ODEs and PDEs 

Numeric analysis, more briefly also called numerics, concerns numeric methods. that 
is, methods for solving problems in terms of numbers or corresponding graphical 
representations. It also includes the investigation of the range of applicability and of the 
accuracy and stability of these methods. 

Typical tasks for numerics are the evaluation of definite integrals. the solution of equations 
and linear systems, the solution of differential or integral equations for which there are 
no solution formulas, and the evaluation of experimental data for which we want to obtain. 
for example. an approximating polynomial. 

Numeric methods then provide the transition from the mathematical model to an 
algorithm, which is a detailed stepwise recipe for solving a problem of the indicated kind 
to be programmed on your computer, using your CAS (computer algebra system) or other 
software, or on your programmable calculator. 

In this and the next two chapters we explain and illustrate the most frequently used basic 
numeric methods in algorithmic form. Chapter 19 concerns numerics in general; Chap. 20 
numeric linear algebra. in particular, methods for linear systems and matrix eigenvalue 
problems; and Chap. 21 numerics for ODEs and PDEs. 

The algorithms are given in a form that seems best for showing how a method works. We 
suggest that you also make use of programs from public-domain or commercial software 
listed on pp. 778-779 or obtainable on the lnternet. 
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Numerics has increased in importance to the engineer more than any other field of 
mathematics owing to the ongoing development of powerful software resulting from great 
research activity in numerics: new methods are invented, existing methods are improved 
and adapted. and old methods-impractical in precomputer times-are rediscovered. A 
main goal in these activities is the development of well-stmctured software. And in large­
scale work-millions of equations or steps of iteration--even small algorithmic 
improvements may have a large effect on computing time, storage demand, accuracy, and 
stability. 

On average this makes the algorithms used in practice more and more complicated. 
However, the more sophisticated modem software will become, the more important it 
will be to understand concepts and algorithms in a basic form that shows original 
motivating ideas of recent developments. 

To avoid misunderstandings: Various simple classical methods are still very useful in 
many routine situations and produce satisfactory results. In other words, not everything 
has become more sophisticated. 

Software 
See also http://www.wiley.com/college/kreyszig/ 

The following list will help you if you wish to find software. You may also obtain 
information on known and new software from magazines, such as Byte Magazine or PC 
Maga::,ille, from articles published by the Americall Mathematical Society (see also their 
website at www.ams.org).theSocietyforlndustrialandAppliedMathematics(SIAM.at 
www.siam.org). the Association for COl1lpllting Machillel:r (ACM. at www.acm.org), or 
the Institute of Electrical and Electronics Engineers (IEEE, at www.ieee.org). Consult 
also your library, Computer Science Department, or Mathematics Department. 

Derive. Texas Instntments, Inc .. Dallas, TX. Phone 1-800-842-2737 or (972) 917-8324, 
website at www.derive.com or www.education.ti.com. 

EISPACK. See LAPACK. 

GAMS (Guide to Available Mathematical Software). Website at http://gams.nist.gov. 
On-line cross-index of software development by NIST. with links to IMSL. NAG, and 
NETUB. 

IMSL (International Mathematical and Statistical Library). Visual Numerics, Inc., 
Housron. TX. Phone \-800-222-4675 or (713) 784-3131. website at www.vni.com. 
Mathematical and statistical Fortran routines with graphics. 

LAPACK. Fortran 77 routines for linear algebra. This software package supersedes 
UNPACK and EISPACK. You can download the routines 
(see http://cm.bell-labs.comlnetliblbib/minors.html) or order them directly from NAG. 
The LAPACK User's Guide is available at www.netlib.org. 
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LINPACK see LAPACK 

Maple. Waterloo Maple, Inc., Waterloo, ON, Canada. Phone 1-800-267-6583 or 
(519) 747-2373, website at www.maplesoft.com. 

Maple Computer Guide. For Advanced Engineering Mathematics, 9th edition. By 
E. Kreyszig and E. J. Norminton. J. Wiley and Sons. [nc .. Hoboken. NJ. Phone 
1-800-225-5945 or (201) 748-6000. 

Mathcad. MathSoft, Inc., Cambridge, MA. Phone 1-800-628-4223 or (617) 444-8000. 
website at www.mathcad.com or www.mathsofLcom. 

Mathematica. Wolfram Research, Inc., Champaign. IL. Phone 1-800-965-3726 or 
(217) 3lJ8-0700, website at www.wolframresearch.com. 

Mathematica Computer Guide. For Advanced Engineering Mathematics. lJth 
edition. By E. Kreyszig and E. J. Norminton. J. Wiley and Sons. Inc .. Hoboken. NJ. Phone 
1-800-225-5945 or (201) 748-6000. 

Matlab. The MathWorks, Inc., Natick, MA. Phone (508) 647-7000, website at 
www.mathworks.com. 

NAG. Numerical Algorithms Group, Inc., Downders Grove. IL. Phone (630) 971-2337, 
website at www.nag.com. Numeric routines in Fortran 77, Fortran 90, and C. 

NETLIB. Extensive library of public-domain software. See at www.netIib.org and 
http://cm.bell-Iabs.comlnetlib/. 

NIST. National Institute of Standards and Technology, Gaithersburg, MD. Phone 
(301) 975-2000, website at www.nist.gov. For Mathematical and Computational Science 
Division phone (301) 975-3800. See also http://math.nist.gov. 

Numerical Recipes. Cambridge University Press, New York. NY. Phone (212) 924-3900. 
website at www.us.cambridge.org. Books (also source codes on CD ROM and 
discettes) containing numeric routines in C, C++. Fortran 77, and F0l1ran 90. To order. 
call office at West Nyack. NY, at 1-800-872-7423 or (845) 353-7500 or online at 
www.numerical-recipes.com. 

FURTHER SOFTWARE IN STATISTICS. See Part G. 
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CHAPTER 1 9 

Numerics in General 

This first chapter on numerics begins with an explanation of some general concepts. such 
as floating point, roundoff errors, and general numeric errors and their propagation. In 
Sec. 19.2 we discuss methods for solving equations. Interpolation methods, including 
splines, follow in Secs. 19.3 and 19.4. The last section (19.5) concerns numeric integration 
and differentiation. 

The purpose of this chapter is twofold. First, for all these tasks the student should 
become familiar with the most basic (but not too complicated) numeric solution methods. 
These are indispensable for the engineer, because for many problems there is no solution 
formula (think of a complicated integral or a polynomial of high degree or the interpolation 
of values obtained by measurements). In other cases a complicated solution formula may 
exist but may be practically useless. 

Second. the student should learn to understand some ba<;ic ideas and concepts that are 
important throughout numerics, such as the practical form of algorithms. the estimation 
of errors, and the order of convergence. 

Prerequisite: Elementary calculus 
References and Answers to Problems: App. J Part E, App. 2 

19.1 Introduction 

780 

Numeric methods are used to solve problems on computers or calculators by numeric 
calculations, resulting in a table of numbers andlor graphical representations (figures). The 
steps from a given situation (in engineering, economics. etc.) to the final answer are usually 
as follows. 

1. Modeling. We set up a mathematical model of our problem. such as an integral, a 
system of equations. or a differential equation. 

2. Choosing a numeric method and parameters (e.g., step size), perhaps with a 
preliminary error estimation. 

3. Programming. We u~e the algorithm to write a corresponding program in a CAS, 
such as Maple, Mathematica, Matlab, or Mathcad, or, say, in Fortran, C, or C++, 
selecting suitable routines from a software system as needed. 

4. Doing the computation. 

S. Interpreting the results in physical or other terms, also deciding to rerun if further 
results are needed. 
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Steps and 2 are related. A slight change of the model may often admit of a more 
efficient method. To choose methods, we must first get to know them. Chapters 19-21 
contain efficient algorithms for the most important classes of problems OcculTing 
frequently in practice. 

In Step 3 the program consists of the given data and a sequence of instructions to be 
executed by the computer in a certain order for producing the answer in numeric or graphic 
form. 

To create a good understanding of the nature of numeric work, we continue in this 
section with some simple general remarks. 

Floating-Point Form of Numbers 
We know that in decimal notation, every real number is represented by a finite or an 
infinite sequence of decimal digits. Now most computers have two ways of representing 
numbers, called fixed poillf and floating point. In a fixed-point system all numbers are 
given with a fixed number of decimals after the decimal point; for example, numbers 
given with 3 decimals are 62.358, 0.014, 1.000. In a text we would write, say, 3 decimals 
as 3D. Fixed-point representations are impractical in most scientific computations because 
of their limited range (explain!) and will not concern us. 

In a floating-point system we write. for instance. 

0.1735' 10-13
, -0.2000' 10-1 

or sometimes also 

1.735' 10-14
, - 2.000' 10-2 . 

We see that in this system the number of significant digits is kept fixed, whereas the 
decimal point is "t1oating." Here, a significant digit of a number c is any given digit of 
c, except possibly for zeros to the left of the first nonzero digit; these zeros serve only to 
fix the position of the decimal point. (Thus any other zero is a significant digit of c.) For 
instance, each of the numbers 

1360, 1.360, 0.001360 

has 4 significant digits. In a text we indicate, say, 4 significant digits, by 4S. 
The use of exponents permits us to represent very large and very small numbers. Indeed. 

theoretically any nonzero number a can be written as 

(I) 0.1 ~ Iml < 1, 11 integer. 

On the computer, 111 is limited to k digits (e.g., k = 8) and n is limited. giving representations 
(for finitely many numbers only!) 

(2) a = :!:.m· 10", 

These numbers a are often called k-digit decimal macbine numbers. Their fractional part 
m (or Iii) is called the mamis.m. This has nothing to do with "mantissa" as used for 
logarithms. 11 is called the exponent of a. 



782 CHAP. 19 Numerics in General 

Underflow and Overflow. The range of exponents that a typical computer can handle 
is very large. The IEEE (Institute of Electrical and Electronics Engineers) floating-point 
standard for single precision (the usual number of digits in calculations) is about 
- 38 < 11 < 38 (about - 125 < n* < 125 for the exponent in binary representations, 
i.e., representations in base 2). [For so-called double precision it is about - 308 < n < 308 
(about -1020 < n* < 1020 for binary).] If in a computation a number outside that range 
occurs, this is called underflow when the number is smaller and overflow when it is 
larger. In the case of underflow the result is usually set to zero and computation continues. 
Overflow causes the computer to halt. Standard codes (by IMSL, NAG, etc.) are written 
to avoid overflow. Error messages on overflow may then indicate progran1ming errors 
(incorrect input data, etc.). 

Roundoff 
An error is caused by chopping (= discarding all decimals from some decimal on) Or 
rounding. This error is called roundoff error, regardless of whether we chop or round. 
The rule for rounding off a number to k decimals is as follows. (The rule for rounding 
off to k significant digits is the same, with "decimal" replaced by "significant digit.") 

Roundoff Rule. Discard the (k + 1 )th and all subsequent decimals. (a) If the number 
thus discarded is less than half a unit in the Ath place, leave the kth decimal unchanged 
(" rounding down"). (b) If it is greater than half a unit in the A1h place, add one to the kth 
decimal ("rounding lip"). (c) If it is exactly half a unit, round off to the nearest el'en 
decimal. (Example: Rounding off 3.45 and 3.55 to I decimal gives 3.4 and 3.6, 
respectively.) 

The last part of the rule is supposed to ensure that in discarding exactly half a decimal, 
rounding up and rounding down happens about equally often, on the average. 

If we round off 1.2535 to 3, 2, I decimals, we get 1.254. 1.25. 1.3, but if 1.25 is rounded 
off to one decimal, without fmther information, we get 1.2. 

Chopping is not recommended because the corresponding error can be larger than that 
in rounding, and is systematic. (Nevertheless, some computers use it because it is simpler 
and faster. On the other hand, some compurers and calculators improve accuracy of results 
by doing intermediate calculations using one or more extra digits, called guarding digits.) 

Error in Rounding. Let a = fl(a) in (2) be the floating-point computer approximation 
of a in (I) obtained by rounding. where fl suggests floating. Then the roundoff rule gives 
(by dropping exponents) 1111 - ilil ~ ~. lO- k

. Since Iml ~ 0.\, this implies (when a *- 0) 

(3) III - a I 1111 - iii I I l-k -- ~ _.\0 
a 11/ 2 

The right side u = ~. 101
-

k is called the rounding unit. If we write a = ll( I + 8), we 
have by algebra (li - a)/a = 8, hence 181 ~ 1I by (3), This sholl"s that the rounding l/17it 
u is all error bOl/nd in rounding. 

Rounding errors may ruin a computation completely, even a small computation. In 
general, these errors become the more dangerous the more arithmetic operations (perhaps 
several millions!) we have to perform, It is therefore important to analyze computational 
programs for expected rounding eITors and to find an arrangement of the computations 
such that the effect of rounding errors is as small as possible. 

The arithmetic in a computer is not exact either and causes further errors; however, 
these will not be relevant to our discussion. 
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Accuracy in Tables. Although available software has rendered various tables of function 
values superfluous, some tables (of higher functions, of coefficients of integration 
formulas, etc.) will still remain in occasional use. [f a table shows k significant digits, it 
is conventionally assumed that any value a in the table deviates from the exact value a 
by at most ±! unit of the kth digit. 

Algorithm. Stability 
Numeric methods can be formulated as algorithms. An algorithm is a step-by-step 
procedure that states a numeric method in a form (a "pseudocode") understandable to 
humans. (Turn pages to see what algorithms look like.) The algorithm is then used to 
write a program in a programming language that the computer can understand so that it 
can execute the numeric method. Important algorithms follow in the next sections. For 
routine tasks your CAS or some other software system may contain programs that you 
can use or include as pat1s of larger programs of your own. 

Stability. To be useful, an algorithm should be stable; that is, small changes in the 
initial data should cause only small changes in the final results. However, if small changes 
in the initial data can produce large changes in the final results, we call the algorithm 
unstable. 

This "numeric instability," which in most cases can be avoided by choosing a better 
algorithm, must be distinguished from "mathematical instability" of a problem, which is 
called "ill-conditiolling, " a concept we discuss in the next section. 

Some algorithms are stable only for certain initial data, so that one must be careful in 
such a case. 

Errors of Numeric Results 
Final results of computations of unknown quantities generally are approximations; that 
is, they are not exact but involve errors. Such an error may result from a combination of 
the following effects. Roundoff errors result from rounding, as discussed on p. 782. 
Experimental errors are en-ors of given data (probably arising from measurements). 
Truncating errors result from truncating (prematurely breaking off), for instance, if we 
replace a Taylor series with the sum of its first few terms. These errors depend on the 
computational method used and must be dealt with individually for each method. 
["Truncating" is sometimes used as a term for chopping off (see before), a terminology 
that is not recommended.] 

Formulas for Errors. If a is at1 approximate value of a quantity whose exact value is 
a, we call the difference 

(4) E=a-a 

the error of a. Hence 

(4*) a = a + E, True value = Approximation + Error. 

For instance, if a = 10.5 is an approximation of a = 10.], its error is E = -0.3. The 
error of an approximation a = 1.60 of a = 1.82 is E = 0.22. 
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CAUTION! In the literature la - al ("ab~olute error") or a - a are sometimes also 
used as definitions of error. 

The relative error E,. of a is defined by 

(5) E = r 
E 

a 

a-a 
a 

Error 

True value 
(a =f:. 0). 

This looks useless because a is unknown. But if Itl is much less than lal. then we can use 
a instead of a and get 

(5') 

This still looks problematic hecause E is unknown-if it were known, we could get 
a = a + E from (4) and we would be done. But what one often can ohtain in practice is 
an error bound for a, that is, a number f3 such that 

Itl ~ f3, hence la - al ~ f3. 

This tells us how far away from our computed a the unknown a can at most lie. Similarly. 
for the relative error, an en-or bound is a number f3r such that 

hence I 
a - a I --a- ~ f3r· 

Error Propagation 
This is an imp0l1ant matter. It refers to how en-ors at the beginning and in later steps 
(roundoff, for example) propagate into the computation and affect accuracy, sometimes 
very drastically. We state here what happens to en-or bounds. Namely, bounds for the 
error add under addition and subtraction, whereas bounds for the relative error add under 
multiplication and division. You do well to keep this in mind. 

THEOREM 1 Error Propagation 

(a) In addition and sllbtraction, an error bound for the results is given by the 
sum of the error bounds for the terms. 

(b) In multiplication and division, all error bound for the relative error of the 
results is given (approximately) by the sum of the bounds for the relative errors 
of the gil'en llumbers. 

PROOF (a) We use the notations x = x + EI' Y = Y + E2, IEII ~ f31.IE21 ~ f32' Then for the en-or 
E of the difference we obtain 

Itl = Ix - y - (x - y)1 

= Ix - x - (y - y)1 

= h - E21 ~ hi + k21 ~ f31 + f32' 
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The proof for the sum is similar and is left to the student. 

(b) For the relative error Er of xy we get from the relative errors Erl and Er2 of X, y 
and bounds f3rI, f31'2 

IErI = I xy - xy I = I xy - (x - EI)(Y - E2) I = I ElY + E2X - EI E21 

xy xY x)' 

This proof shows what "approximately" means: we neglected EI E2 as small in absolute 
value compared to lEI I and IE21. The proof for the quotient is similar but slightly more 
tricky (see Prob. 15). • 

Basic Error Principle 
Every numeric method should be accompanied by an error estimate. [f such a formula is 
lacking, is extremely complicated, or is impractical because it involves information (for 
instance, on derivatives) that is not available, the following may help. 

Error Estimation by Comparison. Do a calculation twice with different accuracy. 
Regard the difference a2 - al of the results aI, a2 as a (perhaps en/de) estimate of the 
error EI of the inferior result al' Indeed, al + EI = a2 + E2 by formula (4*). This implies 
a2 - al = EI - E2 = EI because a2 is generally more accurate than aI, so that IE21 is 
small compared to IEII. 

Loss of Significant Digits 
This means that a result of a calculation has fewer correct digits than the numbers from 
which it was obtained. This happens if we subtract two numbers of about the same size, 
for exan1ple. 0.1439 - 0.1426 ("subtractive cancellation"). It may occur in simple 
problems, but it can be avoided in most cases by simple changes of the algorithm-if one 
is aware of it! Let us illustrate this with the following basic problem. 

E X AMP L E 1 Quadratic Equation. Loss of Significant Digits 

Find the roots of the equation 

X2 - 40x + 2 = 0, 

using 4 significant digits (abbreviated 4S) in the computation. 

Solution. A formula for the roots Xl' -"2 of a quadratic equation ax2 + bx + c = 0 is 

(6) 

Furthermore, since xlx2 = cIa, another formula for those roots is 

(7) Xl a~ before. 

Fro~ (6) we obtain X = 20 :+: V398 = ~O.OO :+: 19.95. This gives Xl = 20.00 + 19.95 = 39.95, involving no 
dIffIculty, whereas X2 = 20.00 - 19.95 = 0.05 is poor because it involves loss of significant digits. 

In contrast, .(7) gives Xl = 39.?5, X2 = 2.000/39.95 = 0.05006, in error by less than one unit of the last digit, 
as a computatIon Wlth more digIts shows. (The lOS-value is 0.05006265674.) 
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Comment. To avoid misunderstandings: 4S was used for convenience; (7) is beller than (6) regardless of 
the number of digits used. For instance. the 8S-computation by (6) is xl = 39.949937. X2 = 0.050063. which 
i~ poor. and by (7) it is Xl as before. X2 = 2/.\"1 = 0.050062657. 

In a quadratic equation with real root,. if X2 is absolutely largest (because b > OJ. use (6) for X2 dnd then 
xl = c!(m'2)' • 

- ••• --.... - .. y-~ .. .-. •• -. -_ .. _-........... . .. _". .... 
1. (Floating point) Write 98.17, -100.987, 0.0057869, 

- 13600 in floating-point form, rounded to 4S (4 
significant digits). 

2. Write -0.0286403. 11.25845. - 3168\.55 in f1oating­
point form rounded to 6S. 

3. Small differences of large numbers may be 
particularly strongly affected by rounding errors. 
l\Iu~trate this by computing 0.36443/(17.862 - 17.798) 
as given with 5S. then rounding stepwise to 4S. 3S. 
and 2S. where "stepwise" means: round the rounded 
numbers. not the given ones. 

4. Do the work in Prob. 3 with numbers of your choice 
that give even more drastically different results. How 
can you avoid such difficulties? 

5. The quotient in Prob. 3 is of the form a/(b - c). Write 
it as alb + c:)/(b2 

- c2
). Compute it first with 5S, then 

rounding numerator 12.996 and denominator 2.28 
stepwise as in Prob. 3. Compare and comment. 

6. (Quadratic equation) Solve.\"2 - 20x + I = 0 by (6) 
and by (7). using 6S in the computation. Compare and 
comment. 

7. Do the computations in Prob. 6 with 4S and 2S. 

8. Solve.\"2 + 100x + 2 = 0 by (6) and (7) with 5S and 
compare. 

9. Calculate lIe = 0.367879 (6S) from the partial sums 
of 5 to 10 terms of the Maclaurin series (a) of e-" with 
x = 1, (b) of eX with x = 1 and then taking the 
reciprocal. Which is more accurate? 

10. Addition with a fixed number of significant digits 
depends on the order in which you add the numbers. 
Illustrate this with an example. Find an empirical rule 
for the best order. 

11. Approximations of 7T = 3.141 592 653 589 79 ... 
are 22/7 and 355/1 13. Determine the corresponding 
errors and relative errors to 3 significant digits. 

12. Compute 7T by Machin's approximation 

16 arctan ( 115) - 4 arctan (1/239) to lOS (which are 
correct). (In 19X6, D. H. Bailey computed almost 
30 million decimals of 7T on a CRA Y -2 in less than 
30 hours. The race for more and more decimals is 
continuing. ) 

13. (Rounding and adding) Let al' ... , an be numbers 
with aj correctly rounded to Dj decimals. In calculating 

the sum (II + ... + (In' retmmng D = min D
J 

decimals, is it essential that we first add and then round 
the result or that we first round each number to D 
decimals and then add? 

14. (Theorems on errors) Prove Theorem I(a) for 
addition. 

15. Prove Theorem I(b) for division. 

16. Show that in Example 1 the absolute value of the error 
of X2 = 2.000/39.95 = 0.05006 is less than 0.00001. 

17. Overflow and underflow can sometimes be avoided 
by simple changes in a formula. Explain this in terms 

of V.~ + y2 = xV I + (ylx)2 with x 2 ~ y2 and x so 
large that x 2 would cause ovelt10w. Invent examples 
of your own. 

18. (Nested form) Evaluate 

I(x) = x3 
- 7.5x2 + 1l.2x + 2.8 

= «x - 7.5)x + 11.2)x + 2.8 

at x = 3.94 using 3S arithmetic and rounding. in both 
of the given forms. The latter, called the nestedfamz, 
is usually preferable since it minimizes the number of 
operations and thus the effect of rounding. 

19. CAS EXPERIMENT. Chopping and Rounding. 
(a) Let x = 4/7 andy = 113. Find the error~ Echop, Eround 
and the relative errors Er.ch, Er.rd of x + y. x - y. xy. x I)" 
in chopping and rounding to 5S. Experiment with other 
fractions of your choice. 

(b) Graph Echop and Eround (for 5S) of k121 as a 
function of k = I, 2, . , . , 21 on common axes. What 
average value can you read from the graph for Echop? 
For Eround? Experiment with other integers that give 
similar graphs. Different types of graphs. Can you 
characteri7e the ditTerent types in terms of prime 
factors? 

(c) How does the situation in (b) change if you take 
4S instead of 5S? 

(d) Write programs for the work in (a)-(c). 

20. WRITI.'JG PROJECT. Numerics. In your own words 
write about the overall role of numeric methods in 
applied mathematics, wby they are impol1ant, where 
and when they must be used or can be used, and how 
they are influenced by the use of the computer in 
engineering and other work. 
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19.2 Solution of Equations by Iteration 
From here on. each ~ection will be devoted to some basic kind of problem and 
corresponding solution methods. We begin with methods of finding solutions of a single 
equation 

(1) f(x) = 0 

where f is a given function. For this task there are practically no formulas (except in a 
few :,imple cases). so that one depends almost entirely on numeric algorithms. A solution 
of (1) is a number x = s such that f(s) = O. Here. s suggests "solution." but we shall also 
use other letters. 

Examples are x 3 + x = I, sin x = O.5x. tan x = x, cosh x = sec x, cosh x cos x = -1, 
which can all be written in the form (1). The first concerns an algebraic equation because 
the corresponding f is a polynomial, and in this case the solutions are also called roots 
of the equation. The other equations are transcendental equations because they involve 
transcendental functions. Solving equations (1) is a task of prime importance because 
engineering applications abound: some occur in Chaps. 2.4. 8 (characteristic equations), 
6 (partial fractions), 12 (eigenvalues. zeros of Bessel functions). and 16 (integration). but 
there are many, many others. 

To solve (1) when there is no formula for the exact solution. we can use an 
approximation method. in plli1icular an iteration method, that is, a method in which we 
start from an initial guess .1'0 (which may be poor) and compute step by step (in general 
better and better) approximations Xl' X2' ... of an unknown solution of (1). We discuss 
three such methods that are of particular practical importance and mention two others in 
the problem set. These methods and the underlying principles are basic for understanding 
the diverse methods in software packages. 

In general, iteration methods are easy to program because the computational operations 
are the smne in each step-just the data change from step to step--and. more important. 
if in a concrete case a method converges. it is stable (see Sec. 19.1) in generaL 

Fixed-Point Iteration for Solving Equations f{x) = 0 
Our present use of the word "fixed point"" has absolutely nothing to do with that in the 
last section. 

In one way or another we transform (1) algebraically into the form 

(2) x = g(x). 

Then we choose an Xo and compute Xl = g(xo), X2 = g(Xl)' and in general 

(3) (11 = 0, 1, .. '). 

A solution of (2) is called a fixed point of g, motivating the name of the method. This is a 
solution of 0). since from X = g(x) we can return to the original form f(x) = O. From (I) 
we may get several different forms of (2). The behavior of corresponding iterative sequences 
Xo. x l' ... may differ, in particular. with respect to their speed of convergence. Indeed, some 
of them may not converge at all. Let us illustrate these facts with a simple example. 
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E X AMP L ElAn Iteration Process (Fixed-Point Iteration) 

Set up an iteration process for the equation f(x) = x 2 
- 3x + I = O. Since we know the solutions 

x = 1.5 ± vT.25. thus 2.618034 

we can watch the behavior of the error as the iteration proceeds. 

Solution. The equation may be written 

(4a) thu~ 

and 0.381966. 

Xn+l = ~(X71 2 + I). 

If we choose Xo = I, we obtain the sequence (Fig. -l23a: computed with 6S and then rounded) 

Xo = 1.000, Xl = 0.667, X2 = 0.481, X3 = 0.411. X4 = 0.390," . 

which seems to approach the smaller solution. If we choose Xo = 2, the situation is similar. If we choose 
~o = 3, we obtain the sequence (Fig. 423a, upper part) 

Xo = 3.000. Xl = 3.333. X2 = 4.037. X3 = 5.766. X4 = 11.415 •... 

which diverges. 
Our equation may also be written (divide by x) 

(4b) thu~ xn+l = 3 -

and if we choose Xo = I, we obtain the sequence (Fig. 423b) 

Xo = 1.000, Xl = 2.000, X2 = 2.500, X3 = 2.600, X4 = 2.615,· .. 

which seems to approach the larger solution. Similarly, if we choose Xo = 3, we obtain the sequence (Fig. 423b) 

Xo = 3.000, Xl = 2.667, X2 = 2.625, X3 = 2.619, X4 = 2.618,· ". 

Our figures show the following. In the lower part of Fig. 423a the slope of gl(x) is less than the slope of 
y = x, which is I, thus Ig~(x)1 < I, and we seem to have convergence. In the upper part, gl(x) is steeper 
(g~(x) > I) and we have divergence. In Fig. 423b the slope of g2lx) is less near the intersection point Ix = 2.618, 
fixed point of g2, solution of f(x) = 0), and both sequences seem to converge. From all this we conclude that 
convergence seems to depend on the fact that in a neighborhood of a solution the curve of g(x) is less steep 
than the straight line y = x. and we shall now see that thi~ condition Ig' (x)1 < I (= slope of y = x) is sufficient 
for convergence. • 

5 

~/ 
5 

/ 
/ 

c.l 
g2(x) 

0 
x 5 0 5 x 

(a) (h) 

Fig. 423. Example 1, iterations (4a) and (4b) 
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THEOREM 1 

An iteration process defined by (3) is called convergent for an Xo if the corresponding 
sequence xo, Xb ••• is convergent. 

A sufficient condition for convergence is given in the following theorem, which has 
various practical applications. 

Convergence of Fixed-Point Iteration 

Let x = s be a solution of x = g(x) and suppose that g has a continuous derivative 
in some interval J containing s. Then !f Ig' (x) I ~ K < 1 in J, the iteration process 
defined by (3) converges jor any Xo in J. and the limit of the sequence {xn} is s. 

PROOF By the mean value theorem of differential calculus there is a t between x and s such that 

g(x) - g(s) = g'(t) (x - s) (x in J). 

Since g(s) = s and Xl = g(xo), X2 = g(Xl)' ... , we obtain from this and the condition on 
Ig' (x) I in the theorem 

Applying this inequality n times, for n, n - 1, ... , 1 gives 

Since K < I, we have K n -----? 0; hence IXn - sl-----? 0 as n -----? 00. • 
We mention that a function g satisfying the condition in Theorem 1 is called a contraction 
because Ig(x) - g(v)1 ~ Klx - vi, where K < 1. Furthermore, K gives information on the 
speed of convergence. For instance, if K = 0.5, then the accuracy increases by at least 
2 digits in only 7 steps because 0.57 < 0.01. 

E X AMP L E 2 An Iteration Process. Illustration of Theorem 1 

Find a solution of I(x) = .. 3 + x-I ~ a by iteration. 

Solution. A sketch shows that a solution lies near x = 1. We may write the equation as (x2 + l)x = lor 

1 
x = gl(x) = ---2 . 

1 + x 
SO that xn+ 1 = ---2 . 

1 +xn 
Also 

for any x because 4x2 /(1 + x 2
)4 = 4x2 /(1 + 4x2 + ... ) < 1, so that by Theorem 1 we have convergence for 

any Xo. Choosing Xo = 1. we obtaio (Fig. 424 on p. 790) 

Xl ~ 0.500, X2 = 0.800, X3 = 0.610, X4 = 0.729, X5 = 0.653, X6 = 0.701, .... 

The solution exact to 6D is s = 0.682 328. 
The given equation may also be written 

Then 

and this is greater than 1 near the solution, so that we cannot apply Theorem I and as~ert convergence. Try 
Xo = 1. Xo = 0.5. Xo = 2 and see what happens. 

,The example shows that the transformation of a given i(x) = a into the form x = g(x) with g satisfying 
Ig (x)1 3 K < 1 may need some experimentation. • 
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0.5 1.0 
x 

Fig. 424. Iteration in Example 2 

Newton's Method for Solving Equations t(x) = 0 
Newton's method, also known as Newton-Raphson's method,! is another iteration 
method for solving equations f(x) = 0, where f is assumed to have a continuous derivative 
f'. The method is commonly used because of its simplicity and great speed. The underlying 
idea is that we approximate the graph of f by suitable tangents. Using an approximate 
value Xo obtained from the graph of f, we let Xl be the point of intersection of the x-axis 
and the tangent to the curve of f at Xo (see Fig. 425). Then 

hence 

In the second step we compute X2 = Xl - f(xIV!' (Xl), in the third step X3 from X2 again 
by the same formula, and so on. We thus have the algorithm shown in Table 19.1. Formula 
(5) in this algorithm can also be obtained if we algebraically solve Taylor's formula 

(5*) 

y 

x 

Fig. 425. Newton's method 

IJOSEPH RAPHSON (]648-l715), English mathematician who published a method similar to Newton's 
method. For historical details. see Ref. [GR2], p. 203. listed in App. I. 
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Table 19.1 Newton's Method for Solving Equations I(x) = 0 

ALGORITHM NEWTON (j, t' , XO, E, N) 

This algorithm computes a solution of f(x) = 0 given an initial approximation Xo (starting 
value of the iteration). Here the function f(x) is continuous and has a continuous 
derivative f' tx). 

2 

3 

4 

INPUT: f, f', initial approximation xo, tolerance € > O. maximum number of 
iterations N. 

OUTPUT: Approximate solution Xn (n ~ N) or message of failure. 

For n = 0, I, 2, ... , N - 1 do: 

End 

Compute t' (x,,). 

If f' (xn) = 0 then OUTPUT "Failure". Stop. 

[Procedure completed unsuccessfully] 

Else compute 

(5) 

If IXn+l - xnl ~ Elx,J then OUTPUT xn+ 1 . Stop. 

[Procedure completed sllccessfullv] 

5 OUTPUT "Failure". Stop. 

[Procedure completed unsuccessfully after N iterations] 

End NEWTON 

If it happens that t' (xn ) = 0 for some n (see line 2 of the algorithm), then try another 
statting value Xo. Line 3 is the heart of Newton's method. 

The inequality in line 4 is a termination criterion. [f the sequence of the Xn converges 
and the criterion holds, we have reached the desired accuracy and stop. In this line the 
factor IXnl is needed in the case of zeros of very small (or very large) absolute value 
because of the high density (or of the scarcity) of machine numbers for those x. 

WARNING! The criterion by itself does not imply convergence. Example. The harmonic 
series diverges, although its partial sums Xn = Lk~l 11k satisfy the criterion because 
lim (Xn+l - xn) = lim (1/(n + 1) = O. 

Line 5 gives another termination criterion and is needed because Newton's method may 
diverge or, due to a POOT choice of xo, may not reach the desired accuracy by a reasonable 
number of iterations. Then we may try another Xo. If I(x) = 0 has more than one solution, 
different choices of Xo may produce different solutions. Also, an iterative sequence may 
sometimes converge to a solution different from the expected one. 
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E X AMP L E 3 Square Root 

Set up a Newton iteration for computing the square root x of a given positive number c and apply it to c = 2. 

Solutioll. We have x = Vc. hence f(x) = r2 - c = O. f' (x) = 2r. and (5) takes the form 

For c = 2, choosing '\0 = I. we obtain 

Xl = 1.500000, X2 = 1.416667, X3 = 1.414216, X4 = 1.414214 .... 

X4 is exact to 6D. 

E X AMP L E 4 Iteration for a Transcendental Equation 

Find the positive solution of 2 sin x = x. 

Solution. Setting f(x) = r - 2 sin x. we have f' (x) = I - 2 cos x. and (5) gives 

Xn - 2 sinxn 
xn+l = Xn -

1- 2cosxn 

2( sin xn - xn cos xn) 

1- 2cosxn 

From the graph of f we conclude that the solution is near Xo = 2. We compute: 

I: 
1 

2 

3 

2.00000 

1.90100 

1.89552 

1.89550 

3.48318 

3.12470 

3.10500 

3.10493 

1.83229 

1.64847 

1.63809 

1.63806 

1.90100 

1.89552 

1.89550 

1.89549 

X4 = 1.89549 is exact to 5D since the solution to 6D is 1.~95 494. 

E X AMP L E 5 Newton's Method Applied to an Algebraic Equation 

Apply Newton's method to the equation f(x) = x3 + X - I = o. 

Solution. From (5) we have 

Starting from Xo = 1. we obtain 

Xl = 0.750000, X2 = 0.686047, X3 = 0.682 340, X4 = 0.682 328, ... 

• 

• 

where .'4 ha~ the error -I . 10-6
. A comparison with Example 2 shows that the present convergence is much 

more rapid. This may motivate the concept of the order of all iteration process, to be discussed next. • 

Order of an Iteration Method. Speed of Convergence 
The quality of an iteration method may be characterized by the speed of convergence, as 
follows. 

Let xn+ 1 = g(x'Y!) define an iteration method, and let Xn approximate a solution s of 
x = g(x). Then Xn = S - En' where En is the error of Xn . Suppose that g is differentiable 
a number of times, so that the Taylor formula gives 

(6) 
Xn+l = g(xn) = g(s) + g'(s)(xn - s) + h"(s)(xn - S)2 + 

= g(s) - g'(S)En + !g"(S)En
2 + 
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THEOREM 2 

The exponent of En in the first oonvanishing term after g(s) is called the order of the 
iteration process defined by g. The order measures the speed of convergence. 

To see this, subtract g(s) = s on both sides of (6). Then on the left you get 
Xn+l - S = -E,,+l, where E,,+1 is the error of Xn+l' And on the right the remaining 
expression equals approximately its first nonzero term because IEnl is small in the case of 
convergence. Thus 

(a) E,,+l=+g'(S)En in the case of first order, 
(7) 

in the case of second order, etc. 

Thus if En = lO-k in some step, then for second order. En+l = C· (l0-k)2 = c· 1O-2k, 
so that the number of significant digits is about doubled in each step. 

Convergence of Newton's Method 
In Newton's method, g(x) = x - f(x)/f' (x). By differentiation, 

(8) 

f' (X)2 - f(.T)f"(X) 
g'(x) = 1 - , 2 

f(x)f"(x} 

f' (X)2 

f (x) 

Since f(s) = 0, this shows that also g'(s) = O. Hence Newton's method is at least of 
second order. If we differentiate again and set x = s, we find that 

(8*) 
f"(S) 

g"(S) = f'(s) 

which will oot be zero in general. This proves 

Second-Order Convergence of Newton's Method 

if f(x) is three times differentiable and f' and f" are not z.ero at a solution s of 
f(x) = 0, then for Xo sufficiently close to s, Newton's method is of second order. 

Comments. For Newton's method, (7b) becomes, by (8*), 

For the rapid convergence of the method indicated in Theorem 2 it is important that s be 
a simple zero of f(x) (thUS f' (s) =I=- 0) and that Xo be close to s, because in Taylor's formula 
we took only the linear term [see (5*)], assuming the quadratic term to be negligibly small. 
(With a bad Xo the method may even diverge!) 
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E X AMP L E 6 Prior Error Estimate of the Number of Newton Iteration Steps 

Use .1"0 = 2 and xl = I.YUl 111 Example 4 for estimating how many Iteration steps we need to produce the 
solution to 5D accuracy. This is an a priori estimate or prior estimate because we can compute it after only 
one iteration, prior to further iterations. 

Solution. We have I(x} = x - 2 sin X = O. Differentiation gives 

{'(s) {'(Xl) 
, =---= 

2J (s) 2I' (.~I) 

Hence (Y) gives 

2 sin x] 
---.....:.--- = 0.57. 

1"n+ll = 0.57"n2 = 0.57(0.57"~_IJ2 = 0.573"~t_l = ... = 0.57M,,~+I ;;: 5' 10-6 

where M = 2n + 2n - I + ... + 2 + I = 2n+I - I. We show below that Eo = -0.11. Consequently. our 
condition becomes 

Hence II = 2 is the smallest possible n. according to this cnlde estimate. in good agrecment with Example 4. 
"0 = -0.11 is obtained from "1 - Eo = ("1 - s) - (Eo - s) = -Xl + Xo = 0.10. hence 

"1 = "0 + 0.10 = -0.57"02 or 0.57"02 + "0 + 0.10 = O. which gives "0 = -0.11. • 

Difficulties in Newton's Method. Difficulties may arise if It' (x) I is very small near a 
solution s of f(x) = o. for instance, if s is a zero of f(x) of second (or higher) order (so 
that Newton's method converges only linearly, as an application of I'H6pital's rule to 
(8) shows). Geometrically, small It' (x) I means that the tangent of f(x) near s almost 
coincides with the x-axis (so that double precision may be needed to get f(x) and f' (x) 

accurately enough). Then for values x = s far away from s we can still have small function 
values 

R(s) = fCS). 

In this case we call the equation f(x) = 0 ill-conditioned. R(s) is called the residual of 
f(x) = 0 at S. Thus a small residual guarantees a small error of s only if the equation is 
not iII-conditioned. 

E X AMP L E 7 An Ill-Conditioned Equation 

J(x) = X5 + 1O-4
.t = 0 is ill·conditioned. x = 0 is a solution . .t' (0) = 10-4 is small. At s = 0.1 the residual 

J(O.I) = 2· 10-5 is small, but the en-or -0.1 is laIger in absolute value by a factor 5000. Invent a more drastic 
example of your own. • 

Secant Method for Solving {(x) = 0 
Newton's method is very powerful but has the disadvantage that the derivative f' may 
sometimes be a far more difficult expression than f itself and its evaluation therefore 
computationally expensive. This situation suggests the idea of replacing the derivative 
with the difference quotient 

t' (x
n

) = f(xn ) - f(xn - 1 ) 

Xn - X n - 1 

Then instead of (5) we have the formula of the popular secant method 
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y 

x 

Fig. 426. Secant method 

(10) 

Geometrically, we intersect the x-axis at -',,+1 with the secant of f(x) passing through 
Pn- 1 and P n in Fig. 426. We need two starting values Xo and xl' Evaluation of derivatives 
is now avoided. [t can be shown that convergence is superlinear (that is, more rapid than 
linear, IEn+11 = const 'IEnIL62; see [E5] in App. 1), almost quadratic like Newton's method. 
The algorithm is similar to that of Newton's method, as the student may show. 

CAUTION! It is not good to write (0) as 

xn-d(xn) - -'llf(Xn -1) 

f(xn) - f(Xn -1) 

because this may lead to loss of significant digits if Xn and Xn-l are about equal. (Can 
you see this from the formula?) 

EXA M P L E 8 Secant Method 

Find the positive solution of f(x) = x - 2 sin x = 0 by the secant method, starting from .Io = 2, Xl = 1.9. 

Solution. Here, (10) is 

Numerical values are: 

n Xn -1 xn Nn D" 

2.000000 1.900000 -0.000740 -0.174005 -0.004253 

2 1.900000 1.895747 -0.000002 -0.006986 -0.000252 

3 1.895747 1.895494 0 o 

X3 = 1.895 494 is exact to 6D. See Example 4. • 
Summary of Methods. The methods for computing solutions s of f(x) = 0 with given 
continuous (or differentiable) f(x) start with an initial approximation Xo of s and generate 
a sequence Xl, X2, ... by iteration. Fixed point methods solve f(x) = 0 written as 
x = g(x), so that s is a fixed point of g, that is, s = g(s). For g(x) = X - f(x)li' (X) this 
is Newton's method, which for good Xo and simple zeros converges quadratically (and 
for multiple zeros linearly). From Newton's method the secant method follows by 
replacing f' (x) by a difference quotient. The bisection method and the method of false 
position in Problem Set 19.2 always converge, but often slowly. 
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...... -. ---
11-71 FIXED-POINT ITERATION 
Apply fixed-point iteration and answer related questions 
where indicated. Show details of your work. 

1. x = 1.4 sin x, Xo = 1.4 

2. 00 the iterations indicated at the end of Example 2. 
Sketch a figure similar to Fig. 424. 

3. Why do we obtain a monotone sequence in Example 
I, but not in Example 2? 

4. f = X4 - X + 0.2 = 0, the root near I, Xo = 

5. f as in Prob. 4, the root near 0, Xo = 0 

6. Find the smallest positive solution of sin x = e- 0
.
5X

, 

Xo = I. 

7. (Bessel functions, drumhead) A partial sum of the 
Maclaurin series of JoCr) (Sec. 5.5) is 
f(x) = I - !x2 + i'4x4 - 23~4X6. Conclude from a 
sketch that f(x) = 0 near x = 2. Write f(x) = 0 as 
x = g(x) (by dividing f(x) by !x and taking the 
resulting x-term to the other side). Find the zero. (See 
Sec. 12.9 for the importance of these zeros.) 

8. CAS PROJECT. Fixed-Point Iteration. (a) Existence. 
Prove that if g is continuous in a closed interval f and its 
range lies in f, then the equation x = g(x) has at least one 
solution in f. Illustrate that it may have more than one 
solution in f. 

(b) Convergence. Let f(x) = x 3 + 2r2 - 3x - 4 = o. 
Write this asx = g(x), for g choosing (1) (x 3 - /)113, 

(2) (r2 - !n1l2, (3) x + !f, (4) x(l + !f), 
(5) (x 3 

- f)lx 2
, (6) (2x2 

- f)/2x, (7) x - flf' 

and in each case Xo = 1.5. Find out about convergence 
and divergence and the number of steps to reach exact 
6S-values of a root. 

19-181 NEWTON'S METHOD 

Apply Newton's method (60 accuracy). First sketch the 
function(s) to see what is going on. 

~ ~nx = cot x, Xo = 
10. x = cos x, xo 

11. x 3 - 5x + 3 0, Xo = 2 

12. x + In x = 2, Xo = 2 

13. (Vibrating beam) Find the solution of cos x cosh x = I 
near x = ~ 7T. (This determines a frequency of a vibrating 
beam: see Problem Set 12.3.) 

14. (Heating. cooling) At what time x (4S-accuracy only) 
will the processes governed by fl(X) = 100(1 - e-O.2x) 

and f2(X) = 4Oe-O.Olx reach the same temperature? 
Also find the latter. 

15. (Associated Legendre functions) Find the smallest 
positive zero of 
P42 = (I - X2)p~ = ¥(-7x4 + 8x2 - 1) (Sec. 
5.3) (a) by Newton's method, (b) exactly, by solving 
a quadratic equation. 

16. (Legendre polynomials) Find the largest root of the 
Legendre polynomial P 5 (x) given by 
P5(X) = k(63x5 - 70x3 + 15x) (Sec 5.3) (to be 
needed in Gauss integration in Sec. 19.5) (a) by 
Newton's method, (b) from a quadratic equation. 

17. Design a Newton iteration for cube roots and compute 
~ (60, Xo = 2). 

18. Design a Newton iteration for -\7c" (c > 0). Use it to 
- 3-.4(::;- ,5(::;-

compute \12, V'2, v 2, v 2 (60, Xo = I). 

19. TEAM PROJECT. Bisection Method. This simple 
but slowly convergent method for finding a solution of 
f(x) = 0 with continuous f is based on the 
intermediate value theorem, which states that if a 
continuous function f has opposite signs at some x = a 
and x = b (> a). that is, either f(a) < 0, feb) > 0 
or f(a) > 0, feb) < 0, then f must be 0 somewhere 
on [a, b]. The solution is found by repeated bisection 
of the interval and in each iteration picking that half 
which also satisfies that sign condition. 

(a) Algorithm. Write an algorithm for the method. 

(b) Comparison. Solve x = cosx by Newton's 
method and by bisection. Compare. 

(e) Solve e-x = In x and eX + x4 + X = 2 by bisection. 

20. TEAM PROJECT. Method of False Position 
(Regula falsi). Figure 427 shows the idea. We assume 
that f is continuous. We compute the x-intercept Co of 
the line through (ao, f(ao), (bo, f(bo». If f(co) = 0, 
we are done. If f(ao)f(c o) < 0 (as in Fig. 427), we 
set a 1 = ao, b 1 = Co and repeat to get Cl, etc. 
If f(ao)ffco) > 0, then f(co)f(b o) < 0 and we set 
al = Co, b 1 = bo, etc. 

(a) Algorithm. Show that 

Co = 
aof(bo) - bof(ao) 

f(bo) - f(ao) 

and write an algorithm for the method. 

(b) Comparison. Solve x 3 = 5x + 6 by Newton's 
method, the secant method, and the method of false 
position. Compare. 

(C) Solve X4 = 2, cos x = V~, and x + In x 2 
by [he method of false position. 
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121-241 SECANT METHOD 

Solve. using Xo and Xl i1~ indicated. 

21. Prob. ll, Xo = 0.5, Xl = 2.0 

y 

~/ 
~ 

y=f(x) 22. e-
x - tan X = o. Xo = I. Xl 0.7 

x 23. Prob. 9, Xo = I. Xl = 0.5 

24. Prob. 10, Xo = 0.5, Xl = I 
J 

/( 25. WRITING PROJECT. Solution of Equations. 
Fig. 427. Method of false position 

19.3 Interpolation 

Compare the methods in this section and problem set, 
discussing advantages and disadvantages using 
examples of your own. 

Interpolation means finding (approximate) values of a function f(x) for an X between 
different x-values xo, Xl' ••. , xn at which the values of f(x) are given. These values may 
come from a "mathematical" function, such as a logarithm or a Bessel function, or, perhaps 
more frequently, they may be measured or automatically recorded values of an "empirical" 
function, such as the air resistance of a car or an airplane at different speeds, or the yield 
of a chemical process at different temperatures, or the size of the U.S. population as it 
appears from censuses taken at IO-year intervals. We write these given values of a function 
f in the form 

fo = f(xo), fn = f(x,J 

or as ordered pairs 

A standard idea in interpolation now is to find a polynomial Pn(x) of degree n (or less) 
that assumes the given values; thus 

(1) 

We call this Pn an interpolation polynomial and xo, ... , xn the nodes. And if f(x) is a 
mathematical function, we call Pn an approximation of f (or a polynomial 
approximation, because there are other kinds of approximations, as we shall see later). 
We use Pn to get (approximate) values of f for x's between Xo and xn ("interpolation") 
or sometimes outside this interval Xo ~ x ~ Xn ("extrapolation"). 

Motivation. Polynomials are convenient to work with because we can readily 
differentiate and integrate them. again obtaining polynomials. Moreover, they approximate 
continuous functions with any desired accuracy. That is. for any continuous f(x) on an 
interval 1: a ~ x ~ b and error bound f3 > 0, there is a polynomial Pn(x) (of sufficiently 
high degree n) such that 

If(x) - Pn(X) I < f3 for all x on 1. 

This is the famous Weierstrass approximation theorem (for a proof see Ref. [GR7], 
p. 280; see App. O. 
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Existence and Uniqueness. Pn satisfying (I) for given data exists-we give formulas 
for it below. Pn is unique. Indeed, if another polynomial qn also satisfies 
lJn(.ro) = fo, ... , lJn(xn) = f n• then Pn(x) - lJn(x) = 0 at xo . ...• Xn , but a polynomial 
Pn - qn of degree 11 (or less) with 11 + I roots must be identically zero, as we know from 
algebra; thus Pn(x) = q,,{x) for all x, which means uniqueness. • 

How to Find Pn? This is the important practical question. We answer it by explaining 
several standard methods. For given data. these methods give the same polynomial. by 
the uniqueness just proved (which is thus of practical interest!), but expressed in several 
forms suitable for different purposes. 

Lagrange Interpolation 
Given (xo, f 0), (Xl' f 1). ' , , , (Xn, f n) with arbitrarily spaced Xj' Lagrange had the idea of 
multiplying each f j by a polynomial that is I at Xj and 0 at the other 1l nodes and then 
taking the sum of these 11 + 1 polynomials. Clearly, this gives the unique interpolation 
polynomial of degree 11 or less. Beginning with the simplest case, let us see how this works. 

Linear interpolation is interpolation by the straight line through (xo, fo), (Xl' II): see 
Fig. 428. Thus the linear Lagrange polynomial PI is a sum PI = Lof 0 + Ld 1 with Lo the 
linear polynomial that is I at Xo and 0 at Xl; similarly, Ll is 0 at Xo and I at Xl' Obviously, 

Lo(x) = 
x - Xo 

Xl - Xo 

This gives the linear Lagrange polynomial 

(2) . fo + 

Error~ 

~ 1--'" /1" }'=f(x) 

/f. p(x) f) o 1 

x 

Fig. 428. Linear interpolation 

x 

E X AMP L E 1 Linear Lagrange Interpolation 

Compute a 4D-value of In \1.2 from In 9.0 = 2.1\172. In 9.5 = 2.2513 by linear Lagrange interpolation and 
determine the error, llsing In \1.2 = 2.2192 (4Dl. 

Solutioll. Xo = 9.0. Xl = 9.5.10 = In 9.0. it = In 9.5. In (2) we need 

x - 9.5 
Lo(x) = --=0:5 = - 2.0(x - 1).5). Lo«).2) = - 2.0( -0.3) = 0.6 

x - 9.0 
L1(x) = ----0:5 = 2.0(x - 9.0). L 1(9.2) = 2· 0.2 = 0.4 

(see Fig. 429) and obtain the answer 

In 9.2 ~ Pl(9.2) = Lo(9.2)10 + L1(9.2)11 = 0.6' 2.1972 + 0.4' 2.2513 = 2.2188. 
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The error is E = a - a = 2.2192 - 2.2188 = OJlO04. Hence linear interpolation is not sufficient here to get 
4D-accuracy; it would suffice for 3D-accuracy. • 

~~- --_-"'oX'L, 
o ... --~I~I~'~I --~--~~ 

9 9.2 9.5 10 11 x 

Fig. 429. Lo and L, in Example 1 

Quadratic interpolation is interpolation of given (xo, fo), (Xl, f1), (X2, f2) by a 
second-degree polynomial P2(X), which by Lagrange's idea is 

(3a) 

[ (x) (x - Xl)(X - X2) 
Lo(x) = _0_ 

(xo - Xl)(XO - X2) [o(xo) 

(3b) 
[1 (x) (x - Xo)(x - X2) 

LI(x) = --
(Xl - XO)(XI - X2) [1(X1) 

~(x) = [2(X) = (x - Xo)(X - Xl) 

[2(X2) (X2 - XO)(X2 - Xl) 

How did we get this? Well, the numerator makes Lk(xj) = 0 ifj =1= k. And the denominatOi 
makes Lk(xk) = 1 because it equals the numerator at X = Xk' 

E X AMP L E 2 Quadratic Lagrange Interpolation 

Compute In 9.2 by (3) from the data in Example I and the additional third value In 11.0 = 2.3979. 

Solution. In (3), 

(x - 9.5)(x - 11.0) 
Lo(x) = = x 2 

- 20.5x + 104.5, 
(9.0 - 9.5)(9.0 - 11.0) 

Lo(9.2) = 0.5400, 

(x - 9.0)(x - 1 1.0) I 2 

L1(x) = (9.5 _ 9.0)(9.5 _ 11.0) = - 0.75 (x - 20x + 99), L1(9.2) = 0.4800, 

(x - 9.0)(x - 9.5) 1 2 

~(x) = (11.0 _ 9.0)(11.0 _ 9.5) = "3 (x - 18.5x + 85.5), ~(9.2) = -0.0200, 

(see Fig. 430), so that (3a) gives, exact to 4D, 

In 9.2 = P2(9.2) = 0.5400' 2.1972 + 0.4800' 2.2513 - 0.0200' 2.3979 = 2.2192. • 

x 

Fig. 430. Lo, L" L2 in Example 2 
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General Lagrange Interpolation Polynomial. For general n we obtain 

(4a) 

where Lk(Xk) = 1 and Lk is 0 at the other nodes. and the Lk are independent of the function 
f to be interpolated. We get (4a) if we take 

(4b) 

lo(x) = (x - X1)(X - X2) ... (x - xn), 

Ik(x) = (x - xo) ... (x - Xk-1 )(x - Xk+1) ... (x - xn ), 

In(x) = (x - xo)(x - xl) ... (x - X,,-l)' 

0< k < n, 

We can easily see that P,,(Xk) = h. Indeed, inspection of (4b) shows that Ik(xj) = 0 if 
j =1= k, so that for x = Xk' the sum in (4a) reduces to the single tenn (lk(Xk)llk(Xk»fk = h. 

Error Estimate. If f is itself a polynomial of degree n (or less), it must coincide with 
p" because the n + 1 data (xo. fo), ... , (x11' fIt) determine a polynomial uniquely. so 
the error is zero. Now the special f has its (n + 1)st derivative identically zero. This 
makes it plausible that for a ~ene/"{t! fits (11 + l)st derivative tn+ll should measure the 
error 

En(X) = f(x) - p,,(x). 

It can be shown that this is true if t n + ll exists and is continuous. Then, with a suitable 
t between Xo and x" (or between Xo. xn ' and x if we extrapolate), 

(5) 
f'n+l>(t) 

E.,(.l) = f(x) - Pn(x) = (x - .lo)(x - Xl) .•• (X - ern) -=-------'-'-­
(11 + I)! 

Thus !En(x)i is 0 at the nodes and small near them, because of continuity. The product 
(x - Xo) ... (x - xu) is large for \" away from the nodes. This makes extrapolation risky. 
And interpolation at an x will be best if we choose nodes on both sides of that x. Also, 
we get error bounds by taking the smallest and the largest value of f'n+ll(t) in (5) on the 
interval Xo ~ t ~ Xn (or on the interval also containing x if we extrapolate). 

Most importantly, since Pn is unique, as we have shown, we have 

Error of Interpolation 

Formula (5) gil'es the error for allY po/molllia/ interpolation lIIet/lOd (f f(x) has a 
continuous (11 + I )st deri\'{/tive. 

Practical error estimate. If the derivative in (5) is difficult or impossible to obtain, apply 
the Error Principle (Sec. 19.1), that is, take another node and the Lagrange polynomial 
Pn+1(X) and regard PII+1(X) - Pn(x) as a (crude) error estimate for Pn(x), 
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E X AMP L E 3 Error Estimate (5) of Linear Interpolation. Damage by Roundoff. Error Principle 

Estimate the error in Example I first by (5) directly and then by the Error Principle (Sec. 19.1). 

Soluti01l. (A) Estimatioll by (5), We have 11 = 1. fit) = In 1. {(t) = lIt. {'(t) = -1112. Hence 

(-1) 
"l(x) = (x - 9.0){x - 9.5) -2-

2t 
thus 

0.03 
"1(9.2) = -2- . 

t 
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1 = 9.0 gives the maximum 0.03/92 = 0.00037 and f = 9.5 gives the minimum 0.03/9.52 = 0.00033. SO that 
we get 0.00033 ~ "1(9.2) ~ 0.00037, or better, 0.00038 because 0.3/81 = 0.003 703 .... 

But the error 0.0004 in Example I disagrees, and we can learn something! Repetition of the computation there 
with 5D instead of 4D gives 

In 9.2 = 1'1(9.2) = 0.6' 2.19722 + 0.4 . 2.25129 = 2.21885 

with an actual en'or " = 2.21920 - 2.21885 = 0.00035. which lies nicely near the middle between our two 
error bounds. 

This shows that the discrepancy 10.0004 vs. 0.00035) was caused by rounding, which is not taken into account 
in (5). 

(B) EstinUltioll by the Error Pri1lciple. We calculate 1'1(9.2) = 2.21885 as before and then 1'2(9.2) as in 
Example 2 but with 5D, obtaining 

1'2(9.2) = 0.54' 2.19722 + 0.48· 2.25129 - 0.02' 2.39790 = 2.21916. 

The difference P2(9.2) - 1'1(9.2) = 0.00031 is the approximate error of 1'1(9.2) that we wanted to obtain: this 
is an approximation of the actual en'or 0.00035 given above. • 

Newton's Divided Difference Interpolation 
For given data (xo, f 0)' ... , (xn, f n) the interpolation polynomial Pn(x) satisfying (l) is 
unique, as we have shown. But for different purposes we may use Pn(x) in different forms. 
Lagrange's form just discussed is useful for deriving formulas in numeric differentiation 
(approximation formulas for derivatives) and integration (Sec. 19.5). 

Practically more imp0l1ant are Newton's forms of Pn(x), which we shall also use for solving 
ODEs (in Sec. 21.2). They involve fewer arithmetic operations than Lagrange's fonn. 
Moreover, it often happens that we have to increase the degree 11 to reach a required accuracy. 
Then in Newton's forms we can use all the previous work and just add another term. a 
possibility without counterpart for Lagrange's form. This also simplifies the application of 
the Error Principle (used in Example 3 for Lagrange). The details of these ideas are as follows. 

Let Pn-l(X) be the (n - l)st Newton polynomial (whose form we shall detelmine); thus 
Pn-l(XO) = fO,Pn-1(X1) = f1,' .. ,Pn-1(Xn-l) = fn-l' FUl1hermore, let us write the nth 
Newton polynomial as 

(6) 

hence 

(6') 

Here gn(x) is to be determined so that Pn(xO) = fo, Pn(Xl) = flo ... , Pn(xn ) = f n' 

Since p" and Pn-l agree at xo, ... , Xn-l' we see that gn is zero there. Also, gn will 
generally be a polynomial of nth degree because so is Pn' whereas Pn-l can be of degree 
n - I at most. Hence gn must be of the form 

(6") 
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We determine the constant an- For tIns we set x = Xn and solve (6") algebraically for (In­

Replacing gn(xn) according to (6') and using Pn(xn) = In' we see that this gives 

(7) 

We write {lk instead of {In and show that (lk equals the kth divided difference, recursively 
denoted and defined as follows: 

and in general 

(8) 

PROOF If II = 1, then Pn-l (xn ) = Po(xl ) = Io because Po(x) is constant and equal to Io, the value 
of f(x) at Xo. Hence (7) gives 

and (6) and (6") give the Newton interpolation polynomial of the first degree 

If II = 2, then this PI and (7) give 

where the last equality follows by straightforward calculation and comparison with the 
definition of the right side. (Verify it: be patient.) From (6) and (6") we thus obtain the 
second Newton polynomial 

For II = k, formula (6) gives 

Withpo(x) = fo by repeated application with k = I,· .. , II this finally gives Newton's 
divided difference interpolation formula 

(10) 
f(x) = fo + (x - xo)f[xo, XI] + (x - xo)(x - xI)flxo, XI' X2] 

+ ... + (x - xo)(x - XI) ... (x - xn-I)f[xo, ... , xn]. 
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An algorithm is shown in Table 19.2. The first do-loop computes the divided differences 
and the second the desired value Pn(x). 

Example 4 shows how to arrange differences near the values from which they are 
obtained: the latter always stand a half-line above and a half-line below in the preceding 
column. Such an arrangement is called a (divided) difference table. • 

Table 19.2 Newton's Divided Difference Interpolation 

ALGORITHM INTERPOL txo, ... , Xn; f 0, ••• , f n; x) 

This algorithm computes an approximation p,,(.f) of f(.O at .f. 

INPUT: Data (xo- f 0), (x b .fI) •...• (xno f n); x 
OUTPUT: Approximation Pn(.x) of fCO 

Set f[-':i1 = fj U = 0, ... , n). 

For 111 = I.. . .. 11 - I do: 

For j = 0, .... 11 - Tn do: 

End 

End 

Set Po(x) = f o· 

For k = 1, ... , 11 do: 

End 

OUTPLT Pn(i) 

End INTERPOL 

E X AMP L E 4 Newton's Divided Difference Interpolation Formula 

Compute f(9.2) from the values shown in the fust two columns of the following table. 

Xj f j = ft9 f[Xj. Xj+l] 

!to (2.079442" .... ". 

(0.117 78~ 
9.0 2.197225 

,----- --
\-U.006 433 

0.lO8134 
9.5 2.251 292 -0.005200 

0.097735 
1l.0 2.397895 
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Soluti01l. We compute the divided differences as shown. Sample computation: 

(0.097735 - O.lO8 134)/(11 - 9) = -0.005200. 

The values we need in (lO) are circled. We have 

f(x) = P3(x) = 2.079442 + 0.117783(,' - KO) - 0.006433(x - 8.0)(x - 9.0) 

+ 0.000 4Il(x - 8.0)(x - 9.0)(x - 9.5). 

Alx=9.2, 

J(9.2) = 2.079442 + 0.141 340 - 0.001544 - 0.000030 = 2.219208. 

The value exact to 6D is J(9.2) = In 9.2 = 2.219203. Note that we can nicely see how the accuracy increases 
from term to term: 

Pl(9.2) = 2.220782. P2(9.2) = 2.219 238, P3(9.2) = 2.219208. • 
Equal Spacing: Newton's Forward Difference Formula 
Newton's formula (10) is valid for arbitrarily spaced nodes as they may occur in practice 
in expe1iments or observations. However, in many applications the x/s are regularly 
spaced-for instance, in measurements taken at regular intervals of time. Then, denoting 
the distance by 11, we can write 

(11) Xn = Xo + I1h. 

We show how (8) and (10) now simplify considerably! 
To get started, let us define the first forward difference of I at Xj by 

the second forward difference of I at Xj by 

and, continuing in tins way, the kth forward difference of I at Xj by 

(12) (k = 1,2, .. '). 

Examples and an explanation of the name "forward" follow on p. 806. What is the point 
of this? We show that if we have regular spacing (11), then 

(13) 

We prove (13) by induction. It is true for k = I because Xl = .\"0 + /z, SO that 

1 1 
I (II - Io) = -111 I::.Io· 

7 • 7 
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Assuming (13) to be true for all forward differences of order k. we show that (13) holds 
for k + 1. We use (8) with k + I instead of k; then we use (k + I)h = Xk+1 - .\"0' resulting 
from (II). and finally (12) with) = 0, that is. j,k+lfo = !lokfl - j.kfo. This gives 

(k + I)h [ 
1 I ] ___ j.k ____ ~k 

k!hk· fl k!hk fo 

which is (13) with" + 1 instead of ". Formula (13) is proved. • 
In (10) we finally set x = .\"0 + rh. Then x - Xo = rh, x - XI = (r - 1)h since 
Xl - Xo = h, and so on. With this and (13), formula (10) becomes Newton's (or 
Gregory2 -Newtoll's) forward difference interpolation formula 

f(x) = Pn(x) = ~ (:) ~sfo 
s=o 

(x = Xo + rh, r = (x - xo)/17) 

(14) 

r(r - 1) 2 r(r - 1) ... (r - 11 + 1) 
= fo + rj.fo + j. fo + ... + j.nfo 

2! Il! 

where the binomial coefficients in the first line are defined by 

(15) (~) = I. (:) = _r(_r_-_1)_(r_-_2)_s;_'_' _(r_-_s_+_I_) (s > O. integer) 

and s! = 1 . 2 ... s. 

Error. From (5) we get. with.\" - .\"0 = rh, X - Xl = (r - 1 )h. etc .. 

(16) 
hn + I 

En(X) = f(x) - Pn(x) = r(r - 1) ... (r - n)tn + ll(t) 
(n + 1)! 

with t as characterized in (5). 
Formula (16) is an exact formula for the error, but it involves the unknown t. In Example 

5 (below) we show how to use (16) for obtaining an enor estimate and an interval in 
which the true value of f(x) must lie. 

Comments on Accuracy. (A) The order of magnitude of the enor En(X) is about equal 
to that of the next difference not used in Pn(x), 

(B) One should choose xo, .... x71 such that the x at which one interpolates is as well 
centered between xo, ... , Xn as possible. 

2JA~ES GREGORY (1638-1675). SC?ts mathematician. professor a[ SI. Andrews and Edinburgh. ~ in (14) 
and'\ (on p. 807) have nothmg [0 do WIth the Laplacian. 
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The reason for (A) is that in (16), 

II"(r - J) ... (r - 11)1 
~~ __ ~ __________ -cc ~ 

1 ·2 ... (11 + J) 
if Irl ~ ] 

(and actually for any I" as long as we do not extrapolate). The reason for (B) is that 
11"(1" - 1) ... (r - n)1 becomes smallest for that choice. 

E X AMP L E 5 Newton's Forward Difference Formula. Error Estimation 

Compute cosh 0.56 from (14) and the four values in the following table and estimate the error. 

j Xj f j = cosh Xj t:.fj t:.
2
fj t:,.3fj 

° 0.5 )~IP 626; 1 
(O.U5783')~ 

0.6 1.185465 p.Ol] 865, 

0.069704 ,0 . .900697/ 
2 0.7 1.255169 0.012562 

0.082266 

I 
0.8 1.337435 

Solution. We compute the forward differences as shown in the table. The values we need are circled. In 
(14) we have r = (0.56 - 0.50)/0.1 = 0.6, so that (14) gives 

cosh 0.56 = 1.127626 + 0.6' 0.057839 + 0.6(~OA) . 0.011 ROS + 0.6(-0.:)(-1.4) . 0.000 697 

= 1.127 626 + 0.034 703 - 0.001 424 + 0.000039 

= 1.16U 944. 

Error estimate. From (16), since the founh derivative is cosh(4l t = cosh t, 

0.1 4 

1"3(0.56) = 4! ·0.6(-OA)(-1.4)(-2A) cosh I 

= A cosh t, 

where A = -0.000003 36 and 0.5 ~ t ~ 0.8. We do not know t, but we get an inequality by taking the largest 
and smallest cosh t in that interval: 

A cosh 0.8 ~ 1"3(0.62) ~ A cosh 0.5. 

Since 

f(xl = P3(x) + ~(x), 

this gives 

P3(0.56) + A cosh 0.8 ~ cosh 0.56 ~ P3(0.56) + A cosh 0.5. 

Numeric values are 

1.I60 939 ~ cosh 0.56 ~ 1.160 941. 

The exact 6D-value is cosh 0.56 = 1.160941. It lies within these bounds. Such bounds are not always so tight. 
Also, we did not consider roundoff errors, which will depend all the number of operations. • 

This example also explains the name ':forward difference formula": we see that the 
differences in the formula slope forward in the difference table. 
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Equal Spacing: Newton's Backward Difference Formula 
Instead of forward-sloping differences we may also employ backward-sloping differences. 
The difference table remains the same as before (same numbers, in the same positions), except 
for a very harmless change of the running subscript j (which we explain in Example 6, below). 
Nevertheless, purely for reasons of convenience it is standard to introduce a second name 
and notation for differences as follows. We define the first backward difference of fat Xj by 

the second bac/..:ward difference of f at Xj by 

and, continuing in this way, the kth backward difference of f at Xj by 

(17) (k = 1,2, .. '). 

A formula similar to (14) but involving backward differences is Newton's (or 
Gregory-Newton's) backward difference interpolation fonnula 

f(x) = Pn(x) = ~ (r + : - ]) VSfo (x = Xo + rh, r = (x - xo)lh) 

(18) 
r(r + 1) 2 r(1" + 1) ... (r + n - 1) 

= fo + rVfo + 2! V fo + ... + n! Vnfo· 

E X AMP L E 6 Newton's Forward and Backward Interpolations 

Compute a 7D-value of the Bessel function Jo(x) for x = 1.72 from the four values in the following table, using 
(a) Newton's forward formula (14). (b) Newton's backward formula (18). 

jfor jbaclr .Ij Jo(.\j) ] st Diff. 2nd Diff. 3rd Diff. 

0 -3 1.7 0.3979849 
-0.0579985 

1 -2 l.8 0.3399864 -0.0001693 
-0.0581678 0.0004093 

2 -] l.9 0.2818186 0.0002400 
-0.0579278 

3 0 
I 

2.0 0.2238908 

Solution. The computation of the differences is the same in both cases. Only their notation differs. 

(a) Forward. In (14) we have r = (1.72 - 1.70)/0.1 = 0.2, andj goes from a to 3 (see first column). In 
each column we need the first given number, and (14) thus gives 

2 
0.2( -0.8) 0.2( -0.8)( -1.8) 

Jo(1.7 ) = 0.3979849 + 0.2( -0.0579985) + 2 (-0.000 1693) + 6 . 0.000 4093 

= 0.3979849 - 0.011 5997 + 0.000 0135 + 0.000 0196 = 0.3864183, 

which is exact to 6D, the exact 7D-va1ue being 0.3864185. 
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(b) 8ack\\ard. For (18) we usej shown in the second column. and in each column the last number. Since 
r = (1.72 - 2.00)/0.1 = -2.8. we thus gel from lI8) 

-2.8(- 1.8) -2.8( \.8)(- 0.8) 
10(1.72) = 0.223 89U8 - 2.8( -0.0579278) + 2 . 0.000 2400 + 6 . 0.000 4093 

= 0.223 8908 + 0.162 1978 + 0.000 6048 - 0.000 2750 

= 0.386 4184. • 
Central Difference Notation 
This is a third notation for differences. The first central difference of f(x) at Xj is defined 
by 

and the kth central difference of f(x) at Xj by 

(19) <:okf - <:ok-If <:ok-If v j - v j+1/2 - v j-1/2 (j = 2,3, .. '). 

Thus in this notation a difference table, for example, for f -1' fo, fI, f2, looks as follows: 

X-I f -I 
[)f -1/2 

[)2fo Xo fo 
[)3f1/2 [)fI/2 

[)2fl Xl fl 
[)f3/2 

X2 f2 

Central differences are used in numeric differentiation (Sec. 19.5), differential equations 
(Chap. 21), and centered interpolation formulas (e.g., Everett's formula in Team Project 
22). These are formulas that use function values "symmetrically" located on both sides 
of the interpolation point x. Such values are available near the middle of a given table, 
where centered interpolation formulas tend to give better results than those of Newton's 
formulas, which do not have that "symmetry" property. 

1. (Linear interpolation) Calculate PI (x) in Example I. j(x) = erf x = (2/\'";) J~ e-w2 dw, namely. 
1(0.25) = 0.27633 .. «0.5) = 0.52050. f( I) = 0.84270. 
and fromp2 an approximation of j(O.75) (= 0.71116. 
50). 

Compute from it In 9.4 = PI(9.4). 

2. Estimate the enor in Prob. 1 by (5). 

3. (Quadratic interpolation) Calculate the Lagrange 
polynomial 1'2(X) for the 4D-values of the Gamma 
function [(24), App. 3.1J r(l.oO) = 1.0000. 
r(l.02) = 0.9888, r(l.04) = 0.9784, and from it 
approximations of r{x) for x = 1.005, 1.010. 1.015. 
1.025. 1.030. 1.035. 

4. (Error bounds) Derive enor bounds for P2(9.2) in 
Example 2 from (5). 

S. (Error function) Calculate the Lagrange polynomial 
P2(X) for the 50-values of the enor function 

6. Derive an error bound in Prob. 5 from (5). 

7. (Sine integral) Calculate the Lagrange polynomial 
P2(X) for the 40-values of the sine integral Si(x) [(40) 
in App. 3.1], namely, Si(O) = O. Si(l) = 0.9461. 
Si(2) = 1.6054, and from P2 approximations of Si(O.5) 
(= 0.4931. 40) and Si(1.5) (= 1.3247,401. 

8. (Linear and quadratic interpolation) Find e-O.25 and 
e-O

.
75 by linear interpolation with xo = 0, Xl = 0.5 and 

Xo = 0.5, Xl = I. respectively. Then find pix) 
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interpolating e-x with Xo = O. Xl = 0.5. X2 = 1 and 
from it e-O.25 and e-O.75• Compare the errors of these 
linear and quadratic interpolations. Use 4D-values of e-x . 

9. (Cubic Lagrange interpolation) Calculate and sketch 
or graph Lo, L 1 . L2 , L3 for x = O. 1.2.3 on common 
axes. Find P3(X) fOT the data 

(0. I) 

(1,0.765198) 

(2, 0.223891 ) 

(3. -0.260052) 

[values of the Bessel function 10(x)]. Find P3 for 
X = 0.5, 1.5. 2.5 by interpolation. 

10. (Interpolation and extrapolation) Calculate P2(X) in 
Example 2. Compute from it approximations of In 9.4, 
In 10, In 10.5. In 11.5. In 12, compute the errors by 
using exact 4D-values. and comment. 

11. (Extrapolation) Does a sketch or graph of the product 
of the (x - Xj) in (5) for the data in Prob. 10 indicate 
that extrapolation is likely to involve larger errors than 
interpolation does? 

12. (Lower degree) Find the degree of the interpolation 
polynomial for the data 

(-2.33) 

(0.5) 

(2.9) 

(4,45) 

(6, 113). 

13. (Newton's forward difference formula) Set up (14) 
for the data in Prob. 7 and derive P2(x) from (14). 

14. Set up Newton's forward difference formula for the 
data in Prob. 3 and compute [(1.01), [(1.03), [(1.05). 

15. (Newton's divided difference formula) Compute 
f(0.8) and f(0.9) from 

f(0.5) = 0.479 

f(I.O) = 0.841 

f(2.0) = 0.909 

by quadratic interpolation. 

16. Compute f(6.5) from 

f(6.0) = O. J 506 

f(7.0) = 0.3001 

f(7.5) = 0.2663 

fO.7) = 0.2346 

by cubic interpolation, using (10). 
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17. (Central differences) Write the difference in the table 
in Example 5 in central difference notation. 

18. (Subtabulation) Compute the Bessel function 11(X) for 
X = 0.1. 0.3, .... 0.9 from 11(0) = 0,11(0.2) = 0.09950. 
h(O.4) = 0.19603. 11(0.6} = 0.28670.11(0.8) = 0.36884, 
11(1.0) = 0.44005. Use (14) with II = 5. 

19. (Notations) Compute a difference table of f(x) = x3 

for X = O. 1, 2. 3.4. 5. Choose Xo = 2 and write all 
occurring numbers in tenTIS of the notations (a) for 
central differences, (b) for forward differences, (c) for 
backward differences. 

20. CAS EXPERIMENT. Adding Terms in Newton 
Formulas. Write a program for the forward formula 
( 14). Experiment on the increase of accuracy by 
successively adding terms. As data use values of some 
function of your choice for which your CAS gives the 
values needed in determining errors. 

21. WRITING PROJECT. Interpolation: Comparison 
of Methods. Make a list of 5-6 ideas that you feel are 
most basic in this section. Arrange them in the best 
logical order. Discuss them in a 2-3 page report. 

22. TEAM PROJECT. Interpolation and Extrapo­
lation. (a) Lagrange practical error estimate (after 
Theorem I). Apply this to PI (9.2) and P2(9.2) for the 
data Xo = 9.0. Xl = 9.5. X2 = 11.0. fo = In Xo. 

fl = In XI> f2 = In X2 (6S-values). 

(b) Extrapolation. Given (.~i' f(x) = (0.2.0.9980). 
(0.4. 0.9686). (0.6. 0.8443), (0.8, 0.5358), (1.0. 0). 
Find f(0.7) from the quadratic interpolation 
polynomials based on (a) 0.6, 0.8. 1.0, ({3) 0.4. 0.6. 
0.8. (y) 0.2, 0.4, 0.6. Compare the errors and comment. 
[Exact f(x) = cos (!7TX 2), f(O.7) = 0.7181 (45).1 

(c) Graph the product of factors (x - xi> in the error 
formula (5) for 11 = 2.' . '. 10 separately. What do 
these graphs show regarding accuracy of interpolation 
and extrapolation? 

(d) Central differences. Show that 
82

fm = fm+l - 2fm + fm-I> and. furthermore 
83

fm+I12 = fm+2 - 3fYII f 1 + 3fm - f m - 1 • 

8n
fm = t!.."fm-n/2 = vnfm+n/2' 

(e) Everett's interpolation formula 

f(x) = (I - r)fo + rf1 

(20) 
(2 - r)O - r)( -r) 

+ 82fo 3! 

is an example of a formula involving only even-order 
differences. Use it (0 compute the Bessel function Jo(x) 

for x = 1.72 from 10(l.60} = 0.4554022 and 10(1.7). 
10(1.8),10(1.9) III Example 6. 
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19.4 Spline Interpolation 
Given data (function values, points in the .\y-plane) (.\"0' f 0), (XI- f 1)' ... , (Xn, f n) can be 
interpolated by a polynomial P,/x) of degree 11 or less so that the curve of P,ix) passes 
through these 11 + 1 points (Xj, fj); here fo = f(xo), ...• fn = f(x,.). See Sec. 19.3. 

Now if 11 is large, there may be trouble: P n(x) may tend to oscillate for x between the 
nodes xo, ... , x",. Hence we must be prepared for numeric instability (Sec. 19.1). Figure 
431 shows a famous example by C. Runge3 for which the maximum error even approaches 
x as 11 ~ x (with the nodes kept equidistant and their number increased). Figure 432 
illustrates the increase of the oscillation with 11 for some other function that is piecewise 
linear. 

Those undesirable oscillations are avoided by the method of splines initiated by 
I. J. Schoenberg in 1946 (Quarterly of Applied Mathematics 4, pp. 45-99, 112-141). This 
method is widely used in practice. It also laid the foundation for much of modem CAD 
(computer-aided design). its name is borrowed from a draftman's spline, which is an 
elastic rod bent to pass through given points and held in place by weights. The 
mathematical idea of the method is as follows: 

Instead of using a single high-degree polynomial P n over the entire interval a ~ x ~ b 
in which the nodes lie, that is, 

(1) a = Xo < Xl < ... < Xn = b, 

we use 11 low-degree, e.g., cubic, polynomials 

one over each subinterval between adjacent nodes. hence qo from Xo to Xl' then q1 from 

YI 

-~. 0 
-5 "'--/ o "'-../ 5 x 

Fig. 431. Runge's example {(x) = 1/(1 + x 2
) and interpolating polynomial PlQ(x) 

Fig. 432. Piecewise linear function {(x) and interpolation polynomials of increasing degrees 

3 
CARL RUNGE (1856-1927). German mathematician, also known for his work on ODEs (Sec. 21.1). 
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THEOREM 1 

Xl to X2' and so on. From this we compose an interpolation function g(x), called a spline. 
by fitting these polynomials together into a single continuous curve passing through the 
data points, that is. 

Note that g(x) = qo(.\") when Xo ~ x ~ Xl' then g(x) = q1(X) when Xl ~ X ~ X2, and so 
on, according to our construction of g. 

Thus spline interpolation is piecewise polY1lomial intel]Jolatioll. 
The simplest q/ s would be linear polynomials. However. the curve of a piecewise linear 

continuous function has corners and would be of little interest in general-think of 
designing the body of a car or a ship. 

We shall consider cubic splines because these are the most important ones in 
applications. By definition, a cubic spline g(x) interpolating given data (xo, f 0), ... , 

(xn , fn) is a continuous function on the interval a = Xo ~ X ~ X." = b that has continuous 
first and second derivatives and satisfies the interpolation condition (2); furthermore, 
between adjacent nodes, g(x) is given by a polynomial %(x) of degree 3 or less. 

We claim that there is such a cubic spline. And if in addition to (2) we also require that 

(3) 

(given tangent directions of g(x) at the two endpoints of the interval a ~ X ~ b), then we 
have a uniquely detennined cubic spline. This is the content of the following existence 
and uniqueness theorem. whose proof will also suggest the actual determination of splines. 
(Condition (3) will be discussed after the proof.) 

Existence and Uniqueness of Cubic Splines 

Let (xo, f 0), (xt> f1)' .•• , (xn , f.,,) with arbitrarily spaced givell Xj [see (I)] and given 
fj = f(x),.i = 0, I, ... , Il. Let ko alld kn be allY given numbers. Then there is olle 
and only one cubic spline g(x) corresponding to (1) alld satisfying (2) and (3). 

PROOF By definition, on every subintervallj given by Xj ~ x ~ Xj+ 1 the spline g(x) must agree 
with a polynomial %lX) of degree not exceeding 3 such that 

(4) (j = 0, I, ... , 17 - I). 

For the derivatives we write 

(5) (j = 0, 1, ... , n - I) 

with ko and kn given and k1, ••• , kn - 1 to be detemllned later. Equations (4) and (5) are 
four conditions for each qj(x), By direct calculation, using the notation 

(6*) 
1 

(j = 0, 1, ... , Il - 1) 

we can verify that the unique cubic polynomial %(x) (j = 0, 1, ... , n - I) satisfying 
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(4) and (5) is 

%(X) = f(xj)c/(x - Xj+l)2[1 + 2clx - x)] 

(6) 
+ f(Xj+l)C/(X - X)2[1 - 2cj(x - Xj+l)] 

+ kjc/(x - Xj)(x - Xj+l)2 

+ kj +1 C/(X - X)2(X - Xj+l)' 

Differentiating twice, we obtain 

(8) 

By definition, g(x) has continuous second derivatives. This gives the conditions 

(j = I,' .. , 11 - I). 

If we use (8) withj replaced by j - I, and (7), these n - I equations become 

where ViJ = f(xj) - f(Xj-l) and Vfj+l = f(Xj+l) - f(xj) and j = 1,' .. , n - I, as 
before. This linear system of 11 - I equations has a unique solution k1 , ••• , kn - 1 since 
the coefficient matrix is strictly diagonally dominant (that is. in each row the (positive) 
diagonal entry is greater than the sum ofthe other (positive) entries). Hence the determinant 
of the matrix cannot be zero (as follows from Theorem 3 in Sec. 20.7), so that we may 
determine unique values k] • ... , kn - 1 of the first derivative of g(x) at the nodes. This 
proves the theorem. • 

Storage and Time Demands in solving (9) are modest. since the matrix of (9) is sparse 
(has few non7ero entries) and tridiagonal (may have nonzero entries only on the diagonal 
and on the two adjacent "parallels" above and below it). Pivoting (Sec. 7.3) is not necessary 
because of that dominance. This makes splines efficient in solving large problems with 
thousands of nodes or more. For some literature and some critical comments, see American 
Mathematical Monthly 105 (1998), 929-941. 

Condition (3) includes the clamped conditions 

(10) 

in which the tangent directions t' (xo) and t' (x,,) at the ends are given. Other conditions 
of practical interest are the free or natural conditions 

(11) 

(geometJically: zero curvature at the ends, as for the draftman's spline), giving a natural 
spline. These names are motivated by Fig. 290 in Problem Set 12.3. 
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Determination of Splines. Let ko and kn be given. Obtain kl' .... kn - l by solving the 
linear system (9). Recall that the spline g(x) to be found consists of n cubic polynomials 
qo, ... , qn-l' We write these polynomials in the form 

(12) 

where j = O •...• 11 - I. Using Taylor's formula. we obtain 

(13) 

ajO = q/x) = Ij 

ajl = q; (Xj) = kj 

by (2), 

by (5), 

by (7), 

with aj3 obtained by calculating q;'(Xj+l) from (12) and equating the result to (8), that is, 

and now subtracting from this 2aJ2 as given in (13) and simplifying. 

Note that for equidistant nodes of distance hj = h we can write cJ = C = 1111 in (6*) 
and have from (9) simply 

(14) (j = 1, ... , 11 - I). 

E X AMP L E 1 Spline Interpolation. Equidistant Nodes 

Interpolate f(x) = .,.4 on the interval -I :::;:: x :::;:: I by the cubic spline g( r) corresponding to the nodes 
Xo = -1. Xl = O. X2 = 1 and satisfying the clamped condition, g' (-1) = f' (- I), g '(1) = f' (I). 
Solution. In our ,tandard notation the given data are fo = f( - \) = 1. II = frO) = O. f2 = f( 1) = 1. 
We have h = 1 and 11 = 2, so that our spline consists of 11 = 2 polynomials 

qo(x) = 1I00 + lIOl(" + 1) + lI02(x + 1)2 + lI03(x + 1)3 (-\ :::;:: x:::;:: 0). 

ql(X) = 1I1O + 1Il1-~ + 1I12X2 + {/13 .. 3 (0 :::;:: x:::;:: I). 

We determine the kj from (14) (equidistance!) and then the coefficients of the spline from (13). Since 11 = 2, 
the sp,tem (14) is a ,ingle equation (with j = 1 and h = I) 

ko + 4kl + k2 = 3(f2 - fo)· 

Here fo = f2 = \ (the value of x4 at the ends) and ko = -4. k2 = 4. the value~ of the derivative 4\·3 at the 
end~ - I and 1. Hence 

-4 + 4kl + 4 = 3(1 - I) = 0, 

From (13) we can now obtain the coefficients of qo, namely, {loo = fo = 1, {lOI = ko = -4. and 
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3 1 
a02 = ]2 (h - Io) -1 (k1 + 2ko) = 3(0 - 1) - (0 - 8) = 5 

2 I 
a03 = 3(Io - h) + "2(kl + ko) = 2(1 - 0) + (0 - 4) = -2. 

I I 

Similarly, for the coefficients of qi we obtain from (13) the values 0lO = II = 0, all = kl = 0, and 

a12 = 3(I2 - h) - (k2 + 2k1) = 3(1 - 0) - (4 + 0) = -1 

a13 = 2(h - I2) + (k2 + k1) = 2(0 - I) + (4 + 0) = 2. 

This gives the polynomials of which the spline g(x) consists. namely, 

if -I ~x~O 

if O~x~l. 

Figure 433 shows .f(x) and this spline. Do you see that we could have saved over half of our work by using 
symmetry? • 

((x) 

x 

Fig. 433. Function fIx) = X4 and cubic spline g(x) in Example 1 

E X AMP L E 2 Natural Spline. Arbitrarily Spaced Nodes 

Find a spline approximation and a polynomial approximation for the curve of the cross section of the circular­
shaped Shrine of the Book in Jerusalem shown in Fig. 434. 

'" 

T: ~ • • 

;;; I Jl 
~ 

-3 -2 0 

Fig. 434. Shrine of the Book in Jerusalem (Architects F. Kissler and A. M. Bartus) 
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Solution. Thirteen points. about equally distributed along the contour (nut along the x-axis!), give these data: 

Xj 5.8 -5.0 -4.0 -2.5 -1.5 -0.8 0 0.8 1.5 2.5 4.0 5.0 5.8 

Ij 0 1.5 1.8 2.2 2.7 3.5 3.9 3.5 2.7 2.2 1.8 1.5 0 

The figure shows the conesponding interpolation polynomial of 12th degree, which is useless because of its 
oscillation. (Because of roundoff your software will also give you small enor terms involving odd powers of 
x.) The polynomial is 

P12(X) = 3.9000 - 0.65083 .. 2 + 0.033858x4 + 0.01l04lx6 
- 0.00I40I0x8 

+ 0.000055595x10 
- 0.00000071 867x12

. 

The spline follows practically the contour of the roof, with a small error near the nodes -O.li and 0.8. The spline 
is symmetric. Its six polynomials corresponding to positive x have the fullowing coefficieuts of their 
represeutations (12). (Note well that (12) is in terms of powers of x - Xj, uot x!) 

I 
j x-interval I 

0 0.0 ... 0.8 
1 0.8. .. 1.5 

2 [.5 .. .2.5 

3 2.5 .. .4.0 
4 4.0 ... 5.0 

5 5.0 ... 5.8 

- - ..... _ ..... _ ..... -. -- _ .... -. .. .... ~ 
1. WRITING PROJECT. Splines. In your own words, 

and using as few formulas as possible, write a short 
report on spline interpolation, its motivation, a 
comparison with polynomial interpolation, and its 
applications. 

2. (Individual polynomial qj) Show that qj(x) in (6) 
satisfies the interpolation condition (4) as well as the 
derivative condition (5). 

3. Verify the differentiations that give (7) and (8) from 
(6). 

4. (System for derivatives) Derive the basic linear 
system (9) for k1 , ... , kn - 1 as indicated in the text. 

5. (Equidistant nodes) Derive (14) from (9). 

6. (Coefficients) Give the details of the derivation of aj2 

and aj3 in (13). 

7. Verify the computations in Example I. 

8. (Comparison) Compare the spline g in Example I with 
the quadratic interpolation polynomial over the whole 
interval. Find the maximum deviations of g and P2 from 
f. Comment. 

9. (Natural spline condition) Using 
coefficients, verify that the spline in 
satisfies g"(x) = 0 at the ends. 

the given 
Example 2 

ajO 

3.9 
3.5 

2.7 

2.2 
1.8 
1.5 

ajl aj2 aj3 

0.00 -0.61 -0.015 
-1.01 -0.65 0.66 
-0.95 0.73 -0.27 

-0.32 -0.09[ 0.084 

-0.027 0.29 -0.56 
-1.13 -1.39 0.58 

110-161 DETERMINATION OF SPLINES 

Find the cubic spline g(x) for the given data with ko and kn 

as given. 

10. f( -2) = .f( -1) = f(1) = f(2) = O. f(O) = I. 
ko = k4 = 0 

11. If we started from the piecewise linear function in 
Fig. 435. we would obtain g(x) in Prob. 10 as the spline 
satisfying g' (-2) = f' (-2) = 0, g' (2) = f' (2) = O. 

Find and sketch or graph the corresponding 
interpolation polynomial of 4th degree and compare it 
with the spline. Comment. 

I 

~2_-&-----=--2 
------ 0 ----/ 

Fig. 435. Spline and interpolation 
polynomial in Problems 10 and 11 

x 

12. fo = f(O) 

h = f(6) 
1, fl = f(2) = 9, f2 = f(4) = 41, 
41, ko = 0, k3 = -12 
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13. fo = f(-I) = O. fl = f(O) = 4. f2 = f(1) = O. 
ko = 0, k2 = O. Is g(x) even? (Give reason.) 

14. fo = f(O) = o . .ft = fO) = L f2 = f(Z) = 6. 
f3 = f(3) = 10. ko = 0, k3 = 0 

15. fo = f(O) = \. fl = fO) = O. f2 = feZ) = -\. 

f3 = f(3) = 0.1..0 = O. k3 = -6 

16. It can happen that a spline is given by the same 
polynomial in two adjacent subintervals. To illustrate 
this, find the cubic spline g(x) for f(x) = sin x 
corresponding to the partition Xo = -7TI1. Xl = 0, 
X2 = 7T/2 of the interval -7T/Z ~ x ~ 7T/Z and 
satisfying g'(-7T/Z) = f'(-7T/2) and 
g'(7T/Z) = f'(7T/2). 

17. (Natural conditions) Explain the remark after (II). 

18. CAS EXPERIMENT. Spline versus Polynomial. [f 
your CAS gives natural splines, find the natural splines 
when x is integer from -111 to Ill, and yeO) = I and all 
other y equal to O. Graph each such spline along with 
the interpolation polynomial P2m' Do this for 111 = Z to 
10 (or more). What happens with increasing 111? 

19. If a cubic spline is three times continuously differentiable 
(that is, it has continuous first, second. and third 
derivatives). show that it must be a single polynomial. 

20. TEAM PROJECT. Hermite Interpolation and 
Bezier Curves. In Hermite interpolation we are 
looking for a polynomial p(x) (of degree ZI1 + I or less) 
such that p(x) and its derivative p' (x) have given values 
at 11 + I nodes. (More generally, p(x). p' (x), p"(xJ, ... 

may be required to have given values at the nodes.) 

(a) Curves with given endpoints and tangents. Let 
C be a curve in the x),-plane parametrically represented 
by ret) = [x(t), y(t)], 0 ~ t ~ I (see Sec. 9.5). Show 
that for given initial and terminal points of a curve and 
given initial and terminal tangents. say, 

A: ro = [x(O). yeo)] 

[xo, Yo]. 

8: r 1 [x(l). y(J)] 

[Xl' yd 

Vo = [x'(O), ),'(0)] 

[x~, y~]. 

VI [x'(I), y'(I)] 

[x~. y;] 

we can find a curve C, namely, 

reT) = ro + vot 

(15) + (3(r1 ro) - (ZVo + vtl)t2 

+ (Z(ro - r 1 ) + Vo + V 1 )t3 ; 

in components. 

\"(t) = Xo + X~f + (3(Xl - xo) - (2x~ -t- X;»f2 

+ (2(xo - Xl) + X~ + X;)t
3 

y(t) = Yo + Y~f + (3(Yl - l'O) - (2y~ + y;»t2 

+ (2(yo - YI) + y~ + y;)£3. 

Note that this is a cubic Hennite interpolation 
polynomiaL and 11 = I because we have two nodes (the 
endpoints of C). (This has nothing to do with the 
Hermite polynomials in Sec. 5.S.) The two points 

= [xo + x~. Yo + Y~] 
and 

= [Xl - x;, YI - Y;] 

are called guidepoints because the segments AGA and 
BGB specify the tangents graphically. A, 8, GA , GB 

determine C. and C can be changed quickly by moving 
the points. A curve consisting of such Hemlite 
interpolation polynomials is called a Bezier curve. 
after the French engineer P. Bezier of the Renault 
Automobile Company. who introduced them in the 
early 1960s in designing car bodies. Bezier curves (and 
surfaces) are used in computer-aided design (CAD) and 
computer-aided manufacturing (CAM). (For more 
detaib, ~t!e Ref. [E21] in App. \.) 

(b) Find and graph the Bezier curve and its 
guidepoints if A: [0, 0]. 8: [I, 0], Vo = [i, n 
VI = [-i, -!vi3]. 
(c) Changing guidepoints changes C. Moving 
guide points farther away makes C "staying near the 
tangents for a longer time." Confirm this by changing 
Vo and VI in (b) to Zvo and 2Vl (see Fig. 436). 

(d) Make experiments of your own. What happens if 
you change VI in (b) to -VI' If you rotate the tangents? 
If you multiply Vo and VI by positive factors less 
than I? 

B x 

Fig. 436. Team Project 20(b) and (c): Bezier curves 
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19.5 Numeric Integration and Differentiation 
Numeric integration mean<; the numeric evaluation of integrals 

b 

J = I f(x) dx 
a 

where a and b are given and f is a function given analytically by a formula or empirically by 
a table of values. Geometrically, J is the area under the curve of f between a and b (Fig. 437). 

We know that if f is such that we can find a differentiable function F whose derivative 
is f. then we can evaluate J by applying the familiar formula 

b 

J = I f(x) dx = F(h) - F(a) 
a 

[F' (x) = f(x)j. 

Tables of integrals or a CAS (Mathematica. Maple, etc.) may be helpful for this purpose. 
However, applications often lead to integrals whose analytic evaluation would be very 

difficult or even impossible, or whose integrand is an empirical function given by recorded 
numeric values. Then we may obtain approximate numeric values of the integral by a 
numeric integration method. 

Rectangular Rule. Trapezoidal Rule 
Numeric integration methods are obtained by approximating the integrand f by functions 
that can easily be integrated. 

The simplest formula. the rectangular rule. is obtained if we subdivide the interval of 
integration a;:::; x;:::; b into /l subintervals of equal length II = (b - a)//l and in each subinterval 
approximate f by the constant f(x/), the value of f at the midpoint x/ of the jth subinterval 
(Fig. 438). Then f is approximated by a step function (piecewise constant function). the 11 

rectangles in Fig. 438 have the areas f('\·I*)I1 • ... , f(xn*)I1, and the rectangular rule is 

(1) 
b 

J = I f(x)dx = h[f(Xl*) + f(X2*) + ... + f(xn*)] ( b-ll) /7=--- . 
n a 

The trapezoidal rule is generally more accurate. We obtain it if we take the same 
subdivision as before and approximate f by a broken line of segments (chords) with 
endpoints [a, f(a)], [Xl> f(Xl)], ... , [b, feb)] on the curve of f (Fig. 439). Then the area 
under the curve of f between a and b is approximated by n trapezoids of areas 

Mf(a) + f(Xl)]h, ![f(Xl) + f(X2)]h, ![f(Xn-l) + f(b)]h. 

y y 

y={(x) r/oK ~ 

R 11 '" ) 
I I I a b X 

Fig. 437. Geometric interpretation a xt X· X * b x 
2 n 

of a definite integral Fig. 438. Rectangular rule 
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y 

!~~ ) 
'I 00 o( 

x 

Fig. 439. Trapezoidal rule 

By taking their slim we obtain the trapezoidal rule 

b 

(2) ] = I lex) dx = h[!l(a) + f(X1) + f(X2) + ... + f(Xn-l) + !f(b)] 
a 

where h = (b - a)/n, as in (1). The x/s and a and b are called nodes. 

E X AMP L E 1 Trapezoidal Rule 
1 

Evaluate J = f e -:? dx by means of (2) with 11 = 10. 
o 

Solution. J = 0.1(0.5·1.367879 + 6.778167) = 0.746211 from Table 19.3. 

Table 19.3 Computations in Example 1 

j Xj X/ 
0 0 0 1.000000 

0.1 0.01 
2 0.2 0.04 

3 0.3 0.09 
4 0.4 0.16 

5 0.5 0.25 

6 0.6 0.36 

7 0.7 0.49 
8 0.8 0.64 

9 0.9 0.81 
10 1.0 1.00 0.367879 

Sums 1.367879 

Error Bounds and Estimate for the Trapezoidal Rule 

• 

An error estimate for the trapezoidal rule can be derived from (5) in Sec. 19.3 with 
n = 1 by integration as follows. For a single subinterval we have 

f'(t) 
f(x) - P1(X) = (x - Xo)(X - Xl) --

2 
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with a suitable t depending on x, between Xo and Xl. Integration over X from a = Xo to 
Xl = Xo + h gives 

xo+h Iz xo+h f"(t(x» J f(x) dx - - [fCyo) + f(XI)] = J (y - xo)(x - Xo - II) dx. 
~ 2 ~ 2 

Setting X - Xo = v and applying the mean value theorem of integral calculus, which we 
can use because (x - xo)(x - Xo - h) does not change sign, we find that the right side 
equals 

(3*) 
h {'Ci) ( h3 h3

) f"Ci) h3
" _ f v(v - III dv -- = - - - -- = - - f (t) 

o 2 3 2 2 12 

where t is a (suitable, unknown) value between Xo and Xl. This is the error for the 
trapezoidal rule with n = 1, often called the local error. 

Hence the error E of (2) with any n is the sum of such contributions from the 
n subintervals; since /z = (b - a)/n. nh3 = neb - a)3/1l3• and (b - a)2 = n2/z2• we obtain 

(3) 
(b - a)3 II ~ (b - a) 2 II ~ 

E=- 12n2 fU)=- 12 hf(t) 

with (suitable, unknown) i between a and b. 
Because of (3) the trapezoidal rule (2) is also written 

Jb [1 1 ] b - a 2" ~ (2*) 1 = f(x) dx = /z "2f(a) + f(XI) + ... + f(Xn-I) + "2f(b) - -- h f (t). 
a 12 

Error Bounds are now obtained by taking the largest value for f", say, M 2 , and the 
smallest value, M 2 *. in the interval of integration. Then (3) gives (note that K is negative) 

(4) where 
(b - a)3 

K = - ---=--
12n2 

Error Estimation by Halving h is advisable if h" is very complicated or unknown, 
for instance, in the case of experimental data. Then we may apply the Error Principle 
of Sec. 19.1. That is, we calculate by (2), first with h. obtaining, say, 1 = 1h + Eh, and 
then with ~/z, obtaining 1 = h/2 + Eh/2. Now if we replace /z2 in (3) with (~h)2, the error 
is multiplied by 1/4. Hence Eh/2 = iEh (not exactly because i may differ). Together, 
1h/2 + Eh/2 = 1h + Eh = 1h + 4Eh/2. Thus 1h/2 - 1h = (4 - l)Eh/2. Division by 3 
gives the error formula for 1h/2 

(5) 

E X AMP L E 2 Error Estimation for the Trapezoidal Rule by (4) and (5) 

Estimate the error of the approximate value in Example I by (4) and (5). 

Solution. (A) Error boullds by (4). By differentiation, f"(x) = 2(2x2 - l)e-x2
. Also, {"(x) > 0 if 

o < x < 1, so that the minimum and maximum occur at the ends of the interval. We compute 



820 CHAP. 19 Numerics in General 

M2 = f"(I) = 0.735759 and M2* = ('(0) = -2. Furthenl1ore. K = -1/1200. and (4) gives 

-0.000 614 ~ E ~ 0.001 (,67. 

Hence the exact value of 1 must lie between 

0.74(,211 - 0.000 fil4 = 0.745597 and 0.74(, 21 1 + 0.001 6(,7 = 0.747 87R. 

Actually, 1 = 0.746 824, exact 10 60, 
(8) Error estimate by (5). lh = 0,746211 in Example I. Also. 

lh/2 = 0,05 [~ e -cil2ol' + + (1 + 0.367R79)] = 0,74(,671. 
J~l 

Hence Eh/2 = l(Jh/2 - 1,,) = 0,000153 and lh/2 + E"/2 = 0,746824. exact (0 60, • 
Simpson's Rule of Integration 
Piecewise constant approximation of f led to the rectangular rule (I), piecewise linear 
approximation to the trapezoidal rule (2), and piecewise quadratic approximation will lead 
to Simpson's rule. which is of great practical importance because it is sufficiently accurate 
for most problems, but still sufficiently simple. 

To derive Simpson's rule, we divide the interval of integration a 2 x 2 b into an even 

Ilumber of equal subintervals. say, into 11 = 2m subintervals of length h = (b - a)/(2m), 

with endpoints Xo (= a), Xl, ... , X2m-1' X2m (= b); see Fig. 440. We now take the first 
two subintervals and approximate f(x) in the interval Xo 2 X 2 X2 = Xo + 211 by the 
Lagrange polynomial P2(X) through (xo, fo). (XIo f1), (X2, f2), where f j = f(xj). From (3) 
in Sec. 19.3 we obtain 

The denominators in (6) are 2h2, -112, and 2172, respectively. Setting s = (x - x1)111, we 
have 

X - Xl = sl1, X - Xo = x - (Xl - h) = (s + l}h 

X - X2 = X - (Xl + 11) = (s - 1)17 

and we obtain 

P2(X) = !s(s - l)fo - (s + 1)(S - l)f1 + !(S + l)sf2' 

y r; First parabola 
_ ,./'' Second parabola 

-J -...:.: 

rl~ ~ Lo'T~" 
r I .. I~Y, 

I I I 
x 

Fig. 440. Simpson's rule 
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We now integrate with respect to x from Xo to X2' This corresponds to integrating with 
respect to s from -1 to 1. Since dx = h ds, the result is 

(7*) 
X2 ""2 ( 1 4 I) J f(x) dx = J P2(X) dx = h - fo + - f1 + "3 f2 . 

Xv Xv 3 3 

A similar formula holds for the next two subintervals from X2 to -'"4, and so on. By summing 
all these 111 formulas we obtain Simpson's rule4 

(7) 
b h I f(x) dx = - (fo + 4f1 + 2f2 + 4f3 + ... + 2f2m-2 + 4f2m-1 + f2m), 

a 3 

where h = (b - a)/(211l) and fj = f(xj)' Table 19.4 shows an algorithm for Simpson's 
rule. 

Table 19.4 Simpson's Rule of Integration 

ALGORITHM SIMPSON (a, b, 111, fo, f1, ... , f2m) 

This algorithm computes the integral j = Jgf(x) dx from given values fj = f(xj) at 
equidistant Xo = {/, Xl = Xo + h . .... X2m = Xo + 2mh = b by Simpson's rule (7). 
where h = (b - a)/(2m). 

INPUT: a, b, 111. fo • ... , f2m 

OUTPUT: Approximate value J of j 

Compute So = fo + f2m 

S2 = f2 + f4 + ... + f2m-2 

h = (b - a)/2111 

_ h 
j = - (so + 4s1 + 2s2 ) 

3 

OUTPUT J Stop. 

End SIMPSON 

Error of Simpson's Rule (7). If the fourth derivative t<4) exists and is continuous on 
a ::::; x ::::; b, the error of (7), call it ES' is 

(8) 
(b - a)5 (4) At _ 

ES = - 180(2171)4 f ()-
_(b_-_G_J h4f(4)(i)' 

180 ' 

~HOMAS SIMPSON (1710-1761), self-taught English mathematician. author of several popular textbooks. 
Simpson's rule was used much earlier by Torricelli, Gregory (in 1668), and Newton (in 1676). 
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here t is a suitable unknown value between a and b. This is obtained similarly to (3). With 
this we may also write Simpson's rule (7) as 

(7**) 

Error Bounds. By taking for t<4) ill (8) the maximum M4 and minimum M4 * on the 
interval of integration we obtain from (8) the error bounds (note that C is negative) 

(9) where 
(b - a)5 

C = - ----:-
180(2m)4 

Degree of Precision (DP) of an integration f0I111ula. This is the maximum degree of 
arbitrary polynomials for which the formula gives exact values of integrals over any 
intervals. 

Hence for the trapezoidal rule, 

DP = I 

because we approximate the curve of f by portions of straight lines (linear polynomials). 
For Simpson's rule we might expect DP = 2 (why?). Actually, 

DP = 3 

by (9) because /4) is identically zero for a cubic polynomiaL This makes Simpson's nile 
sufficiently accurate for most practical problems and accounts for its popUlarity. 

Numeric Stability with respect to rounding is another impOltant property of Simpson'~ 
nile. Indeed, for the sum of the roundoff errors Ej of the 2m + I values f j in (7) we obtain. 
since Iz = (b - a)12111, 

h (b - a) 
-3 lEo + 4El + ... + E21111 ~ 6111u = (b - a)u 

3·2m 

where u is the rounding unit (u = ~. 10-6 if we round off to 6D; see Sec. 19.1). Also 
6 = I + 4 + I is the sum of the coefficients for a pair of intervals in (7); take 111 = I in 
(7) to see this. The bound (b - (I) u is independent of Ill, so that it cannot increase with 
increasing 11l, that is, with decreasing h. This proves stability. • 

Newton-Cotes Formulas. We mention that the trapezoidal and Simpson rules are 
special closed Newton-Cafes formulas, that is, integration formulas in which f(x) is 
interpolated at equalIy spaced nodes by a polynomial of degree n (n = I for trapezoidal, 
Il = 2 for Simpson), and closed means that a and b are nodes (a = .ro, b = xn). Il = 3 
(the three-eighths nile; Review Prob. 33) and a higher n are used occasionally. From 
n = 8 on, some of the coefficients become negative, so that a positive f· could make a 
~egative contribution to an integral, which is absurd. For more on this topi~ see Ref. [E25] 
m App. I. 
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E X AMP L E 3 Simpson's Rule. Error Estimate 
1 

Evalume J = f e -:i'- dx by Simpson's rule with 2m = 10 and estimate the error. 
o 

Solution. Since h = 0.1, Table 19.5 give, 

0.1 
J = 3 (1.367879 + 4· 3.740 266 + 2· 3.037 901) = 0.746825. 

823 

Estimate of error. Differentiation gives ( 4 )(x) = 4(4 .. 4 
- 121.2 + 3)e-:i'-. By considering the derivative /5) 

of /4) we find that the largest value of /4) in the interval of integration occurs at 0 and the smallest value at 
r'" = (2.5 - 0.5"\' loiJ2. Computation gives the values M4 = /4)(0) = 12 and 1114* = /4)(x*) = -7.419. 
Since 2m = 10 and b - a = I, we obtain C = - 111 800 000 = -0.000 000 56. Therefore. from (9). 

-0.000 007 ~ ES ~ 0.000 005. 

Hence J must lie between 0.746825 - 0.000 007 = 0.746818 and 0.746825 + 0.000005 = 0.746830, 
so that at least four digits of our approximate value are exact. Actually. the value 0.746825 is exact to 5D because 
J = 0.746824 (exact to 6D). 

Thus our result is much better than that in Example 1 obtained by the trapeLOidal rule. whereas the number 
of operations is nearly the same in both cases. • 

Table 19.5 Computations in Example 3 

j Xj xl e-Xj 
2 

0 0 0 1.000000 

0.1 0.01 0.990050 

2 0.2 0.04 0.960789 

3 0.3 0.09 0.913931 

4 0.4 0.16 0.852144 

5 0.5 0.25 0.778801 

6 0.6 0.36 0.697676 

7 0.7 0.49 0.612626 

8 0.8 0.64 0.527 292 

9 0.9 0.81 0.444 858 
[0 1.0 1.00 0.367879 

Sums 1.367879 3.74U 266 3.037 YUl 

Instead of picking an n = 2m and then estimating the error by (9), as in Example 3, it is 
better to require an accuracy (e.g., 6D) and then determine 11 = 2111 from (9). 

E X AMP L E 4 Determination of n = 2m in Simpson's Rule from the Required Accuracy 

What II should we choose in Example 3 to get 6D-accuracy? 

Solution. Using M4 = 12 (which i, bigger in absolute value than M4*). we get from (9), with b - a = 1 
and the required accuracy. 

[ 
2'106'12 J1I4 

m = 4 = 9.55. 
180·2 

thus 

Hence we should choose 11 = 2111 = 20. Do the computation, which paralleb that in Example 3. 
Note that the error bounds in (4) or (9) may sometimes be loose, so that in such a case a smaller 11 = 2m 

may already suffice. • 
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Error Estimation for Simpson's Rule by Halving h. The idea is the same as in (5) 
and gives 

(10) 

lit is obtained by using hand lh/2 by using ~h. and Eh/2 is the error of l h12. 

Derivati()n. In (5) we had ~ as the reciprocal of 3 = 4 - I and ~ = (~)2 resulted from 
1z2 in (3) by replacing II with ~h. In (0) we have l~ as the reciprocal of 15 = 16 - 1 and 
{6 = (~)4 results from /14 in (8) by replacing h with ~II. 

E X AMP L E 5 Error Estimation for Simpson's Rule by Halving 

Integrate flX) = l'1TX4 coslm- from 0 to 2 with" = I and apply (10). 

Solution. The exact 5D-value of the integral is 1 = 1.25953. Simp,on's rule gives 

h = Hf(O} + 4f(l) + f(2)] = l(O + 4· 0.555360 + 0) = 0.740480. 

11</2 = i [.f(0) + 4.f( +) + 2.f(l) + 4J (%) + .f(2)] 
I 

= "6 LO + 4' 0.045351 + 2 ·0.555361 + 4· 1.521579 + 0] = 1.21974. 

Hence (10) gives e1>/2 = if;(1.21974 - 0.74048) = 0.032617 and thus 1 = 1h/2 + E1</2 = 1.26236. with an 
error -0.00283. which is less in absolute value than to of the error 0.02979 of 1,,/2' Hence the use of (10) was 
well worthwhile. • 

Adaptive Integration 
The idea is to adapt step h to the variability of f(x). That is, where f varies but little, we 
can proceed in large steps without causing a substantial error in the integraL but where .f 
varies rapidly, we have to take small steps in order to stay everywhere close enough to 
the curve of f. 

Changing h is done systematically, usually by halving 11, and automatically (not "by 
hand"') depending on the size of the (estimated) error over a subinterval. The subinterval 
is halved if the cOlTesponding error is still too large, that is, larger than a given tolerance 
TOL (maximum admissible absolute en-or), or is not halved if the error is less than or 
equal to TOL. 

Adapting is one of the techniques typical of modern software. In connection with 
integration it can be applied to various methods. We explain it here for Simpson's rule. 
In Table 19.6 a star means that for that subinterval, TOL has been reached. 

E X AMP L E 6 Adaptive Integration with Simpson's Rule 

Integrate J(x) = l'1Tv4 cos l'1TX from x = 0 to 2 by adaptive integration and with Simpson's rule and 
TOLfO. 2J = 0.0002. 

Solutioll. Table 19.6 shows the calculations. Figure 441 show, the integrand ffx) and the adapted intervals 
used. The first two intervals ([0. 0.5], [0.5, 1.0j) have length 0.5. hence h = 0.25 [because we use 2111 = 2 
subintervals in Simpson's rule (7**)1· The next two interval~ ([1.00. 1.25 J. [1.25. 1.50]) have length 0.25 (hence 
h = 0.125) and the la~t four intervals have length 0.125. Sample computatio"s. For 0.7-10480 ~ee Example 5. 
Formula (10) gives (0.123716 - 0.122794)115 = 0.000061. Note that 0.123716 refers to [0. 0.5] and [0.5. 11. 
so that we must subtract the value conesponding to [0, I] in the line before. Etc. TOL[O, 2] = 0.0002 gives 
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0.0001 for subintervals oflength 1,0.00005 for length 0.5. etc. The value of the integral obtained is the sum of 
the values marked by an asterisk (for which the error estimate has become less than TaL). This gives 

J = 0.123716 + 0.52~8l)5 + 0.388263 + 0.218483 = 1.25936. 

The exact 5D-value is J = 1.25953. Hence the error is 0.00017. This is about 11200 of the absolute value of 
that in Example 5. Our more extensive computation has produced a much better result. • 

Table 19.6 Computations in Example 6 

Interval 

[0,2] 

[0. 11 
[1, 2] 

[U.O, 0.5] 

[0.5, 1.0] 

[1.0. 1.5] 

[1.5, 2.0] 

[1.UU, 1.25] 

l1.25. 1.50) 

[1.50. 1.75] 

[1.75, 2.00] 

[1.500, 1.625] 

[1.625, 1.750] 

-

[1.750. 1.875] 

[1.875, 2.000] 

Integral 

0.740480 

0.122794 

1.10695 

Sum = 1.22974 

0.UU4782 

0.118934 

Sum = 0.123716* 

0.528176 

0.605821 

Sum = 1.13300 

0.200544 

0.328351 

Sum = 0.528895* 

0.388235 

0.218457 

Sum = 0.606692 

0.1%244 

0.192019 

Sum = 0.388263* 

0.153405 

0.065078 

Sum = 0.218483* 

{(xl 

1.5 

1.0 

0.5 

o o 0.5 

Error (10) TOL 

0.0002 

0.032617 0.0002 

0.000061 0.0001 

0.001803 0.0001 

0.000041< 0.00005 

0.000058 0.00005 

0.000002 0.000025 

0.000002 0.000025 

x 

Fig. 441. Adaptive integration in Example 6 

Comment 

Divide fut1her 

TOL reached 

Divide further 

TOL reached 

Divide further 

TOL reached 

TOL reached 



826 CHAP. 19 Numerics in General 

Gauss Integration Formulas 
Maximum Degree of Precision 
Our integration fonnulas discussed so far use function values at predetermined 
(equidistant) x-values (nodes) and give exact results for polynomials not exceeding a 
certain degree [called the degree of precision; see after (9)]. But we can get much more 
accurate integration formulas as follows. We set 

(11) 
1 n I f(t) dt = ~ AJfj 
-1 j~l 

with fixed 11, and t = ± I obtained from x = a, b by setting x = H aCt - I) + bet + 1)]. 
Then we detennine the 11 coefficients AI' ... , AT! and 11 nodes t l •••• , tn so that (II) 
gives exact results for polynomials of degree k as high as possible. Since 11 + 11 = 211 is 
the number of coefficients of a polynomial of degree 211 - 1, it follows that k ~ 2n - I. 

Gauss has shown that exactne!>s for polynomials of degree not exceeding 2n - 1 (instead 
of n - I for predetermined nodes) can be attained, and he has given the location of the 
tj (= the jth zero of the Legendre polynomial P n in Sec. 5.3) and the coefficients Aj which 
depend on 11 but not on f(t), and are obtained by using Lagrange' s interpolation polynomial, 
as shown in Ref. [E5] listed in App. I. With these tj and Aj , formula (11) is called a Gauss 
integration formula or Gauss quadrature formllla. Its degree of precision is 211 - I, as 
just explained. Table 19.7 gives the values needed for n = 2 .... , 5. (For larger 11. see 
pp. 916-919 of Ref. [GRI] in App. 1.) 

Table 19.7 Gauss Integration: Nodes tj and Coefficients Aj 

n Nodes Ij Coefficients Aj Degree of Precision 

-0.57735 02692 1 
3 2 

0.57735 02692 1 

-0.7745966692 0.55555 55556 
3 0 0.88888 88889 5 

0.7745966692 0.55555 55556 

-0.8611303116 0.3478548451 
-0.33998 10436 0.6521451549 

4 7 
0.33998 10436 0.6521-l 51549 
0.8611363116 0.34785 4845 I 

-0.90617 98459 0.23692 68851 
-0.5384693101 0.47862 86705 

5 0 0.56888 88889 9 
0.5384693101 0.47862 86705 
0.9061798459 0.23692 6885 I 

E X AMP L E 7 Gauss Integration Formula with n = 3 

Evaluate the mtegral in Example 3 by the Gauss integration formula (I I) with /I = 3. 

Solutio'!.." 1 w~ have to c~nvert our integral from 0 to I into an integral from -\ to I. We set r = !U + I). 
Then dx - 2 dr, and (I I) WIth /I ~ 3 and the above values of the nodes and the coefficients yields 
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f~Xp(_X2)dX = ~ { exp (- ± (I + 1)2) dl 

o -1 

= ~[%exp(-±(I - /fr) + %exp(-~) + %exP(-±(1 + Hf)] =0.746815 

(exact to liD: 0.746 825), which is almost as accurate as the Simpson result obtained in Example 3 with a much 
larger number of arithmetic operations. With 3 function values (as in this example) and Simpson's rule we would 
get ~(l + 4e-O

.
25 + e -1) = 0.747 180. with an error over 30 times that of the Gauss integration. • 

E X AMP L E 8 Gauss Integration Formula with n = 4 and 5 

Integrate f(x) = !7TX4 cos !7TX from x = 0 to 2 by Gau". Compare with the adaptive integration in Example 6 
and comment. 

Solutioll. x = 1 + 1 gives f(t) = !7T(t + 1)4 cos (!7T(t + 1». as needed in (11). For 11 = 4 we calculate (6S) 

J = Ad1 + ... + A4f4 = A 1{f1 + f4) + A2(f2 + i3) 

= 0.347855(0.000290309 + 1.02570) + 0.652145(0.129464 + 1.25459) = 1.25950. 

The error is 0.00003 because J = 1.25953 (6S). Calculating with lOS and 11 = 4 gives the same result; so the 
error is due to the formula. not rounding. For Il = 5 and lOS we get J = 1.25952 6185, too large by the amount 
0.000000250 because J = 1.259525935 (lOS). The accuracy is impressive. particularly if we compare the 
dmount of work with that in Example 6. • 

Gauss integration is of considerable practical importance. Whenever the integrand f is 
given by a formula (not just by a table of numbers) or when experimental measurements 
can be set at times tj (or whatever t represents) shown in Table 19.7 or in Ref. [GRl], 
then the great accuracy of Gauss integration outweighs the disadvantage of the complicated 
tj and Aj (which may have to be stored). Also, Gauss coefficients Aj are positive for all 
n, in contrast with some of the Newton-Cotes coefficients for larger 11. 

Of course, there are frequent applications with equally spaced nodes, so that Gauss 
integration does not apply (or has no great advantage if one first has to get the tj in (11) 
by interpolation). 

Since the endpoints -1 and 1 of the interval of integration in ell) are not zeros of P n' 

they do not occur among to, ... , tn. and the Gauss fonnula (11) is called. therefore, an 
open formula, in contrast with a closed formula, in which the endpoints of the interval 
of integration are to and tn- [For example. (2) and (7) are closed formulas.] 

Numeric Differentiation 
Numeric differentiation is the computation of values of the derivative of a function f 
from given values of f. Numeric differentiation should be avoided whenever possible, 
because, whereas integration is a smoothing process and is not affected much by small 
inaccuracies in function values, differentiation tends to make matters rough and generally 
gives values of f' much le~s accurate than those of f-remember that the derivative is 
the limit of the difference quotient. and in the latter you u!>ually have a small difference 
oflarge quantities that you then divide by a small quantity. However, the formulas to be 
obtained will be basic in the numeric solution of differential equations. 

We use the notations fi = t' (x), f;' = f"exj), etc., and may obtain rough approximation 
formulas for derivatives by remembering that 

t' (x) = lim f(x + 11) - f(x) 
h~O h 

This suggests 
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(12) t' - 8f1/2 
1/2 - h 

Similarly, for the second derivative we obtain 

(13) 

fl - fo 

h 

etc. 

More accurate approximations are obtained b) differentiating suitable Lagrange 
polynomials. Differentiating (6) and remembering that the denominators in (6) are 2h2, 
-h2

, 2h2
, we have 

Evaluating this at Xo, Xl> X2, we obtain the "three-point formula,," 

f~ = 
I 

(a) 211 (-3fo + 4f1 - f2), 

f~ = 
I 

(14) (b) 2h (-fo + f2)' 

(c) 
, 1 

f2 = - (fo - 4fI + 3f2)' 
21z 

Applying the same idea to the Lagrange polynomial P4(X), we obtain similar formulas, 
in particular. 

(15) 

Some examples and further formulas are included in the problem set as well as in 
Ref. [E5] listed in App. I. 

1. (Rectangular rule) Evaluate the integral in Example 
I by the rectangular rule (1) with a subinterval of length 
0.1. 

2. Derive a formula for lower and upper bounds for the 
rectangular rule and apply it to Prob. I. 

!3-8! TRAPEZOIDAL AND SIMPSON'S RULES 

Evaluate the integrals numelically as indicated and 
determine the error by using an integration formula known 
from calculus. 

Jx dx* IX dx* 
F(x) = - . G(x) 2 

1 x* 0 cos x* ' 

H(x) = 1~\:*e-~* dx* 
o 

3. F(2l by (2). Il = 10 

4. F(2) by (7), n = [0 

5. Gn) by (2).11 = 10 

6. G(I) by (7),11 = 10 

7. H(4) by (2), Il 10 

8. H(4) by (7), Il = 10 

!9-121 HALVING 

Estimate the error by halving. 

9. In Prob. 5 

10. In Prob. 6 

11. In Prob. 7 

12. In Prob. 8 
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113-191 NON ELEMENTARY INTEGRALS 

The following integrals cannot be evaluated by the usual 
methods of calculus. Evaluate them as indicated. 

Ix sinx* 
Si(x) = --. - dx~'. 

o x~ 

Sex) = {'Sin (X*2) dx*. C(x) = {"cos (X*2) dx* 
o 0 

Si(x) is the sine integral. S(x) and C(x) are the Fresnel 
integrals. (See App. 3.1.) 

13. SiO) by en. II = 5. II = 10 

14. Using the values in Prob. 13. obtain a better value for 
Si(l). Hint. Use (5). 

15. Si(l) by (7), 2111 = 2. 2m = 4 

16. Obtain a better value in Prob. 15. Hint. Use (10). 

17. Si(l) by (7). 2m = 10 

18. S(1.25) by (7). 2111 = 10 

19. C( 1.25) by (7). 2111 = 10 

20. (Stability) Prove that the trapezoidal rule is stable with 
respect to rounding. 

121-241 GAUSS INTEGRATION 
Integrate by (11) with II = 5: 

21. IIx from I to 3 

22. co~ x from 0 to!7T 

23. e-x" from 0 to I 

24. sin <x2
) from 0 to 1.25 

25. (Given TOL) Find the smallest 11 in computing the 
integral of 1Ix from I to 2 for which 50-accuracy is 
guaranteed (a) by (4) in the use of (2). (b) by (9) in the 
use of (7). Compare and comment. 

26. TEAM PROJECT. Romberg Integration (W. 
Romberg. Norske Videllskab. Trolldheil11, FfJrh. 28, 

Nr. 7, 1955). This method uses the trapezoidal rule and 
gains precision stepwise by halving h and adding an 
error estimate. Do this for the integral of f(x) = e-X 

ti'om x = 0 to x = 2 with TOL = 10-3 , as follows. 

Step 1. Apply the trapezoidal rule (2) with h = 2 
(hence n = I) to get an approximation In. Halve II and 
use (2) to gel 121 and an error estimate 

1 
E21 = 22 _ I (121 - 1u)· 

If IE211 ~ TOL, stop. The result is 122 = 121 + E21' 

Step 2. Show that E21 = -0.066596, hence 
1"211 > TOL and go on. Use (2) with hl4 to get 131 and 
add to it the error estimate 1"31 = i(131 - 1 21 ) to get 
the better 132 = 131 + 1"31- Calculate 

I I 
E32 = 24 _ I (132 - 1 22) = 15 (132 - 1 22), 

829 

If IE3d ~ TOL, stop. The result is is3 = 132 + E32. 

(Why does 24 = 16 come in?) Show that we obtain 
1"32 = -0.000266, so that we can stop. Arrange your 
1- and E-values in a kind of "difference table." 

If IE3d were greater than TOL, you would have [0 

go on and calculate in the next step 141 from (1) with 
h = ~: then 

I 
142 = 141 + E41 with 1"41 = "3 (141 - 1 31) 

I 
143 = 142 + 1"42 with q2 = 15 (142 - 1 32) 

I 
144 = 143 + E43 with E43 = 63 (J43 - is3) 

where 63 = 26 
- 1. (How does this come in?) 

Apply the Romberg method to the integral of 
f( 1:) = ~7TX4 cos !7TX from x = 0 to 2 with TOL = 10-4

. 

DIFFERENTIATION 

27. Consider f(x) = X4 for Xo = 0, Xl = 0.2, X2 = 0.4, 
X3 = 0.6, X4 = 0.8. Calculate f~ from (14a), (14b), 
(14c), (15). Determine the errors. Compare and 
comment. 

28. A "four-point formula" for the derivative is 

Apply it to f(x) = X4 with Xl' ... , X4 as in Prob. 27, 
determine the error. and compare it with that in the case 
of (15). 

29. The derivative f' (x) can also be approximated in terms 
of first-order and higher order differences (see 
Sec. 19.3): 

I 3 1 4 ) + "3 .1. fo - 4" ...\ fo + - . .. . 

Compute t' (0.4) in Prob. 27 from this fOlmula usino 
differences up to and including first order, ~econd 
order, third order, fourth order. 

30. Derive the formula in Prob. 29 from (14) in Sec. 19.3. 
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: ::&W :::. ... ==::== S T ION SAN D PRO B L EMS 

1. What is a numeric method? How has the computer 
influenced numeric methods? 

2. What is floating-point representation of nwnbers? 
Overflow and underflow? 

3. How do error and relative enor behave under addition? 
Under multiplication? 

4. Why are roundoff errors important? State the rounding 
rules. 

5. What is an algorithm"! Which of its properties are 
important in software implementation? 

6. Why is the selection of a good method at least as 
important on a large computer as it is on a small one? 

7. Explain methods for solving equations, in particular 
fixed-point iteration and its convergence. 

8. Can the Newton (-Raphson) method diverge? Is it fast? 
Same questions for the bisection method. 

9. What is the advamage of Newton's interpolation 
formulas over Lagrange's? 

10. What do you remember about errors in polynomial 
imerpolation? 

11. What is spline interpolation? Tts advantage over 
polynomial interpolation? 

12. List and compare numeric integration methods. When 
would you appl} them'! 

13. In what sense is Gau~s integration optimal? Explain 
details. 

14. What does adaptive imegration mean? Why is it useful? 

15. Why is numeric differentiation generally more delicate 
than numeric integration? 

16. Write -0.35287. 1274.799, -0.00614. 14.9482. 113, 
8517 in floating-point form with 5S (5 significant digits, 
properly rounded). 

17. Compute (5.346 - 3.644)/(3.454 - 3.055) as given and 
then rounded stepwise to 3S. 2S. I S. ("Stepwise" means 
rounding the four rounded numbers. not the given ones.) 
Comment on your results. 

18. Compute 0.29731/(4.1132 - 4.0872) with the numbers 
as given and then rounded stepwise (that is. rounding 
the rounded numbers) to 4S. 3S, 2S. Comment. 

19. Solve x2 
- 50x + 1 = 0 by (6) and by (7) in Sec. 19.1, 

using 5S in the computation. Compare and comment. 

20. Solve x2 
- 100x + 4 = 0 by (6) and by (7) in Sec. 

19.1, using 5S in the computation. Compare and comment. 

21. Let 4.81 and 12.752 be correctly rounded to the number 
of digits shown. Determine the smallest interval in 
which the sum (using the true instead of the rounded 
values) must lie. 

22. Answer the question in Prob. 21 for the difference 
4.81 - 11.752. 

23. What is the relative error of l1a in terms of that of a? 
24. Show that the relative error of a2 is about twice that of 

a. 

25. Compute the solution of x5 = x + 0.2 near J. = 0 by 
transforming the equation into the f01Tl1 x = g(x) and 
starting from Xo = O. (Use 6S.) 

26. Solve cos x = x by iteration (6S, Xo = I), writing it as 
x = (O.74x + cosx)/1.74. obtainingx4 = 0.739085 
(exact to (is!). Why does this converge so rapidly? 

27. Solve X4 - x3 
- 2x - 34 = 0 by Newton's method 

with Xo = 3 and 6S accuracy. 

28. Solve cos x - x = 0 by the method of false position. 

29. Compute f(1.28) from 

.fO.Q) = 3.00000 

f(l.2) = 1.98007 

f(1.4) = 2.92106 

f( 1.6) = 1.111534 

f( 1.8) = 2.69671 

f(l.O) = 2.54030 

by linear interpolation. By quadratic interpolation. using 
f( 1.2), fOA-), IO.6). 

30. Find the cubic spline for the data 

f(-I) = 3 

f(1) = I 

f(3) = 23 

f(5) = -1-5 

ko = k3 = 3. 

31. Compute the integral of X3 from 0 to I by the trapezoidal 
rule with 11 = 5. What error bounds are obtained from 
(4) in Sec. 19.5? What is the actual error of the result? 
Why is this result larger than the exact value? 

32. Compute the integral of cos (X2) from 0 to I by 
Simpson's rule with 2111 = 2 and 2171 = 4 and estimate 
the error by (10) in Sec. 19.5. (This is the Fresnel 
integral (38) in App. 3.1 with x = 1.) 

33. Compute the integral of cos x from 0 to -!rr by the 
three-eights rule 

f
b 3 
f(x) dx = "8 hUo + 3.fl + 3f2 + f3) 

a 

1 . 
- - (b - a)h4!'IV)(t) 

80 

and give error bounds; here a ~ f ~ band 
Xj = a + (b - a)jI3, j = 0, ... , 3. 
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• . .. -
Numerics in General 

[n this chapter we discussed concepts that are relevant throughout numeric work as 
a whole and methods of a general nature, as opposed to methods for linear algebra 
(Chap. 20) or differential equations (Chap. 21). 

In scientific computations we use the floating-point representation of numbers 
(Sec. 19.1); fixed-point representation is less suitable in most cases. 

Numeric methods give approximate values a of quantities. The error E of a is 

(1) (Sec. 19.1) 

where a is the exact value. The relatil'e error of Ii is E/a. Errors arise from rounding, 
inaccuracy of measured values, truncation (that is. replacement of integrals by sums, 
series by partial sums), and so on. 

An algorithm is called numerically stable if small changes in the initial data give 
only cOiTespondingly small changes in the final results. Unstable algorithms are 
generally useless because errors may become so large that results will be very 
inaccurate. Numeric instability of algorithms must not be confused with 
mathematical instability of problems ("ill-conditioned problems," Sec. 19.2). 

Fixed-point iteration is a method for solving equations f(x) = 0 in which the 
equation is first transformed algebraically to x = g(x), an initial guess Xo for the 
solution is made, and then approximations X10 X2 • ••• , are successively computed 
by iteration from (see Sec. 19.2) 

(2) Xn+l = g(xn) (n = O. 1. ... ). 

Newton's method for solving equations f(x) = 0 is an iteration 

(3) X,,+l = Xn - (Sec. 19.2). 

Here Xn+1 is the x-intercept of the tangent of the curve y = f(x) at the point Xn • 

This method is of second order (Theorem 2, Sec. 19.2). If we replace f' in (3) by 
a difference quotient (geometrically: we replace the tangent by a secant). we obtain 
the secant method; see (10) in Sec. 19.2. For the bisection method (which converges 
slowly) and the method offalse position, see Problem Set 19.2. 

Polynomial interpolation means the detelTnination of a polynomial P>l(x) such 
that Pn(Xj) = Ii, where.i = 0, ... , 11 and (xo, f 0), ••. , (xn, fn) are measured or 
observed values, values of a function, etc. Pn(x) is called an intelpo/afioll poZvl1omial. 
For given data. Pn(X) of degree 11 (or less) is unique. However. it can be written in 
different forms, notably in Lagrange's form (4). Sec. 19.3, or in Newton's divided 
difference form (10). Sec. 19.3, which requires fewer operations. For regularly 
spaced xo, Xl = Xo + h, .... xn = Xo + l1h the latter becomes Newton's forward 
difference formula (formula (14) in Sec. 19.3) 
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(4) 
r(r - 1) ... (r - n + I) 

f(x) = Pn(X) = fo + rt:.fo + ... + t:.nfo 
n! 

where r = (x - xo)lh and the forward differences are t:.fj = f j+1 - fj and 

(k = 2,3, .. '). 

A similar formula is Newton's backward difference illterpolationfo1711ula (formula 
(18) in Sec. 19.3). 

Interpolation polynomials may become numerically unstable as 11 increases, and 
instead of interpolating and approximating by a single high-degree polynomial it is 
preferable to use a cubic spline g(x). that is. a twice continuously differentiable 
interpolation function [thus. g(Xj) = fjJ, which in each subinterval Xj ~ x ~ Xj+1 
consists of a cubic polynomial qj(x): see Sec. 19.4. 

Simpson's rule of numeric integration is [see (7), Sec. 19.5] 

b h 
(5) fa f(x) dx = 3" (fo + 4fL + 2f2 + 4j3 + ... + 2f2711-2 + ~f2m-l + f2711) 

with equally spaced nodes Xj = Xo + jh. j = 1 .... ,2m, h = (b - a)/(2m). and 
f j = f(xj)' It is simple but accurate enough for many applications. Its degree of 
precision is DP = 3 because the error (8), Sec. 19.5. involves h4. A more practical 
error estimate is (10), Sec. 19.5. 

obtained by first computing with step h, then with step /1/2, and then taking III 5 of 
the difference of the results. 

Simpson's rule is the most important of the Newton-Cotes formulas, which are 
obtained by integrating Lagrange interpolation polynomials, linear ones for 
the trapezoidal rule (2), Sec. 19.5, quadratic for Simpson's mle. cubic for the 
three-eights rule (see the Chap. 19 Review Problems). etc. 

Adaptive integration (Sec. 19.5, Example 6) is integration that adjusts 
("adapts") the step (automatically) to the variability of f(x). 

Romberg integration (Team Project 26, Problem Set 19.5) starts from the 
trapezoidal rule (2). Sec. 19.5. with h. h12, h/4, etc. and improves results by 
systematically adding error estimates. 

Gauss integration (II), Sec. 19.5, is important because of its great accuracy 
(DP = 217 - 1, compared to Newton-Cotes's DP = 11 - 1 or 11). This is achieved 
by an optimal I;hoice of the nodes, which are not equally spaced; see Table 19.7, 
Sec. 19.5. 

Numeric differentiation is discussed at the end of Sec. 19.5. (Its main application 
(to differential equations) follows in Chap. 21.) 
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CHAPTER 20 

J Numeric Linear Algebra 

In this chapter we explain "orne of the most important numeric methods for solving linear 
systems of equations (Secs. 20.1-20.4), for fitting straight lines or parabolas (Sec. 20.5), 
and for matrix eigenvalue problems (Secs. 20.6-20.9). These methods are of considerable 
practical importance because many problems in engineering, statistics, and elsewhere lead 
to mathematical models whose solution requires methods of numeric linear algebra. 

COM MEN T. This chapter is independent of Chap. 19 and can be studied immediately 
after Chap. 7 or 8. 

Prerequisite: Secs. 7.1. 7.2, 8.1. 
Sections that may be omitted in a shorter course: 20.4. 20.5. 20.9 
References and Answers to Problems: App. I Part E. App. 2 

20.1 Linear Systems: Gauss Elimination 
A linear system of n equations in 11 unknowns Xl ••• , Xn is a set of equations 
EI , ... , En of the form 

(1) 

where the coefficients ajk and the bj are given numbers. The system is called homogeneous 
if all the bj are zero; otherwise it is called nonhomogeneous. Usmg matrix multiplication 
(Sec. 7.2), we can write (1) as a single vector equation 

(2) Ax = b 

where the coefficient matrix A = [ajk] is the 11 X 11 matrix 

au al2 aln Xl b l 

a21 a22 a2n 
A= and x= and and b = 

anI an2 ann Xn bn 

833 
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are column vectors. The following matrix A is called the augmented matrix of the 
system (I): 

A = [A b] = 

A solution of (I) is a set of numbers Xl' •.• , Xn that satisfy all the II equations, and a 
solution vector of (1) is a vector x whose components constitute a solution of (1). 

The method of solving such a system by determinants (Cramer's rule in Sec. 7.7) is 
not practical, even with efficient methods for evaluating the determinants. 

A practical method for the solution of a linear system is the so-called Gal/ss eliminatioll, 
which we shall now discuss (proceeding illdependently of Sec. 7.3). 

Gauss Elimination 
This standard method for solving linear systems (I) is a systematic process of elimination 
that reduces (1) to "triangular form" because the system can then be easily solved by 
"back substitution." For instance, a triangular system is 

and back substitution gives X3 = 3/6 = 112 from the third equation, then 

from the second equation, and finally from the first equation 

How do we reduce a given system (I) to triangular form? In the first step we elimil1ate 
Xl from equation E2 to En in (I). We do this by adding (or subtracting) suitable multiples 
of E1 from equations E2 , ••• , En and taking the resulting equations, call them E~, ... , 
E~ as the new equations. The first equation, E1, is called the pivot equation in this step, 
and llU is called the pivot. This equation is left unaltered. In the second step we take the 
new second equation E~ (which no longer contains Xl) as the pivot equation and use it to 
eliminate X2 from E; to E~. And so on. After Il - I steps this gives a triangular system 
that can be solved by back substitution as just shown. In this way we obtain precisely all 
solutions of the given system (as proved in Sec. 7.3). 

The pivot llkk (in step k) must be different from zero and should be large in absolute 
value, to avoid roundoff magnification by the multiplication in the elimination. For 
this we choose as our pivot equation one that has the absolutely largest ajk in column 
k on or below the main diagonal (actually, the uppermost if there are several such 
equations). This popular method is called partial pivoting. It is used in CASs (e.g., 
in Maple). 
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EXAMPLE 1 

Partial pivoting distinguishes it from total pivoting, which involves both row and 
column interchanges but is hardly used in practice. 

Let us illustrate this method with a simple example. 

Gauss Elimination. Partial Pivoting 

Solve the system 

Solutioll. We must pivot since El ha, no xl-term. In Column 1. equation E3 ha, the large,t coefficient. 
Hence we interchange El and E3, 

Step 1. Elimillatioll of Xl 

6Xl + 2x2 + 8x3 = 26 

3X1 + 5X2 + 2X3 = 8 

8.1:2 + 2X3 ~ -7. 

It would suftlce to show the augmented matrix and operate on it. We show both the equations and the augmented 
matrix. In the first step. the first equation is the pivot equation. Thus 

Pivot 6----+(§i)+ 2X2 + 8x3 = 26 

[: 

2 8 ':] Eliminate --'> ~ + 5x2 + 2r3 = 8 5 2 

8X2 + 2x3 = -7 8 2 -7 

To eliminate Xl from the other equations (here. from the second equation). do: 

Subtract 3/6 ~ 112 times the pivot equation from the second equation. 

The result is 

ntl + 2x2 + 8x3 = 26 

4X2 - 2'-3 = -5 

8x2 + 2'3 = -7 

Step 1. Elimillatioll of X2 

4 -2 

2 8 
26] 
-5 

-7 8 2 

The largest coefficient in Column 2 is 8. Hence we take the nell' third equation as the pivot equation, interchanging 
equations 2 and 3, 

6Xl + 2x2 + 8x3 = 26 

[: 

2 8 

26] Pivot 8----+ ~+ 2x3 =-7 8 2 -7 

Eliminate --'> I§l- 2X3 = -5 4 -2 -5 

To eliminate .1:2 from the third equation. do: 

Subtract 112 times the pivot equation from the third equation. 

The resulting triangular system i, shown below. Thi, is the end of the forward elimination. Now comes the back 
substitution. 

Back substitutioll. Determillatioll of X3, X2, Xl 
The trIangular system obtained in Step 2 is 

2 8 

8 2 

o -3 

26] 
-7 

_.2 
2 
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From this system. taking the last equation, then the second equation. and finally the fust equation. we compute 
the solution 

x - 1 3 - 2 

X2 = ~(-7 - 2X3) = -I 

Xl = ~(26 - 2~2 - 8x3) = 4. 

This agrees with the values given above. before the beginning of the example. • 
The general algorithm for the Gauss elimination is shown in Table 20.1. To help explain 
the algorithm, we have numbered some of its lines. bj is denoted by aj,n+l' for uniformity. 
In lines I and 2 we look for a possible pivot. [For k = I we can always find one; otherwise 
Xl would not occur in (l ).] In line 2 we do pivoting if necessary, picking an ajk of greatest 
absolute value (the one with the smallest j if there are several) and interchange the 
corresponding rows. If lakkl is greatest, we do no pivoting. 11ljk in line 3 suggests multiplier, 
since these are the factors by which we have [0 multiply the pivor equation E~ in Step k 
before subtracting it from an equation Ef below E~' from which we want to eliminate Xk' 

Here we have written E~ and E/ to indicate that after Step I these are no longer the given 
equations in (1), but these underwent a change in each step, as indicated in line 4. 
Accordingly, ajk etc. in lines 1-4 refer to the most recent equations, andj ~ k in line I 
indicates that we leave un[Ouched all the equations that have served as pivot equations in 
previous steps. For p = k in line 4 we get 0 on the right. as it should be in the elimination. 

In line 5, if the last equation in the triangular system is 0 = b~ *- 0, we have no 
solution. If it is 0 = b: = 0, we have no unique solution because we then have fewer 
equations than unknowns. 

E X AMP L E 2 Gauss Elimination in Table 20.1, Sample Computation 

In Example 1 we had all = O. so that pivoting wa, necessary. The greatest coefficient in Column I was a3l' 

Thus J = 3 in line 2. and we interchanged El and E3 . Then in lines 3 and 4 we computed 11121 = 3/6 = ~ and 

G22 = 5 - ~ . 2 = 4. G23 = 2 - ~. 8 = -2. G24 = 8 - ~ . 26 = -5. 

and then 11131 = 0/6 = O. so that the third equation 8X2 + 2X3 = -7 did not change in Step I. In Step 2 
(k = 2) we had 8 as the greatest coefficient in Column 2. hence J = 3. We interchanged equations 2 and 3. 
computed 11132 = -4/8 = -! in line 4. and the a33 = -2 - !·2 = -3. a34 = -5 - ~(-7) = -~. This 
produced the triangular fOim used in the back substitution. • 

If akk = 0 in Step k, we must pivot. If lakkl is small. we should pivot because of roundoff 
error magnification that may seriously affect accuracy or even produce nonsensical re~ults. 

E X AMP L E 3 Difficulty with Small Pivots 

The solution of the 'ystem 

0.0004Xl + 1.402x2 = 1.406 

0.4003xl - 1.502x2 = 2.501 

is Xl = 10'"'2 = 1. We solve this system by the Gauss elimination. using four-digit floating-point arithmetic. 
(4D is for simplicity. Make an 8D-arithmetic example that shows the same.) 

(a) Picking the first of the given equations as the pivot equation. we have to mUltiply this equation by 
In = 0.4003/0.0004 = 1001 and subtract the result from the second equation. obtaining 
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Table 20.1 Gauss Elimination 

ALGORITHM GAUSS (A = [ajd = LA b]) 

This algorithm computes a unique solution x = [Xj] of the system (1) or indicates that 
(1) has no unique solution. 

1 

2 

3 

4 

INPUT: Augmented n X (n + I) matrix A = [ajk]' where aj,n+l = bj 

OCTPUT: Solution x = lXj] of (I) or message that the system (1) has no 
unique solution 

For k = 1. . . . , n - 1. do: 

End 

If ajk = 0 for all j ~ k then OUTPUT "No unique solution 
exists."' Stop 

[Procedure completed unsuccessfully; A is singular] 

Else exchange the contents of rows J and k of A with J the smallest 
j ~ k such that lajkl is maximum in column k. 

For j = k + I. .... n. do: 

End 

. _ ajk 
1njk- - --

akk 

For p = k + I. . . . , n + I. do: 

I ajp: = ajp - 1njkakp 

End 

5 If ann = 0 then OUTPUT "No unique solution exists." 

6 

7 

Stop 
Else 

[Start back substitution] 

For i = n - 1. . . . . 1, do: 

Xi = ....!... (ai,n+l - i aijXi) 
aii j=i+l 

End 
OUTPUT x = [Xj]. Stop 

End GAUSS 

~ 1405x2 = ~ 1404. 

Hence x2 = ~ 1404/( ~ 1405) = 0.9993, and from the first equation. instead of Xl = 10. we get 

1 U.oo5 
Xl = 00004 (l.406 ~ 1.402· 0.9993) = -- = 12.5. 

. 0.0004 

This failure occurs because iani is small compared with ia12i. so that a small roundoff error in X2 leads to a 
large error in Xl' 
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(b) Picking the second of the given equations as the pivot equation. we have 10 multiply this equation by 
0.0004/0.4003 = 0.0009993 and subtract the result from the first equation. obtaining 

1.404x2 = 1.404. 

Hence .\"2 = I, and from the pivot equation xl = 10. This success occur~ because la2l1 is not very small 
compared to la221. so that a small roundoff enOf in .\"2 would not lead to a large error in Xl' Indeed. for 
instance. if we had the value x2 = 1.002. we would still have from the pivot equation the good value 
Xl = (2.501 + 1.505)10.4003 = 10.01. • 

Error estimates for the Gauss elimination are discussed in Ref. [E5] listed in App. I. 

Row scaling means the multiplication of each Row j by a suitable scaling factor ~J- It is 
done in connection with partial pivoting to get more accurate solutions. Despite much 
research (see Refs. [E9]. [E24] in App. I) and the proposition of several principles, scaling 
is still not well understood. As a possibility, one can !>cale for pivot choice only (not in 
the calculation, to avoid additional roundoff) and take as first pivot the entry aj1 for which 
IlljlltlAjl is largest: here Aj is an entry of largest absolute value in Row j. Similarly in the 
further steps of the Gauss elimination. 

For instance, for the system 

4.0000X1 + 14020.\"2 = 14060 

0.4003.\"1 - 1.502.\"2 = 2.501 

we might pick 4 as pivot, but dividing the first equation by 104 gives the system in Example 
3, for which the second equation is a better pivot equation. 

Operation Count 
Quite generally, important factors in judging the quality of a numeric method are 

Amount of storage 

Amount of time (== number of operations) 

Effect of roundoff elTOL 

For the Gauss elimination, the operation count for a full matrix (a matrix with relatively 
many nonzero entries) is as follows. In Step k we eliminate Xk from n - k equations. This 
needs n - k divisions in computing the IIljk (line 3) and (n - k)(11 - k + 1) multiplications 
and as many subtractions (both in line 4). Since we do 11 - 1 steps. k goes from I to 
n - I and thus the total number of operations in this forward elimination is 

n-1 n-1 

fen) = L (n - k) + 2 L (11 - k)(n - k + 1) (write Il - k = s) 
k~l k~l 

n-1 n-1 

= L S + 2 L s(s + 1) = !(Il - 1)11 + 1(112 
- 1)n = 1113 

s~l S=l 

where 2n3/3 is obtained by dropping lower powers of 11. We see that f(ll) grows about 
proportional to /1

3
. We say that f(n) is of order n3 and write 
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where 0 suggests order. The general definition of 0 is as follows. We write 

f(ll) = O(h(n)) 

if the quotient If(n)lh(Iz)1 remains bounded (does not trail off to infinity) as 11 ~ x. In 
our present case, hen) = 11

3 and, indeed. f(n)ln 3 ~ 2/3 because the omitted telms divided 
by 113 go to zero as n _ h. 

In the back substitution of Xi we make 11 - i multiplications and as many subtractions, 
as well as 1 division. Hence the number of operations in the back substitution is 

n 

b(ll) = 2 2: (11 - i) + 11 = 2 2: s + n = n(n + I) + n = /1
2 + 211 = 0(11

2
). 

5=1 

We see that it grows more slowly than the number of operations in the forward elimination 
of the Gauss algorithm, so that it is negligible for large systems because it is smaller by 
a factor 11, approximately. For instance, if an operation takes 10-9 sec, then the times 
needed are: 

Algorithm 

Elimination 
Back substitution 

.P RO 8 E=E M- S E.E10:;-L 

For applicatiolls of linear systems see Secs. 7.1 and 8.2. 

11-31 GEOMETRIC INTERPRETATION 
Solve graphically and explain geometrically. 

1. 4.\1 + X2 = -4.3 

3.\1 - 5.\2 = -33.7 

2. 1.820.\1 - 1.183x2 = 0 

-12.74.\1 + 8.281.\2 = 0 

3. 7.2.\1 - 3.5x2 = 16.0 

-21.6.\1 + 10.5.\2 = -4R.5 

14-141 GAUSS ELIMINATION 

Solve the following linear systems by Gauss elimination. 
with partial pivoting if necessary (but without scaling). Show 
the intermediate steps. Check the result by substitution. If no 
solution or more than one solution exists, give a reason. 

4. 6.\"1 + X2 = -3 

5. 

6. 

7. 

8. 

9. 

n = 1000 n=10000 

0.7 sec 

0.001 sec 
11 min 
0.1 sec 

2X1 - 8x2 = -4 

6.\1 + 2x2 = 14 

25.38x1 15.48x2 = 30.60 

-7.05x1 + 4.30.\2 = -8.50 

6X2 + 13x3 = 137.86 

6X1 8X3 = -85.88 

13x1 - 8X2 178.54 

5x1 + 3X2 + X3 = 2 

- 4x2 + 8X3 = -3 

IOx1 - 6.\2 + 26x3 = 0 

4.\1 + IOx2 - 2X3 = -20 

-Xl - 15x2 + 3X3 = 30 

25x2 - 5X3 = -50 
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10. 

11. 

12. 

13. 

14. 
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Xl + 2X2 3X3 -II 

lOx 1 + X2 + X3 8 

IOx2 i- 2X3 = 2 

3.4x1 6.l2x2 - 2.72x3 =0 

-Xl + 1.80X2 + 0.80X3 0 

2.7x1 - 4.86x2 - 2. 16x3=0 

3X2 + 5X3 = 1.20736 

3X1 - 4X2 -2.34066 

5x1 

6.4x1 + 

3.2x1 -

+ 6X3 = -0.329193 

3.2x2 -1.6 

1.6x2 + 4. 8x3 32.0 

4.8x2 - 9.6x3 + 7.2x4 = -78.0 

7.2x3 + 4.8x4 = 20.4 

4.4x2 + 3.0x3 - 6.6x4 = -4.65 

+ 8.4X4 = 4.62 

-4.35 

- 7.6x3 + 3.0x4 = 5.97 

15. CAS EXPERIMENT. Gauss Elimination. Write a 
program for the Gauss eliminarion with pivoting. 
Apply it to Probs. 11-14. Experiment with systems 
whose coefficient determinant is small in absolute 
value. Also investigate the perfonnance of your 
program for larger systems of your choice. including 
sparse systems. 

16. TEAM PROJECT. Linear S~'stems and Gauss 
Elimination. (a) Existence and uniqueness. Find a and 
b such that aX1 + X2 = b, Xl + X2 = 3 has (i) a unique 
solution. (ii) infinitely many solutions, (iii) no solutions. 

(b) Gauss elimination and nonexistence. Apply the 
Gauss elimination to the following two systems and 
compare the calculations step by step. Explain why the 
elimination fails if no solution exists. 

Xl + X2 + X3 3 

4X1 + 2X2 - x3 5 

9X1 + 5X2 - X3 13 

Xl + X2 + X3 = 3 

(c) Zero determinant. Why maya computer program 
give you the result that a homogeneous linear system 
has only the trivial solution although you know its 
coefficient determinant to be zero? 

(d) Pivoting. Solve System lA) (below) by the Gauss 
elimination first without pivoting. Show that for any 
fixed machine word length and sufficiently small E > 0 
the computer gives X2 = I and then Xl = O. What is 
the exact solution? Its limit as E ~ O? Then solve the 
system by the Gauss elimination with pivoting. 
Compare and comment. 

(e) Pivoting. Solve System (H) by the Gauss 
elimination and three-digit rounding arithmetic. 
choosing (i) the first equation, (ii) the second equation 
as pivot equation. (Remember to round to 3S after each 
operation before doing the next, just as would be done 
on a computer!) Then use four-digit rounding arithmetic 
in those two calculations. Compare and comment. 

2 

(E) -4.61 

6.21x1 + 3.35x2 = -7.19 

20.2 Linear Systems: LU-Factorization, 
Matrix Inversion 

We continue our discussion of numeric methods for solving linear systems of n equations 
in 11 unknowns Xl' ••• , Xn , 

(1) Ax = b 

where A = [ajk] is the 11 X 11 coefficient matrix and xT = [Xl' .. xn] and bT = [hI' .. bnJ. 
We present three related methods that are modifications of the Gauss elimination, which 
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EXAMPLE 1 

require fewer arithmetic operations. They are named after Doolittle, Crout, and Cholesky 
and use the idea of the LV-factorization of A, which we explain first. 

An LV-factorization of a given square matrix A is of the form 

(2) A = LV 

where L is lower triangular and U i, upper triallgular. For example, 

[2 3J [1 OJ [2 3J A = = LU = 
8 5 4 I 0-7 

It can be proved that for any nonsingular matrix (see Sec. 7.8) the rows can be reordered 
so that the resulting matrix A has an LU-factorization (2) in which L turns out to be the 
matrix of the multipliers Injk of the Gauss elimination, with main diagonal 1, ... , 1, and 
V is the matrix of the triangular system at the end of the Gauss elimination. (See Ref. 
[E5], pp. 155-156, listed in App. 1.) 

The crucial idea now is that Land U in (2) can be computed directly, without solving 
simultaneous equations (thus, without using the Gauss elimination). As a count shows. this 
needs about n3/3 operations. about half as many as the Gauss elimination. which needs about 
21l3 /3 (see Sec. 20.1). And once we have (2), we can use it for solving Ax = b in two steps. 
involving only about 11

2 operations. simply by noting that Ax = LUx = b may be written 

(3) (a) Ly = b where (b) Ux = y 

and solving first (3a) for y and then (3b) for x. Here we can require that L have main diagonal 
1, ... ,las stated before; then this is called Doolittle's method. Both systems (3a) and 
(3b) are triangular, so we can solve them as in the back substitution for the Gauss elimination. 

A similar method, Crout's method, is obtained from (2) if V (instead of L) is required 
to have main diagonal 1. ...• 1. In either case the factorization (2) is unique. 

Doolittle's Method 

Solve the system in Example I of Sec. 20.1 by Doolittle's method. 

S Diu ti~ Il. The decomposition (2) is obtained from 

[ "n 
a12 

""] [ 3 

5 '] [' 
0 

~]F 
U12 

""] A = [ajk] = a21 a22 {[23 = 0 8 2 = 1Il21 "22 1123 

a31 a32 a33 6 2 8 nJ31 11132 0 li33 

by determining the 111jk and liJ1<' using matrix multiplication. By going through A row by rov. we get successively 

all = 3 = I . lIll = lill a12 = 5 = I • lI12 = 1112 

11121 = 0 

11132 = -I 

a13 = 2 = I . 1/13 = li13 

a23 = 2 = 111211113 + li23 

1123 = 2 

= 2 . 2 - I • 2 + li33 
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Thus the factorization (2) is 

[
: : :] = LU = [:1 0 ~] [: : :] . 
6 2 8 2 -I I 0 0 6 

We first solve Ly = b, determining '"I = 8. then.\"2 = -7, then Y3 from 2Y1 - )"2 + )"3 = 16 + 7 + Y3 = 26; 
thu~ (note the interchange in b because of the interchange in A!) 

[ ~ 0 :] [::::] = [_:]. 

2 -I 1)3 26 

Solution ,=[:] 
Then we solve Ux = y. determining x3 = 3/6. then x2, then xl' that is, 

Solution 
x= [J 

This agrees with the solution in Example I of Sec. 20.1. • 
Our formulas in Example I suggest that for general 11 the entries of the matrices 
L = rmjk] (with main diagonal l. ...• 1 and mjk suggesting "multiplier") and U = [Ujk] 

in the Doolittle method are computed from 

(4) 
j-1 

Ujk = lljk - L 11ljs Usk 

s=l 

Row Interchanges. Matrices, such as 

[~ :J 

k=l,"',n 

j = 2,···, n 

k = j .... , n; j ~ 2 

j = k + 1, ... , n; k ~ 2. 

or [~ ~J 
have no LU-factorization (try!). This indicates that for obtaining an LU-factorization. row 
interchanges of A (and corresponding interchanges in b) may be necessary. 

Cholesky's Method 
For a symmetric, positive definite matrix A (thUS A = AT, X T Ax > 0 for all x '* 0) we 
can in (2) even choose U = L T, thus Ujk = n1kj (but cannot impose conditions on the main 
diagonal entries). For example, 
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The popular method of solving Ax = b based on this factorization A = LL T is called 
Cholesky's method. In terms of the entries of L = [ljkl the formulas for the factorization 
are 

j = 2,"',11 

j-l 

(6) Gjj - L Ij8
2 j = 2.···.11 

8=1 

p = j + I, . . . , 11; j ~ 2. 

If A is symmetric but not positive definite, this method could still be applied, but then 
leads to a complex matrix L, so that the method becomes impractical. 

E X AMP L E 1 Cholesky's Method 

Solve by Cholesky"s method: 

4.\"1 + 2X2 + 14.\"3 = 14 

2"1 + 17.\"2 - 5.\"3 = -!o1 

14xl - 5x2 + 83.\"3 = 155. 

Solution. From (6) or from the form of the factorization 

[
: I~ ~:l = [::: 

14 -5 83 131 

o 

: 1 [~1 
133 0 

we compute. in the given order. 

111 = ~ = 2 
a21 2 

121 = - = - = I 
111 2 

This agrees with (5). We now have to solve Ly = b, that is. 

0 

o 

a31 14 
131 = - = - = 7 

111 2 

[; 4 0] ["'] [ 14] 
~ ~~ = -~:~ . 

Solution y~ [-':J -3 

As the second step. we have to solve Ux = L T X = y, that is. 

[: 
4 -;] [:} [-,;] Solution x~ [-:J 
0 

• 
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THEOREM 1 Stability of the Cholesky Factorization 

The Clwlesky LLT-!actorizatio/1 is numerically stable (as defined in Sec. 19.1). 

PRO 0 F We have ajj = lj12 + Ij22 + ... + ljf by squaring the third formula in (6) and solving it 
for ajj. Hence for allljk (note that ljk = 0 for k > j) we obtain (the inequality being trivial) 

That is, ljk 
2 is bounded by an entry of A, which means stability against rounding. • 

Gauss-Jordan Elimination. Matrix Inversion 
Another variant of the Gauss elimination is the Gauss-Jordan elimination, introduced 
by W. Jordan in 1920, in which back substitution is avoided by additional computations 
that reduce the matrix to diagonal form. instead of the triangular form in the Gauss 
elimination. But this reduction from the Gauss triangular to the diagonal form requires 
more operations than back substitution does, so that the method is disadvantageous for 
solving systems Ax = h. But it may be used for matrix inversion, where the situation is 
as follows. 

The inverse of a nonsingular square matrix A may be determined in principle by solving 
the 11 systems 

(7) (j = 1, ... , 11) 

where bj is the jth column of the 11 X 11 unit matrix. 
However. it is preferable to produce A -1 by operating on the unit matrix I in the same 

way as the Gauss-Jordan algorithm, reducing A to I. A typical illustrative example of this 
method is given in Sec. 7.8. 

!'!I!.~.!I!.!IIII ... ~III!.':!I!_~_lJ!!I!!y~~::P--- •• _ -....... - . ........ ...,. 

11-71 DOOLITTLE'S METHOD 

Show the factorilation and solve by Doolittle's method. 

1. 3Xl + 2x2 = 15.2 

15xl + Ilx2 = 77.3 

6. -9.88 

0.5Xl - 3.0X2 + 3.3x3 = -16.54 

-1.5Xl - 3.5x2 - 1O.4x3 = 21.02 

7. 3Xl + 9X2 + 6X3 = 2.3 

18xl + 48x2 + 39x3 = 13.6 

9Xl - 27x2 + 42x3 = 4.5 

8. TEAM PROJECT. Crout's method factorizes 
A = LV, where L is lower ttiangular and V is upper 
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triangular with diagonal entnes lljj = l,j = 1, ... ,11, 

(a) Formulas. Obtain formulas for Crout's method 
similar to (4). 

(b) Examples. Solve Probs. I and 7 by Crout's method. 

(e) Factor the following matrix by the Doolittle. 
Crout. and Cholesky methods. 

l-: 
-4 

25 

4 

(d) Give the formulas for factoring a tridiagonal 
matrix by Crout's method. 

(e) When can you obtain Crout's factorization from 
Doolittle's by transposition? 

20 

14. CAS PROJECT. Cholesky's Method. (a) Write a 
program for solving linear systems by Cho)esky's 
method and apply it to Example 2 in the text, to Probs. 
9-11, and to systems of your choice. 

(b) Splines. Apply the factorization part of the 
program to the following matrices (as they occur in (9), 

Sec. 19.4 (with cJ = 1), in connection with splines). 

2 o 

19-131 CHOLESKY'S METHOD 
[ 4 ]. 

4 

o 

o 

Show the factorization and solve. o 
o 

4 

9. 9X1 + 6X2 + 12x3 = 87 

6Xl + 13x2 + IIx3 = 118 

12x1 + IIx2 + 26x3 = 154 

10. 0.04X1 + 0. 12x3 = 1.4 

0.64X2 + 0.32x3 = 1.6 

0.12x1 + 0.32x2 + 0.56x3 = 5.4 

11. 4xl + 6X2 + 8X3 = 0 

6x1 + 34x2 + 52x3 = -80 

8X1 + 52x2 + 129x3 = -226 

12. Xl - X2 + 3X3 + 2X4 = 30 

-Xl + 5X2 - 5X3 2x4 = -70 

3X1 - 5X2 + 19x3 + 3X4 = 188 

2X1 - 2X2 + 3X3 + 21x4 = 2 

o 2 

15. (Definiteness) Let A and B be positive definite 11 X /1 

matrices. Are - A, A f. A + B, A - B positive definite? 

116-191 INVERSE 
Find the inverse by the Gauss-Jordan method. showing the 
details. 

16. In Prob 4. 

17. In Prob. 5. 

18. In Prob. 6. 

19. In Prob. 7. 

20. (Rounding) For the following matrix A find det A. 
What happens if you round off the given entries to (a) 
5S, (b) 4S, (c) 3S, (d) 2S, (e) IS? What is the practical 
implication of your work? 

114 

-3/28 

20.3 Linear Systems: Solution by Iteration 
The Gauss elimination and its variants in the last two sections belong to the direct methods 
for solving linear systems of equations; these are methods that give solutions after an 

amount of computation that can be specified in advance. In contrast. in an indirect or 

iterative method we start from an approximation to the true solution and. if successful, 

obtain better and better approximations from a computational cycle repeated as often as 

may be necessary for achieving a required accuracy, so that the amount of arithmetic 
depends upon the accuracy required and varies from case to case. 
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We apply iterative methods if the convergence is rapid (if matrices have large main 
diagonal entries, as we shall see), so that we save operations compared to a direct method. 
We also use iterative methods if a large system is sparse, that is, has very many zero 
coefficients. so that one would waste space in storing zeros, for instance, 9995 zeros per 
equation in a potential problem of 104 equations in 104 unknowns with typically only 5 
nonzero terms per equation (more on this in Sec. 21.4). 

Gauss-Seidel Iteration Methodl 

This is an iterative method of great practical importance. which we can simply explain in 
terms of an example. 

E X AMP L E 1 Gauss-Seidel Iteration 

We consider the linear system 

= 50 

-0.25x I + - 0.25x4 = 50 
(I) 

-0.25.1'1 + 

- 0.25.1'2 - 0.25.1'3 + 

(Equations of this form arise in the numeric ~olution of PDEs and in spline interpolation.) We write the system 
in the fonn 

Xl = 0.25x2 + 0.25x3 + 50 

X2 = 0.25.1'1 + 0.25x4 + 50 
(2) 

X3 = 0.25xl + 0.25x4 + 25 

X4 = 0.25 t2 + 0.25x3 + 25. 

These equations are now used for iteration: that is. we start from a (possibly poor) approximatIOn to the solution. 
say xiO) = 100, x~O> = 100. x~O) = 100. x~O) = 100. and compute from (2) a perhaps better approximation 

(3) 
X (1)-

2 -

X lll -4 -

Use "old" values 
("New" values here not yet available) 

t 
0.25x~o) + 0.25x~O) 

0.25xill 0.25x~0l 

0.25xill 0.25xiO) 

0.25x~1l + 0.25x~1l 

t 
Use "new" values 

+ 50.00 = 100.00 

+ 50.00 = 100.00 

+ 25.00 = 75.00 

+ 25.00 = 68.75 

These equations (3) are obtained from (2) by substituting on the right the //lost recellt approximation for each 
unknown. In fact, correspondmg value~ replace previous ones as soon as they have been computed. so that in 

IPHlLIPP LUDWIG VON SEIDEL (1821-1896), German mathematician. For Gauss see foomore 5 in 
Sec. 5.4. 
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the second and third equations we use xill (not xiOJ), and in the last equation of (3) we use x~l) and x~l) (not 
x~Ol and x~OJ). Using the same principle. we obtain in the next step 

X~2) = 0.25xi2 ) 

x~2) = 0.25xi2) 

(2) _ 
X4 -

Further steps give the values 

Xl 

89.062 

87.891 

87.598 
87.524 

87.506 

0.25x~ll + 0.25x~ll 

X2 

88.281 

87.695 
87.549 

87.512 

87.503 

+ 50.00 = 93.750 

+ 0.25x~1l + 50.00 = 90.625 

+ 0.25x~1) + 25.00 = 65.625 

+ 25.00 = M.062 

X3 X4 

63.281 62.891 
62.695 62.598 

62.549 62.524 

62.512 62.506 

62.503 62.502 

Hence convergence to the exact solution Xl = X2 = 87.5, x3 = X4 = 62.5 (verify!) seems rather fast. • 

An algorithm for the Gauss-Seidel iteration is shown on the next page. To obtain the 
algorithm, let us derive the general formulas for this iteration. 

We assume that ajj = I for j = 1, ... , n. (Note that this can be achieved if we can 
realTange the equations so that no diagonal coefficient is zero; then we may divide each 
equation by the corresponding diagonal coefficient.) We now write 

(4) A=I+L+U (ajj = 1) 

where I is the n x n unit matrix and Land U are respectively lower and upper triangular 
matrices with zero main diagonals. If we substitute (4) into Ax = b. we have 

Ax = (I + L + U) x = b. 

Taking Lx and Ux to the right, we obtain, since Ix = x, 

(5) x = b - Lx - Ux. 

Remembering from (3) in Example I that below the main diagonal we took "new" 
approximations and above the main diagonal "old" ones, we obtain from (5) the desired 
iteration formulas 

(6) 

where x(m) [_l}m)] is the mth approximation and x(m+ 1) = [X}m+ 1)] is the (m + I )st 
approximation. In components this gives the formula in line I in Table 20.2. The matrix 
A must satisfy Gjj =1= 0 for allj. In Table 20.2 our assumption ajj = I is no longer required, 
but is automatically taken care of by the factor l/ajj in line 1. 
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Table 20.2 Gauss-Seidel Iteration 

ALGORITHM GAUSS-SEIDEL (A. b, XlV), E, N) 

This algorithm computes a solution x of the system Ax = b given an initial approximation 
xW

), where A = [ajd is an 11 X 11 matrix with lljj =1= 0, j = I, ... , 11. 

2 

INPUT: A, b, initial approximation x(Q), tolerance E > 0, maximum number 
of iterations N 

OUTPUT: Approximate solution x(m) = [x7")] or failure message thal X(N) does 
not satisfy the tolerance condition 

For 111 = 0 ..... N - 1. do: 

End 

For j = L ... , /I, do: 

I (j-l It ) 
r~m+ll = - b. - ~ (/. x(m+lJ - ~ (/. x(mJ 
•. 1 J £.J Jk k £.J Jk k 

(l .. 
JJ k-] k~j+l 

End 
If m':IX IX)7n+ll - xj",JI < € then OUTPUT xcm+ll. Stop 

J 

[Procedure completed successtittly 1 

OUTPUT: "No solution satisfying the tolerance condition obtained after N 
iteration steps." Stop 
[Procedure completed U11.\"Ucces.~f~ttly] 

End GAUSS-SEIDEL 

Convergence and Matrix Norms 
An iteration method for solving Ax = b is :-'did to converge for an initial x(V) if the 
corresponding iterative sequence xW>, x(1), X

(2
), ... converges to a solution of the given 

system. Convergence depends on the relation between x(m) and x(m+lJ. To get this relation 
for the Gauss-Seidel method, we use (6). We first have 

(I + L)x(m+lJ = b - Ux(m) 

and by multiplying by (I + L)-1 from the left, 

(7) x{m+lJ = Cx{m) + (I + L) -1 b where 
-1 

C = -(I + L) U. 

The Gauss-Seidel iteration converges for every x(O) if and only if all the eigenvalues 
(Sec. 8.1) of the "iteration matrix" C = [CjkJ have absolute value less than l. (Proof in 
Ref. [E5]. p. 191, listed in App. 1.) 

CAUTION! If you want to get C, first divide the rows of A by au to have main diagonal 
1, ... , 1. If the spectral radius of C (= maximum of those absolute values) is smalL 
then the convergence is rapid. 

Sufficient Convergence Condition. A sufficient condition for convergence is 

(8) IICII < 1 
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Here IIcll is some matrix norm, such as 

(9) (Frobenius norm) 

or the greatest of the sums of the !cjkl in a colulIlll of C 

n 

(10) IICIi = max 2: !cjkl (Column "sum" norm) 
k j=l 

or the greatest of the sums of the !cjkl in a row of C 

n 

(11) (Row "sum" norm). 

These are the most frequently used matrix norms in numerics. 
In most cases the choice of one of these norms is a matter of computational convenience. 

However, the following example shows that sometimes one of these norms is preferable 
to the others. 

E X AMP L E 1 Test of Convergence of the Gauss-Seidel Iteration 

Test whether the Gauss~"eidel iteration converges for the system 

2x+ y+ ;::=4 

x + 2y + :: = 4 written \" = 2 - ~x -~;:: 

x+ y+2::=4 :: = 2 - ~x - h. 

Solution. The decomposition (multiply the matrix by 112 - why?) is 

[l~ 
112 In] [0 ° 

:] + [: 

112 In] 1/2 = I + L + U = I + 112 0 0 112 

112 1/2 1 1/2 112 0 0 

It shows that 

0 

~][: 
1/2 In] 

[: 

-1/2 -In] 
c ~ -U + L)-'U ~ - [ )12 0 112 114 -114 

-1/4 -112 0 0 118 318 

We compute the Frobenius norm of e 

I ( I 1 I 1 9 Y'2 (50r2 
lIell = - + - +- + -+ - + - = - = 0884 < I 

4 4 16 16 64 64 64 . 

amI conclude from (8) that this Gauss-Seidel iteration converges. It is interesting that the other two norms would 
permit no conclusion. as you ~hould verify. Of course. this points to the fact that (8) tS sufficient for convergence 
rather than necessary. • 

Residual. Given a system Ax 
defined by 

(12) 

b, the residual r of x with respect to this system is 

r = b - Ax. 
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Clearly, r = 0 if and only if x is a solution. Hence r *- 0 for an approximate solution. In 
the Gauss-Seidel iteration, at each stage we modify or relax a component of an 
approximate solution in order to reduce a component of r to zero. Hence the Gauss-Seidel 
iteration belongs to a class of methods often called relaxation methods. More about the 
residual follows in the next section. 

Jacobi Iteration 
The Gauss-Seidel iteration is a method of successive corrections because for each 
component we successively replace an approximation of a component by a corresponding 
new approximation as soon as the latter has been computed. An iteration method is called 
a method of simultaneous corrections if no component of an approximation x(m) is used 
until all the components of x(m) have been computed. A method of this type is the Jacobi 
iteration, which is similar to the Gauss-Seidel iteration but involves not using improved 
values until a step has been completed and then replacing xcm) by x(m+D at once, directly 
before the beginning of the next step. Hence if we write Ax = b (with ajj = I as before!) 
in the form x = b + (I - A)x, the Jacobi iteration in matrix notation is 

(13) x(7n-t-l) = b + (I - A)x(m) (ajj = I). 

This method converges for every choice of x(O) if and only if the spectral radius of 1 - A 
is less than 1. It has recently gained greater practical interest since on parallel processors 
alln equations can be solved simultaneously at each iteration step. 

For Jacobi, see Sec. 10.3. For exercises. see the problem set. 

-.... ------ _ ........ ..-. .. ---.. 
_~ ..... ., • ....... A ___ ... ~ ... • ... 

1. Verify the claim at the end of Example 2. 

2. Show that for the system in Example 2 the Jacobi 
iteration diverges. Him. Use eigenvalues. 

13-81 GAUSS-SEIDEL ITERATION 

Do 5 steps, starring [rom Xo = [I l]T and using 6S in 
the computation. Hint. Make sure that you solve each 
equation for the variable that has the largest coefficient 
(why?). Show the details. 

3. Xl + X 2 + 6X3 = -61.3 

185.8 

4. X 2 + 7X3 = 25.5 

5Xl + .1.'2 0 

Xl + 6X2 + X3 = -10.5 

Xl + 4X2 - 2X3 = -2 

2x 1 + 3x2 + 8X3 = 39 

6. 4Xl - X2 21 

-Xl + 4X2 - X3 = -45 

X 2 + 4x3 = 33 

7. lOx] + X2 + .\"3 6 

Xl + lOx2 + X3 6 

x] + x2 + IOx3 6 

8. 4xl + 5x3 = 12.5 

Xl + 6.\"2 + 2X3 = 18.5 

8xl + 2X2 + X3 = -1l.5 

9. Apply the Gauss-Seidel iteration (3 steps) to the 
system in Prob. 7, starting from (a) 0, 0, 0, (b) 10. 10, 
10. Compare and comment. 

10. In Prob. 7, compute C (a) if you solve the rust equation 
for Xl. the second for .\"2' the third for X3 , proving 
convergence; (b) if you nonsensically solve the third 
equation for Xlo the first for X2 , the second for X3, 

proving divergence. 



SEC 20.4 Linear Systems: Ill-Conditioning, Norms 

11. CAS PROJECT. Gauss-Seidel Iteration. ta) Write 
a program for Gauss-Seidel iteration. 

(b) Apply the program to A(t)x = b, starting from 
[0 0 O]T. where 

A(t) = r: t J b = rJ 
For t = 0.2.0.5.0.8.0.9 determine the number of steps 
to obtain the exact solution to 6S and the corresponding 
spectral radius of C. Graph the number of steps and 
the spectral radius as functions of t and comment. 

(c) Successive overrelaxation (SOR). Show that by 
adding and subtracting xCm

) on the right, formula (6) 
can be written 

XCm+l) = XCm) + b - LxCm + 1 ) - (U + l)xCm) 

Anticipation of further corrections motivates the 
introduction of an overrelaxation factor w > I to get 
the SOR formula for Gauss-Seidel 

XCm + ll = XCm) + web - LxCm + ll 

(14) 
(ajj = 1) 

intended to give more rapid convergence. A 
recommended value is w = 2/(1 + ,h - p). where p 
is the spectral radius of C in (7). Apply SOR to the 
matrix in (b) for t = 0.5 and 0.8 and notice the 

851 

improvement of convergence. (Spectacular gains are 
made with larger systems.) 

112-151 JACOBI ITERATION 

Do 5 steps. starting from Xo = [I 1 IJT. Compare with 
the Gauss-Seidel iteration. Which of the two seems to 
converge faster? (Show the details of your work.) 

12. The system in Prob. 6 

13. The system in Prob. 5 

14. The system in Prob. 8 

15. Show convergence in Prob. 14 by verifying that I - A, 
where A is the matrix in Prob. 14 with the rows divided 
by the corresponding main diagonal entries. has the 
eigenvalues -0.519589 and 0.259795 ::'::: 0.246603i. 

116-20 I NORMS 

Compute the norms (9). (10), (II) for the following (square) 
matrices. Comment on the reasons for greater or smaller 
differences among the three numbers. 

16. The matrix in Prob. 3 

17. The matrix in Prob. 7 

18. The matrix in Prob. 8 

r~ 
-k 

-:1 19. -2k 

-k -k 2k 

r -: 
-3 

-:1 
20. 

17 -12 

20.4 Linear Systems: Ill-Conditioning, Norms 
One does not need much experience to observe that some systems Ax = b are good, 
giving accurate solutions even under roundoff or coefficient inaccuracies. whereas others 
are bad. so that these inaccuracies affect the solution strongly. We want to see what is 
going on and whether or not we can "trust" a linear system. Let us first formulate the two 
relevant concepts (ill- and well-conditioned) for general numeric work and then tum to 
linear systems and matrices. 

A computational problem is called ill-conditioned (or ill-posed) if "small" changes in 
the data (the input) cause "large" changes in the solution (the output). On the other hand, 
a problem is called well-conditioned (or well-posed) if "small" changes in the data cause 
only "small" changes in the solution. 

These concepts are qualitative. We would certainly regard a magnification of 
inaccuracies by a factor 100 as "large," but could debate where to draw the line between 
"large" and "small." depending on the kind of problem and on uur viewpoint. Double 
precision may sometimes help, but if data are measured inaccurately, one should attempt 
changing the mathematical setting of the problem to a well-conditioned one. 
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Let us now tum to linear systems. Figure 442 explains that ill-conditioning occurs if 
and only if the two equations give two nearly parallel lines. so that their intersection point 
(the solution of the system) moves substantially if we raise or lower a line just a little. 
For larger systems the situation is similar in principle, although geometry no longer helps. 
We shall see that we may regard ill-conditioning as an approach to singularity of the 
matrix. 

y y 

x x 

(a) (b) 

Fir 442. (a) Well-conditioned and (b) ill-conditioned 
linear system of two equations in two unknowns 

c X AMP L ElAn III-Conditioned System 

You may verify that the system 

0.9999x - 1.000ly = 1 

x- y=l 

has the solution x = 0.5. Y = -0.5, wherea~ the syMem 

0.9999x - 1.000ly = 1 

x- )"=I+E 

has the solution x = 0.5 + 5000.5 E. Y = -0.5 + 4999.5 E. Thi~ shows that the system is ill-conditioned because 
a change on the right of magnitude E produces a change in the solution of magnitude 5000E. approximately. We 
see that the lines given by the equations have nearly the same slope. • 

Well-conditioning can be asserted if the main diagonal entries of A have large absolute 
values compared to those of the other entries. Similarly if A-I and A have maximum 
entries of about the same absolute value. 

Ill-conditioning is indicated if A-I has entries of large absolute value compared to those 
of the solution (about 5000 in Example I) and if poor approximate solutions may still 
produce small residuals. 

Residual. The residual r of an approximate solution x of Ax = b is defined as 

(1) r = b - Ax. 

Now b = Ax, so that 

(2) r = A(x - x). 

Hence r is small if x has high accuracy, but the converse may be false: 
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E X AMP L E 1 Inaccurate Approximate Solution with a Small Residual 

The system 

1.0001.\"1 + 

Xl + I.OOOlx2 = 2.0001 

has the exact solution xl = 1, -'"2 = I. Can you see this by inspection? The very inaccurate approximation 
Xl = 2.0000, X2 = 0.0001 has the very small residual (to 4D) 

[
2.0001 J [ 1.000 1 

r = 2.0001 - 1.0000 
I.OOOOJ [2.0000J = [2.000IJ _ [2.0003J = [-O.0002J . 
1.0001 0.0001 2.0001 2.0001 0.0000 

From this. a naive per,on might draw the false conc\u,ion that the appfoximation should be accumte to 3 Of 4 
decimals. 

Our result is probably unexpected. but we shall see that it has to do with the fact that the system is 
ill-conditioned. • 

Our goal is to show that ill-conditioning of a linear system and of its coefficient matrix 
A can be measured by a number. the "condition number" K(A). Other measures for 
ill-conditioning have also been proposed, but K(A) is probably the most widely used one. 
K(A) is defined in terms of norm. a concept of great general interest throughout numerics 
(and in modem mathematics in general!). We shall reach our goal in three steps. discussing 

1. Vector norms 

2. Matrix norms 

3. Condition number K of a square matrix. 

Vector Norms 
A vector norm for column vectors x = [Xj] with 11 components (11 fixed) is a generalized 
length or distance. It is denoted by II xII and is defined by four properties of the usual 
length of vectors in three-dimensional space. namely. 

(a) IIxll is a nonnegative real number. 

(b) IIxll =0 if and only if x = O. 
(3) 

(c) IIkxll = Iklllxll for all k. 

Cd) Ilx + yll ~ Ilxll + Ilyll (Triangle inequality). 

If we use several norms, we label them by a subscript. Most important in connection with 
computations is the p-Ilorm defined by 

(4) 

where p is a fixed number and p ~ 1. In practice, one usually takes p = 1 or 2 and. as a 
third norm, Ilxlix (the latter as defined below), that is, 

(5) 

(6) 

(7) 

IIxlll = IX11 + ... + IXnl 

IIxl12 = YX12 + ... + xn2 

IIxlix = ~x Ixjl 
J 

("Euclidean" or "12-norm") 

("lx-norm"). 
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For n = 3 the 12-norm is the usual length of a vector in three-dimensional space. The 
lrnorm and lx-norm are generally more convenient in computation. But all three norms 
are in common use. 

E X AMP L E 3 Vector Norms 

IfxT = [2 -3 0 L -4], then IIxll! = 10, IIxll2 = V30, Ilxlloo = 4. • 
In three-dimensional space, two points with position vectors x and x have distance Ix - xl 
from each other. For a linear system Ax = b, this suggests that we take IIx - xii as a 
measure of inaccuraty and call it the distance between an exact and an approximate solution. 
or the error of x. 

Matrix Norm 
If A is an n X n matrix and x any vector with n components, then Ax is a vector with 11 

components. We now take a vector norm and consider Ilxll and IIAxll. One can prove (see 
Ref. [E17]. p. 77, 92-93, listed in App. 1) that there is a number c (depending on A) such 
that 

(8) IIAxll ~ cllxll for all x. 

Let x*- O. Then IIxll > 0 by (3b) and division gives IIAx11/1lx11 ~ c. We obtain the smallest 
possible c valid for all x (=1= 0) by taking the maximum on the left. This smallest c is 
called the matrix norm of A corresponding to the vector norm we picked and is denoted 
by IIAII. Thus 

(9) 
IIAxl1 IIAII =max W (x =1= 0), 

the maximum being taken over all x =1= O. Alternatively [see (c) in Team Project 24], 

(10) IIAII = max IIAxll· 
IIxll= 1 

The maximum in (10) and thus also in (9) exists. And the name "matrix Ilorm" is 
justified because IIAII satisfies (3) with x and y replaced by A and B. (Proofs in Ref. 
[EI7] pp. 77,92-93.) 

Note carefully that IIAII depends on the vector norm that we selected. In particular, 
one can show that 

for the lrnorm (5) one gets the column "sum" norm (10), Sec. 20.3, 

for the lx-norm (7) one gets the row "sum" norm (11), Sec. 20.3. 

By taking our best possible (our smallest) c = IIAII we have from (8) 

(11) IIAxl1 ~ IIAllllxll· 

This is the formula we shall need. Formula (9) also implies for two 11 X n matrices (see 
Ref. [E17], p. 98) 

(12) thus 
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See Refs. [E9] and [E 17] for other useful formulas on norms. 
Before we go on. let us do a simple illustrative computation. 

E X AMP L E 4 Matrix Norms 

THEOREM 1 

Compute the matrix norms of the coefficient matrix A in Example I and of its inver,e A-I. assuming that we 
use (a) the lrvector norm, (b) the loo-vector norm. 

Solutioll. We use (4*). Sec. 7.!l, for the inverse and then (10) and (II) in Sec. 20.3. Thus 

[

0.9999 -1.0001 ] 
A= 

1.0000 - 1.0000 [

-5000.0 
A-I = 

-5000.0 

5000.5J. 

4999.5 

(a) The Irvector norm gives the column "sum" norm (10). Sec. 20.3: from Column 2 we thus obtain 
IIAII = 1-1.00011 + 1-1.00001 = 2.0001. Similarly. IIA -111 = 10000. 

(b) The lx-vector norm gives the row "sum" norm (11), Sec. 20.3: thus IIAII = 2, IIA -111 = 10000.5 from 
Row 1. We notice that IIA -111 is surprisingly large. which makes the product IIAII IIA -111 large (20001). We 
shall see below that this is typical of an ill-conditioned system. • 

Condition Number of a Matrix 
We are now ready to introduce the key concept in our discussion of ill-conditioning, the 
condition number K(A) of a (nonsingular) square matrix A, defined by 

(13) K(A) = IIAII IIA -III· 

The role of the condition number is seen from the following theorem. 

Condition Number 

A linear system of equations Ax = b and its matrix A whose condition number (13) 
is small are well-cmzditioned. A large condition number indicates ill-conditioning. 

PROOF b = Ax and (11) give IIbll ::; IIAII IIxll. Let b =1= 0 and x =1= O. Then division by 
Ilbll IIxll gives 

(14) 
1 "All -<--

IIxll = lib II 

Multiplying (2) r = Atx - x) by A-I from the left and interchanging sides, we have 
x - x = A -Ir . Now (11) with A -1 and r instead of A and x yields 

IIx - xII = IIA -Irll ~ IIA -III IIrll. 

Division by IIxll [note that IIxll =1= 0 by (3b)] and use of (14) finally gives 

(15) 
IIx - xII < _1_ -1 < IIAII -1 _ M 

IIxll = IIxll IIA IIlIrll = IIbll IIA II IIrll - K(A) IIbil . 

Hence if K(A) is small, a small IIrll/llbll implies a small relative error IIx - xll/llxll, so 
that the system is well-conditioned. However, this does not hold if K(A) is large; then a 
small IIrli/llbil does not necessarily imply a small relative error IIx - xll/llxll • 
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E X AMP L E 5 Condition Numbers. Gauss-Seidel Iteration 

EXAMPLE 6 

[
5 I] 

A =: : : has the inver~e 

Since A is symmetric. (10) anll (II) in Sec. 20.3 give the same condition number 

We see that a linear system Ax = b "ith this A is well-conditioned. 
For instance. if b = [14 0 28]T. the Gauss algorithm gives the solution x = [2 -5 9]T (confirm this). 

Since the main diagonal entries of A are relatively large. we can expect reasonably good convergence of the 
Gauss-Seidel iteration. Inlleed, qaning from. say, Xo = [I I qT. we obtain the first 8 steps (3D values) 

Xl X2 X3 

1.000 1.000 1.000 

2.400 -1.100 6.950 

1.630 -3.882 8.534 

1.870 -4.734 8.900 

1.967 -4.942 8.979 

1.993 -4.988 8.996 

1.998 -4.997 8.999 

2.000 -5.000 9.000 

2.000 -5.000 9.000 • 
III-Conditioned Linear System 

Example 4 gives by (10) or (II). Sec. 20.3, for the matrix in Exmnple I the very large condition number 
K(A) = 2.0001 . 10 000 ~ 2· 10 000.5 ~ 200001. This confirms that the sy,tem is very ill-conditioned. 

Similarl) in Example 2. where by (4""). Sec. 7.8 and 6D-computation. 

A-I = _1_ [ 1.0001 -1.oo00J = [ 5000.5 -5.000.0J 

0.0001 -1.0000 l.UOOI -5000.0 5000.5 

so that (10), Sec. 20.3, gives a very large K(A), explaining the surprising result in Example 2. 

K(A) = (1.0001 + 1.0(00)(5000.5 + 5000.0) = 20002. • 
In practice, A-I will not be known, so that in computing the condition number K(A), one 
must estimate IIA -111. A method for this (proposed in 1979) is explained in Ref. [E9] 
listed in App. I. 

Inaccurate Matrix Entries. KlA) can be used for estimating the effect ox of an 
inaccuracy oA of A (errors of measurements of the Qjb for instance). Instead of Ax = b 
we then have 

(A + oA)(x + ox) = b. 

Multiplying out and subtracting Ax = b on both sides, we obtain 

Aox + oA(x + ox) = O. 

Multiplication by A-I from the left and taking the second term to the right gives 
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Applying (II) with A-I and vector oA(x + ox) instead of A and x, we get 

Applying (11) on the right, with oA and x - ox instead of A and x, we obtain 

lIoxll ~ IIA -111 IISAII IIx + Sxll . 

Now IIA -111 = K(A)/IIAil by the definition of K(A), so that division by IIx + oxll shows 
that the relative inaccuracy of x is related to that of A via the condition number by the 
inequality 

(16) II ox II II ox II <: IIA-IIIII ~AII _ A IIoAil W = IIx + oxll = b - K( ) IIAII . 

Conclusion, If the system is well-conditioned, small inaccuracies IISAII/IIAil can have 
only a small effect on the :>olution. However. in the case of ill-conditioning. if II oA 11/11 A II is 
small. IISxll/llxll11lay be large. 

Inaccurate Right Side. You may show that. similarly, when A is accurate, an inaccuracy 
Sb of b causes an inaccuracy ox satisfying 

(17) 

Hence lIoxll/llxll must remain relatively small whenever K(A) is small. 

E X AMP L E 7 Inaccuracies. Bounds (16) and (17) 

If each of the nine entries of A in Example 5 i_ measured with an inaccuracy of 0.1. then 115A:: = 9' 0.1 and 
(16) gives 

115xll 3 '0.1 
lJ;f ~ 7.5' -7 - = 0.321 thus 115xll ~ 0.321 IIxll = 0.321 . 16 = 5.14. 

By experimentation you will find that the actual inaccuracy Iloxll is only about 30% of the bound 5.14. This is 
typicaL 

Similarly. if 5b = [0.1 0.1 O.I]T. then 115bll = 0.3 and Ilbll = 42 in Example 5. so that (17) gives 

115xll 0.3 TxlI ~ 7.5' 42 = 0.0536. hence 115xll ~ 0.0536' 16 = 0.857 

but this bound is again much greater than the actual inaccuracy. which is about 0.15. • 
Further Comments on Condition Numbers. The following additional explainarions 
may be helpful. 

1. There is no sharp dividing line hetween "well-conditioned" and "ill-conditioned," 
but generally the situation will get worse as we go from systems with small K(A) to systems 
with larger K(A). Now always K(A) ~ I, so that values of 10 or 20 or so give no reason 
for concern, whereas K(A) = 100, say, calls for caution. and systems such as those in 
Examples I and 2 are extremely ill-conditioned. 
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2. If K(A) is large (or small) in one norm, it will be large (or small, respectively) in 

any other norm. See Example 5. 

3. The literatme on ill-conditioning is extensive. For an introduction to it, see [E9]. 

This is the end of our discussion of numerics for solving linear systems. In the next 

section we consider curve fitting, an important area in which solutions are obtained from 

linear systems. 

==:=:=::: = ... _-,._==.-_----,-- ..... -.... .. ........ --......... 
~~ VECTOR NORMS 
Compute (5), (6), (7). Compute a corresponding unit vector 
(vector of norm 1) with respect to the too-norm. 

1. [1 -6 5] 

2. [0.4 - 1.2 0 8.01 

3. [-4 4 3 -3] 

4. [0 0 0 0] 

5. [0.3 -0.1 0.5 LO] 

6. [L6 21 54 -119] 

7. [1 1 1 1 1 1] 

8. [3 0 0 -3 0] 

9. Show that Ilxll oo ~ IIxl12 ~ Ilxlli. 

110-151 MATRIX NORMS. 
CONDITION NUMBERS 

Compute the matrix norm and the condition number 
corresponding to the II-vector norm. 

21 10.5 

10.5 7 
14. 

7 5.25 

5.25 4.2 

[0~1 
01 

15. 

0.1 

II. [ 57 

13. ro~, 
7 

5.25 

4.2 

3.5 

0] 

5.25 

4.2 

3.5 

3 

o 

100 

o '~l 

16. Verify (II) for x = [4 -5 2]T taken with the 
loe-norm and the matrix in Prob. L5. 

17. Verify (12) for the matrices in Probs. to and 1 L 

18. Verify the calculations in Examples 5 and 6 of the text. 

119-2°1 ILL-CONDITIONED SYSTEMS 
Solve Ax = bb Ax = b2• compare the soLutions. and 
comment. Compute the condition number of A. 

19. A = [ 2 
1.4 

LAJ - [1.4J - [1.44J . b i - • b2 -

1 1 1 

20. A = [ 5 -7J. bi = [-2J . b2 = [-2J 
-7 10 3 3.1 

21. (Residual) For Ax = b] in Prob. 19 guess what the 
residuaL of x = [113 -160]T might be (the solution 
being x = [0 I]T). Then calculate and comment. 

22. Show that K(A) ~ 1 for the matrix norms (10), (11), 
Sec. 20.3, and K(A) ~ V;; for the Frobenius nOim (9), 
Sec. 20.3. 

23. CAS EXPERIMENT. Hilbert Matrices. The 3 X 3 
Hilbert matrix is 

The n X n HiLbert matrix is Hn = fhjk], where 
hjk = l/(j + k - 1). (Similar matrices occur in curve 
fitting by Least squares.) Compute the condition number 
K(Hn) for the matrix norm corresponding to the loc- (or 
ld vector norm, for fl = 2, 3, ... ,6 (or further if you 
wish). Try to find a formula that gives reasonable 
approximate values of these rapidly growing numbers. 
Solve a few linear systems involving an Hn of your 
choice. 
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24. TEAM PROJECT. Norms. (a) Vector norms in our 
text are equivalent, that is, they are related by double 
inequalities; for instance, 

(19b) 

(a) 

(18) 

(b) 

I\xl\x ~ I\XI\I ~ IIl\xIL,,: 

1 
-lIxllI ~ IIxlix ~ IIxll l · 
11 

(c) Formula (10) is often more practical than (9). 
Derive (10) from (9). 

Hence if for some x, one norm is large (or small), the 
other norm must also be large (or small). Thus in many 
investigations the particular choice of a noml is not 
essential. Prove (18). 

(d) Matrix normS. lllustrate (11) with examples. 
Give examples of (12) with equality as well as with 
strict inequality. Prove that the matrix norms (10), 
(II) in Sec. 20.3 satisfy the axioms of a nonn 

IIL\II ~ o. 
IIAI\ = 0 if and only if A = o. 

(b) The Cauchy-Schwarz inequality is IIkAil = IkIIiAII, 

IIA + BII ~ IIAII + IIBII· 

It is very important. (Proof in Ref. [GR7] listed in 
App. 1.) Use it to prove 

25. WRITING PROJECT. Norms and Their Use in 
This Section. Make a list of the most important of the 
many ideas covered in this section and write a two-page 
report on them. (l9a) 

20.5 Least Squares Method 
Having discussed numerics for linear systems, we now turn to an important application. 
curve fitting. in which the solutions are obtained from linear systems. 

In curve fitting we are given 11 points (pairs of numbers) (Xb "1)' ... , (Xn, Yn) and we 
want to determine a function f(x) such that 

approximately. The type of function (for example. polynomials. exponential functions, sine 
and cosine functions) may be suggested by the nature of the problem (the underlying physical 
law, for instance), and in many cases a polynomial of a certain degree will be appropriate. 

Let us begin with a motivation. 
If we require strict equality [(Xl) = )'1, ... , f(xn) = Yn and use polynomials of 

sufficiently high degree, we may apply one of the methods discussed in Sec. 19.3 in 
connection with interpolation. However, in certain situations this would not be the 
appropriate solution of the acmal problem. For instance. to the four points 

(1) (-1.3.0.103), (-0.1. 1.099), (0.2, 0.808), (l.3, 1.897) 

there corresponds the interpolation polynomial [(x) = X3 - X + I (Fig. 443), but if we 

:~ / 

~ t=ilx 
Fig. 443. ApprOXimate fitting of a straight line 
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graph the points, we see that they lie nearly on a straight line. Hence if these values are 
obtained in an experiment and thus involve an experimental error, and if the nature of the 
experiment suggests a linear relation, we better fit a straight line through the points (Fig. 
443). Such a line may be useful for predicting values to be expected for other values of 
x. A widely used principle for fitting straight lines is the method of least squares by 
Gauss and Legendre. In the present situation it may be formulated as follows. 

Method of Least Squares. The straight line 

(2) y = a + bx 

should be fitted through the givell points (Xl, Yl)' ...• (Xn. Yn) so that the sum of 
the squares of the distances of those points from the straight line is minimum. where 
the distance is measured in the vertical direction (the .v-direction). 

The point on the line with abscissa Xj has the ordinate a + bXj. Hence its distance from 
(Xj, .\) is h1 - a - bxjl (Fig. 444) and that sum of squares is 

n 

q = L ()J - (/ - bXjl. 
j~l 

q depends on a and b. A necessary condition for q to be minimum is 

(3) 
oq 
ob = - 2 L Xj (\J - a - b;f) = 0 

(where we sum over j from 1 to n). Dividing by 2, writing each sum as three sums, and 
taking one of them to the right, we obtain the result 

an + b ~ X· = ~ y. L.J J L.J .J 

(4) 
a ~ x· + b ~ X·2 = ~ X·V· L.J J L.J J L.J J-J' 

These equations are called the normal equations of our problem. 

Fig. 444. Vertical distance of a point (xi' Yj) 
from a straight line y = a + bx 
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E X AMP L E 1 Straight Line 

Using the method of lea~t squares. fit a straight line to the four points given in formula (I). 

Solutioll. We obtain 

11 = 4, 2::>'J = 0.1, 

Hence the normal equations are 

2: x/ = 3.43, 2: Yj = 3.907, 

4ll + O.JOb = 3.9070 

O.lll + 3.43b = 2.3839. 

2: XjYj = 2.3839. 

The solution <rounded to 4D) is a = 0.9601, b = 0.6670. and we obtain the straight line (Fig. 443) 

y = 0.9601 + 0.6670T. 

Curve Fitting by Polynomials of Degree m 

861 

• 

Our method of curve fitting can be generalized from a polynomial y 

polynomial of degree III 

a + bx to a 

(5) p(x) = bo + bix + ... + b",x'Tn 

where III ~ 11 - l. Then q takes the form 

" 
q = 2: (Yj - p(Xj»2 

j~I 

and depends on III + I parameters bo, ... , bm . Instead of (3) we then have III + I 
conditions 

(6) 
aq 

= 0, 
abo 

which give a system of 111 + I normal equations. 
In the case of a quadratic polynomial 

(7) 

the normal equations are (summation from I to n) 

aq = 0 
abm 

bol1 + b i 2: Xj + b2 2: x/ = 2: )j 

(8) bo L Xj + bi 2: xl + b2 2: x/ = 2: XjYj 

bo 2: xl + b] 2: x/ + b2 2: x/ = 2: xl,vj· 

The derivation of (8) is left to the reader. 
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E X AMP L E 2 Quadratic Parabola by Least Squares 

Fit a parabola through the data (0. 5), (2. 4), (4, 1), (6, 6). (8, 7). 

Solul;on. For the nonnal equations we need 11 = 5, L.\) = 20, LX/ = 120, LX/ = 800. 2.x/ = 5664. 
L)"j = 23, LXj)] = 104. LX/)'j = 696. Hence these equations are 

5bo + 20b! + 120b2 = 23 

20bo + 120b! + 800b2 = 104 

120bo + 800b! + 5664b2 = 696. 

Solving them we obtain the quadratic least squares parabola (Fig. 445) 

y = 5.11429 - 1.4l429x + O.21429x2. • 
y 

8 

2 

o 2 

• 

• 
4 6 8 x 

Fig. 445. Least squares parabola in Example 2 

For a general polynomial (5) the normal equations form a linear system of equations in the 
unknowns bo, ... , b"n" When its matrix M is nonsingular, we can solve the system by 

Cholesky's method (Sec. 20.2) because then M is positive definite (and symmetric). When 

the equations are nearly linearly dependent, the normal equations may become ill­
conditioned and should be replaced by other methods; see [E5], Sec. 5.7, listed in App. 1. 

The least squares method also plays a role in statistics (see Sec. 25.9). 

11-61 FITTING A STRAIGHT LINE 

Fit a straight line to the given points (x, y) by least squares. 
Show the details. Check your result by sketching the points 
and the line. Judge the goodness of fit. 

1. (2,0), (3, 4), (4. lO), (5. 16) 

2. How does the line in Prob. I change if you add a point 
far above it, say. (3. 20)? 

3. (2.5, 8.0), (5.0, 6.9), (7.5. 6.2), (10.0, 5.0) 

4. (Ohm's law U = Ri) Estimate the resistance R from 
the least squares line that fits (i, U) = (2.0, 104). 
(4.0,206), (6.0, 314), (10.0, 530). 

5. (Average speed) Estimate the average speed vav of a 
car traveling according to s = v • t [km] (s = distance 

traveled. t [h] = time) from (t, s) = (9, 140), (10, 220), 
(11, 3lO). (\2. 4lO). 

6. (Hooke's law F = ks) Estimate the spring modulus k 
from the force F [lb] and extension s [cm], where 
(F, s) = (1, 0.50), (2, 1.02), (4, 1.99), (6, 3.01), 
(10.4.98), (20. 10.03). 

7. Derive the normal equations (8). 

18-10 1 FITTING A QUADRATIC PARABOLA 

Fit a parabola (7) to the given points Cx, y) by least squares. 
Check by Sketching. 

8. (-1,3), (0, 0), (I. 2). (2. 8) 

9. (0,4), (2, 2), (4, -1), (6, -5) 
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10. Worker's time on duty x [h] 2 3 4 5 

Worker's reaction lime [sec] 1.50 1.28 lAO 1.85 2.20 

11. Fit (2) and (7) by lea<;t squares to (-1.0,5.4), (-0.5,4.1), 
(0,3.9), (0.5,4.8), (1.0, 6.3), (l.5, 9.3). Graph the data 
and the curves on common axes and comment. 

12. (Cubic parabola) Derive the formula for the normal 
equations of a cubic least squares parabola. 

13. Fit curves (2) and (7) and a cubic parabola by least 
squares to (-2, -35), (-1. -9), (0, -I), (I, -I), 

(2, 17). (3. 63). Graph the three curves and the points 
on common axes. Comment on the goodness of fit. 

14. CAS PROJECT. Least Squares. Write programs for 
calculating and solving the normal equations (4) and 
(8). Apply the programs to Probs. 3, 5, 9, 11. If your 
CAS has a command for fitting (Maple and 
Mathematica do), compare your results with those by 
your CAS commands. 

15. CAS EXPERIMENT. Least Squares versus 
Interpolation. For the given data and for data of your 
choice find the interpolation polynomial and the least 
squares approximations (linear. quadratic, etc.). 
Compare and comment. 

(a) (-2,0), (-I, 0), (0, I), (I, 0), (2, 0) 

(b) (-4. 0), (-3. 0), (-2. 0). (-1. 0), (0, I). 
(I, 0). (2. 0), (3. 0). (4. 0) 

(C) Choose five points on a straight line, e.g., (0, 0), 
(l, 1), ... , (4, 4). Move one point 1 unit upward and 
find the quadratic least squares polynomial. Do this 
for each point. Graph the five polynomials on 
Cornmon axes. Which of the five motions has the 
greatest effect? 
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16. TEAM PROJECT. The least squares approximation 
of a function f(x) on an interval a ;;a x ;;a h by a function 

where Yo(x), ... ,y",(x) are given functions, requires the 
determination of the coefficients ao, .•• , am such that 

b I [f(x) - Fm(x)]2 dx (9) 
a 

becomes mmlmum. This integral is denoted by 
Ilf - Fm1l 2

, and IIf - Fmll is called the L 2-norm of 
f - F m (L suggesting Lebesgue2

). A necessary condition 
for that minimum is given by allf - F ml12/aaj = 0, 
j = 0, ... , m [the analog of (6)]. (a) Show that this 
leads to m + 1 normal equations (j = 0, ... , m) 

(10) 

m 

2: hjkak = b j 

k=O 

where 

b 

hjk = I )'j(X)Yk(X) dx, 
a 

b 

bj = I !(X)'\".i(x) dx. 
Q 

(b) Polynomial. What form does (lO) take if 
Fm(x) = ao + lllX + ... + amx"'? What is the 
coefficient matrix of (10) in this case when the interval 
is 0 ;;a x;;a I? 

(c) Orthogonal functions. What are the solutions of 
(10) if .\'o(x), ... , Ym(x) are orthogonal on the interval 
a ;;a x ;;a b? (For the definition, see Sec. 5.7. See also 
Sec. 5.8.) 

20.6 Matrix Eigenvalue Problems: Introduction 
In the remaining sections of this chapter we discuss some of the most important ideas and 

numeric methods for matrix eigenvalue problems. This very extensive part of numeric 

linear algebra is of great practical importance, with much research going on, and hundreds, 
if not thousands of papers published in various mathematical journals (see the references 
in [ES], [E9], [Ell], [E29]). We begin with the concepts and general results we shall need 

in explaining and applying numeric methods for eigenvalue problems. (For typical models 
of eigenvalue problems see Chap. 8.) 

2HENRI LEBESGUE (1875-1941). great French mathematician. creator of a modern theory of measure and 
integration in his famous doctoral thesis of 1902. 



864 

THEOREM 1 

CHAP. 20 Numeric Linear Algebra 

An eigenvalue or characteristic value lor latent root) of a given Il X n matrix A = [ajk] 
is a real or complex number A such that the vector equation 

(1) Ax = Ax 

has a nontrivial solution, that is, a solution x "* 0, which is then called an eigenvector or 
characteristic vector of A corresponding to that eigenvalue A. The set of all eigenvalues 
of A is called the spectrum of A. Equation (I) can be written 

(2) lA - AI)x = 0 

where I is the n X n unit matrix. This homogeneous system has a nontrivial solution if 
and only if the characteristic determinant det (A - AI) is 0 (see Theorem 2 in Sec. 7.5). 
This gives (see Sec. 8.1) 

Eigenvalues 

The eigenvalues of A are the solutions A of the characteristic equation 

all - A a12 a 1n 

a21 a22 - A a2n 
(3) det (A - AI) = = O. 

anI a n 2 ann - A 

Developing the characteristic determinant, we obtain the characteristic polynomial of A, 
which is of degree n in A. Hence A has at least one and at most n numerically different 
eigenvalues. If A is real, so are the coefficients of the characteristic polynomial. By familiar 
algebra it follows that then the roots (the eigenvalues of A) are real or complex conjugates 
in pairs. 

We shall usually denote the eigenvalues of A by 

with the understanding that some (or all) of them may be equal. 
The sum of these n eigenvalues equals the sum of the entries on the main diagonal of 

A, called the trace of A; thus 

n n 

(4) trace A = L ajj = L Ak . 

j~1 k~1 

Also, the product of the eigenvalues equals the determinant of A, 

(5) 

Both formulas follow from the product representation of the characteristic polynomial, 
which we denote by f(A), 
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THEOREM 2 

THEOREM 1 

THEOREM 4 

If we take equal factors together and denote the numerically distinct eigenvalues of A by 
Ab ... , AI" (r ~ 11), then the product become~ 

(6) 

The exponent 111j is called the algebraic multiplicity of Aj • The maximum number of 
linearly independent eigenvectors corresponding to Aj is called the geometric multiplicity 
of Aj . It is equal to or smaller than 111j. 

A subspace S of R n or en (if A is complex) is called an invariant subspace of A if 
for every v in S the vector A,- is also in S. Eigenspaces of A (spaces of eigenvectors; 
Sec. 8.1) are important invaJiant subspaces of A. 

An 11 X 11 matrix B is called similar to A if there is a nonsingular n X 11 matrix T such 
that 

(7) 

Similarity is important for the following reason. 

Similar Matrices 

Similar matrices have the same eigellmlues. If x is an eigenvector of A, then 
y = T-Ix is all eigel1l'ector of B in (7) wrrespollding to the sallie eigellmille. (Proof 
in Sec. 8.4.) 

Another theorem that has vaJious applications in numerics is as follows. 

Spectral Shift 

If A has the eigenvalues A1> •.• , An' then A - kI with arbitrary k has the eigenvalues 
Al - k . .. '. An - k. 

This theorem is a special case of the following spectral mapping theorem. 

Polynomial Matrices 

If A is all eigenvalue of A, then 

is all eigenvalue of the polynomial matrix 

q(A)x = (asAS + O's_lAs- 1 + ... ) x 

= asAsx + as_lAs-Ix + .. . 
= asAsx + as_lAs-Ix + ... = q(A) x. • 
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The eigenvalues of important special matrices can be characterized as follows. 

Special Matrices 

The eigenvalues of Hermitian matrices (i.e., -AT = A), hence of real symmetric 
matrices (i.e., AT = A), lire real. The eigenvalues of skew-Hermitian matrices (i.e., 
AT = -A), hence of real skew-symmetric matrices (i.e., AT = -A) are pure 
imaginary or O. The eigenvalues of unifllry matrices (i.e., AT = A-I). hence of 
orthogonalmlltrices (i.e .• AT = A-I), have absolute value l. (Proofs in Secs. 8.3 
and 8.5.) 

The choice of a numeric method for matrix eigenvalue problems depends essentially on 
two circumstances, on the kind of matrix (real symmetric, real general, complex, sparse, 
or full) and on the kind of information to be obtained, that is, whether one wants to know 
all eigenvalues or merely specific ones, for instance, the largest eigenvalue, whether 
eigenvalues lind eigenvectors are wanted. and so on. It is clear that we cannot enter into 
a systematic discussion of all these and further possibilities that arise in practice, but we 
shall concentrate on some basic aspects and methods that will give us a general 
understanding of this fascinating field. 

20.7 Inclusion of Matrix Eigenvalues 

THEOREM 1 

The whole numerics for matrix eigenvalues is motivated by the fact that except for a few 
trivial cases we cannot determine eigenvalues exactly by a finite process because these 
values are the roots of a polynomial of Ilth degree. Hence we must mainly use iteration. 

In this section we state a few general theorems that give approximations and error 
bounds for eigenvalues. Our matrices will continue to be real (except in formula (5) below). 
but since (nonsymmetric) matrices may have complex eigenvalues. complex numbers will 
playa (very modest) role in this section. 

The important theorem by Gerschgorin gives a region conSisting of closed circular disks 
in the complex plane and including all the eigenvalues of a given matrix. Indeed. for each 
j = 1. .... n the inequality (1) in the theorem detennines a closed circular disk in the 
complex A-plane with center {ljj and radius given by the right side of (1); and Theorem 
1 states that each of the eigenvalues of A lies in one of these n disks. 

Gerschgorin's Theorem 

Let A be all eigenvalue qf all arbitrary Il X Il matrix A 
integer j (l ~ j ~ 11) we have 

[ajk]. Then for some 

PROOF Let x be an eigenvector corresponding to an eigenvalue A of A. Then 

(2) Ax = Ax or (A - AI)x = O. 

Let Xj be a component of x that is largest in absolute value. Then we have /x
11

/Xj/ ~ I for 
I7l = 1, ... , n. The vector equation (2) is equivalent to a system of 11 equations for the 
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n components of the vectors on both sides. The jth of these n equations with j as just 
indicated is 

Division by Xj (which cannot be zero; why?) and reshuffling terms gives 

By taking absolute values on both sides of this equation, applying the triangle inequality 
la + bl ~ lal + Ibl (where a and b are any complex numbers), and observing that because 
of the choice of j (which is crucial !), IX1lxjl ~ 1, ... , IXn1xjl ~ I, we obtain (l), and the 
theorem is proved. • 

E X AMP L E 1 Gerschgorin's Theorem 

THEOREM 2 

For the eigenvalues of the matrix 

112 

5 

we get the Gerschgorin disks (Fig. 446) 

°1: Center 0, radiu~ I, 02: Center 5. radius 1.5. 0 3 : Center 1. radius 1.5. 

The centers are the main diagonal entries of A. These would be the eigenvalues of A if A were diagonal. 
We can take these values as crude approximation~ of the unknown eigenvalues (3D values) Al = -0.209, 
A2 = 5.305. A3 = 0.904 (verify this): then the radii of the disks are corresponding error bounds. 

Since A is symmetric, it follow, from Theorem 5, Sec. 20.6, that the spectrum of A must actually lie in the 
intervals [-1. 2.5] and [3.5, 6.5]. 

It is interesting that here the Gerschgorin disks form two disjoint sets, namely, 01 U °3 , which contains two 
eigenvalues, and 02. which contains one eigenvalue. This is typical. as the following theorem shows. • 

y 

x 

Fig. 446. Gerschgorin disks in Example 1 

Extension of Gerschgorin's Theorem 

If p Gerschgorin disks fom! a set S that is disjoint from the n - p other disks of a 
given matrix A. t!zen S contains precisely p eigenl'Q/ues of A (each cOllnted with its 
algebraic multiplicity. as defined in Sec. 20.6). 

Idea of Proof. Set A = B + C, where B is the diagonal matrix with entries ajj. and 
apply Theorem I to At = B + tC with real t growing from 0 [0 1. • 
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E X AMP L E 2 Another Application of Gerschgorin's Theorem. Similarity 

THEOREM 3 

Suppose that we have diagonalized a matrix by some numeric method that left us with some off-diagonal entries 
of size 10-5

, say, 

2 
10-

5

] 

10-5 . 

4 

What can we conclude about deviation~ of the eigenvalue~ from the main diagonal entrie~? 

Solution. By Theorem 2. one eigenvalue must lie in the disk of radius 2· 10-5 centered at 4 and two 
eigenvalues (or an eigenvalue of algebraic mulliplicity 2) in the disk of radius 2· 10-5 centered at 2. Actually, 
since the matrix is symmetric. these eigenvalues must lie in the intersections of these disks and the real axis. 
by Theorem 5 in Sec. 20.6. 

We sho" how an isolated disk can always be reduced in size by a similarity transformation. The matrix 

o 

o 

10-
5

] [I 
10-5 0 

4 0 

o 

l~ ] o 

2 ;] 
is similar to A. Hence by Theorem 2. Sec. 20.6. it has the same eigenvalues as A. From Row 3 we get the smaller 
disk of radius 2· 10-10

. Note that the other disks got bigger. approximately by a factor of 105
. And in choosing 

T we have to watch lhat the new disks do not overlap with the disk whose size we want to decrease. 
For funher interesting facts, see the new book [E28j. • 

By definition, a diagonally dominant matrix A = [ajk] is an n X n matrix such that 

(3) lajjl ~ L lajkl j = I,"', n 
k*j 

where we sum over all off-diagonal entries in Row j. The matrix is said to be strictly 
diagonally dominant if > in (3) for all j. Use Theorem I to prove the following basic 
property. 

Strict Diagonal Dominance 

Strictly diagonally dominant matrices are nOllSingular. 

Further Inclusion Theorems 
An inclusion theorem is a theorem that specifies a set which contains at least one 
eigenvalue of a given matlix. Thus. Theorems I and 2 are inclusion theorems; they even 
include the whole spectrum. We now discuss some famous theorems that yield further 
inclusions of eigenvalues. We state the first two of them without proofs (which would 
exceed the level of this book). 
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THEOREM 4 Schur's Theorem3 

Let A = [ajk] be an 11 X n matrix. Then for each of its eigenvalues A1> •.• , An' 

n n n 

(4) \AmJ2 ~ L \Ai\2 ~ L L \ajk\2 (Schur's inequality). 
i=l j=l k=l 

In (4) the second equality sign holds if alld ollly if A is such that 

(5) 

Matrices that satisfy (5) are called normal matrices. It is not difficult to see that Hermitian, 
skew-Hermitian, and unitary matrices are normal, and so are real symmetric, skew-symmetric, 
and orthogonal matlices. 

E X AMP L E 1 Bounds for Eigenvalues Obtained from Schur's Inequality 

THEOREM 5 

For the matrix 

we obtain from Schur's inequality IAI ;;: v'I949 = 44.1475. You may verify that the eigenvalues are 30. 25, 
and 20. Thus 302 + 252 + 202 

= 1925 < 1949; in fact, A is not normal. • 

The preceding theorems are valid for every real or complex square matrix. Other theorems 
hold for special classes of matrices only. Famous is the following. 

Perron's Theorem4 

Let A be a real n X n matrix whose e1l1ries are all positive. Then A has a positive 
real eigenvalue A = p of multiplicity I. The corresponding eigenvector can be chosen 
with all components positive. (The other eigenvalues are less than p in absolute 
value.) 

For a proof see Ref. [B3], vol. II, pp. 53-62. The theorem also holds for matrices with 
nonnegative real entries ("Perron-Frobenius Theorem,,4) provided A is irreducible, 
that is, it cannot be brought to the following form by interchanging rows and columns: 
here Band F are square and 0 is a zero matrix. 

:ISSAI SCHUR (1875-1941), German mathematician, also known by his important work in group theory. 
OSKAR PERRON (1880-1975), GEORG FROBENIUS (1849-1917), LOTHAR COLLATZ (1910-1990), 

German mathematicians, known for their work in potential theory, ODEs (Sec. 5.4) and group theory, and 
numerics. respectively. 



870 

THEOREM 6 

CHAP. 20 Numeric Linear Algebra 

Perron's theorem has various applications, for instance, in economics. It is interesting 
that one can obtain from it a theorem that gives a numeric algorithm: 

Collatz Inclusion Theorem4 

Let A = [ajk] be a real n X 11 matrLl: whose elements are all positive. Let x be a1l\' 
real vector whose components Xl' ••.• Xn are positive, alld let )'1> •••• Yn be the 
components of the vector y = Ax. Then the closed imen'al 011 the real axis bounded 
by the smallest and the largest of the n quotients % = )'/Xj contains at least one 
eigenvalue of A. 

PROOF We have Ax = yor 

(6) y - Ax = O. 

The transpose AT satisfies the conditions of Theorem 5. Hence AT has a positive eigenvalue 
A and, corresponding to this eigenvalue. an eigenvector u whose components Uj are all 
positive. Thus ATu = Au, and by taking the transpose we obtain uTA = AUT. From this 
and (6) we have 

or written out 
n 

L u/Yj - AXj) = O. 
j~l 

Since all the components Uj are positive, it follows that 

(7) 
Yj - A.r:j ~ O. 

Yj - ,\xj ~ 0, 

that is. 

that is, 

for at least one j. 
and 

for at least one j. 

Since A and AT have the same eigenvalues. A is an eigenvalue of A. and from (7) the 
statement of the theorem follows. • 

E X AMP L E 4 Bounds for Eigenvalues from Collatz's Theorem. Iteration 

For a given matrix A with positive entries we choose an x = "0 and iterate, that is, we compute 
Xl = Axo· X2 = AXI •...• X20 = AX19' In each step, taking x = ":i and y = AXj = Xj+l we compute an 
inclusion interval by Collatz's theorem. This gives (6S) 

[ 049 
0.02 

A = 0.02 0.28 

0.22 0.20 

0.22] [I] [0.73] [0.5481] 
0.20 ,xo ~ 1 ,Xl = 0.50 ,X2 ~ 0.3186 , 

0.40 I 0.82 0.5886 

[

0.002 1 6309J [0.00155743 J 

•• '. xl9 = 0.00108155 ,x20 = 0.000778713 

0.00216309 0.00155743 
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and the intervals 0.5 ~ A ~ 0.82, 0.3186/0.50 = 0.6372 ~ A ~ 0.548l/0.73 = 0.750822, etc. These intervals 
have length 

j 2 3 10 15 20 

Length 0.32 0.113622 0.0539835 0.0004217 0.0000132 0.0000004 

Using the characteristic polynomial. you may verify that the eigenvalues of A are 0.72. 0.36. 0.09. so that those 
intervals include the largest eigenvalue. 0.72. Their lengths decreased withj. so that the iteration was worthwhile. 
The reason will appear in the next ~ection, where we discuss an iteration method for eigenvalues. • 

PROBLEM SET 2<h.7 

11-61 GERSCHGORIN DISKS 

Find and sketch disks or interval~ that contain the 
eigenvalues. If you have a CAS, find the spectrum and 
compare. 

1.[-~ -: ] 
2. [1~_2 

10-2 

[

1 + i 

4. 0.3i 

O.li 

[ 

4i 

5. O.li 

-1 + i 

[ 

10 

6. 0.1 

-0.2 

10-2 

8 

10-2 

0.3 

-3 + 2i 

0.2 

0.1i 

o 

o 

0.1 

6 

o 

10-
2

] 
10-2 

9 

0.5i] 
0.1 

4-i 

7. (Similarity) Find T-TAT such that in Prob. 2 the 
radius of the Gerschgorin circle with center 5 is reduced 
by a factor III 00. 

8. By what integer factor can you at most reduce the 
Gerschgorin circle with center 3 in Prob. 6? 

9. If a symmetric 11 X 11 matrix A = [ajkl has been 
diagonalized except for small off-diagonal entries of 
size 10-6

, what can you say about the eigenvalues? 

10. (Extended Gerschgorin theorem) Prove Theorem 2. 

11. Prove Theorem 3. 

12. (Normal matrices) Show that Hermitian, skew­
Hermitian, and unitary matrices (hence real symmetric. 
skew-symmetric, and orthogonal matrices) are normal. 
Why is this of practical interest? 

13. (Spectral radius peA»~ Show that p(A) cannot be 
greater than the row sum norm of A. 

14. (Eigenvalues on the circle) Illustrate with a 2 X 2 
matrix that an eigenvalue may very well lie on a 
Gerschgorin circle (so that Gerschgorin disks can 
generally not be replaced with smaller disks without 
losing the inclusion property). 

115--171 SCHUR'S INEQUALITY 

Use (4) to obtain an upper bound for the spectral radius: 

15. In Prob. I 

16. In Prob. 6 

17. In Prob. 3 

118-191 COLLATZ'S THEOREM 

Apply Theorem 6, choosing the given vectors as vectors x. 

[

10 

18. I 9 J[J[J[J 3 

'9. [: 

2 

4 

2 
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20. CAS EXPERIMENT. Collatz Iteration. (a) Write 
a program for the iteration in Example 4 (with any 
A and xo) that at each step prints the midpoint 
(why?). the endpoints. and the length of the inclusion 
interval. 

(b) Apply the program to symmetric matrices of your 
choice. Explore how convergence depends on the 
choice of initial vectors. Can you construct cases in 
which the lengths of the inclusion intervals are not 
monotone decreasing? Can you explain the reason? 
Can you experiment on the effect of rounding? 

20.8 Power Method for Eigenvalues 

THEOREM 1 

A simple standard procedure for computing approximate values of the eigenvalues of an 
n X n matrix A = [ajd is the power method. In this method we start from any vector 
xo (* 0) with n components and compute successively 

Xs = AX.<_l· 

For simplifying notation, we denote Xs-l by x and Xs by y. so that y = Ax. 
The method applies to any n X n matrix A that has a dominant eigenvalue (a A such 

that IAI is greater than the absolute values of the other eigenvalues). If A is symmetric. it 
also gives the error bound (2), in addition to the approximation (1). 

Power Method, Error Bounds 

Let A be an n X n real symmetric matrix. Let x (* 0) be any real vector with n 
components. Furthermore. let 

y = Ax, mo = XTX, 1111 = xTy, 

Then the quotient 

(I) q= (Rayleigh5 quotient) 

is lin lIpproximation for an eigenvalue A of A (usually that which is greatest in 
absolute value, but no general statements are possible). 

FlIrthe17llore. if we set q = A-E. so that E is the error of q. then 

(2) 

5LORD RAYLEIGH (JOHN WILLIAM STRUTT) (1842-1919), great English physicist and mathematician. 
professor at Cambridge and London, known for his important contributions to various branches of applied 
mathematics and theoretical physics. in particular. the theory of waves. elasticity. and hydrodynamics. In 1904 
he received a Nobel Prize in physics. 
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PROOF fJ2 denotes the radicand in (2), Since 1111 = qmo by ( I). we have 

Since A is real symmetric, it has an orthogonal set of n real unit eigenvectors ZI' ... , zn 
corresponding to the eigenvalues AI, ... , An' respectively (some of which may be equal). 
(Proof in Ref. [B3], vol. I, pp. 270-272, listed in App. I.) Then x has a representation of 
the fmm 

Now AZI = AIZI, etc., and we obtain 

and. since the Zj are orthogonal unit vectors. 

(4) 

It follows that in (3), 

Since the Zj are orthogonal unit vectors, we thus obtain from (3) 

Now let Ae be an eigenvalue of A to which q is closest, where c suggests ·'closest"". Then 
(Ae - q)2 ~ (AJ - q)2 for j = 1, ... , n. From this and (5) we obtain the inequality 

Dividing by 1110, taking square roots. and recalling the meaning of fJ2 gives 

This shows that fJ is a bound for the error E of the approximation q of an eigenvalue of 
A and completes the proof. • 

The main advantage of the method is its simplicity. And it can handle sparse matrices 
too large to store as a full square array. Its disadvantage is its possibly slow convergence. 
From the proof of Theorem ] we see that the speed of convergence depends on the ratio 
of the dominant eigenvalue to the next in absolute value (2:] in Example I, below). 

If we want a convergent sequence of eigenvectors, then at the beginning of each step 
we scale the vector, say, by dividing its components by an absolutely largest one, as in 
Example 1, as follows. 
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E X AMP L E 1 Application of Theorem 1. Scaling 

For the symmetric matrix A in Example 4, Sec. 20.7. and Xo = [I 

indicated scaling 
I] T we obtain from (I) and (2) and the 

[ 

O.4Y 

A = om 

0.22 

0.02 

0.28 

0.20 

0.22] [I] [0.890244] [0.931193] 

~::~ , Xo = ~ , Xl = ~.609756 , X2 = ~.541284 

[

0,990663] 

X5 = ~.504682 . 
[

0,999707] 

XlO = ~.500146 . 
[

0,999991] 

Xl5 = ~.500005 . 

Here AXV = [0.73 0.5 0.S2IT, scaled to Xl = [0.73/0.82 0.5/0.82 lIT. etc. The dominam eigenvalue is 
0.72, an eigenvector [I 0.5 lIT. The corresponding q and 8 are computed each time before the next scaling. 
Thus in the first step. 

XOTAxO 2.05 
- --T- = -3- = 0.683333 

Xo Xo 

,, __ (1112 _ q2)1/2 __ (AXo)T Axo 2)112 (1.4553 2)112 
v T - q = -- - q = 0.134743. 

1110 Xo Xo 3 

This gives the foIlowing values of q, 8, and the error € = 0.72 - q (calculations with 10D, rounded to 6D): 

j 

q 

8 

€ 

0.683333 

0.134743 

0.036667 

2 

0.716048 

0.038887 

0.003952 

5 

0.719944 

0.004499 

0.000056 

10 

0.720000 

0.000l41 

5' 10-8 

The error bounds are much larger than the actual errors. This is typicaL although the bounds cannot be improved: 
that is, for special symmetric matrices [hey agree with the errors. 

Our present results are somewhat better than those of CoIlatz'~ method in Example 4 of Sec. 20.7, at the 
expense of more operations. • 

Spectral shift, the transition from A to A - kI, shifts every eigenvalue by -k. Although 
finding a good k can hardly be made automatic, it may be helped by some other method 
or small preliminary computational experiments. In Example I. Gerschgorin' s theorem 
gives -0.02 ~ A ~ 0.82 for the whole spectrum (verify!). Shifting by -0.4 might be too 
much (then -0.42 ~ A ~ 0.42), so let us try -0.2. 

E X AMP L E 2 Power Method with Spectral Shift 

For A - 0.21 with A as in Example I we obtain the following substantial improvements (where the index 1 
refers to Example I and the index 2 to the present example). 

j 2 5 10 

81 0.134743 0.038887 0.004499 0.000141 
82 0.134743 0.034474 0.000693 1.8· 10-6 

€l 0.036667 0.003952 0.000056 5 '10-8 

€2 0.036667 0.002477 1.3. 10-6 9' 10-12 • 
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PRO B. L EMS E 1::::..2 D-;-8_ 

11-71 POWER METHOD WITH SCALING 

Apply the power method (3 steps) with scaling. using 
Xo = [I I]T or [I I I]T or [I I I I]T. as 
applicable. Give Rayleigh quotients and error bounds. 
Show the details of your work. 

[

3.5 
1. 

2.0 

2.0J 

U.5 

3. [~ ~J 

.{; : J 
° 4 ° 
4 -I 2 

6. 
0 2 3 

8 2 

8 

2 

-2 

[

0.6 
2. 

0.8 

0.8J 

-0.6 

5'[-~ -~ ~] 
I 2 3 

7. 

5 

o 

° 

° 
3 

3 

o 

° 
° 

5 

8. (Optimality of 8) In Prob. 2 choose Xo = [3 _l]T 
and show that q = 0 and 8 = I for all steps and that the 
eigenvalues are ::'::: 1. so that the interval [q - 8, q + 8] 
cannot be shortened in general! Experiment with 
other xo. 
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9. Prove that if x is an eigenvector, then 8 = ° in (2). 
Give two examples. 

10. (Rayleigh quotient) Why does q generally 
approximate the eigenvalue of greatest absolute value? 
When will q be a good approximation? 

11. (Spectral shift, smallest eigenvalue) In Prob. 5 set 
B = A - 31 (as perhaps suggested by the diagonal 
entries) and try whether you may get a sequence of q's 
converging to an eigenvalue of A that is smallesT (not 
largest) in absolute value. Use Xv = [I I nT. Do 
8 step". Verify that A has the spectrum (0.3.51. 

12. CAS EXPERIMENT. Power Method with Scaling. 
Shifting. (a) Write a program for 11 X 11 matrices that 
prints every step. Apply it to the (nonsymmetric!) 
matrix (20 steps), starting from [1 I If. 

A = [ :: ~: I:] . 
-19 - 36 -7 

(b) Experiment in (a) with shifting. Which shift do you 
find optimal? 

(c) Write a program as in (a) but for symmetric 
matrices that prints vectors. scaled vectors, q, and 8. 
Apply it to the matrix in Prob. 6. 

(d) Find a (nonsymmetric) matrix for which 8 in (2) 
is no longer an error bound. 

(e) Experiment systematically with speed of 
convergence by choosing matrices with the second 
greatest eigenvalue (i) almost equal to the greatest, (ii) 
somewhat different, (iii) much different. 

20.9 Tridiagonalization and QR-Factorization 
We consider the problem of computing all the eigenvalues of a real symmetric matrix 

A = [ajk]' discussing a method widely used in practice. In the first stage we reduce [he 
given matrix stepwise to a tridiagonal matrix, that is, a matrix having all its nonzero 

entries on the main diagonal and in the positions immediately adjacent to the main diagonal 

(such as A3 in Fig. 447, Third Step). This reduction was invented by A. S. Householder 
(1. Assn. Comput. Machinery 5 (1958), 335-342). See also Ref. [E29] in App. I. 

This Householder tridiagonalization will simplify the matrix without changing its 

eigenvalues. The latter will then be determined (approximately) by factoring the 
tridiagonalized matrix, as discussed later in this section. 
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Householder's Tridiagonalization Method 
An 11 X 11 real symmetric matrix A = [ajk] being given, we reduce it by Il - 2 successive 
similarity transformations (see Sec. 20.6) involving matrices PI' ... , P n-2 to tridiagonal 
form. These matrices are orthogonal and symmetric. Thus Pi l = PIT = PI and similarly 
for the others. These transformations produce from the given Ao = A = [lIjk] the matrices 
Al = raJ};]. A2 = [aj~)], .... A n - 2 = [a3k- 2

)] in the form 

(1) 

Al = PIAoPl 

A2 = P2AIP2 

The transformations (1) create the necessary zeros, in the first step in Row I and Column 
1, in the second step in Row 2 and Column 2, etc., as Fig. 447 illustrates for a 5 X 5 
matrix. B is tridiagonal. 

How do we determine PI' P2, ... Pn - 2 ? Now, all these P r are of the form 

(2) (r = I •... , 11 - 2) 

where I is the 11 X 11 unit matrix and Vr = [Vjr] is a unit vector with its first r components 
0; thus 

o o o 

* o o 

(3) * * V n -2 = 

* 

* * * 

where the asterisks denote the other components (which will be nonzero in general). 

Step 1. VI has the components 

Vn = 0 

(a) 

(4) (b) j = 3. 4 .... , 11 

where 

(c) Sl = \/a212 + a3I2 + ... + anI
2 

where SI > 0, and sgn a21 = + 1 if a21 ~ 0 and sgn lI21 = -1 if a21 < O. With this we 
compute PI by (2) and then Al by (I). This wa<; the first step. 
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[.~~; ... *"'J [:::: J [:~:::* 1 .. ~.!'*: * *.:= * .. 
,. o.!_ * * ::: ;:: _ ... r: 

* . :;: -

First Step 

At =PtAP t 

Second Step 

A" = P,AtP2 

Third Step 

~ =P3A"Pj 

Fig. 447. Householder's method for a 5 X 5 matrix. 
Positions left blank are zeros created by the method. 
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Step 2. We compute v2 by (4) with all subscripts increased by 1 and the ajk replaced by 
aj~), the entries of Al just computed. Thus [see also (3)] 

(4*) I ( la~~1 ) - 1+--
2 S2 

j = 4,5, ... , n 

where 

+ a~~ 
2 

With this we compute P2 by (2) and then A2 by (1). 

Step 3. We compute V3 by (4*) with all subscripts increased by 1 and the ajil replaced 
by the entries aj'fl of A2 , and so on. 

E X AMP L E 1 Householder Tridiagonalization 

Tridiagonalize the real symmetric matrix 

4 

6 

5 

2 

Solution. Step 1. We compute Sl2 = 42 + ]2 + ]2 = l!l from (4c). Since Q21 = 4 > 0, we have 
sgn G21 = + 1 in (4bl and get tram (4) by straightforward computation 

From this and (2). 

[
0 1 [0 1 V21 0.985 598 56 

VI = V31 = 0.119573 16 . 

V41 0.119 573 16 

o o 

-0.942 809 04 -0.235 702 27 

0.97140452 

-0.028 595 48 

-0.235 702 27 

-0.235 702 27 

-~.235 70227J 

-0.G28 595 48 

0.97140452 
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From the first line in (I) we now get 

-Vt8 o 

7 -I 

-I 9/2 

-I 3/2 

Step 2. From (4*) we compute S22 = 2 and 

V2 = [:~] = [:.923879 ,,]. 
V42 0.38268343 

From this and (2). 

P, ~ [~ 
0 0 0 

0 -l~ ] 0 -Itv'2 

0 -1V2 Itv'2 
The ",cond line in (I) now gives 

[ , 
-Vt8 0 

-v'18 7 ,/2 
B = A2 = P2 A I P2 = 0 

Y2 6 

0 0 0 

01 
-( 

312 

912 

~l 
This matrix B is tridiagonal. Since our given matrix has order 11 = 4, we needed 11 - 2 = 2 steps to accomplish 
this reduction. as claimed. (Do yOll see that we got more zeros than we can expect in general?) 

B is similar to A, as we now show in general. This is essential because B thus has the same spectrum as A, 
by Theorem 2 in Sec. 20.b. • 

B Similar to A. We assert that Bin (1) is similar to A = Ao. The matrix PT is symmetric; 
indeed, 

T TT T TT T 
Pr = (I - 2v,.vr) = 1 - 2(vrvr ) = [ - 2vT vr = Pro 

Also, PT is orthogonal because Vr is a unit vector. so that V,T VT = 1 and thus 

T 2 T2 T T T 
P."Pr = Pr = (I - 2vrvr ) = 1 - 4vrvr + 4v.rvr V."Vr 

T T T = 1 - 4v,.vr + 4vAvr vr)Vr = I. 

Hence p;l = p r
T = Pr and from (1) we now obtain 

B = P11-2A11-3Pn-2 = ... 

. . . = Pn - 2 Pn - 3 ••• P IAP1 ... Pn - 3 Pn - 2 

-1 -} -1 
= Pn - 2 Pn - 3 •.• PI API" . Pn - 3 Pn - 2 

= P- 1AP 

where P = P IP2 ... P n-2' This proves our assertion. • 
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QR-Factorization Method 
In 1958 H. Rutishauser of Switzerland proposed the idea of using the LU-factorization 
(Sec. 20.2; he called it LR-factorization) in solving eigenvalue problems. An improved 
version of Rutishauser's method (avoiding breakdown if certain submatrices become 
singular, etc.; see Ref. [E291) is the QR-method, independently proposed by the American 
I. G. F. Francis (Computer 1. 4 (1961-62), 265-271, 332-345) and the Russian 
V. N. Kublanovskaya (Zhllmal v.ych. Mal. i Mat. Fi::.. 1 (1961),555-570). The QR-method 
uses the factorization QR with orthogonal Q and upper triangular R. We discuss the 
QR-method for a real symmetric matrix. (For extensions to general matrices see Ref. rE29] 
in App. 1.) 

In this method we first transform a given real symmetric f1 X 11 matrix A into a 
tridiagonal matrix Bo = B by Householder's method. This creates many Leros and thus 
reduces the amount of further work. Then we compute B1 , B2 , ... stepwise according to 
the following iteration method. 

Step 1. Factor Bo = QoRo with orthogonal Ro and upper triangular Ro. Then compute 
Bl = RoQo· 

Step 2. Factor Bl = QIRI' Then compute B2 = R 1Ql' 

Ge1leral Step s + 1. 

(5) 

Here Qs is orthogonal and Rs upper triangular. The factorization (Sa) will be explained 
below. 

B8+ 1 Similar to B. Convergence to a Diagonal Matrix. From (5a) we have Rs = Q;lBs' 
Substitution into (5b) gives 

(6) 

Thus Bs+l is similar to Bs' Hence Bs+l is similar to Bo = B for all s. By Theorem 2, 
Sec. 20.6, this implies that Bs+l has the same eigenvalues as B. 

Also, Bs+l is symmetric. This follows by induction. Indeed. Bo = B is symmetric. 
Assuming Bs to be symmetric, that is, BsT = Bs, and using Q;l = QsT (since Qs is 
orthogonal), we get from (6) the symmetry, 

If the eigenvalues of B are different In absolute value, say, IAll > IA21 > ... > IAnl, 
then 

lim Bs = D 
s_oc 

where D is diagonal, with main diagonal entries "-]0 "-2, ... , An. (Proof in Ref. [E29J 
listed in App. I.) 
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How to Get the QR-Factorization, say, B = Bo = [bjk] = QoRo. The tridiagonal 
matrix B has 11 - I generally nonzero entries below the main diagonal. These are 
b2l• b32, ...• bn,n-l' We multiply B from the left by a matrix C2 such that C2B = [b)~] 
has bW = O. We multiply this by a matrix C3 such that C3C2 B = [bj'r] has b~~ = O. etc. 
After 11 - I such multiplications we are left with an upper triangular matrix Ro. namely. 

(7) 

These 11 X f1 matrices Cj are very simple. Cj has the 2 X 2 submatrix 

(OJ suitable) 

in Rows j - 1 and j and Columns j - 1 and j; everywhere else on the main diagonal the 
matrix Cj has entries 1; and all its other entries are O. (This submatrix is the matrix of a 
plane rotation through the angle OJ; see Team Project 28. Sec. 7.2.) For instance. if 
fl = 4. writing Cj = cos OJ. sJ = sin OJ. we have 

~ C, 

S2 0 

-'2 C2 0 
C2 = 0 

0 

0 0 0 
~l4 ~ ~~ 

0 

Cg 

-.1'3 

0 

0 

S3 

C3 

0 

o 0 

o 

These Cj are orthogonal. Hence their product in (7) is orthogonal, and so is the inverse 
of this product. We call this inverse Qo. Then from (7), 

(8) 

where, with Ci1 = C/o 

(9) 

This is our QR-factorization of Bo. From it we have by (5b) with s = 0 

(10) 

We do not need Qo explicitly, but to get Bl from (10). we first compute ROC2 T. then 
(ROC 2 T)C3 T, etc. Similarly in the further steps that produce B2 • B3, •••• 

Determination of cos OJ and sin OJ. We finally show how to find the angles of rotation. 
cos f)2 and sin ~ in C2 must be such that b~) = 0 in the product 

o 

o 
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Now b~21 is obtained by multiplying the second row of C2 by the first column of B, 

cos 82 = 
v'l 

(II) 
+ tan2 82 

VI] + (b21/bn )2 

sin 82 = 
tan 82 b21lbn 

V] + tan2 82 
V] + (b21/b n )2 

Similarly for 83 , 84 , .. '. The next example illustrates all this. 

E X AMP L E 2 QR-Factorization Method 

Compute all the eigenvalues of the matrix 

4 

6 

5 

Solution. We fust reduce A to tridiagonal foml. Applying Householder's method. we obtain (see Example I) 

[ -~!J8 -~T8 
A2 = 

o v2 

o 0 

o 
,\;'2 

6 

o 

From the characteristic determinant we see that A2 • hence A, has the eigenvalue 3. (Can you see this directly 
from A2?1 Hence it suffices to apply the QR-method to the tridiagonal 3 X 3 matrix 

'. ~ • ~ [ -~Is 
-,\;18 0] 7 

v2 
Step I. We multiply B from the lefl by 

[COO ~ sin f)2 

] C, ~ [: 

0 

C2 = -s~ f)2 cos f)2 and lhen C2B by cos f)3 

0 - ,in f)3 

Si: f)3]' 

cos f)3 

Here (-sin O2)' 6 + (cos 02)(-~) = 0 gives (II) cos O2 = 0.81649658 and sin f)2 = -0.57735027. 
With these values we compute 

[

7,34846<) 23 

C2 B = 0 

o 

-7.50555350 

3.26598632 

1.414213 56 

-0.816 496 58] 

1.154 700 54 . 

6.00000000 

In C3 we get from (- sin f)3) • 3.265 <)86 32 .!. (cos f)3) • 1.414 213 56 = 0 the values cos f)3 = 0.917 662 94 
and sin f)3 = 0.39735971. This gives 

[

7.348469 23 

Ro = C g C2 B = 0 

o 

-7.50555350 

3.55902608 

o 

-0.8\649658J 

3.443 784 13 . 

5.04714615 
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From this we compute 

[ 

10.333 333 33 

T T 
Bl = RoC2 C3 = -:.05480467 :.005 532 51 ] 

4.63157895 

- 2.054 804 67 

4.03508772 

2.00553251 

which is symmetnc and tridiagonal. The off-diagonal entries in BI are still large in absolute value. Hence we 
have to go on. 

Step 2. We do the same computations as in the first step. with Bo = B replaced by Bl and Cz and C3 changed 
accordingly, the new angles being 62 = 0.196291 533 and 63 = 0.513415589. We obtain 

[ 1053565375 -2.802322 -II -0.391 145 88] 

Rl ~ 0 4.08329584 3.98824028 

0 0 3.06832668 

and from this 

[ 10.8" 879 88 -0.79637918 

~50702500 1 B2 = -:.796379 18 5.44738664 

1.50702500 2.672 733 48 

We see that the off-diagonal entries are somewhat smaller in absolute value than those of B I . but ,till much too 
large for the diagonal entries to be good approximations of the eigenvalues of B. 

Further Steps. We list the main diagonal entries and the absolutely largest off-diagonal entry, which is 

Ib~~)1 = Ib~i)1 in all steps. You may show that the given matrix A has the spectrum I 1.6,3,2. 

b\·i) b<.i) HJ) 
(J) 

Stepj 11 22 33 maXj*k Jbjkl 

3 10.966892 9 5.94589856 2.08720851 0.58523582 

5 10.9970872 6.00] 81541 2.00109738 0.12065334 

7 10.999742 I 6.00024439 2.00001355 0.035911 07 

9 10.999977 2 6.00002267 2.00000017 0.01068477 • 
Looking back at our discussion, we recognize that the purpose of applying Householder's 
tridiagonalization before the QR-factorization method is a substantial reduction of cost in 
each QR-factorization. in particular if A is large. 

Convergence acceleration and thus further reduction of cost can be achieved by a 
spectral shift, that is, by taking Bs - ksI instead of Bs with a suitable ks. Possible choices 
of ks are discussed in Ref. [E291, p. 510. 

-..... .-
"1-41 HOUSEHOLDER TRIDIAGONALIZATION 8 

8 

8 

8 

2 2 

2 Tridiagonalize. showing the details: 

[

3.5 

1. 1.0 

1.5 

[

0.98 

3. 0.04 

0.44 

1.0 

5.0 

3.0 

0.04 

0.56 

0.40 

1.5J 
3.0 

3.5 
~[ 0 ] 

0.44] 
OAO 

0.80 

4. 
2 2 

2 2 

2 

6 

4 

4 

6 

15-91 QR-FACTORIZA TION 

Do three QR-steps to find approximations of the 
eigenvalues of: 

5. The matrix in the answer to Prob 1 
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6. The matrix in the answer to Prob. 3 

-U.I 

0,:] 
4.1 

-4.3 

0.2 

883 

r
7.0 

9. 0.1 

o 

0.1 

O.~] 
1.0 

4.0 

0.1 

10. CAS EXPERIMENT. QR-Method. Try to find out 
experimentally on what properties of a matrix the speed 
of decrease of off-diagonal entries in the QR-method 
depends. For this purpose write a program that first 
tridiagonalizes and then does QR-steps. Try the 
program out on the matrices in Probs. 1. 3. and 4. 
Summarize your findings in a short report. 

, , 
=1 : S T ION SAN D PRO B L EMS 

1. What are the main problem area~ in numeric linear 
algebra? 

2. What is pivoting? When and how would you apply it? 

3. What happens if you apply Gauss elimination to a 
system that has no solutions? 

4. What is Doolittle's method? Its connection to Gauss 
elimination? 

5. What is Cholesk)"s method? When would you apply it? 

6. What do you know about the convergence of the 
Gauss-Seidel method? 

7. What is ill-conditioning? What is the condition number 
and its significance? 

8. What is least squares approximation? What are the 
normal equations? 

9. What is an eigenvalue of a matrix? Why are eigenvalue 
problems important? Give typical examples. 

10. Why are similarity transformations of matrices important 
in designing numeric methods? Give examples. 

11. What is the power method for eigenvalues? What are 
its advantages and disadvantages? 

12. State Gerschgorin's theorem from memory. Can you 
remember its proof? 

13. State Schur's inequality and give some applications of 
it. 

14. What is tridiagonalization? When would you apply it? 

15. What is the idea of the QR-method? When would you 
apply the method? 

116-]91 GAUSS ELIMINATION 
Solve: 

16. 4x2 - 3X3 = 11.8 

5Xl + 3X2 + X3 = 34.2 

6Xl - 7X2 + 2X3 = -3.1 

17. Xl + X2 + X3 S 

Xl + 2X2 + 2x3 6 

Xl + 2x2 t- 3X3 8 

18. 5X1 + X 2 3x3 17 

- SX2 + ISx3 -10 

2Xl - 3X2 + 9X3 = 0 

19. 21:1 + 3X3 = IS 

4X2 - X3 = -13 

3x 1 - X 2 + SX3 = 26 

20. Solve Prob. 17 by Doolittle's method. 

21. Solve Prob. 17 by Cholesky's method. 

122-24 1 INVERSE MATRIX 
Compute the inverse of: 

r" 
2.0 05] 

22. 0.5 1.0 O.S 

1.5 2.0 1.0 

r' 2.0 10] 
23. 2.0 3.S I.S 

1.0 1.S 9.0 
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125-261 GAUSS-SEIDEL METHOD 
Do 3 steps without scaling, starting from [1 

25. Xl + 15x2 - X3 = 11 

lOx I + 3x2 -17 

5 

127-321 VECTOR NORMS 
Compme the f\-, C2 -, and Ceo-norms of the vectors 

27. [0 4 -8 3]T 

28. [3 8 -ll]T 

29. [-4 1 0 2]T 

30. [0 0 O]T 

31. [-5 -2 7 0 O]T 

32. [0.3 1.4 0.2 -0.6]T 

133-351 MATRIX NORM 
Compute the matrix norm corresponding to the Ccc-vector 
norm for the coetlicient matrix: 

33. In Prob. 17 

Numeric Linear Algebra 

34. In Prob. 18 

35. In Prob. 19 

136-381 CONDITION NUMBER 
Compute the condition number (corresponding to the 
Coo-vector norm) of the coefficient matrix: 

36. In Prob. 22 

37. In Prob. 23 

38. In Prob. 24 

@9-40 1 FITTING BY LEAST SQUARES 
Fit: 

39. A straight line to (-2. O. \). (0. 1.9). (2. 3.8), (4, 6.\), 
(6,7.8) 

40. A quadmtic pambola to O. 9). (2, 5), (3. 4), (4. 5). (5. 7) 

141-431 EIGENVALUES 
Find three circular disks that must contain all the eigen values 
of the matrix: 

41. In Prob. 22 

42. In Prob. 23 

43. Tn Prob. 24 

44. (Power method) Do 4 sleps of the power method for 
the matrix in Prob. 24. starting from [I I I]T and 
computing the Rayleigh quotients and error bounds. 

45. (Householder and QR) Tridiagonalize the matrix in 
Prob. 23. Then apply 3 QR steps. (Spectrum (6S): 
9.65971, 4.07684. 0.263451) 

Main tasks are the numeric solution of linear systems (Secs. 20.1-20.4), curve fitting 
(Sec. 20.5). and eigenvalue problems (Secs. 20.6-20.9). 

Linear systems Ax = b with A = [ajk]' written out 

(1) 

can be solved by a direct method (one in which the number of numeric operations 
can be specified in advance. e.g., Gauss's elimination) or by an indirect or iterative 
method (in which an initial approximation is improved stepwise). 
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The Gauss elimination (Sec. 20.1) is direct, namely, a systematic elimination 
process that reduces (1) stepwise to triangular fonn. In Step I we eliminate Xl from 
equations E2 to En by subtracting (a2I/an) EI from E2, then (a3I/an) EI from E3. 
etc. Equation EI is called the pivot equation in this step and an the pivot. In Step 
2 we take the new second equation as pivot equation and eliminate X2, etc. If the 
triangular fonn is reached, we get Xn from the last equation, then Xn-I from the 
second last. etc. Partial pivoting (= interchange of equations) is necessary if 
candidates for pivots are zero, and advisable if they are small in absolute value. 

Doolittle's, Crout's, and Cholesky's methods in Sec. 20.2 are variants of the 
Gauss elimination. They factor A = LV (L lower triangular, U upper triangular) 
and solve Ax = LUx = b by solving Ly = b for y and then Ux = y for x. 

In the Gauss-Seidel iteration (Sec. 20.3) we make an = a22 = ... = ann = I 
(by division) and write Ax = (I + L + U)x = b; thus x = b - (L + U)x, which 
suggests the iteration formula 

(2) XCrn+ I ) = b - Lx(m+l) - UXCrn) 

in which we always take the most recent approximate x./s on the right. If Ilell < l. 
where C = -(I + L)-IU, then this process converges. Here. IICII denotes any 
matrix norm (Sec. 20.3). 

If the condition number K(A) = IIAII IIA -111 of A is large. then the system 
Ax = b is ill-conditioned (Sec. 20.4), and a small residual r = b - Ax does 1Iot 

imply that x is close to the exact solution. 
The fitting of a polynomial p(x) = bo + blx ., ... + bmx'" through given data 

(points in the J\"}·-plane) (Xl' YI), ... , (Xm Yn) by the method of least squares is 
discussed in Sec. 20.5 (and in statistics in Sec. 25.9). 

Eigenvalues A (values A for which Ax = Ax has a solution x =1= 0, called an 
eigenvector) can be characterized by inequalities (Sec. 20.7), e.g. in Gerschgorin's 
theorem, which gives 11 circular disks which contain the whole spectrum (all 
eigenvalues) of A, of centers ajj and radii Llajkl (sum over k from I to 11, k =1= j). 

Approximations of eigenvalues can be obtained by iteration. starting from an 
Xo =1= 0 and computing Xl = Axo, x2 = Ax!> ... , xn = AXn-i. In this power 
method (Sec. 20.8) the Rayleigh quotient 

(3) q= 

gives an approximation of an eigenvalue (usually that of the greatest absolute value) 
and, if A is symmetric, an error bound is 

(4) 

Convergence may be slow but can be improved by a speCTral shift. 
For determining all the eigenvalues of a symmetric matrix A it is best to first 

rridiagonalize A and then to apply the QR-method (Sec. 20.9), which is based on a 
factorization A = QR with 0I1hogonai Q and upper triangular R and uses similarity 
transformations. 



>~-

CHAPTER 2 1 

Numerics for ODEs and PDEs 

Numeric methods for differential equation" are of great practical importance to the 
engineer and physicist because practical problems often lead to differential equations that 
cannot be solved by one of the methods in Chaps. 1-6 or 12 or by similar methods. Also, 
sometimes an ODE does have a solution fonnula (as the ODEs in Secs. 1.3-1.5 do), which, 
however, in some specific cases may become so complicated that one prefers to apply a 
numeric method instead. 

This chapter explains and applies basic methods for the numeric solution of ODEs (Secs. 
21.1-21.3) and POEs (Secs. 21.4-21.7). 

Sections 21.1 alld 21.2 may be studied immediately after Chap. 1 alld Sec. 21.3 
immediately after Chap. 2, because these sections are independent of Chaps. 19 and 20. 

Sections 21.4-21.7 Oil PDEs may be studied immediately after Chap. 12 if students 
have some knowledge of linear systems of algebraic equations. 

Prerequisite: Secs. 1.1-1.5 for ODEs, Secs. 12.1-12.3, 12.5, 12.10 for POEs. 
References and Answers to Problems App. 1 Part E (see also Parts A and C), App. 2. 

21.1 Methods for First-Order ODEs 

886 

From Chap. 1 we know that an ODE of the first order is of the form F(x, y. y') = 0 and 
can often be written in the explicit form y' = f(x. y). An initial value problem for this 
equation is of the fonn 

(1) y' = f(x. yt )'(xo) = Yo 

where .1.'0 and Yo are given and we assume that the problem has a unique solution on some 
open interval (/ < x < b containing .1.'0' 

In thi~ section we shall discu~s methods of computing approximate numeric values of 
the solution y(x) of (1) at the equidistant points on the x-axis 

Xl = .1.'0 + h. 

where the step size h is a fixed number, for instance, 0.2 or O. I or 0.01. whose choice we 
discuss later in this section. Those methods are step-by-step methods, using the same 
formula in each step. Such formulas are suggested by the Taylor series 

(2) 
h2 

y(x + h) = y(x) + hy' (x) + ""2 y"(X) + .... 



SEC 21.1 Methods for First-Order ODEs 887 

For a small h the higher powers h2
, h3

, .•. are very small. This suggests the crude 
approximation 

y(x + h) = y(x) + hy' (x) 

= y(x) + hf(.\", y) 

(with the second line obtained from the given ODE) and the following iteration process. 
In the first step we compute 

Yl = Yo + hf(xo, Yo) 

which approximates Y(XI) = Y(.\"o + h). In the second step we compute 

which approximates )'(X2) = 1'(xo + 2h), etc., and in general 

(3) (n = 0, 1, .. '). 

This is called the Euler method or the Euler-Cauchy method. Geometrically it is an 
approximation of the curve of y(x) by a polygon whose first side is tangent to this curve 
at xo (see Fig. 448). 

y 

Fig. 448. Euler method 

This crude method is hardly ever u~ed in practice, but since it is simple, it nicely explains 
the principle of methods based on the Taylor series. 

Taylor's formula with remainder has the foml 

y(X + h) = y(x) + hy' (x) + ~h2y"W 

(where x ~ l; ~ x + h). It shows that in the Euler method the tru/lcation error il1 each 
step or local truncation error is propOitional to h2

, written 0(112
), where 0 suggests order 

(see also Sec. 20.1). Now over a fixed x-interval in which we want to solve an ODE the 
number of steps is proportional to 1111. Hence the total error or global error is propOitional 
to h20/h) = hI. For this reason. the Euler method is called a first-order method. In 
addition, there are roundoff errors in this and other methods, which may affect the 
accuracy of the values Yb .\'2, ..• more and more as 11 increases, as we shall see. 
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Table 21.1 Euler Method Applied to (4) in Example 1 and Error 

0.2(xn + )'n) 
Exact 

Error En 11 xn )'n Values 

0 0.0 0.000 0.000 0.000 0.000 

I 0.2 0.000 0.040 0.021 O.02J 

2 0.4 0.040 0.088 0.092 0.052 

3 0.6 0.128 0.146 0.222 0.094 

4 0.8 0.274 0.215 0.426 0.152 

5 1.0 0.489 n.7U< 0.229 

E X AMP L E 1 Euler Method 

Apply the Euler method to the following initial value problem. choosing II = 0.2 and computing )'1 •... , \'5: 

(4) y' = X + y, yeO) = o. 

Solution. Here f(x. y) = x + y; hence f(xn , Yn) = xn + Yn' and we see that (3) become~ 

Yn+1 = )"n + 0.2lxn -j- Yn)' 

Table 21.1 shows the computations. the values of the exact solution 

y(x) = eX - x-I 

obtained from (4) in Sec. 1.5. and the error. Tn practice the exact solution is unknown, but an indication of the 
accuracy of the values can be obtained by applying the Euler method once more with step 211 = 0.4. letting )'n * 
denote the approximation now obtained. and comparing corresponding approximations. This computation is: 

x n v * n O.4(Xn + )'n) Yn in Table 21.1 Difference Yn - )'n * 

0.0 0.000 0.000 0.000 0.000 

0.4 0.000 0.160 0.040 0.040 

0.8 0.160 0.274 0.1l4 

Let En and En" be the errors of the computations with II and 211. respectively. Since the error is of order 112. 
in a switch from II to 217 it is multiplied by 22 = 4, but since we need only half as many steps as before, it 
will be multiplied only by 412 = 2. Hence En" = 2En SO that the difference is En * - En = 2En - En = En' 

Now Y = )'n + En = Yn * + En * by the definition of error; hence En" - En = )'n - )'n * indicates En 

qualitatively. Tn our computations, Y2 - )'2* = 0.04 - 0 = 0.04 (actual error 0.052. see Table 21.1) and 
)"4 - )'4* = 0.274 - 0.160 = 0.114 (actually 0.152). • 

E X AMP L E 2 Euler Method for a Nonlinear ODE 

Figure 449 concerns the initial value problem 

(5) yeO) = OA 

and shows the curve of the solution y = 1/[2.5 - Sex)] + 0.01x2 where Sex) is the Fresnel integral (38) in 
App. 3.1. It also shows 80 approximate values for 0 ~ x ~ 4 obtained by the Euler method from (3). 

Although Ii = 0.05 is smaller than Ii in Example 1, the accuracy is still not good. It is interesting that the error 
is not monotone increasing. obviously since the solution is not monOlone. We shall return to this ODE in the 
problem set. • 
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Fig. 449. Solution curve and Euler approximation in Example 2 

Automatic Variable Step Size Selection in Modern Numeric Software 

The idea of adaptive integration as motivated and explained in Sec. 19.5 applies equally 
well to the numeric solution of ODEs. It now concerns automatically changing the step 
size h depending on the variability of y' = f determined by 

(6*) 

Accordingly, modern software automatically selects variable step sizes hn so that the 
error of the solution will not exceed a given maximum size TOL (suggesting tolerance). 
Now for the Euler method. when the step size is h = hm the local error at Xn is about 
~hn21y"(xn)l. We require that this be equal to a given tolerance TOL, 

(6) I 21" 1 (a) 2hn )' (Xn) = TOL, thus 
2TOL 

Iy''lxn) 1 

y"(X) must not be zero on the interval J: Xo ~ x = xN on which the solution is wanted. 
Let K be the minimum of 1 y" (X) 1 on J and assume that K > O. Minimum 1,/' (x) 1 corresponds 
to maximum h = H = Y2 TOLIK by (6). Thus. Y2 TOL = HVK. We can insert this 
into (6b). obtaining by straightforward algebra 

K 
(7) where 

For other methods, automatic step size selection is based on the same principle. 

Improved Euler Method 
By taking more terms in (2) into account we obtain numeric methods of higher order and 
precision. But there is a practical problem. If we substitute y' = f(x, y(x)) into (2), we 
have 

(2*) 
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Now y in .f depends on x, so that we have f' as shown in (6*) and .f", .fill even much 
more cumbersome. The general strategy now is to avoid the computation of these 
derivatives and to replace it by computing .f for one or several suitably chosen auxiliary 
values of (x. y). "Suitably" means that these values are chosen to make the order of 
the method as high as possible (to have high accuracy). Let us discuss two such methods 
that are of practical imp0l1ance. namely. the improved Euler method and the (classical) 
Runge-Kutta method. 

In the improved Euler method or improved Euler-Cauchy method (sometimes also 
called Heun method), in each step we compute first the auxiliary value 

(8a) 

and then the new value 

(8b) 

Thi~ method ha" a simple geometric interpretation. In fact. we may say that in the 
interval from x" to Xn + !h we approximate the solution y by the straight line through 
(xn , Yn) with slope f(xn, Yn), and then we continue along the straight line with slope 
f(Xn +l, Y:;+I) until x reaches X,,+I' 

The improved Euler-Cauchy method is a predictor-corrector method, because in each 
step we first predict a value by (8a) and then correct it by (Sb). 

In algorithmic form. using the notations kl = hf(xn, Yn) in (Sa) and k2 = hf(.'n+b Y~+I) 
in (8b), we can write this method as shown in Table 21.2. 

Table 21.2 Improved Euler Method (Heun's Method) 

ALGORITHM EULER (f, xo. Yo, h. N) 

This algorithm compute<; the solution of the initial value problem y' = f(x. y) . .\"(xo) = Yo 
at equidistant points xl = Xo + 17, X2 = Xo + 211, ... , XN = Xo + Nfl; here f is such 
that this problem has a unique solution on the mterval [xo. xNl (see Sec. 1.7). 

INPUT: Initial values xo, Yo, step size II, number of steps N 

OUTPUT: Approximation Yn+l to the solution Y(Xn +l) at xn+l = Xo + (n + l)h. 
where 11 = 0, . . . , N - 1 

For 11 = o. I. .... N - 1 do: 

End 
Stop 

End EULER 

Xn+l = Xn + 11 

kl = hf(xn, y,,) 

k2 = hJ(Xn+b Yn + k1) 

Y,,+l = y" + 2(k1 + k2) 

OUTPUT Xn+l, ."n+l 
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E X AMP L E 3 Improved Euler Method 

Apply the improved Euler method to the initial vallie problem (4). choosmg h = 0.2. as before. 

Solution. For the present problem we have in Table 21.2 

k2 = 0.2(x" + 0.2 + "n + 0.2(xn + .1',,» 

0.2 
.1',,+1 = Yn + ""2 (2.2xn + 2.2Yn + 0.2) = Yn + 0.22(xn + .1',,) + 0.02. 

891 

Table 2 1.3 show~ thai ollr present results are more accurate than tho~e in Example I: see also Table 21.6. • 

Table 21.3 Improved Euler Method Applied to (4) and Error 

U.22(xn + .1'n) Exact Values 
Error n x v n • n + 0.02 (4D) 

0 0.0 0.0000 0.0200 0.0000 0.0000 

0.2 0.0200 0.0684 0.0214 0.0014 

2 0.4 0.0884 0.1274 0.0918 0.0034 

3 0.6 0.2158 0.1995 0.2221 0.0063 

4 0.8 0.4153 0.2874 0.4255 0.0102 

5 1.0 0.7027 0.7183 0.0156 

Error of the Improved Euler Method. The local error is of order h3 and the globed 
error of order h2

, so that the method is a second-order method. 

PROOF Setting In = Ierm .1'(xn» and using (r), we have 

(9a) - 1 2-' 1 3-" Y(Xn + h) - .r(xn) = hI,. + :z./I In + 6h In + .... 

Approximating the expression in the brackets in (8b) by 1" + 1"+1 and again using the 
Taylor expansion, we obtain from (8b) 

1 [- - ] )'n+l - )'n ="2h In + In+l 

(9b) _ 1 [- - -, 1 2 -If ] -"2h In + (fn + hIn +"2h In + ... ) 

(where' = dldx." etc.). Subtraction of (9b) from (9a) gives the local error 

h3 
_If h3 

_If 113 
-If 

- f - - I + ... - - -12 .f" + .... 6 . n 4 n -

Since the number of steps over a fixed x-interval is proportional to I11z, the global error 
is of order h3

/11 = h2
, so that the method is of second order. • 
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Runge-Kutta Methods (RK Methods) 
A method of great practical importance and much greater accuracy than that of the 
improved Euler method is the classical Runge-Kutta method of fourth order, which we 
call briefly the Runge-Kutta method.1 It is shown in Table 21.4. We see that in each 
step we first compute four auxiliary quantities k1, k2, k3, k4 and then the new value Yn+1' 

The method is well suited to the computer because it needs no special starting procedure, 
makes light demand on storage, and repeatedly uses the same straightforward 
computational procedure. It is numerically stable. 

Note that if f depends only on x, this method reduces to Simpson's rule of integration 
(Sec. 19.5). Note further that kJ, ... , k4 depend on 11 and generally change from step to 
step. 

Table 21.4 Classical Runge-Kutta Method of Fourth Order 

ALGORITHM RUNGE-KUTTA (f, xo, )'0' h, N). 

This algorithm computes the solution of the initial value problem y' = f(x, y), y(Xo) = Yo 

at equidistant points 

Xl = Xo + h. X2 = Xo + 2h . ... , XN = Xo + Nil: 

here f is such that this problem has a unique solution on the interval [xo, XN] (see Sec. 1.7). 

INPUT: Function f, initial values xo, Yo, step size h, number of steps N 

OUTPUT: Approximation Yn+1 to the solution 'y(Xn +1) at X,,+1 = Xo + (n + l)h. 
where n = 0, I, ... , N - 1 

For n = 0, 1, ... , N - 1 do: 

k1 = hf(xn, y,,) 

End 

Stop 

k2 = hf(xn + ~h, Yn + ~kl) 
k3 = hf(xn + ~h, Yn + ~k2) 
k4 = hf(xn + h, Yn + k3) 

Xn+1 = Xn + h 

Yn+1 = Yn + ~(k1 + 2k2 + 2k3 + k4) 

OUTPUT Xn+], )'1/+1 

End RUNGE-KUTT A 

INamed after the German mathematicians KARL RUNGE (Sec. 19.4) and WILHELM KUTTA (1867-1944). 
Runge [Math. Annalen 46 (1895),167-178], KARL HEUN [Zeitschr. Math. Phys. 45 (1900), 23-38], and 
Kutta [Zeitschr. Math. Phys. 46 1901l. 435-453] developed various such methods. Theoretically, there are 
infinitely many fourth-order methods using four function values per step. The method in Table 21.4 is most 
popular [rom a practical viewpoint because of its "symmetrical" form and its simple coefficients. It was given 
by Kutta. 
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E X AMP L E 4 Classical Runge-Kutta Method 

Apply the Runge-Kutta method to the initial "alue problem (4) in Example 1, choosing II = 0.2, as before, and 
computing five steps. 

Solutioll. For the present problem we have f(x. v} = x + y. Hence 

kl = 0.2(xn + y,,), 

k3 = 0.2(x" + 0.1 + Yn + 0.Sk2}. 

k2 = 0.2(x" + 0.1 + y" + O.Sk l ), 

k4 = 0.2(x" + 0.2 + y" + k3). 

Table 21.5 shows the results and their errors, which are smaller by factors 103 and 104 than those for the two 
Euler methods. See also Table 21.6. We mention in passing that since the present k1 •.... k4 ate simple, 
operations were saved by substituting kl into k2. then k2 into k3 . etc.: the resulting formula is shown in Column 
4 of Table 21.5. • 

Table 21.5 Runge-Kutta Method Applied to (4) 

0.2214(x" + Yn) bxact Values (6D) 106 X Error 
n x" v y = eX - x-I ofy" ." + 0.0214 

0 0.0 0 0.021400 0.000000 0 
0.2 0.021400 0.070418 0.021403 3 

2 0.4 0.091 818 0.130289 0.091825 7 

3 0.6 0.222107 0.203 414 0.222 119 12 

4 0.8 0.425521 0.292730 0.425541 :W 
5 1.0 0.718251 0.718282 31 

Table 21.6 Comparison of the Accuracy of the Three Methods Under Consideration 
in the Case of the Initial Value Problem (4), with h = 0.2 

Error 

! x r=ex-x-I Euler Improved Euler 
I 

(Table 21.1) 

0.2 0.021403 0.021 
0.4 0.091825 0.052 
0.6 0.222119 0.094 

0.8 0.425541 0.152 
1.0 0.718282 0.229 

Error and Step Size Control. RKF 
(Runge-Kutta-Fehlberg) 

(Table 21.3) 

0.U014 
0.0034 
0.0063 
0.0102 
0.0156 

Runge-Kutta 
(Table 21.5) 

0.000003 
0.000007 
0.000011 
0.000020 
0.000031 

The idea of adaptive integration (Sec. 19.5) has analog<; for Runge-Kutta (and other) 
methods. In Table 21.4 for RK (Runge-Kutta), if we compute in each step approximations 
y and .17 with step sizes hand 2h. respectively, the latter has error per step equal to 
25 = 32 times that of the former; however, since we have only half as many steps for 2h, 
the actual factor is 25/2 = 16. so that, say, 

and thus 
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Hence the error E = d-h
) for step size h is abour 

(10) 

where y - y = lh) - y(2hl, as said before. Table 21.7 illustrates (10) for the initial value 
problem 

(1L) y' = (y - x-l)2 + 2, yeo) = I. 

the step size h = 0.1 and 0 ~ x ~ 0.4. We see that the estimate is close to the actual 
error. This method of error estimation is simple but may be unstable. 

Table 21.7 Runge-Kutta Method Applied to the Initial Value Problem (11) 
and Error Estimate (10). Exact Solution y = tan x + x + 1 

v y Error Actual Exact 
\: 

(Step size /7) (Step si7e 211) Estimate (10) Error Solution (9D) 

0.0 1.000 000 000 l.000 000 000 0.000000000 0.000000000 1.000000000 

0.1 1.200 334 589 0.000 000 083 1.200334672 

0.2 1.402 709 878 1.402 707 408 0.000 000 165 0.000 000 157 1.402 710 036 

0.3 1.609 336 039 0.000 000 210 1.609 336 250 

0.4 1.822 792 993 1.822 788 993 0.000000 267 0.000 000 226 l.822 793 219 

RKF. E. Fehlberg [Computing 6 (1970), 61-71] proposed and developed error control 
by using two RK methods of different orders to go from (xn, Yn) to (xn +1> Yn+l)' The 
difference of the computed y-values at Xn+l gives an error estimate to be used for step 
size controL Fehlberg discovered two RK formulas that together need only 6 function 
evaluations per step. We present these formulas here because RKF has become quite 
popular. For instance. Maple uses it (also for systems of ODEs). 

Fehlberg's fifth-order RK method is 

(12a) 

with coefficient vector y = [Yl ... Y6]. 

(12b) y= U;5 o 

His fourth-order RK method is 

(13a) 

with coefficient vector 

(13b) * _ [25 Y - 216 

6656 
12825 

o 1408 
2565 

28561 
56430 

2197 
4104 

i5]' 

_1] 
5' 
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In both formulas we use only 6 different function evaluations altogether. namely. 

k1 = hf(x." J'n) 

k2 = hf(x., + !Iz, Yn + !k1) 

k3 = Izf(xn + ~h. y., + ~k1 + i2k2) 
(14) 

k4 = hf(xn + ~~h, Yn + ~~~~kl ~~g~k2 + ~~~~k3) 

k5 = hf(x., + h. J'n + i~~k1 8k2 + 3:~~k3 - 481t~k4) 

k6 = hf(x., + ~h. \" -. n 287 k1 + 2k2 - ~~~k3 + ~~g:k4 - ~~k5)' 

The difference of (12) and (13) gives the error estimate 

(15) E - \' - * -...Lk - 128 k - 2197 k +..!.k +..2..k n+l - . n+1 Yn+1 - 360 1 4275 3 75240 4 50 5 55 6' 

E X AMP L E 5 Runge-Kutta-Fehlberg 

For the initial value problem (II) we obtain from (12)-(14) with 11= 0.1 in the first step the 12S-value~ 

and the error e~timate 

k1 = 0.200000 000000 

k3 = 0.200140756867 

k5 = 0.201006676700 

k2 = 0.200062 500000 

k4 = 0.2008.'i6926154 

k6 = 0.200250418651 

.\'1* = 1.20033466949 

.\'1 = 1.20033467253 

E1 =."1 - .\'~ = 0.000000 00304. 

895 

The exact 12S-value is .1'(0.1) = 1.20033467209. Hence the actual error of."1 i~ -4.4· 10-10
, smaller than that 

in Table 21.7 by a factor 200. • 

Table 21.8 summarizes essential features of the methods in this section. It can be shown 
that these methods are Ilumerically stahle (definition in Sec. 19.1). They are one-step 
methods because in each step we use the data of just one preceding step. in contrast to 
multistep methods where in each step we use data from several preceding steps. as we 
shall see in the next section. 

Table 21.8 Methods Considered and Their Order (= Their Global Error) 

Method 
Function Evaluation 

Global Error Local Error 
per Step 

Euler 0(11) 0(172
) 

Improved Euler 2 0(h2
) 0(h3

) 

RK (fourth order) 4 0(114) 0(11 5
) 

RKF 6 0(h5
) 0(h6

) 
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Backward Euler Method. Stiff ODEs 
The backward Euler formula for numerically solving (I) is 

(16) (n = 0, 1, .. '). 

This formula is obtained by evaluating the right side at the new location (Xn +1, )'n+1); this 
is called the backward Euler scheme. For known )'n it gives )'n+l implicitly, so it defines 
an implicit method, in contrast to the Euler method (3), which gives Yn+l explicitly. 
Hence (16) must be solved for )'n+l' How difficult this is depends on f in (1). For a linear 
ODE this provides no problem, as Example 6 (below) illustrates. The method is particularly 
useful for "stiff' ODEs. as they occur quite frequently in the study of vibrations, electric 
circuits. chemical reactions. etc. The situation of stiffness is roughly as follows; for details, 
see, for example, [E5]. [E25], [E26] in App. I. 

Error terms of the methods considered so far involve a higher derivative. And we ask 
what happens if we let h illcrease. Now if the error (the derivative) grows fast but the 
desired solution also grows fast. nothing will happen. However. if that solution does not 
grow fast, then with growing h the error term can take over to an extent that the numeric 
result becomes completely nonsensical. as in Fig. 450. Such an ODE for which h must 
thus be restricted to small values, and the physical system the ODE models. are called 
stiff. This term is suggested by a mass-:-.pring system with a stiff ~pring (spring with a 
large k; see Sec. 2.4). Example 6 illustrates that implicit methods remove the difficulty 
of increasing II in the case of stiffness: it can be shown that in the application of an implicit 
method the solution remains stable under any increase of h, although the accuracy 
decreases with increasing h. 

E X AMP L E 6 Backward Euler Method. Stiff ODE 

The initial value prublem 

y' = f(x. y) = -20.,' + 20x2 + 2x. y(O) = I 

has the solution (verify!) 

y = e-20x + x 2 . 

The backward Euler formula (16) is 

),,,+1 = y" + hJ(xn+b Yn+1) = Yn + h( -20Yn+1 + 20X~+1 + 2Xn+1)' 

Noting that xn+1 = X" + h. tak:ing the term -20hY,,+1 to the left. and dividing. we obtain 

Yn + h[20(xn + h}2 + 2(x" + h)j 
(l6*) Yn+l = 1 + 20h 

The numeric re,ulr- in Table 21.9 show the following. 

Stability of the backward Euler method for h = 0.05 and also for h = 0.2 with an error increase by about a 
factOT 4 for h = 0.2. 

Stability of the Euler method fOf h = 0.05 but instability for h = 0.1 (Fig. 450). 

Stability of RK for h = 0.1 but instability for h = 0.2. 

1l1b illustrates that the ODE is stiff. Note thm even in the case of stdbility the appruximation of the ~olution 
near x = 0 is poor. • 

Stiffness will be considered further in Sec. 21.3 in connection with systems of ODEs. 
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Fig. 450. Euler method with h = 0.1 for the stiff 
ODE in Example 6 and exact solution 

Table 21.9 Backward Euler Method (BEM) for Example 6. Comparison with Euler and RK 

BEM BEM Euler Euler RK RK 
x 

h = 0.05 h = 0.2 h = 0.05 h = 0.1 h = 0.1 h = 0.2 
Exact 

0.0 1.00000 1.00000 

0.1 0.26188 

0.2 0.10484 0.24800 

0.3 0.10809 

0.4 0.16640 0.20960 

0.5 0.25347 

0.6 0.36274 0.37792 

0.7 0.49256 

0.8 0.64252 0.65158 

0.9 0.81250 

1.0 1.00250 1.01032 

===== .... -........ ,,_ ........ ..-..-. = -- ...... - ............... --.... ---... .. 

11-41 EULER METHOD 

Do 10 steps. Solve the problem exactly. Compute the error. 
(Show the details.) 

1. y' = y, yeO) = 1. h = 0.1 

2. )"' = y, yeO) = 1. h = 0.01 

3. y' = (y - .d. yCO) = 0, h = 0.1 

4. y' = (y + X)2. yCO) = o. h = 0.1 

IS-lO I IMPROVED EULER METHOD 

Do 10 steps. Solve exactly. Compute the error. (Show the 
details.) 

S. y' = y. -,,(0) = 1. h = 0.1. Compare with Prob I 
and comment. 

6. (Logistic population»)." = y - )'2, yeO) = 0.2, h = 0.1 

1.00000 1.00000 1.00000 1.000 1.00000 

0.00750 -1.00000 0.34500 0.14534 

0.03750 1.04000 0.15333 5.093 0.05832 

0.08750 -0.92000 0.12944 0.09248 

0.15750 1.16000 0.17482 25.48 0.16034 

0.24750 -0.76000 0.25660 0.25004 

0.35750 1.36000 0.36387 127.0 0.36001 

0.48750 -0.52000 0.49296 0.49001 
0.63750 1.64000 0.64265 634.0 0.64000 

0.80750 -0.20000 0.81255 0.81000 

0.99750 2.00000 1.00252 316H 1.00000 

7. y' - xy2 = O. yeo) = 1, h = O. I 

8. y' + )' tan x = sin 2x, yeO) = I, h = 0.1 

9. Do Prob. 7 using the Euler method with h = 0.1 and 
compare the accuracy. 

10./ = I h 2 ,y(0)=0,h=0.1 

111-171 CLASSICAL RUNGE-KUTTA METHOD 
OF FOURTH ORDER 

Do 10 steps. Compare as indicated. Comment. (Show the 
details. ) 

11. y' - xy2 = O • .1'(0) = 1, h = 0.1. Compare with 
Prob. 7. Apply (10) to )'10' 

12. y' = y - y2 • .1'(0) = 0.2, h = 0.1. Compare with 
Prob. 6. Apply (10) to )'10' 
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13. y' = (l + X-I»),. yO) = e. h = 0.2 (b) Graph solution curves of the ODE in (5) for 
various positive and negative initial values. 

14. y' = !U'lx - xl),). ),(2) = 2. h = 0.2 

15. y' + -" tan x = sin 2x, yeo) = 1. II = 0.1 

16. In Prob. 15 use h = 0.2 (5 steps) and compare the error. 

17. y' + 5x4 y2 = 0, yeO) = 1. h = 0.2 

18. Kulla's third-order method is defined by 
Yn+l = y" + irk] + 4k2 + k3*) with kl and k2 as in 
RK (Table 21.4) and k3* = 1If(xn +].),,, - k] + 2k2 ). 

Apply this method to (4) in Example I. Choose 
h = 0.2 and do 5 steps. Compare with Table 21.6. 

19. CAS EXPERIMENT. Euler-Cauchy vs. RK. 
(a) Solve (5) in Example 2 by Euler. Improved Euler. 
and RK for 0 ~ x ~ 5 with step h = 0.2. Compare the 
errors for x = 1,3,5 and comment. 

21.2 Multistep Methods 

(c) Do a similar experimem as in (a) for an initial 
value problem that has a monotone increasing or 
monotone decreasing solution. Compare the behavior 
of the error with that in (a). Comment. 

20. CAS EXPERIMENT. RKF. (a) W]ite a program for 
RKF that gives .tn' y". the estimate (10). and if the 
solution is known. the actual error En' 

(b) Apply the program to Example 5 in the text 
(10 steps, 11 = 0.1). 

(c) E" in (b) gives a relatively good idea of the size 
of the actual error. Is this typical or accidental? Find 
out by experimentation with other problems on what 
properties of the ODE or solution this might depend. 

In a one-step method we compute )'n+1 using only a single step, namely, the previous 
value y.,. One-step methods (Ire "self-starting," they need no help to get going because 
they obtain ."1 from the initial value ."0' etc. All methods in Sec. 21.1 are one-step. 

In contrast, a multistep method uses in each step values from two or more previous 
steps. These methods are motivated by the expectation that the additional information will 
increase accuracy and stability. But to get staJ1ed, one needs values. say. YO,."b ."2'."3 in 
a 4-step method, obtained by Runge-Kutta or another accurate method. Thus, multistep 
methods are not self-starting. Such methods are obtained as follows. 

Adams-Bashforth Methods 
We consider an initial value problem 

(1) y' = f(x, y), 

as before. with f such that the problem has a unique solution on some open interval 
containing .1'0' We integrate y' = f(x, y) from x" to xn+1 = Xn + h. This gives 

Now comes the main idea. We replace f(x. y(x» by an interpolation polynomial p(x) (see 

Sec. 19.3), so that we can later integrate. This gives approximations )'n+1 of y(xn +1) and 
Yn of y(xn ), 

(2) J
x n+ 1 

)'n+1 = )'n + p(x) dr. 
x" 
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Different choices of p(x) will now produce different methods. We explain the principle 
by taking a cubic polynomial, namely, the polynomial P3(x) that at (equidistant) 

has the respective values 

In = I(xn, Yn) 

(3) 

This will lead to a practically useful formula. We can obtainp3(x) from Newton's backward 
difference formula (18), Sec. 19.3: 

where 
x - Xn 

r= 
h 

We integrate p3(X) over x from Xn to Xn+l = Xn + 11. thus over r from 0 to 1. Since 

x = Xn + hr. we have dx = 11 dr. 

The integral oqdr + 1) is 5/12 and that ofir(r + l)(r + 2) is 3/8. We thus obtain 

(4) P3dX=lzlp3dr=h In+ ~VIn+ -V2In+ ':"V-3fl1 . Ix". 1 (1 5 ~) 
Xn 0 2 12 8 

It is practical to replace these differences by their expressions in terms of I: 

\In = In - In-l 

V2In = In - 2In-l + 1",-2 

We substitute this into (4) and collect terms. This gives the multistep formula of the 
Adams-Bashforth method of fourth order 

h 
(5) )'n+l = Yn + 24 (55In - 59In-l + 37In-2 - 9In-3)' 

It expresses the new value Yn+ I [approximation of the solution y of (I) at Xn+ 1] in terms 
of 4 values of.f computed from the y-values ohtained in the preceding 4 steps. The local 
truncation error is of order 11 5

, as can be shown, so that the global error is of order 114; 
hence (5) does define a fourth-order method. 



900 CHAP. 21 Numerics for ODEs and PDEs 

Adams-Moulton Methods 
Adams-Moulton methods are obtained if for p(x) in (2) we choose a polynomial that 
interpolates f(x, .v(x» at xn+l' xn, Xn_1> ... (as opposed to Xn, X"'-I' ... used before; this 
is the main point). We explain the principle for the cubic polynomial P3(X) that interpolates 
at Xn+l' X'" Xn-l' X.,-2' (Before we had xn' Xn-l, X,,-2' X.,-3') Again using (18) in 
Sec. 19.3 but now setting r = (x - xn +1)lh, we have 

We now integrate over x from Xn to Xn+l as before. This corresponds to integrating over 
r from -I to O. We obtain 

Replacing the differences as before gives 

Xn+l lz 
(6) Yn-ll = Yn + f P3(X) dx = Yn + 24 (9f"+1 + 19fn - 5f,,-1 + fn-2)' 

Xu 

This is usually called an Adams-Moulton formula. It is an implicit formula because 
fn+l = f(X,,+b )'n+l) appears on the right, so that it defines Yn+l only implicitly, in 
contrast to (5), which is an explicit formula, not involving Yn+l on the right. To use (6) 
we must predict a value y ~;+ I> for instance, by using (5), that is, 

(7a) 
h 

Y~+1 = Yn + 24 (55fn - 59fn-l + 37fn-2 - 9fn-3)' 

The corrected new value Yn+ 1 is then obtained from (6) with f n+ 1 replaced by 
f~+1 = J(xn+1, Y~+1) and the other fs as in (6); thus, 

h 
(7b) Yn+1 = Yn + 24 (9f~+1 + 19f n - 5f n-l + f n-2)' 

This predictor-corrector method (7a). (7b) is usually called the Adams-Moulton 
method of fourth order. It has the advantage mer RK that (7) gives the error estimate 

as can be shown. This is the analog of (10) in Sec. 21.1. 
Sometimes the name 'Adams-Moulton method' is reserved for the method with several 

corrections per step by (7b) until a specific accuracy is reached. Popular codes exist for 
both versions of the method. 

Getting Started. In (5) we need fo, fl, f2, f3' Hence from (3) we see that we must first 
compute Yr. -"2, .1'3 by some other method of comparable accuracy, for instance, by RK or 
by RKF. For other choices see Ref. [E26] listed in App. I. 
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E X AMP L E 1 Adams-Bashforth Prediction (7a), Adams-Moulton Correction (7b) 

Solve the initial value problem 

(8) y' = T + y, y(O) = 0 

by (7a), (7b) on the interval 0 ::;; x ::;; 2. choosing h = 0.2. 

Solutio". The problem is the same as in Examples 1-3. Sec. 21.1. so that we can compare the results. We 
compute starting values Yl . .'"2 • .'"3 by the classical Runge-Kutta method. Then in each step we predict by (7a) and 
make one correction by (7b) before we execute the next step. The result~ are shown and compared with the exact 
values in Table 21.10. We see that the corrections improve the accuracy considerably. This is typicaL • 

Table 21.10 Adams-Moulton Method Applied to the Initial Value Problem (8); 
Predicted Values Computed by (7a) and Corrected values by (7b) 

Starting Predicted Corrected Exact 106 • Error 
Il Xn 

Yn* Values ofYn Yn Yn 

0 0.0 0.000000 0.000 000 0 

1 0.2 0.021 400 0.021403 3 
2 0.4 0.091 818 0.091825 7 

3 0.6 0.222 107 0.222119 12 

4 0.8 0.425361 0.425529 0.425541 12 

5 1.0 0.718066 0.718270 0.718282 12 

6 1.2 1.119855 1.120106 1.120117 11 
7 1.4 1.654885 1.655191 1.655200 9 

8 1.6 2.352653 2.353026 2.353032 6 

9 1.8 3.249 190 3.249646 3.249647 1 

10 2.0 4.388505 4.389062 4.389056 -6 

Comments on Comparison of Methods. An Adams-Moulton formula is generally 
much more accurate than an Adams-Bashforth formula of the same order. This justifies 
the greater complication and expense in using the former. The method (7a), (7b) is 
Ilumerically stable, whereas the exclusive use of (7a) might cause instability. Step size 
control is relatively simple. If ICorrector - Predictorl > TOL, use interpolation to generate 
"old" results at half the current "tep size and then try /1/2 as the new step. 

Wherea~ the Adams-Moulton fOIillula (7a), (7b) needs only 2 evaluations per step, 
Runge-Kutta needs 4; however, with Runge-Kutta one may be able to take a step size 
more than twice as large, so that a comparison of this kind (widespread in the literature) 
is meaningless. 

For more details, see Refs. [E25], LE26] listed in App. 1 . 

........ -.. -.. ,,_ ...... ..-. .. -. ...... -............. --... ... ... 
1. Carry out and show the details of the calculations 

leading to (4 H7) in the text. 

12-111 ADAMS-MOULTON METHOD (7a), (7b) 

Solve the initial value problems by Adams-Moulton. 10 steps 
with I correction ~r step. Solve exactly and compute the 
enOL (Use RK where no starting values are given.) 

2.),' = J, yeO) = I, II = 0.1 (1.105171, 1.221403, 
1.349859) 

3. y' = -0.2xy. yeO) = I, h = 0.2 

4. y' = 2xy, yeo) = I. h = 0.1 

5. y' = I + y2, )"(0) = O. h = 0.1 

6. Do Prob. 4 by RK, 5 steps, h = 0.2. Compare the errors. 
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7. Do Prob. 5 by RK. 5 steps. h = 0.2. Compare the errors. 

8. y' = xly. y(l) = 3, h = 0.2 

9. y' = (x + Y - 4)2, y(O) = 4, h = 0.2. only 7 steps 
(why?) 

10. y' = I - 4.\'2, y(O) = O. II = 0.1 

11. y' = x + y . .1'(0) = O. h = 0.1 (0.00517083. 
0.0214026.0.04(8585) 

12. Show that by applying the method in the text to a 
polynomial of second degree we obtain the predictor 
and corrector formulas 

II 
Y~+1 = Yn + 12 (23fn - 16f,,_1 + 5f,,-2) 

h 
Yn+l = Yn + 12 (5fn+l + 8fn - fn-l)' 

13. Use Prob. 12 to solve y' = 2x.\". y(O) = I (10 steps, 
It = 0.1, RK starting values). Compare with the exact 

solution and comment. 

14. How much can you reduce the error in Prob. 13 by 
halving II (20 steps. h = 0.05)? First guess, then 
compute. 

15. CAS PROJECT. Adams-Moulton. (a) Accurate 
starting is important in (7a), (7b). Illustrate this in 
Example I of the text by using starting values from the 
improved Euler-Cauchy method and compare the 
results with those in Table 21.9. 

(b) How much does the error in Prob. 11 decrease if 
you use exact starting values (instead of RK-values)? 

(c) Experiment to find out for what ODEs poor 
starting is very damaging and for what ODEs it is not. 

(d) The classical RK method often gives the same 
accuracy with step 211 as Adams-Moulton with step 
h. so that the total number of function evaluations is 
the same in both cases. Illustrate this with Prob. 8. 
(Hence corresponding comparisons in the literature in 
favor of Adams-Moulton are not valid. See also 
Probs. 6 and 7.) 

21.3 Methods for Systems 
and Higher Order ODEs 

Initial value problems for first-order system~ of ODEs are of the form 

(1) y' = f(x. y). 

in components 

f is assumed to be such that the problem has a unique solution y(x) on some open x-interval 

containing Xo. Our discussion will be independent of Chap. 4 on system~. 
Before explaining solution methods it is important to note that (l) includes initial value 

problem:-- for single mth-order ODEs, 

(2) y'>n) = f(x, y, y', .v" ..... y(Tn-D) 

and initial conditions )'(xo) = Kb y' (xo) = K2 , ••• , y<m-l)(xo) = Km as special cases. 
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Indeed, the connection is achieved by setting 

(3) \. = \' _ 1 _ , 

Then we obtain the system 

(4) 

I 
)'2 =)' " )' = 1: _ 3 _, 

, 
)'1 =)'2 

, 
Y'111-1 ~ Y·uz. 

Y~t = I(x. Yl ....• Ym) 

Euler Method for Systems 

903 

Methods for single first-order ODEs can be extended to systems (1) simply by writing vector 
functions Y and f instead of scalar functions y and I, whereas x remains a scalar variable. 

We begin with the Euler method. Just as for a single ODE this method will not be 
accurate enough for practical purposes, but it nicely illustrates the extension principle. 

E X AMP L E 1 Euler Method for a Second-Order ODE. Mass-Spring System 

Solve the initial value problem for a damped mass-spring system 

y" + 2/ + 0.75.1' = 0, 1'(0) = 3. /(0) = -2.5 

by the Euler method for systems with step h = 0.2 for x from 0 to I (where x is time). 

Solutioll. The Euler method (3). Sec. 21.1. generalizes to systems in the form 

(5) Yn+l = Yn + hf(xn' Yn), 

in componelll~ 

and similarly for systems of more than two equations. By (4) the given ODE converts to the system 

y~ = h(x. Yl' .1'2) = Y2 

y~ = .f2(X • . "1' .1'2) = -2Y2 - 0.75.\"1' 

Hence (5) becomes 

Yl.n+l = )'1,11. + O.2Y2.n 

)'2.n+l = )'2,n + 0.2(-2)'2,11. - 0.75Yl,n)' 

The initial conditions are y(O) = )'1(0) = 3, -'" (0) = Y2(O) = -2.5. The calculation~ are shown in Table 21.11 
on the next page. As for single ODEs. the results would not be accurate enough for practical purposes. The 
example merely serves to illustrate the method because the problem can be readily solved exactly. 

thu~ • 
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Table 21.11 Euler Method for Systems in Example 1 (Mass-Spring System) 

1" . 1.71 
."1 Exact buor 

(5D) EI = )"1 - )"I.n 
)"2.11 

.\'2 Exact Euor 
(5D) E2 = )"2 - )"2." 

0 0.0 3.00000 3.00000 0.00000 -2.50000 -2.50000 0.00000 

0.2 2.50000 2.55049 0.05049 - 1.95000 -2.01606 -0.06606 

2 0.4 2.11000 2.18627 0.76270 -1.54500 -1.64195 -0.09695 

3 0.6 1.80100 1.88821 0.08721 -1.24350 -1.35067 -0.10717 

4 0.8 1.55230 1.64183 0.08953 -1.01625 -1.12211 -0.10586 

5 1.0 1.34905 1.43619 0.08714 -0.84260 -0.94123 -0.09863 

Runge-Kutta Methods for Systems 
As for Euler methods, we obtain RK methods for an initial value problem (1) simply by 
writing vector formulas for vectors with III components, which for 111 = 1 reduce to the 
previous scalar formulas. 

Thus for the classical RK method of fourth order in Table 21.4 we obtain 

(6a) (Initial values) 

and for each step 11 = 0, 1, ... , N - 1 we obtain the 4 auxiliary quantities 

(6b) 

ki = II f(xn, Yn) 

k2 = hf(xn + !h, Yn + !kI ) 

k3 = hf(xn + !h, Yn + !k2) 

and the new value [approximation of the solution y(x) at xn + 1 = Xo + (n + I)h 1 

(6c) 

E X AMP L E 2 RK Method for Systems. Airy's Equation. Airy Function Ai(x) 

Solve the initial value problem 

" y = X-,"~ .1"(0) ~ 1/(32/3. rO/3J) = 0.35502805. /(0) = -1I(3113·r(lf3)) = -0.25881940 

by the Runge-Kutta method for systems with h = 0.2: do 5 steps. This is Airy's equation,2 which arose in 
optics (see Ref. [Al3]. p. 188. listed in App. I). r is the gamma function (see App. A3.11. The initial conditions 
are such that we obtain a standard solution, the Airy function Ai(x), a special function that has been thoroughly 
investigated: for numeric values. see Ref. [GRI], pp. 446. 475. 

2Named after Sir GEORGE BIDELL AIRY (1801-1892), English mathematician. who is known for his work 
in elasticity and in PDEs. 
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Solution. For y" = xy. setting YI = Y,)"2 = yi = v' we obtain the system (4) 

, 
)"1 =)"2 

Hence f = [h f2]T in (1) has the components hex. y) = .\'2' f2(X. Y) = XYI' We now write (6) in 
components. The initial conditions (6a) are YI.O = 0.35502805. )"2.0 = -0.25881 940. In 16b) we have 
fewer subscripts by simply writing kl = a, k2 = b. k3 = C, ~ = d. so that a = [01 02]T. etc. Then (6b) 
takes the form 

[

Y2,n ] a=h 
X·nYl.1l 

(6b*) 

For example. the second component of b i~ obtained as follows. fIx. y) has the second component f2(x, y) = X\'I' 

Now in b (= k2 ) the first argument is 

x = x" + lh. 
The second argument in b is 

Y = Yn + !a. 

and the first component of this is 

Together. 

Similarly for the other components in (6b*). Finally. 

(6c*) Yn+! = Yn + !(a + 2b + 2c + d). 

Table 21.12 shows the values y(x) = YI(x) of the Airy function Ai(x) and of its derivative y' (x) = )'2(x) a~ well 
as of the (rather small!) error of y(x). • 

Table 21.12 RK Method for Systems: Values Yl,n(Xn) of the Airy Function Ai(x) 
in Example 2 

II Xn Yl,n(Xn ) Yl(Xn ) Exact (8D) 108 
• Error of V . I Y2,n(Xn ) 

0 0.0 0.35502805 0.35502805 0 -0.25881 940 

0.2 0.30370303 0.30370315 12 -0.25240464 
2 0.4 0.25474211 0.25474235 24 -0.23583 073 
3 0.6 0.20979973 0.20980006 33 -0.21279 185 
4 0.8 0.16984596 0.16984632 36 -0.18641 171 
5 1.0 0.13529207 0.13529242 35 -0.15914687 
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Runge-Kutta-Nystrom Methods (RKN Methods) 
RKN methods are direct extensions of RK methods (Runge-Kutta methods) to second­
order ODEs y" = f(x, y. y'), as given by the Finnish mathematician E. J. Nystrom [Acta 
Soc. Sci. fenn., 1925, L, No. 131. The best known of these uses the following formulas, 
where 11 = 0, I, ... , N - I (N the number of steps): 

(7a) 

kl = ~h.f(xn' -".", y~) 

k2 = ~hf(xn + ~h. )'n + K. y~ + k 1 ) 

k3 = ~Izf(xn + ~h . ."n + K. Y:L + k2) 

k4 = ~hf(xn + h, ."n + L, .":1 + 2k3) 

where K = ~h (y~ + ~kl) 

where L = h (y~ + k3)' 

From this we compute the approximation )'n+l of Y(Xn+lJ at Xn+l = Xo + (n + l)h, 

(7b) 

and the approximation y~+ 1 of the derivative y' Ltn+ 1) needed in the next step. 

(7c) 

RKN for ODEs y" = f(x, y) Not Containing y'. Then k2 = k3 in (7), which makes 
the method particularly advantageous and reduces (7) to 

(7*) 

kl = ~Izf(xn' Yn) 

k2 = ~hf(xn + ~h. Yn + ~h(y~ + ~kl» = k3 

k4 = ~hf(xn + h, Yn + h(Y:1 + k2) 

Yn+l = Yn + h(y~ + !(k1 + 2k2 » 

Y~+1 = Y:1 + -!(k1 + 4k2 + k4)· 

E X AMP L E 3 RKN Method. Airy's Equation. Airy Function Ai(x) 

For the problem In Example 2 and" = 0.2 as betore we obtain from (Y) silllply "1 = O.I.~nYn and 

k2 = k3 = O.l(xn + 0.))(.\"" + O.IY;l + 0.05k1 !. k4 = O.I(xn + 0.2)(y" + O.2y~ + 0.2k2)· 

Table 21.13 ,how, the result,. The accuracy is the 'ame as in Example 2. but the work wa' much less. • 

Table 21.13 Runge-Kutta-Nystrom Method Applied to Airy's Equation, Computation of 
the Airy Function y = Ai(x) 

lOB. Error I , 
y(x) Exact (8D) Xn Yn \' ,n 

of -"n 

0.0 0.35502805 -0.258 81940 0.35502805 0 
0.2 0.303 703 04 -0.252404 64 0.303 703 15 I I 
0.4 0.254742 II -0.235 830 70 0.25474235 24 
0.6 0.20979974 -0.21279172 0.209800 06 32 
0.8 0.16984599 -0.18641134 0.16984632 33 
LO 0.135292 18 -0.15914609 0.13529242 24 
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Our work in Examples 2 and 3 also illustrates that usefulness of methods for ODEs in the 
computation of values of "higher transcendental functions." 

Backward Euler Method for Systems. Stiff Systems 
The backward Euler formula (16) in Sec. 21.1 generalizes to systems in the form 

(8) Yn+l = Yn + h f(Xn+l' Yn+l) (11 = O. I ... '). 

This is again an implicit method. giving Yn+l implicitly for given Yn- Hence (8) must be 
solved for Yn+l' For a linear system this is shown in the next example. This example also 
illustrates that. similar to the case of a single ODE in Sec. 21.1, the method is very useful 
for stiff systems. These are systems of ODEs whose matrix has eigenvalues A of very 
different magnitudes, having the effect that, just as in Sec. 21.1, the step in direct methods, 
RK for example, cannot be increased beyond a certain threshold without losing stability. 
(A = -I and -10 in Example 4, but larger differences do occur in applications.) 

E X AMP L E 4 Backward Euler Method for Systems of ODEs. Stiff Systems 

Compare the backward Euler method (8) with the Euler and the RK methods for numerically solving the initial 
value problem 

y" + 11/ + lOy = lOx + II. "(0) = 2. )"'(0) = -10 

converted to a system of first-order ODEs, 

Solution. The given problem "an easily be '<JIved, obtaining 

y = e-x + e-lOx + x 

so that we can compute errors, Conversion to a system by setting Y = Yl.)"' = Y2 [see (4)] gives 

The coefficient matrix 

, 
Yl =)"2 

y~ = -IOYI - 11.'"2 + lOx + II 

)"1(0) = 2 

)"2(0) = -10, 

has the characteristic determinant 
I

-A 

-10 

whose value is A2 + IIA + lO = (A + I)(A + 10), Hence the eigenvalues are -I and -lO as claimed above. 
The backward Euler formula is 

[
.'"I,n+lJ 

Yn+l = = 
."2.n+l 

[
_"I'''J [ "2,n+l J 

Y2.11 + Ii -10)"I,n+1 - IlY2,n+l + lOXn+l + II -

Reordering terms gives the linear system in the unknowns )"I,n+l and )"2.n 11 

)"1.,,+1 - 11)'2,n+l = )"I,n 

IOh)'1.,,+1 + (1 + 1 I h)Y2_11+ 1 = )'2;n + 1011!-,,, + h) -t 1111. 

The coefficient determinant is D = I + IIIz + IOh2
, and Cramer's rule (in Sec 7_6) gives the solution 

Yn+l = [
0 + 1I1i)Yl.n + hY2,n + 10112xn + 11112 + 1011

3
] . 

D -lOhY1,,, + Y2,n + lOlnn + 1111 + 10112 
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Table 21.14 Backward Euler Method (BEM) for Example 4. Comparison with Euler and RK 

BEM BEM Euler Euler RK RK 
Exact 

x h = 0.2 h = 0.4 h = 0.1 h = 0.2 h = 0.2 Iz = 0.3 

0.0 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 

0.2 1.36667 1.01000 0.00000 1.35207 L.l5407 

0.4 1.20556 1.31429 1.56100 2.04000 1.18144 L.08864 

0.6 1.21574 1.13144 0.11200 1.18585 3.03947 1.15129 

0.8 1.29460 1.35020 1.23047 2.20960 1.26168 1.24966 

1.0 1.40599 1.34868 0.32768 1.37200 1.36792 

1.2 1.53627 1.57243 1.48243 2.46214 1.50257 5.07561} 1.50120 

1.4 1.67954 1.62877 0.60972 1.64706 1.64660 

l " L.83272 1.86191 1.78530 2.76777 1.80205 1.80190 

1.8 1.99386 1.95009 0.93422 1.96535 8.72329 1.96530 

2.0 2.16152 2.18625 2.12158 3.10737 2.13536 2.13534 

Table 21.14 shows the following. 

Stability of the backward Euler method for h ~ 0.2 and 0.4 (and in fact for any Ii; try Ii = 5.0) with decreasing 
accuracy for increasing Ii. 

Stability of the Euler method for Ii ~ 0.1 but instability for h ~ 0.2. 

Stability of RK for h = 0.2 but instability for II = 0.3. 

Figure 451 show. the Euler method for Ii ~ 0.18, an interesting case with initial jumping (for about x < 3) but 
later monotone following the solution curve of y = Y1' See also CAS Experiment 21. • 
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Fig. 451. Euler method with h = 0.18 in Example 4 
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1. Verify the calculations in Example I. 

L ~ EULER FOR SYSTEMS 
AND SECOND-ORDER ODES 

Solve by the Euler method: 

2. y~ = -3)"1 + )"2' y~ = Y1 - 3)"2' )"1(0) = 2, )"2(0) = 0, 
h = 0.1,5 steps 

3. y~ = )"1, Y; = Y2, Y1(0) = I, )'2(0) = -1, h = 0.2, 

5 steps 

4. Y~ = Yb Y; = -J'2, .VI(O) = 2, Y2(0) = 2, h = 0.1, 
10 steps 

5. y" + 4y = 0, yeO) = 1, y'(O) = 0, h 0.2, 
5 steps 

6. y" - )' 
5 steps 

x, nO) 1, y' (0) -2, h 0.1, 
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7. y~ = -.\"1 + Y2' Y; = -.\"1 - Y2, ."1(0) = o. 
.\"2(0) = 4, h = 0.1, 10 steps 

8. Verify the formulas and calculations for the Airy 
equation in Example 2. 

~ -141 RK FOR SYSTEMS 
Solve by the classical RK: 

9. The system in Prob. 7. How much smaller is the error? 

10. The ODE in Prob. 6. By what factor did the error 
decrease? 

11. Undamped Pendulum. Y" + siny = 0, yt77) = O. 
y' (77) = 1. h = 0.2, 5 steps. How doe~ your result fit 
into Fig. 92 in Sec. 4.5? 

12. Bessel Function 10, xy" + y' + xy = 0, 

y(l) = 0.765198,/ (I) = -0.-1-40051, h = 0.5,5 steps. 
(This gives the standard solution 10(x) in Fig. 107 in 
Sec. 5.5.) 

13 • .r ~ = -4Y1 + )'2' y~ = .\'1 - 4)'2' YI(O) = 0, 
Y2(0) = 2, h = 0.1, 5 steps 

14. The system in Prob. 2. Ho'W much smaller is the error? 

15. Verify the calculations for the Airy equation in 
Example 3. 

fi.-I91 RUNGE-KUTTA-NYSTROM METHOD 
Do by RKN: 

16. Prob. 12 (Bessel function Jo). Compare the results. 

909 

17. ,," - n" + 4,' = 0, ,'(0) = 3, ,,' (0) = 0, 
i, = 0.2: 5 steps '(Exact: y '= x4 - 6x2 -+ 3.) 

18. (x 2 
- x)y" - xy' + y = 0, y(!) = I - ! In 2. 

y'(!) = I - In 2, h = 0.1. 4 steps 

19. Prob. II. Compare the results. 

20. CAS EXPERIMENT. Comparison of Methods. (a) 

Write program~ for RKN and RK for systems. 

(b) Try them out for second-order ODEs of your 
choice to find out empirically which is better in specific 
cases. 

(c) In using RKN, would it pay to first eliminate y' 
(see Prob. 29 in Problem Set 5.5)? Find out 
experimentally. 

21. CAS EXPERIMENT. Backward Euler and 
Stiffness. Extend Example 4 as follows. 

(a) Verify the values in Table 21.14 and show them 
graphically as in Fig. 451. 

(b) Compute and graph Euler values for h near the 
"critical" h = 0.18 to determine more exactly when 
instability starts. 

(c) Compute and graph RK values for values of h 
between 0.2 and 0.3 to find h for which the RK 
approximation begins to increase away from the exact 
solution. 

(d) Compute and graph backward Euler values for 
large h: confirm stability and investigate the error 
increase for growing h. 

21.4 Methods for Elliptic PDEs 
The remaining sections of this chapter are devoted to numerics for PDEs (partial 
differential equations), particularly for the Laplace, Poisson, heat, and wave equations. 

These POEs are basic in applications and, at the same time, are model cases of elliptic, 
parabolic, and hyperbolic PDEs, respectively. The definitions are as follows. (recall also 
Sec. 12.4). 

A POE is called quasilinear if it is linear in the highest derivatives. Hence a second­
order quasilinear PDE in two independent variables x, y is of the form 

(I) 

1I is an unknown function of x and y (a solution sought). F is a given function of the 
indicated variables. 

Depending on the discriminant ac - b2
, the PDE (I) is said to be of 

elliptic type if ac - b2 > 0 (example: Lap/ace e£juation) 

parabolic type if ae - b2 = 0 (example: beat equation) 

hyperbolic type if lie - b2 < 0 (example: wal'e equation). 
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Here. in the heat and wave equations, y is time t. The coefficients G, b, c may be functions 
of x, y. so that the type of (I) may be different in different regions of the xy-plane. This 
classification is not merely a formal matter but is of great practical importance because 
the general behavior of solutions differs from type to type and so do the additional 
conditions (boundary and initial conditions) that must be taken into account. 

Applications involving elliptic equatio1ls usually lead to boundary value problems in a 
region R. called a first boundary value problem or Dirichlet problem if u is prescribed 
on the boundary curve C of R, a second bOllndary I'llllle problem or Neumann problem 
if lln = au/all (normal derivative of lI) is prescribed on C. and a third or mixed problem 
if II is prescribed on a part of C and Un on the remaining part. C usually is a closed curve 
(or sometimes consists of two or more such curves). 

Difference Equations for the Laplace and 
Poisson Equations 
In this section we consider the Laplace equation 

(2) 

and the Poisson equation 

(3) 

These are the most important elliptic PDEs in applications. To obtain methods of numeric 
solution. we replace the pmtial derivatives by conesponding difference quotients, as 
follows. By the Taylor formula, 

(4) 
(b) 

We subtract (4b) from (4a), neglect terms in h3
, 114, ..• , and solve for llx. Then 

1 
(5a) ux(x, y) = 21z [u(x + ", y) - lI(x - h. y)]. 

Similarly, 

u(x. y + k) = u(x. y) + /...uy(x, y) + ~k2Uyy(X, y) + .. -
and 

u(x, y - k) = lI(X. y) - kuy{.r. y) + ~k2Uyy(x, y) + - ... 

By subtracting, neglecting tenns in k 3
, k4, ... , and solving for u we obtain 

~ y 

(5b) 
I 

lIy(x, y) = 2k [u(x, Y + k) - u(x, Y - k)]. 
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We now turn to second derivatives. Adding (4a) and (4b) and neglecting terms in 
h4, h5

, .•. , we obtain u(x + h, y) + u(x - h, y) = 2u(x, y) + h2ux .",(x, y). Solving for 
uxx ' we have 

I 
(6a) l/xx(x, Y) = fl [u(x + h, y) - 2l/(x, y) + It(x - /z, y)]. 

Similarly, 

1 
(6b) uyy(x. y) = k2 [u(x. y + k) - 2u(x. y) + u(x. y - k)]. 

We shall not need (see Prob. 1) 

1 

(6c) 
UXy(x. v) = -- [u(x + h. \' + k) - u(x - h. v + k) 
. '4hk' . 

- u(x + h, y - k) + u(x - h, Y - k)]. 

Figure 452a shows the points (x + h, y), (x - h, y), ... in (5) and (6). 
We now substitute (6a) and (6b) into the Poisson equation (3), choosing k = h to obtain 

a simple formula: 

(7) u(x + h, y) + It(x, Y + h) + u(x - h, y) + u(x, Y - h) - 4lt(x, y) = h2f(x, y). 

This is a difference equation corresponding to (3). Hence for the Laplace equation (2) 
the corresponding difference equation is 

(8) u(x + h, y) + u(x, y + h) + u(x - h, y) + u(x, y - h) - 4u(x, y) = O. 

h is called the mesh size. Equation (8) relates u at (x. y) to u at the four neighboring points 
shown in Fig. 452b. It has a remarkable interpretation: u at (x, y) equals the mean of the 
values of u at the four neighboring points. This is an analog of the mean value property 
of harmonic functions (Sec. 18.6). 

Those neighbors are often called E (East), N (North), W (West), S (South). Then 
Fig. 452b becomes Fig. 452c and (7) is 

(7*) 

(x,y+k) 

X 

h kl h 
(x-h,y) x~x (x+h,y) 

I (x,y) 
k 

x 
(x,y-k) 

(aJ Points in (5) and (6) 

u(E) + u(N) + u(W) + u(S) - 4u(x, y) = h2f(.'(, y). 

(x,y+hJ 

X 

hi 
h . h 

(x-h,y) x-- r" --x (x+h,y) 
(x,y) 

h 

X 

(x,y-h) 

(b) POints In (7) and (8) 

N 
x 

hi 
W X __ h_ -6 _h_X E 

(x,Y) 

h 

x 
s 

(e) Notation in (7*) 
Fig. 452. Points and notation in (5)-(8) and (7*) 
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Our approximation of h2 ',pu in (7) and nn is a 5-point approximation with the 
coefficient scheme or stencil (also called pattern. lIloleeule. or star) 

(9) r -4 I}' We may now write (7) a, {I -4 I} u ~ h'!,<, y). 

Dirichlet Problem 
In numerics for the Dirichlet problem in a region R we choose an h and introduce a sljuare 
grid of horizontal and vertical straight lines of distance h. Their intersections are called 
mesh points (or lattice poillts or nodes). See Fig. 453. 

Then we approximate the given PDE by a difference equation [(8) for the Laplace equation], 
which relates the unknown values of u at the mesh points in R to each other and to the given 
boundary values (details on p. 913). This gives a linear system of algebraic equations. By 
solving it we get approximations of the unknown values of u at the mesh points in R. 

We shall see that the number of equations equals the number of unknowns. Now come" 
an important point. If the number of internal mesh points. call it p, is small, say, p < 100, 
then a direct solution method may be applied to that linear system of p < 100 equations 
in p unknowns. However, if p is large, a storage problem will arise. Now since each 
unknown u is related to only 4 of its neighbors, the coefficient matrix of the system is a 
sparse matrix, that is. a matrix with relatively few nonzero entries (for instance, 500 of 
10000 when p = 100). Hence for large p we may avoid storage difficulties by using an 
iteration method. notably the Gauss-Seidel method (Sec. 20.3), which in PDEs is also 
called Liebmann's method. Remember that in this method we have the storage 
convenience that we can overwrite any solution component (value of ll) as soon as a "new" 
value is available. 

Both cases, large p and small p, are of interest to the engineer, large p if a fine grid is 
used to achieve high accuracy, and small p if the boundary values are known only rather 
inaccurately, so that a coarse grid will do it because in this case it would be meaningless 
to try for great accuracy in the interior of the region R. 

We illustrate this approach with an example. keeping the number of equations small, 
for simplicity. As convenient llOllitiOIlS for mesh poillts lllld correspondillg Vlt/ues of the 
solution (and of approximate solutions) we use (see also Fig. 453) 

(10) Pij = (ih. jh), llij = uUh, jll). 

y 

x 

Fig. 453. Region in the xy-plane covered by a grid of mesh h, 
also showing mesh points Pll = (h, h), ... , Pij = (ih, jh), ... 
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EXAMPLE 1 

With this notation we can write (8) for any mesh point Pi) in the form 

(11) Ui+l,j + Ui,j+l + Ui-l,j + Ui,j-l - 4uij = O. 

Laplace Equation. Liebmann's Method 

The four sides of a square plate of side 12 em made of homogeneous material are kept at constant temperature 
ooe and I DOoe as shown in Fig. 454a. Using a (very wide) grid of mesh.j. cm and applying Liebmann's method 
(that is, Gauss-Seidel iteration), find the (steady-state) temperature at the mesh points. 

Solution. In the case of independence of time. the heat equation (see Sec. 10.8) 

reduces to the Laplace equation. Hence our problem i, a Dirichlet problem for the latter. We ehoo,e the grid 
shown in Fig. 454b and consider the mesh points in the order Pn, P21. P 12• P22. We use (11) and, in each 
equation. take 10 the right all the terms resulting from the given boundary values. Then we obtain the system 

= -200 

+ u22 = -200 
(12) 

Un - 4"12 + U22 = -100 

U21 + U12 - 4U22 = -100. 

In practice, one would solve such a small system by the Gauss elimination, finding "n = "21 = 87.5. 
"12 = U22 = 62.5. 

More exact values (exact to 3S) of the solution of the actual problem [as opposed to its model (12)] are 88.1 
and 61.9. respectively. (These were obtained by using Fourier series.) Hence the error is about 1 %. which is 
surprisingly accurate for a grid of such a large mesh size h. If the system of equations were large, one would 
solve it by an indirect method, such as Liebmann's method. For (12) this is as follows. We write (12) in the 
form (divide by -4 and take terms to the right) 

[/n = 0.25"21 + 0.25u12 

1112 = 0.25"n 

0.25u21 + 0.25u12 

+ 50 

+ 0.25u22 + 50 

+ 0.25u22 + 25 

+ 25. 

These equations are now used for the Gauss-Seidel iteration. They are identical with (2) in Sec. 20.3, where 
un = Xl' U21 = X2, "12 = X3, U22 = X4. and the iteration is explained there, with 100, 100, 100, 100 chosen 
as starting values. Some work can be saved by better starting values, usually by taking the average of the 
bound:.u)' values that enter into the linear system. The exact solution of the system is Ull = "21 = 87.5. 
u12 = U22 = 62.5, as you may verify. 

u = 100 

y u=o 

121------'"'1 

R 

u=o 

P12 P 22 
*-4 

POl Ipll I p21 
-e -. 

I I 
PlO 'P20 --, 

U = 100 

(a) Given problem (b) Grid and mesh points 

Fig. 454. Example 1 

u = 100 
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Remark. It is interesting to note that if we choose mesh h = LlII (L = side of R) and consider the (II - 1)2 

internal me~h points (i.e .. mesh points not on the boundary) row by row in the order 

then the system of equations has the (11 - 1)2 X (II - 1)2 coefficient matrix 

B -4 

B -4 

(13) A = Here B= 

B -4 

B -4 

is an (II - I) X (11 - 1) matrix. (In (12) we have 11 = 3. (11 - 1)2 = 4 internal mesh points. two submatrices 
B. and two submatrices I.) The matrix A is nonsingular. This follows by noting that the off-diagonal entries in 
each row of A have the sum 3 (or 2). wherea~ each diagonal entry of A equals -4. so that non~ingularity is 
implied by Gerschgorin's theorem in Sec. 20.7 because no Gerschgorin disk can include O. • 

A matrix is called a band matrix if it has all its nonzero entries on the main diagonal 
and on sloping lines parallel to it (separated by sloping lines of zeros or not). For example. 
A in (13) is a band matrix. Although the Gauss elimination does not pre~erve zeros between 
bands. it does not introduce nonzero entries outside the limits defined by the original 
bands. Hence a band structure is advantageous. In (13) it has been achieved by carefully 
ordering the mesh points. 

ADI Method 
A matrix is called a tridiagonal matrix if it has all its nonzero entries on the main diagonal 
and on the two sloping parallels immediately above or below the diagonal. (See also 
Sec. 20.9.) In this case the Gauss elimination is particularly simple. 

This raises the question of whether in the solution of the Dirichlet problem for the 
Laplace or Poisson equations one could obtain a system of equations whose coefficient 
matrix is tridiagonal. The answer is yes, and a popular method of that kind, called the 
ADI method (alternating direction implicit method) was developed by Peaceman and 
Rachford. The idea is as follows. The stencil in (9) shows that we could obtain a tridiagonal 
matrix if there were only the three points in a row (or only the three points in a column). 
This suggests that we write (II) in the form 

(l4a) Ui-l,j - 4Uij + ui+I,j = -Ui,j-l - lIi,j+I 

so that the left side belongs to y-Row j only and the right side to x-Column i. Of course, 
we can also write (11) in the form 

(l4b) lIi.j-1 - 4Uij + Ui.j+l = -Ui-I,j - ui+l,j 

so that the left side belongs to Column i and the right side to Row j. In the AD! method 
we proceed by iteration. At every mesh point we choose an arbitrary starting value u~T. 
In each step we compute new values at all mesh points. In one step we use an iteration 
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formula resulting from (14a) and in the next step an iteration formula resulting from (14b), 
and so on in alternating order. 

In detail: suppose approximations lI~j) have been computed. Then, to obtain the next 
approximations lI~'JHl), we substitute the 1I~'J') on the right side of (l4a) and solve for the 
l/~j'H1) on the left side; that is, we use 

(lSa) 

We use (lSa) for a fixed j, that is, for a fixed row j, and for all internal mesh points in 
this row. This gives a linear system of N algebraic equations (N = number of internal 
mesh points per row) in N unknowns, the new approximations of l/ at these mesh points. 
Note that (ISa) involves not only approximations computed in the previous step but also 
given boundary values. We solve the system (15a) (j fixed!) by Gauss elimination. Then 
we go to the next row, obtain another system of N equations and solve it by Gauss. and 
so on, until all rows are done. In the next step we alternate direction, that is, we compute 
the next approximations u~jn+2) column by column from the ugn + ll and the given boundary 
values, using a fonnula obtained from (l4b) by substituting the u~jn+]) on the right: 

(lSb) 

For each fixed i, that is. for each colulIlll. this is a system of M equations (M = number 
of internal mesh points per column) in M unknowns. which we solve by Gauss elimination. 
Then we go to the next column. and so on, until all columns are Jone. 

Let us consider an example that merely serves to explain the entire method. 

E X AMP L E 2 Dirichlet Problem. ADI Method 

Explain the procedure and formulas of the AD! method in terms of the problem in Example I. using the same 
grid and starting values 100. 100. 100. 100. 

Solution. While working. we keep an eye on Fig. 454b on p. 913 and the given boundary values. We obtain 
first approximations "ttl.. 11\]1.. Iti~. lI\]d from (15a) with 111 = O. We w,ite boundary values contained in (15a) 
without an upper index. for better identification and to indicate that these given values remain the same during 
the iteration. From (15a) with 111 = a we have for j = I (first row) the system 

(i~1) 

(i = 2) 

The solution is ilill = u~li ~ 100. Fori = 2 (second row) we obtain fium (15a) the system 

(i = I) 

(i = 2) 

The solution is /li~ ~ /I\]d ~ 66.667. 

Secolld approximatiolls 1tW,. iI~1. Iti~. /I~i are now obtained from (l5b) with 111 = I by using the first 
approximations just computed and the boundary values. For i ~ I (first column) we obtain from (15b) the system 

(J = 1) 

(J = 2) 

= -1101 - II'll 

The solution is /lfl. = 91.11. ,,cli = 64.44. For i = 2 (second column) we obtain from (15b) the system 

(J = I) 

(J ~ 2) 

The solutIOn is /I~l = 91.11, /I~i = 64,44. 

= -1t'iV. - It:ll 
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In this example. which merely serves to explain the practical procedure in the AD! method. the accuracy 
of the second approximations is about the same as that of two Gauss-Seidel steps in Sec. 20.3 (where 
IIU = xl' lt2l = .\"2' lt12 = X3' 1122 = X4)' as the following table shows. 

- --
Method lin 

AD!. 2nd approximations 91.11 
Gauss-Seidel, 2nd approximations 93.7S 

Exact solution of (12) 87.S0 

lI21 

91.11 
90.62 

87.50 

64.44 

6S.62 

62.50 

64.44 

64.06 

62.50 • 
Improving Convergence. Additional improvement of the convergence of the ADI 
method results from the following interesting idea. Introducing a parameter p, we can also 
write (11) in the form 

(a) Ui-l,j - (2 + P)Uij + ui+l,j = -Ui,j-l + (2 - P)Uij - Ui,j+l 

(16) 

(b) lli,j-l - (2 + p)uij + ui.j+l = -Ui-l,j + (2 - P) lIij - lIi+l,j' 

This gives the more general ADI iteration formulas 

(a) 
(17) 

(b) u\m+2) _ (') + p)1l\1n+2) + 1l\,,!-+2) = _u\m+D + ("") - p)u(m+D - u(m+~) 
1,,)-1 .... 1,) 1.,)+1 z-I,) L. 'lJ 1,+1,) . 

For P = 2. this is (IS). The parameter p may be used for improving convergence. Indeed, 
one can show that the ADI method converges for positive p. and that the optimum value 
for maximum rate of convergence is 

(18) 
'iT 

Po = 2 sin -
K 

where K is the larger of M + I and N + 1 (see above). Even better results can be achieved 
by letting P vary from step to step. More details of the ADI method and variants are 
discussed in Ref. rE2S] listed in App. 1. 

-.•. --... -.. ,,-~--.-. .. ---- .. --.... -...... -.-~ .......... 
1. Derive (Sb). (6b). and (6c). 

12-71 GAUSS ELIMINATION, 
GAUSS-SEIDEL ITERATION 

For the grid in Fig. 455 compute the potential at the four 
internal points by Gauss and by 5 Gauss-Seidel steps with 
starting value~ 100. 100, 100, 100 (showing the details of 
your work) if the boundary values on the edges are: 

2. II = 0 on the left. x 3 on the lower edge, 27 - 9.\'2 on 
the righl. x 3 

- 27x on the upper edge. 

3. lIe I, 0) = 60. ue. 0) = 300. II = lOO on the other three 
edges. 

4. 1/ = X4 on the lower edge. 81 - 54.\'2 + )"4 on the right. 
x4 

- 54x2 + 81 on the upper edge, y4 on the left. 
Verity the exact solution X4 - 6x2

y2 + y4 and 
determine Ihe elTor. 

5. II = sin !7TX on the upper edge, 0 on the other edges. 
10 steps. 

6. U = no on the upper and lower edges, lID on the left 
and right. 
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7. Vo on the upper and lower edges, - Vo on the left and 
right. Sketch the equipotentIal lines. 

2 
y 

2 3 
x 

Fig. 455. Problems 2-7 

8. Verify the calculations in Example 1. Find out 
experimentally how many steps are needed to obtain the 
solution of the linear system with an accuracy of 3S. 

9. tUse of symmetry) Conclude from the boundary 
values in Example I that U21 = Un and U22 = U12' 

Show that this leads to a system of two equations and 
solve it. 

10. (3 X 3 grid) Solve Example I, choosing h = 3 and 
starting values 100, 100, .... 

11. For the square 0 ~ x ~ 4, 0 ~ y ~ 4 let the boundary 
temperatures be O°C on the horizontal and 50°C on the 
vertical edges. Find the temperatures at the interior 
points of a square grid with h = I. 

12. Using the answer to Prob. II, try to sketch some 
isotherms. 

13. Find the isotherms for the square and grid in Prob. II 
if U = sin ~'iTx on the horizontal and -sin ~'iTY on the 
vertical edges. Try to sketch some isotherms. 

14. (Intluence of starting values) Do Prob. 5 by 
Gauss-Seidel, starting from O. Compare and comment. 

15. Find the potential in Fig. 456 using (a) the coarse grid, 
(b) the fine grid, and Gauss elimination. Hint. In (b), 

use symmetry; take II = 0 as the boundary value at the 
two points at which the potential has a jump. 

u = 110 V 

"~110V~"~11", 
"~-110Vt.fj "~-110V 

u=-110V 

Fig. 456. Region and grids in Problem 15 

16. (ADI) Apply the ADI method to the Dirichlet problem 
in Prob. 5, using the grid in Fig. 455, as before and 
starting values zero. 

17. What Po in (18) should we choose for Prob. 16? Apply 
the ADI formulas (17) with Po = l. 7 to Prob. 16, 
performing I step. lllustrate the improved convergence 
by comparing with the corresponding values 0.077, 
0.308 after the first step in Prob. 16. (Use the starting 
values zero.) 

18. CAS PROJECT. Laplace Equation. la) Write a 
program for Gauss-Seidel with 16 equations in 16 
unknowns, composing the matrix (13) from the 
indicated 4 X 4 submatrices and including a 
transfOimation ofthe vector ofthe boundary values into 
the vector b of Ax = b. 

(b) Apply the progranl to the square grid in 0 ~ x ~ 5. 
o ~ y ~ 5 with h = I and u = 220 on the upper and 
lower edges, U = 110 on the left edge and u = -10 
on the right edge. Solve the linear system also by Gauss 
elimination. What accuracy is reached in the 20th 
Gauss-Seidel step? 

21.5 Neumann and Mixed Problems. 
Irregular Boundary 

We continue our discussion of boundary value problems for elliptic PDEs in a region R 
in the xy-plane. The Dirichlet problem was studied in the last section. In solving Neumann 

and mixed problems (defined in the last section) we are confronted with a new situation, 

because there are boundary points at which the (outer) normal derivative Un = au/an of 

the solution is given, but u itself is unknown since it is not given. To handle such points 

we need a new idea. This idea is the same for Neumann and mixed problems. Hence we 

may explain it in connection with one of these two types of problems. We shall do so and 
consider a typical example as follows. 
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E X AMP L E 1 Mixed Boundary Value Problem for a Poisson Equation 

Solve the mixed boundary value problem for the Poisson equation 

shown in Fig. ~57a. 

1.5 x 

u=o 

(a) Regio~ R and boundary values (b) Grid (h = 0.5) 

Fig. 457. Mixed boundary value problem in Example 1 

Solution. We u~e the grid shown in Fig. 457b. where" = 0.5. We recall that (7) in Sec. 21A has the right 
side ,,2f (x. y) = 0.52 • 12xy = 3xy. From the formulas II = 3,·3 and I/n = 6x given on the boundary we compute 
the bounda.ry data 

(1) 1/31 = 0.375. U32 = 3. 
ilU12 

= 6·0.5 = 3, 
ely 

= 6·1 = 6. 

PH and P21 are internal mesh points and can be handled as in the last section. Indeed. from (7), Sec. 21.4. with 

{,2 = 0.25 and ,,2f (X. y) = 3xy and from the given boundary values we obtain two equations corresponding to 

PH and P21 • as follows (with -0 resulting from the left boundary). 

12(O.5·0.5)·! - 0 = 0.75 

(2a) 
+ 1122 = 12(1 • 0.5)·! - 0.375 = 1.125 

The only difficulty with these equations seems to be that they involve the unknown values U12 and 1/22 of 1/ at 

P12 and P22 on the boundary. where the normal derivative I/n = ol//iln = flu/o)" is given. instead of 1/: but we 
shall overcome this difficulty as follows. 

We consider P12 and P 22. The idea that will help us here is thb. We imagine the region R to be extended 
above to the first row of external mesh points (corresponding to y = 1.5), and we assume that the Poisson 
equation also holds in the extended region. Then we can write down two more equations as before (Fig. 457b) 

= 1.5 - 0 = 1.5 

(2b) 
+ "23 = 3 - 3 = O. 

On the right. 1.5 is 12xy,,2 at (0.5. I) and 3 is 12x.'"{,2 at (I. 1) and 0 (at P02) and 3 (at P32) are given boundary 
values. We remember that we have not yet used the boundary condition on the upper part of the boundary of 
R, and we also notice that in (2b) we have introduced two more unknowns 1/13' 1/23' But we can now use that 
comlilion and get rid of "13' 1/23 by applying the central difference formula for dl/ Idy. From (I) we then obtain 
(see Fig. 457b) 

3= 
flll12 1/13 - 1/11 

oy 21z 
= 1113 - lIll. hence 1/13 = 1111 + 3 

6= 
01/22 1/23 - u21 

oy 2h = 1I23 - lI21' hence 1123 = "21 + 6. 
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Substituting these results into (2b) and simplifying, we have 

2"11 - 41112 + 1122 = 1.5 - 3 = -1.5 

2"21 + 1112 - 4U22 = 3 - 3 - 6 = -6. 

Together with (2a) this yields, written in matrix form, 

(3) r -~ -4 0 ~] r::::] = r~:::5] r ~:::5]. 
2 0 -4 1 1112 1.5 - 3 -1.5 

o 2 -4 1122 ~0-6 -6 

(The entnes 2 come from U13 and l/23, and so do -3 and -6 on the right). The solution of (3) (obtained by 
Gauss elimination) is as follows; the exact values of the problem are given in parentheses. 

U12 = 0.R66 (exact I) U22 = I.RI2 (exact 2) 

un = 0.077 lexact 0.125) "21 = 0.191 (exact 0.25). • 
Irregular Boundary 
We continue our discussion of boundary value problems for elliptic PDEs in a region R 
in the xy-plane. If R has a simple geometric shape, we can usually arrange for certain 
mesh points to lie on the boundary C of R, and then we can approximate partial derivatives 
as explained in the last section. However, if C intersects the grid at points that are not 
mesh points, then at points close to the boundary we must proceed differently, as follows. 

The mesh point 0 in Fig. 458 is of that kind. For 0 and its neighbors A and P we obtain 
from Taylor'S theorem 

auo 1 a2uo 
(a) UA = Uo + uh + - (uhf -'-2- + ... 

ax 2 ax 
(4) 

auo I 
h2 a2uo 

(b) lip = lIo - h + - + 
ax 2 ax2 

We disregard the terms marked by dots and eliminate alia lax. Equation (4b) times a plus 
equation (4a) gives 

p 

c 
Q 

Fig. 458. Curved boundary C of a region R, a mesh point 0 near C, and neighbors A, B, P, Q 
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We solve this last equation algebraically for the derivative, obtaining 

;PUo 2 [I I I ] 
ax2 = h2 a(l + a) UA + ~ Up - -;; Uo 

Similarly, by considering the points O. B. and Q. 

a2Uo 2 [1 I I ] 
2 = -2 LIB + --- lIQ - -b Uo . 

iJy h b(\ + b) I + b 

By addition, 

(5) y 2
Uo = -2 + 2 [UA liB + Up + ~ _ ta + b)uo ] . 

h a (l + a) b (1 + b) 1 + a I + b ab 

For example, if a = !, b = !, instead of the stencil (see Sec. 21.4) 

we now have 

because 1/[a(1 + a)l = ~, etc. The sum of all five terms still being zero (which is useful 
for checking). 

Using the same ideas, you may show that in the case of Fig. 459. 

(6) 2 2 [UA UB Up uQ V Uo = - + + + --~-
1z2 a(a + p) b(b + q) pep + a) q(q + b) 

a formula that takes care of all conceivable cases. 

B 

bh 
ph 0 ah 

P~--""---~A 
qh 

Q 

Fig. 459. Neighboring points A. B. P, Q of a 
mesh point 0 and notations in formula (6) 

ap + bq ] 
Uo , 

abpq 

E X AMP L E 2 Dirichlet Problem for the Laplace Equation. Curved Boundary 

Find the potential II in the region in Fig. 460 that has the boundary values given in that figure: here the curved 
portion of the boundary is an arc of the circle of radius 10 about (0, 0). Use the grid in the figure. 

Solution. II is a solution of the Laplace equation. From the given formulas for the boundary values II = x 3, 

1/ = 512 - 24y2 . ... we compute the values at [he points where we need them: the result is shown in [he figure. 
For Pll and P 12 we have the usual regular' stencil. and for P21 and P 22 we use (6), obtaining 

(7) 

0.5 

-2.5 

0.5 
0+ 

0.9 

-3 

0.6 
0+ 
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u=o 

y 

6 

u=512-24/ 

u=o 
3 u = 296 

u= 
u = 27 216 

°O~----~3~~--~6--~8~~x 

3 
U =X 

Fig. 460. Region, boundary values of the 
potential, and grid in Example 2 

921 

We use this and the boundary value~ and take the mesh points in the u~ual order P lI • P21 , P12• P22. Then we 
obtain the system 

- 4un + o - 27 = -27 

0.6lln - 2.5u21 + 0.5U22 = -0.9' 296 - 0.5 . 216 = -374.4 

U22 = 702 + 0 702 

0.6U21 + 0.61112 - 31122 = 0.9 . 352 + 0.9 . 936 = 1159.2. 

Tn matrix form, 

(8) 
-2.5 0 

o -4 

0.6 0.6 

:.5] r::::] r -~~:.4]. 
I 1112 702 

-3 1122 1159.2 

Gauss elimination yields the (ruundedl value, 

Uu = -55.6, U21 = 49.2, ll12 = -298.5, ll22 = -436.3. 

Clearly, from a grid with so few mesh points we cannot expect great accuracy. The exact solution of the PDE 
(not of the difference equation) having the given boundary values is u = x 3 

- 3xy2 and yields the values 

Ull = -54, !l21 = 54, U12 = -297, U22 = -432. 

Tn praclice one would use a much finer grid and solve the resulting large system by an indirect 
method. • 

1. Verify the calculation for the Poisson equation in 
Example 1. Check the values for (3) at the end. 

2. Delive (5) in particular when a = h = !. 
3. Deri ve the general stencil formula (6) in all detail. 

4. Verify the calculation for the boundary value problem 
in Example 2. 

5. Do Example I in the text for "\7 2u = 0 with grid and 
boundary data as before. 

MIXED BOUNDARY VALUE PROBLEMS 

6. Solve the mixed boundary value problem for the 
Laplace equation "\7 2u = 0 in the rectangle in Fig. 457a 
(using the grid in Fig. 457b) and the boundary 
conditions u~ = 0 on the left edge, Ux = 3 on the right 
edge, u = x 2 on the lower edge, and u = x 2 

- 1 on 
the upper edge. 

7. Solve Prob. 6 when un = 1 on the upper edge and 
u = 1 on the other edges. 
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8. Solve the mixed boundary value problem for the 
Poisson equation ,2u = 2(x2 + y2) in the region and 
for the boundary conditions shown in Fig. 461, using 
the indicated grid. 

y 

2 I----{>--='::.....,:>---='--~ 

u=o---" 
11--<>--=--<r""--~ 

u=o 

Fig. 461. Problems 8 and 10 

9. CAS EXPERIMENT. Mixed Problem. Do Example 
1 in the text with finer and finer grids of your choice 
and study the accuracy of the approximate values by 
comparing with the exact solution u = 2.\"y3. Verify 
the latter. 

10. Solve ,211 = -1T2y sin! 1T.\' for the grid in Fig. 461 
and lIy(l, 3) = lIy (2, 3) = !vW, II = 0 on the other 
three sides of the square. 

IRREGULAR BOUNDARIES 

11. Solve the Laplace equation in the region and for the 
boundary values shown in Fig. 462. using the indicated 
grid. (The sloping portion of the boundary is 
y = 4.5 - x.) 

y 
/u=o 

3 2 
u =X - 1.5x 

2 

u=o---
P12 

P ll P21 

~u=9-3y 

0
0 1/ 2 3 x 

u =3x 

Fig. 462. Problem 11 

12. If in Prob. II the axes are grounded (II = 0), what 
constant potential must the other portion of the 
boundary have in order to produce 100 volts at Pu? 

13. What potential do we have in Prob. II if L/ = 190 volts 
on the axes and L/ = 0 on the other portion of the 
boundary? 

14. Solve the Poisson equation y 2
L/ = 2 in the region and 

for the boundary values shown in Fig. 463, using the 
grid also shown in the figure. 

y 

3 

u=/-3y----....... 

u=o 

1.5 

n-<>----I~ u = / - 1.5y 

Fig. 463. Problem 14 

21.6 Methods for Parabolic PDEs 
The last two sections concerned elliptic POEs. and we now tum to parabolic POEs. Recall 
that the definitions of elliptic, parabolic, and hyperbolic POEs were given in Sec. 21.4. 
There it was also mentioned that the general behavior of solutions differs from type to 
type, and so do the problems of practical interest. This reflects on numerics as follows. 

For all three types, one replaces the POE by a corresponding difference equation, but 
for parabolic and hyperbolic POEs this does not automatically guarantee the convergence 
of the approximate solution to the exact solution as the mesh h ~ 0; in fact, it does not 
even guarantee convergence at all. For these two types of POEs one needs additional 
conditions (inequalities) to assure convergence and stability, the latter meaning that ~mall 
perturbations in the initial data (or small errors at any time) cause only small changes at 
later times. 

In this section we explain the numeric solution of the prototype of parabolic PDEs, the 
one-dimensional heat equation 

(c constant). 
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This POE is usually considered for x in some fixed interval, say, 0 :;;; x :;;; L, and time 
t ~ 0, and one prescribes the initial temperature u(x, 0) = f(x) (f given) and boundary 
conditions at x = 0 and x = L for all t ~ 0, for instance 1/(0. t) = 0, I/(L, t) = O. We may 
assume c = I and L = I; this can always be accomplished by a linear transformation of 
x and t (Prob. I). Then the heat equation and those conditions are 

(1) 

(2) 

(3) 

II(X, 0) = f(x) 

u(O. t) = u(], t) = 0 

O:;;;x:;;;Lt~O 

(Initial condition) 

(Boundary conditions). 

A simple finite difference approximation of (1) is [see (6a) in Sec. 21.4;j is the number 
of the time step] 

] 1 
(4) k (Ui,j+l - Uij) = /7 2 (Ui-l,j - 2Uij + Ui-l,j)' 

Figure 464 shows a corresponding grid and mesh points. The mesh size is h in the 
x-direction and k in the t-direction. Formula (4) involves the four points shown in 
Fig. 465. On the left in (4) we have used ajonmrd difference quotient since we have no 
information for negative t at the start. From (4) we calculate ui.j+l' which corresponds to 
time row j + 1, in terms of the three other II that correspond to time row j. Solving (4) 
for lIi,j+I' we have 

(5) lIi,j+1 = (1 - 2r)uij + r(ui+l,j + Ui-l,j), 

u = 0 --....,..,I---o-----<J---o----l (j = 2) 
~u=O 

I---o-----<J---o----l(j=l) 

k h 

! x 

u = {(x) 

Fig. 464. Grid and mesh points corresponding to (4), (5) 

(i,j + 1) 
X 

/k 
(i-l.j)X---h--X---h--X (i + l,j) 

(i,j) 

Fig. 465. The four points in (4) and (5) 

r= 
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Computations by this explicit method based on (S) are simple. However, it can be 
shown that crucial to the convergence of this method is the condition 

(6) r= 

That is. Uij should have a positive coefficient in (S) or (for r =~) be absent from (S). Intuitively, 
(6) means that we should not move too fast in the (-direction. An example is given below. 

Crank-Nicolson Method 
Condition (6) is a h<mdicap in practice. Indeed, to attain sufficient accuracy, we have to 
choose h small, which makes k very small by (6). For example, if h = 0.1, then k ::::; O.OOS. 
Accordingly, we should look for a more satisfactory discretization of the heat equation. 

A method that imposes no restriction on r = klh 2 is the Crank-Nicolson method, 
which uses values of u at the six points in Fig. 466. The idea of the method is the 
replacement of the difference quotient on the right side of (4) by ~ times the sum of two 
such difference quotients at two time rows (see Fig. 466). Instead of (4) we then have 

I 1 

(7) 
k (Ui,j+l - Uij) = 2h2 (Ui+l,j - 2uij 

I 
+ 2h2 (Ui+l,j+l - 2Ui,j+1 + Ui-l,j+l)' 

Multiplying by 2k and wliting r = klh2 as before, we collect the terms corresponding to 
time row j + I on the left and the terms corresponding to time row j on the right: 

(8) (2 + 2r)Ui,j+1 - rtUi+I,j+l + lIi-l,j+l) = (2 - 2r)uij + r(ui+l,j + Ui-l,j)' 

How do we use (8)? In general, the three values on the left are unknown, whereas the 
three values on the right are known. If we divide the x-interval 0 ::::; x ::::; I in (I) into 
II equal intervals, we have II - 1 internal mesh points per time row (see Fig. 464, where 
II = 4). Then for j = 0 and i = I,···. II - I. formula (8) gives a linear system 
of II - I equations for the II - I unknown values Ull, 1121, ••• , Un -I,1 in the first time 
row in terms of the initial values lIoo, UlO, .•• , UnO and the boundatl' values Um (= 0). 
lInl (= 0). Similarly for j = l,.i = 2, and so on; that is, for each time row we have to 
solve such a linear system of II - I equations resulting from (8). 

Although r = klh2 is no longer restricted, smaller r will still give better results. In 
practice, one chooses a k by which one can save a considerable amount of work, without 
making r too large. For instance, often a good choice is r = 1 (which would be impossible 
in the previous method). Then (8) becomes simply 

(9) 411i ,j+l - ui+l,j+l - Ui-l,j+l = ui+l,j + Ui-l,j' 

Time rowj + 1 X X 

Ik 
Time rowj X X 

h h 

Fig. 466. The six points in the Crank­
Nicolson formulas (7) and (8) 

X 

X 
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0.20 

0.16 

0.12 

0.08 

0.04 

t= 0 
x=O 

P12 P22 . ---. ----- . -----
I P

u 
Ip I r-

j=5 

j=4 

j=3 

j=2 

j = 1 

j=O 

d . ----- . --- . ----- e--
IplO 

0.2 
;=1 

I
P20 

0.4 
i = 2 

P30 

0.6 
;=3 

Ip40 

0.8 
i = 4 

Fig. 467. Grid in Example 1 

1.0 
i= 5 

E X AMP L E 1 Temperature in a Metal Bar. Crank-Nicolson Method, Explicit Method 

I 

Consider a laterally insulated metal bar of length I and such that c 2 
= I in the heat equation. Suppose that the 

ends of the bar are kept at temperature" = O°C and the temperature in the bar at some instant -call it I = 0-
i, .f(x) = sin 1T.\' Applying the Crank-Nicolson method with h = 0.2 and r = I, find the temperature u(x. f) in 
the bar for 0 ~ t ~ 0.2. Compare the results with the exact solution. Also apply (5) with an r satisfying (6), 
say, r = 0.25. and with values nO! satisfying (6). say. ,. = I and,. = 2.5. 

Solution by Crank-Nicolson. Since,. = I. formula (8) takes the form (9). Since h = 0.2 and 
,. = klh2 = I. we have k = h2 = 0.04. Hence we have to do 5 steps. Figure 467 shows the grid. We shall need 
the initial values 

1110 = sin 0.277 = 0.587785. "20 = sin 0.41T = 0.951 057. 

Also, "30 = "20 and "40 = lI1O' (Recall that lI10 means" at P10 in Fig. 467. etc.) In each time row in 
Fig. 467 there are 4 internal mesh points. Hence in each time step we would have to solve 4 equations in 4 
unknowns. But since the initial temperature distribution is symmetric with respect to x = 0.5, and II = 0 al 
both ends for all t. we have lI31 = lI21, "41 = lIll in the first time row and similarly for the other rows. This 
reduces each system to 2 equations in 2 unknowns. By (9). since 1/31 = 1/21 and 1101 = O. for j = 0 these 
equations are 

(i = I) = 1100 + "20 = 0.951 057 

(i = 2) 

The solution is lin = 0.399274. lI21 = 0.646039. Similarly, for time row j = I we have the system 

(i = I) 4"12 - 1122 = "01 + £l21 = 0.646039 

(i = 2) -£l12 + 31/22 = "11 + U21 = 1.045313. 

The solution is U12 0.271 221. 1/22 = 0.438844, and so on. This gives the temperature distribution 
(Fig. 468): 

t x=O X = u.2 x = U.4 x = U.6 x = u.8 x= 

0.00 0 0.588 0.951 0.951 0.588 0 

0.04 0 0.399 0.646 0.646 0.399 0 
0.08 0 0.271 0.439 0.439 0.271 0 
0.12 0 0.184 0.298 0.298 0.184 0 
0.16 0 0.125 0.202 0.202 0.125 0 
0.20 0 0.085 0.138 0.138 0.085 0 
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u(x. t) 

1 

Fig. 468. Temperature distribution in the bar in Example 1 

Comparison witll the exact solutio1l. The present problem can be solved exactly by separating 
variables (Sec. 12.5): the result is 

(10) 

Solution by the explicit method (5) with r = 0.25. For h = 0.2 and r = klh 2 = 0.25 we have 
k = rh2 = 0.25 . 0.04 = 0.0 I. Hence we have to perform 4 times as many step' as with the Crank-Nicolson 
method! Formula (5) with,. = 0.25 is 

(11) 

We can again make use of the symmetry. For j = 0 we need "00 = O. 1110 = 0.5877!lS (see p. 925). 

"20 = "30 = 0.951 057 and compute 

lin = 0.25(1100 + 21110 + "20) = 0.531 657 

U21 = 0.25 (1110 + 2"20 + 1130) = 0.25 (1110 + 31120) = O.R(iO 239. 

Of cou[,e we can omit the boundary terms 1101 = O. "02 = 0.··· from the formulas. For j I we 
compute 

1112 = 0.25(21111 + 1121) = 0.480888 

1122 = 0.25(1111 + 31121) = 0.778094 

and so on. We have to perform 20 steps in,tead of the S CN steps. but the numeric values ,how that the accuracy 
is only about the same as that of the Crank-Nicolson values CN. ll1e exact 3D-values follow from (10). 

x = 0.2 x = 0.4 
t 

CN By (11) Exac[ CN By (11) Exac[ 

0.04 0.399 0.393 0.396 0.646 0.637 0.641 
0.08 0.271 0.263 0.267 0.439 0.426 0.432 
0.12 0.184 0.176 0.180 0.298 0.285 0.291 
0.16 0.125 0.118 0.121 0.202 0.191 0.196 

0.20 0.085 0.079 0.082 0.138 0.128 0.132 

Failure of (5) with r violati1lg (6). Formula (5) with h = 0.2 and r = I-which violates (6)-is 
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and give~ very poor values: ,orne of the,e are 

T = 0.2 Exact T = 0.4 Exact 

0.04 0.363 0.396 0.588 0.641 
0.12 0.139 0.180 0.225 0.291 
0.20 0.053 0.082 0.086 0.132 

FOlmula (5) with an even larger r = 2.5 (and h = 0.2 as before) gives completely nonsensical results: some of 
these are 

0.1 
0.3 

x = 0.2 

0.1)265 
0.0001 

1. (Nondimensional form) Show that the heat equation 
ut = c 2 uj'j', 0 ~ X ~ L, can be transformed to the 
"nondimensionar' standard fonn lit = l(ox. 0 ~ x ~ I. 
by setting x = .WL. t = c271L2. II = uluo, where lto is 
any constant temperature. 

2. Derive the difference approximation (4) of the heat 
equation. 

3. Derive (5) from (4). 

4. Using the explicit method [(5) with II = I and k = 0.5]. 
find the temperature at t = 2 in a laterally insulated 
bar of length 10 with ends kept at temperature 0 and 
initial temperature fIx) = x - 0.lx2

• 

5. Solve the heat problem (I )-(3) by Crank-Nicolson 
for 0 ~ t ~ 0.20 with II = 0.2 and k = 0.04 when 
fIx) = x if 0 ~ x < !. lex) = I - x if ! ~ x ~ I. 
Compare with the exact values for t = 0.20 obtained 
from the series (2 terms) in Sec. 12.5. 

6. Solve Prob. 5 by the explicit method with h = 0.2 and 
k = 0.01. Do II steps. Compare the last values with the 
Crank-Nicolson 3S-values 0.107. 0.175 and the exact 
3S-values 0.108, 0.175. 

7. The accuracy of the explicit method depends on 
r (~!). Illustrate this for Prob. 6. choosing r = ~ (and 
h = 0.2 as before). Do 4 steps. Compare the values for 
t = 0.04 and 0.08 with the 3S-values in Prob. 6, which 
are 0.156. 0.254 (t = 0.04).0.105,0.170 (t = 0.08). 

8. If the left end of a laterally insulated bar extending 
from x = 0 to x = I is insulated. the boundary condition 
at x = 0 is 11,,(0. t) = u.,.(O. t) = O. Show that in the 
application of the explicit method given by (5), we can 
compute IIO,j+ I by the fomlllla 

1I0. j + I = (I - 2r)uoj + 2ruij' 

Apply this with II = 0.2 and r = 0.25 to determine the 
temperature II(X. t) in a laterally insulated bar extending 
fi'om x = 0 to I if lI(X, 0) = O. the left end is insulated 

Exact 

0.2191 
0.0304 

x = 0.4 

0.0429 
0.0001 

Exact 

0.3545 
0.0492. • 

and the right end is kept at temperature get) = sin ¥'lTt. 

Hint. Use 0 = Buo/ilx = (IIIj - IL1.) I2h. 

9. In a laterally insulated bar of length I let the initial 
temperature be fIx) = x if 0 ~ x ~ 0.2, 
fIx) = O.lS( I - x) if 0.2 ~ x ~ I. Let u(O, t) = O. 
11(1. t) = 0 for all t. Apply the explicit method with 
II = 0.2, k = 0.01. Do 5 steps. 

10. Solve Prob. 9 for f(x) = x if 0 ~ x ~ 0.5, 
I(x) = I - x if 0.5 ~ x ~ l, all the other data being 
as before. Can you expect the solution to satisfy 
lI(x. t) = 11(1 - x, t) for all t? 

11. Solve Prob. 9 by (9) with II = 0.2, 2 steps. Compare 
with exact values obtained from the series in Sec. 12.5 
(2 tenns) with suitable coefficients. 

12. CAS EXPERIMENT. Comparison of Methods. 
(a) Write programs for the explicit and the 
Crank-Nicolson methods. 

(b) Apply the programs to the heat problem of a 
laterally insulated bar of length I with lI(x, 0) = sin 'lTX 
and u(O, t) = 11(1. t) = 0 for all t, using h = 0.2, 
k = 0.01 for the explicit method (20 steps), II = 0.2 
and (9) for the Crank-Nicolson method (5 steps). Obtain 
exact 6D-values from a suitable series and compare. 

(e) Graph temperature curves in (b) in two figures 
similar to Fig. 296 in Sec. 12.6. 

(d) Expeliment with smaller h (0.1,0.05. etc.) for both 
methods to find out to what extent accuracy increases 
under systematic changes of II and k. 

113-151 CRANK-NICOLSON 

Solve (I )-(3) b) Crank-Nicolson with r = 1 (5 steps). 
where: 

13. fIx) = X( I - x), lz = 0.2 

14. f(x) = x( I - x), h = O. I (Compare with Prob. 13.) 

15. f(x) = 5x if 0 ~ x < 0.2. f(x) = 1.25(1 - x) if 
0.2 ~ x ~ 1, h = 0.2 
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21.7 Method for Hyperbolic PDEs 
In thi~ section we consider the numeric solution of problems involving hyperbolic POEs. 
We explain a standard method in terms of a typical setting for the prototype of a hyperbolic 
POE. the wave equation: 

(1) Utt = Uxx o ~ x ~ 1, 1 ~ 0 

(2) u(x. 0) = j(x) (Given initial displacement) 

(3) ut(x. 0) = g(x) (Given initial velocity) 

(4) u(O, t) = u(l, t) = 0 (Boundary conditions). 

Note that an equation U tt = c 2u-r;x and another x-interval can be reduced to the form (I) 

by a linear transformation of x and 1. This is similar to Sec. 21.6, Prob. I. 
For instance, (1)-(4) is the model of a vibrating elastic string with fixed ~nds at 

x = 0 and x = I (see Sec. 12.2). Although an analytic solution of the problem is given 
in (13). Sec. 12.4, we lise the problem for explaining basic ideas of the numeric approach 
that are also relevant for more complicated hyperbolic PDEs. 

Replacing the derivatives by difference quotients as before, we obtain from (1) [see (6) 
in Sec. 21.4 with y = t] 

I I 
(5) k2 (Ui,j+l - 2Uij + Ui,j-I) = h2 (Ui+l,j - 2Uij + Ui-I,j) 

where h is the mesh size in x, and k is the mesh size in t. This difference equation relates 
5 points as shown in Fig. 469a. It suggests a rectangular grid similar to the grids for 
parabolic equations in the preceding section. We choose r* = k2flz2 = L Then Uij drops 
out and we have 

(6) (Fig. 469b). 

It can be shown that for 0 < r* ~ 1 the present explicit method is stable, so that from 
(6) we may expect reasonable results for initial data that have no discontinuities. (For a 
hyperbolic POE the latter would propagate into the solution domain-a phenomenon that 
would be difficult to deal with on our present grid. For unconditionally stable implicit 
methods see [El] in App. L) 

Equation (6) still involves 3 time steps j - I,j,j + J, whereas the formulas in the 
parabolic case involved only 2 time steps. Furthermore, we now have 2 initial conditions. 

x 

Ik 
x--x--x 

h Ik h 

x 

(a) Formula (5) 

Time rowj + 1 

Time rowj 

• 
I 

x-,-x 

X Time rowj-l 

(bl Formula (6) 

Fig. 469. Mesh points used in (5) and (6) 
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So we ask how we get stal1ed and how we can use the initial condition (3) This can be 
done as follows. 

From lItex. 0) = g(x) we derive the difference formula 

I 
(7) 2k (uil - Ui,-l) = gi. hence 

where & = g(ih). For t = O. that is, j = 0, equation (6) is 

Into this we substitute Ui.-l as given in (7). We obtain Ua = Ui-l,O + Ui+l,O - Uil + 2kgi 
and by simplification 

(8) 

This expresses lta in terms of the initial data. It is for the beginning only. Then use (6). 

E X AMP L E 1 Vibrating String, Wave Equation 

Apply the present method "ith" = k = 0.1 to the problem (1)-(4). where 

i(x) = sin 77X. g(x) = O. 

Solutio1l. The grid is the same as in Fig. 467, Sec. 21.6, except for the values of t, which now are 0.2. 
004, ... (instead of 0.04. 0.08, ... ). The initial values liDO, lIlO' ..• are the same as in Example 1, Sec. 21.6. 
From (8) and gtx) = 0 we have 

From this we compute. using lI10 = 1140 = sin 0.277 = 0.587785.1120 = lI30 = 0.951 057, 

(i = I) 1111 = ~(1I00 + 1120) = ~. 0.951 057 = 0.475528 

(i = 2) "21 = ~(1I1O + "30) = ~. 1.538841 = 0.769421 

and "31 = 1121,1141 = 1111 by symmetry as in Sec. 21.6, Example I. From (6) withj = I we now compute, 
using ltOI = 1102 = ... = 0, 

(i = I) 

(i = 2) 

U12 = 1101 + lI21 - £lID = 0.76') 421 - 0.587785 = U.UH 636 

U22 = "11 + £131 - 1I20 = 0.475528 + 0.769421 - 0.951057 = 0.293 !l92, 

and "32 = 1I22, "42 = lI12 by symmetry; and so on. We thus obtain the following values of the dIsplacement 
II(X. t) of the ~tring over the first half-cycle: 

x=O X = 0.2 x = 0.4 X = 0.6 x = 0.8 x= 

0.0 0 0.588 0.951 0.951 0.588 0 

0.2 0 0.476 0.769 0.769 0.476 0 
0.4 0 0.182 0.294 0.294 0.182 0 
0.6 0 -0.182 -0.294 -0.294 -0.182 0 
0.8 0 -0.476 -0.769 -0.769 -0.476 0 
1.0 0 -0.588 -0.951 -0.951 -0.588 0 
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The~e values are exact to 3D (3 decimals), the exact solution of the problem being (see Sec. 12.3) 

II(X, I) = sin TlX cos TIl. 

The reason for the exactness follows from d'Alemberfs solution (4), Sec. 12.4. (See Prob. -I, below.) • 

This is the end of Chap. 21 on numerics for ODEs and POEs, a rapidly developing field 

of basic applications and interesting research. in which large-scale and complicated 

practical problems can now be attacked and solved by the computer. 

, @ VIBRATING STRING 
Solve (I )-(4) by the present method with h = k = 0.2 for 
the given initial deflection fix) and initial velocity 0 on the 
given (-interval. 

1. f(x) = O.OlxO - x), 0 ~ ( ~ 2 

2. f(x) = x 2
( I - x). 0 ~ ( ~ I 

3. f(x) = x if 0 ~ x ~ 0.2. f(x) 

0.2 < x ~ I 
0.25(1 - x) if 

4. Show that from d' Alemberfs solution (13) in Sec. 11.4 
with c = I it follows that (6) in the present section 
gives the exact value 1I;,i+l = lI(ih, (j + l)ft). 

5. If the string governed by the wave equation (I) starts 
from its equilibrium position with initial velocity 
g(x) = sin 'In. what is its displacement at time ( = 0.4 
and x = 0.2. 0.4. 0.6. 0.8? (Use the present method 
with h = 0.2. k = 0.2. Use (8). Compare with the exact 
values obtained from (I2) in Sec. 12.4.) 

................. -.. .... " ... ....... _. __ .... ~ _ ......... __ a.-.-.-
1. Explain the Euler and Improved Euler methods in 

geometrical terms. 

2. What are the local and global orders of a method? Give 
examples. 

3. What do you know about error estimates? Why are they 
important? 

4. How did we obtain numeric mcthods by using the 
Taylor series'? 

5. In each Runge-Kutta step we computed auxiliary 
values. How many? Why? 

6. What are one-step and multistep methods? Give 
examples. 

7. What is the idea of a predictor--corrector method? 
Mention some of these methods. 

B- What is the idea of the Rungc-Kutta-Fehlberg method? 

9. How can Runge-Kutta be generalized to systems of 
ODEs? 

6. Compute approximate values in Prob. 5. using a finer 
grid (ft = 0.1. k = 0.1), and notice the increase in 
accuracy. 

7. Illustrate the starting procedure when both f and g 

are not identically zero. say, f(x) = I - cos 2'lTx, 
g(X) = x - ,\'2. Choose ft = k = 0.1 and do 2 time steps. 

8. Show that (I2) in Sec. 12.4 gives as another starting 
formula 

I I I Xi
+

k 

lin = ~ (Ui+l.O + lIi-1.0) + ? g(s) ds 
- - Xi- k 

(where one can evaluate the integral numerically if 
necessary). In what case is this identical with (8)? 

9. Compute u in Prob. 7 for r = 0.1 and x 0.1, 
0.2, .. " 0.9, using the formula in Prob. 8. and 
compare the values. 

10. Solve (I)-(3) (h = k = 0.2, 5 time steps) subject to 
f(x) = .\.2. g(x) = 2x. 11,.(0. t) = 2t. lIe I. t) = (l + 1)2. 

STIONS AND PROBLEMS 

10. What is automatic step size control? How is it done in 
practice? 

11. Why and how did we use finite differences in this 
chapter,? 

12. Make a list of types of PDEs. corresponding problems, 
and methods for their numeric solution. 

13. How did we approximate the Laplace equation? The 
Poisson equation? 

14. Will a difference equation give exact solutions of a PDE? 

15. How did we handle (a) irregularly shaped domains. 
(b) given normal derivatives at the boundary? 

16. Solve y' = 2x.\', yeO) = I, by the Euler method with 
ft = 0.1. 10 steps. Compute the en·or. 

17. Solve y' = 1 + y2. yCO) = O. by the improved Euler 
method with h = 0.1,5 steps. Compute the error. 

18. Solve y' = (x + y - 4)2, yeO) = 4. by RK with 
h = 0.2, 7 steps. 
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19. Solve Prob. 17 by RK with II = 0.1, 5 steps. Compute 
the error. Compare with Prob. 17. 

20. (Fair comparison) Solve y' = 2x- i Vy - In x + X-I, 

y(l) = 0 for I ~ x ~ 1.8 (a) by the Euler method with 
h = 0.1, (b) by the improved Euler method with 
h = 0.2. (c) by RK with h = 0.4. Verify that the exact 
solution is y = (In X)2 + In x. Compute and compare 
the errors. Why is the comparison fair? 

21. Compute eX for x = 0, 0.1, .... 1.0 by applying RK 
to y' = r. yeO) = I. h = 0.1. Show that the result is 
5D-exact. 

22. Solve y' = (x + y)2, yeO) = 0 by RK with h = 0.2. 
5 steps. 

23. Show thaI by applying the method in Sec. 21.2 to a 
polynomial of first degree we obtain the multistep 
predictor and corrector formulas 

)'~~+l = Yn + h (3fn - fn-I) 
2 

Yn.1 = )'n + 

where.f~ 11 = f(Xn+l~ Y:+1)' 
24. Apply the multistep method in Prob. 23 to the initial 

value problem y' = x + y. yeO) = 0, choosing h = 0.2 
and doing 5 steps. Compare with the exact values. 

25. Solve y' = (y - x - 1)2 + 2. y(O) = 1 for 0 ~ x ~ I 
by Adam~-Moulton with h = 0.1 <md starting values I. 
1.200334589. 1.402709878. 1.609336039. 

26. Solve y" + Y = O. y(O) = O. y' (0) = I by RKN with 
h = 0.2, 5 steps. Find the elTOr. 

27. Solve y~ = -4."1 + 3.\'2' y~ = 5)'1 - 6Y2' )'1(0) = 3. 
."2(0) = -5. by RK for systems. h = O.L 5 steps. 

28. Solve y~ = -5.\"1 + 3)'2')'~ = -3.\"1 - 5.\"2' .\"1(0) = 2. 
Y2(0) = 2 by RK for systems. h = 0.1. 5 steps. 

29. Find rough approximate values of the electrostatic 
potential at Pu. P12, P 13 in Fig. 470 that lie in a field 
between conducting plates (in Fig. 470 appearing as 
sides of a rectangle) kept at potentials 0 and I IO volts 
as shown. (Use the indicated grid.) 

u = 110 V YI 
4 ~_"""I "",1_. 

2 

u=o-

u=o 
Fig. 470. 

'P13 

Problem 29 

u=o 
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I~O-321 POTENTIAL 
Find the potential in Fig. 471, using the given grid and the 
boundary values: 

30. u = 70 on the upper and left sides, U = 0 on the lower 
and right sides 

31. u{PlO) = u(P30 ) = 960. u(P20) = -480, U = 0 
elsewhere on the boundary 

32. u(POl ) u(Poa ) u{p 41) = u(P 43) = 200, 
u(P lO ) = u(P30) 400, u(P20 ) = 1600, 
u(P02 ) = U(P42 ) U(PI4) = lI(P24 ) = 

U(P34 ) = 0 

Fig. 471. Problems 30-32 

33. Verify (13) in Sec. 21.4 for the sy~tem (12) and show 
that A in (\ 2) is nonsingular. 

34. Derive the difference approximation of the heat equation. 

35. Solve the heat equation (l). Sec. 21.6. for the initial 
condition J(x) = x if 0 ~ x ~ 0.2, J(x) = 0.25(1 - x) 

if 0.2 < x ~ I and boundary condition (3). Sec. 21.6. 
by the explicit method [formula (5) in Sec. 21.6] with 
h = 0.2 and k = 0.0 I so that you get values of the 
temperature at time t = 0.05 as the answer. 

36. A laterally insulated homogeneous bar with ends at 
x = 0 and x = I has irlitial temperature O. Its left end 
is kept at O. whereas the temperature at the right end 
varies sinusoidally according to 

u(t, I) = get) = sin ~1T1. 

Find the temperature u(x. t) in the bar [solution of (1) 
in Sec. 21.6] by the explicit method with h = 0.2 and 
r = 0.5 (one period, that is, 0 ~ t ~ 0.24). 

37. Find lI(X, 0.12) and lI(X, 0.24) in Prob. 36 if the left end 
of the bar is kept at -g(t) (instead of 0). all the other 
data being as before. 

38. Find out how the results of Prob. 36 can be used for 
obtaining the results in Prob. 37. Use the values 0.054, 
0.172, 0.325, 0.406 (r = 0.12, x = 0.2,0.4.0.6, 0.8) and 
-0.009, -0.086. -0.252. -0.353 (r = 0.24) from the 
answer to Prob. 36 to check your answer to Prob. 37. 

39. Solve lit = lIxx (0 ~ X ~ I. r ~ 0), 
lI(X. 0) = x 2( I - x), u(O. t) = lI( I, r) = 0 by 
Crank-Nicolson with h = 0.2. k = 0.04. 5 time steps. 

40. Find the solution of the vibrating string problem lit{ = lIxx• 

U(x. 0) = x(l - x), lit = 0, u(O, t) = lI( I. t) = 0 by the 
method in Sec. 21.7 with h = 0.1 and k = 0.1 for t = 0.3. 
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Numerics for ODEs and PDEs 

fn this chapter we discussed numerics for ODEs (Secs. 21.1-21.3) and PDEs 
(Secs. 21.4-21.7). Methods for initial value problems 

(I) v' = f(x, y), Y(Xo) = Yo 

involving a first-order ODE are obtained by truncating the Taylor series 

, /72 
/I 

y(x + 11) = y(x) + hr (x) + 2 y (x) + ... 

where, by (I), y' = f, y" = f' = aflilx + (ilflay»)"'. etc. Truncating after the term 
Izy', we get the Euler method, in which we compute step by step 

(2) J'n+ 1 = Yn + hf(x", Yn) (11 = 0, I, ... ). 

Taking one more term into account, we obtain the improved Euler method. Both 
methods show the basic idea but are too inaccurate in most cases. 

Truncating after the term in /74
, we get the important classical Runge-Kutta (RK) 

method of fourth order. The crucial idea in this method is the replacement of the 
cumbersome evaluation of derivatives by the evaluation of f(x. y) at suitable points 
(x, y); thus in each step we first compute four auxiliary quantities (Sec. 21.1) 

(3a) 

and then the new value 

(3b) 

kl = hf(xno Yn) 

k2 = hf(xn + 41z. )'n + 4k1 ) 

k3 = hf(xn + 4h. Yn + 4k2) 

Error and step size control are possible by step halving or by RKF 
(Runge-Kutta-Fehlberg). 

The methods in Sec. 21.1 are one-step methods since they get )"n+l from the 
result Yn of a single step. A multistep method (Sec. 21.2) uses the values of 
Ym Yn-l' ... of severa) steps for computing Yn+l. Integrating cubic interpolation 
polynomials gives the Adams-Bashforth predictor (Sec. 21.2) 

(4a) 
I 

= Yn + 24 h(55fn - 59fn-l + 37fn-2 - 9fn-3) 
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where h f(Xj, }J)' and an Adams-Moulton corrector (the actual new value) 

1 
(4b) Yn+I = Yn + 24 h(9f~+1 + 19fn - 5fn-I + fn-2)' 

where f~+1 = f(Xn+h ."~+I)· Here, to get started, .1'1, ."2' Y3 must be computed by 
the Runge-Kutta method or by some other accurate method. 

Section 19.3 concerned the extension of Euler and RK methods to systems 

y' = f(x, y), thus j = 1, ... , 111. 

This includes single mth order ODEs, which are reduced to systems. Second-order 
equations can also be solved by RKN (Runge-Kutta-Nystrom) methods. These are 
particularly advantageous for .v" = f(x • .1') with f not containing y'. 

Numeric methods for PDEs are obtained by replacing pattial derivatives by 
difference quotients. This leads to approximating difference equations, for the 
Laplace equation to 

(5) (Sec. 21.4) 

for the heat equation to 

1 I 
(6) k (Ui,j+I - Uij) = h2 (Ui+I,j - 2Uij + Ui-I,j) (Sec. 21.6) 

and for the wave equation to 

(7) (Sec. 21.7); 

here hand k are the mesh sizes of a grid in the x- and y-directions, respectively. 
where in (6) and (7) the variable .1' is time t. 

These PDEs are elliptic, parabolic, and h}perbolic, respectively. Con'esponding 
numeric methods differ. for the following reason. For elliptic PDEs we have 
boundary value problems, and we discussed for them the Gauss-Seidel method 
(also known as Liebmann's method) and the ADI method (Sees. 21.4, 21.5). For 
parabolic PDEs we are given one initial condition and boundary conditions, and we 
discussed an nplicit method and the Crank-Nicolson method (Sec. 21.6). For 
hyperbolic PDEs, the problems are similar but we are given a second initial condition 
(Sec. 21.7). 
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C HAP T E R 22 Unconstrained Optimization. Linear Programming 

C HAP T E R 23 Graphs. Combinatorial Optimization 

Ideas of optimization and application of graphs play an increasing role in engineering. 
computer science, systems theory. economics. and Olher areas. In the first chapter of this 
part we explain some basic concepts. methods. and results in unconstrained and constrained 
optimization. The second chapter is devoted to graphs and the corresponding so-called 
combinatorial optimization, a relatively new interesting area of ongoing applied and 
theoretical research. 
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CHAPTER 22 

Unconstrained Optimization. 
Linear Programming 

Optimization principles are of basic importance in modern engineering design and systems 
operation in various areas. The recent development has been influenced by computers 
capable of solving large-scale problems and by the creation of conesponding new 
optimization techniques. so that the entire field has become a large area of its own. 

In the present chapter we give an introduction to the more impOltant concepts, methods, 
and results on unconstrained optimization (the so-called gradient method) and constrained 
optimization (linear programming). 

Prerequisite: a modest working knowledge of linear systems of equations 
References and Answers to Problems: App. 1 Part F, App. 2. 

22.1 Basic Concepts. 

936 

Unconstrained Optimization 
In an optimization problem the objective is to opti11li~e (l11axil1li~e or 1I1ini111i~e) some 
function f. This function f is called the objective function. 

For example, an objective function f to be maximized may be the revenue in a production 
of TV sets, the yield per minute in a chemical process, the mileage per gallon of a certain 
type of car, the hourly number of customers served in a bank, the hardness of steel, or 
the tensile strength of a rope. 

Similarly, we may want to minimize f if f is the cost per unit of producing certain 
cameras, the operating cost of some power plant, the daily loss of heat in a heating system. 
the idling time of some lathe. or the time needed to produce a fender. 

In most optimization problems the objective function f depends on several variables 

These are called control variables because we can "control" them, that is. choose their values. 
For example, the yield of a chemical process may depend on pressure Xl and temperature 

x2 • The efficiency of a cel1ain air-conditioning system may depend on temperature XI' air 
pressure X2' moisture content X3, cross-sectional area of outlet X4. and so on. 

Optimization theory develops methods for optimal choices of XI • ••• , x'" which 
maximize (or minimize) (he objective function f, that is, methods for finding optimal 
values of Xl •••• , Xn . 
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In many problems the choice of values of Xl, ... , Xn is not entirely free but is subject 
to some constraints, that is. additional restrictions arising from the nature of the problem 
and the variables. 

For example, if Xl is production cost, then Xl ~ 0, and there are many other variables 
(time. weight, distance traveled by a salesman, etc.) that can take nonnegative values only. 
Constraints can also have the form of equations (instead of inequalities). 

We first consider unconstrained optimization in the case of a function I(x}> ... , X,J. 
We also wlite x = (Xl, ... , xn) and I<x), for convenience. 

By definition, I has a minimum at a point x = Xo in a region R (where I is defined) 
if 

I(x) ~ I(Xo) 

for all x in R. Similarly, I has a maximum at Xo in R if 

for all x in R. Minima and maxima together are called extrema. 
Furthermore, I is said to have a local minimum at Xo if 

for all x in a neighborhood of Xo, say, for all x satisfying 

where Xo = (Xl, ... , Xn) and r > 0 is sufficiently small. 
Similarly, I has a local maximum at Xo if I(x) ~ I(Xo) for all x satisfying 

Ix - xol < r. 
If I is differentiable and has an extremum at a point Xo in the interior of a region R 

(that is, not on the boundary), then the partial derivatives ai/axI' ... , aflax., must be 
zero at Xo. These are the components of a vector that is called the gradient of I and 
denoted by grad lor VI. (For 11 = 3 this agrees with Sec. 9.7.) Thus 

(1) 

A point Xo at which (1) holds is called a stationary point of I. 
Condition (1) is necessary for an extremum of I at Xo in the interior of R, but is not 

sufficient. Indeed, if 11 = 1. then for -" = Ilx), condition ll) is y' = !' (Xo) = 0; and, for 
instance, )' = x3 satisfies y' = 3x2 = 0 at X = Xo = 0 where I has no extremum but a 
point of inflection. Similarly, for I(x) = XIX2 we have VI(O) = 0, and I does not have 
an extremum but has a saddle point at O. Hence after solving (I), one must still find out 
whether one has obtained an extremum. In the case 11 = I the conditions y' (Xo) = 0, 
-,,"(Xo) > 0 guarantee a local minimum at Xo and the conditions y' (xo) = 0, -,,"(Xo) < 0 
a local maximum, as is known from calculus. For 11 > 1 there exist similar criteria. 
However. in practice even solving (1) will often be difficult. For this reason, one generally 
prefers solution by iteration, that is, by a search process that starts at some point and 
moves stepwise to points at which I is smaller (if a minimum of I is wanted) or larger 
(in the case of a maximum). 
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The method of steepest descent or gradient method is of this type. We present it here 
in its standard form. (For refinements see Ref. [E25] listed in App. 1.) 

The idea of this method is to find a minimum of f(x) by repeatedly computing minima 
of a function get) of a single vruiable t, as follows. Suppose that .f has a minimum at Xo 
and we strut at a point x. Then we look for a minimum of f closest to x along the straight 
line in the direction of - v f(x). which is the direction of steepest descent (= direction of 
maximum decrease) of fat x. That is, we determine the value of t and the corresponding 
point 

(2) z(t) = x - tV f(x) 

at which the function 

(3) g(t) = f(z(t» 

has a minimum. We take this z(t) as our next approximation to Xo' 

E X AMP L E 1 Method of Steepest Descent 

Determinc a minimum of 

(4) 

starting ti'01TI Xo = (6. 3) = 6i + 3j and applying the method of steepest descent. 

Solutioll. Clearly. inspection shows that j(x) has a minimum at tI. Knowing the solution gives u~ a better 
feel of how the method worh. We obtain, fIx) = 2Xl i + 6x2j and from this 

z(t) = x - t'f(x) = (\ - 2tlx1i + (I - 6rlx2 j 

g(t) = f(zv» = (1 - 2t)2x]2 + 3(1 - 6t)2X22. 

We now calculate the derivative 

set g' (t) = O. and solve for t. finding 

Starting from Xo = 6i + 3j, we compute the value~ in Table 22.1. which are shown in Fig. 472. 
Figure 472 suggests that in the case of slimmer ellipses C'a long narrow valley"). convergence would be poor. 

You may confirm this by replacing the coefficient 3 in (4) with a large coefficieIlt. For more sophisticated 
descent and other methods. some of them also applicable to vector functions of vector variables. we refer to the 
references lIsted in Part F of App. 1: see also [E25j. • 

x 
2 

Fig. 472. Method of steepest descent in Example 1 
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Table 22.1 Method of Steepest Descent, Computations in Example 1 

II X 

0 6.000 3.000 
I 3.484 -0.774 

2 1.327 0.664 

3 0.771 -0.171 

4 0.294 0.147 

5 0.170 -0.038 

6 0.065 0.032 

1. What happens if you apply the method of steepesl 
descent to fIx) = X1

2 + X22? 

2. Verify that in Example I. successive gradients are 
orthogonal. What is the reason? 

,3-111 STEEPEST DESCENT 

Do 3 steepest descent steps when: 

3. f(x) = 3XI
2 + 2X22 - 12xl + 16x2, Xo = [I l]T 

4. f(x) = X1
2 + 2x/ - Xl - 6x2 , Xo = [0 OJT 

S. f(X) = 0.5X12 + 0.7X22 - Xl + 4.2x2 + I, 
Xo = [-I I]T 

6. f(x) = x/ + 0.lx22 + 8Xl + X2 + 22.5. 
.\"0 = [2 -I]T 

7. f(x) = 0.2x/ + x/ - 0.08Xl' Xo = [4 4]T 

8. fIx) = X1 2 
- X22. Xo = [2 I ]T. 5 steps. First guess. 

Then compute. Sketch your path. 

I - 2t I - 6t 

0.210 0.581 -0.258 

0.310 0.381 -0.S57 

0.210 0.581 -0.258 

0.310 0.38] -0.857 
0.210 0.581 -0.258 

0.310 0.381 -0.857 

9. f(x) = X1
2 + cx/. Xo = [c I ]T. Show that 2 steps 

give [c llT times a factor. -4c2/(c2 
- 1)2. What 

can you conclude from this about the speed of 
convergence? 

10. fIx) = Xl
2 

- X2' Xo = [I l]T. Sketch your path. 
Predict the outcome of further steps. 

11 . .f(x) = aXI + bX2' any "0. First guess. then compute. 

12. CAS EXPERIMENT. Steepest Descent. (a) Write a 
program for the method. 

(b) Apply your program to f(x) = X1
2 + 4.\"22. 

experimenting with respect to speed of convergence 
depending on the choice of Xo . 

(c) Apply your program to fIx) = .\"12 + X2
4 and to 

fIx) = X1
4 + X24, Xo = [2 I]T. Graph level curves 

and your path of descent. <Try to include graphing 
directly in your program.) 

22.2 Linear Programming 
Linear programming or linear optimization consists of methods for solving optimization 
problems with constrai1Zts, that is, methods for finding a maximum (or a minimum) 
x = [Xl' ••• , xnl of a li1Zear objective function 

satisfying the constraints. The latter are linear inequalities, such as 3x1 + 4X2 :;; 36, or 
Xl ~ 0, etc. (examples below). Problems of this kind arise frequently, almost daily, for 
instance, in production, inventory management, bond trading, operation of power plants. 
routing delivery vehicles, airplane scheduling, and so on. Progress in computer technology 
has made it possible to solve programming problems involving hundreds or thousands or 
more variables. Let us explain the setting of a linear programming problem and the idea 
of a "geometric" solution, so that we shall see what is going on. 
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EXAMPLE 1 

CHAP. 22 Unconstrained Optimization. Linear Programming 

Production Plan 

Energy Savers. Inc .. produces heaters of types Sand L. The wholesale price is $40 per heater for Sand $88 for 

L. Two time constraints result from the use of two machines M1 and M2. On M1 one needs 2 min for an S heater 
and g min for an L heater. On M2 one needs S min for an S heater and 2 min for an L heater. Determine 

production figures Xl and X2 for Sand L. respectively (number of heaters produced per hour) so that the hourly 

revenue 

~ = fer) = 40X1 + 88x2 

is maximum. 

Solution. Production figures Xl and X2 must be nonnegative. Hence the objective function (to be maximized) 
and the four constraints are 

(0) 

(1) 

(2) 

(3) 

(4) 

2\~1 + 8x2 ~ 60 min time on machine Ml 

SX1 + 2x2 ~ 60 min time on machine M2 

~ 0 

Figure 473 shows (0)--(4) as follows. Con~tancy lines 

Z = COllst 

are marked (0). These are lines of constant reHnue. Their slope is -40/88 = - SIll. To increase ~ we must 
move the line upward (parallel to itself), as the arrow shows. Equation (I) with the equality sign is marked 

(1) It intersects the coordinate axes at Xl = 6012 = 30 (set x2 = 0) and x2 = 60/8 = 7.S (set Xl = 0). The 
arrow marks the side on which the points (Xl. x2) lie that satisfy the inequality in (I). Similarly for Eqs. 
(2)-(4). The blue quadrangle thus obtained is called the feasibilit) region. It is the set of all feasible 

solutions. meaning solutions that satisfy all four constraints. The figure also lists the revenue at O. A. B. C. 
The optimal solution is obtained by moving the line of constant revenue up as much as possible without 
leaving the feasibility region completely. Obviously. this optimum is reached when that line pas~es through 
B. the intersection (10. S) of (I) and (2). We see that the optimal revenue 

';:max = 40· 10 + 88· S = $840 

is obtained by producing twice as many S heater~ as L heaters. 

(3) 

x 2 

20 

" 
o " 10 A 20 

""""(0) 

~""O 

0: z=O 
A: z = 40·12 = 480 
B: z = 40 . 10 + 88 . 5 = 840 
C: z=88·7.5=660 

(4) 

"",~O ~ 

""'(O)~ 
"'"" ""8</0 

Fig. 473. Linear programming in Example 1 

• 
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Note well that the problem in Example I or similar optimization problems call1lot be 
solved by setting certain partial derivatives equal to zero. because crucial to such problems 
is the region in which the control variables are allowed to vary. 

Furthermore, our "geometric" or graphic method illustrated in Example I is confined 
to two variables Xl, x2' However, most practical problems involve much more than two 
variables, so that we need other methods of solution. 

Normal Form of a Linear Programming Problem 
To prepare for general solution methods. we show that constraints can be written more 
uniformly. Let us explain the idea in terms of (1), 

This inequality implies 60 - 2XI - 8x2 ;;:; 0 (and conversely), that is, the quantity 

is nonnegative. Hence, our original inequality can now be written as an equation 

where 

X3 is a nonnegative auxiliary variable introduced for converting inequalities to equations. 
Such a variable is called a slack variable, because it "takes up the slack" or difference 
between the two sides of the inequality. 

E X AMP L E 2 Conversion of Inequalities by the Use of Slack Variables 

With the help of two slack variables \-3' .\"4 we can write the linear programming problem in Example I in the 
following form. Maximize 

subject to the constraints 

(i = 1, ... , 4). 

We now have /I = 4 variables and III = 2 (linearly independent) equations. so that two of the four variables. 
for example. Xl' x2. determine the others. Also note that each of the four sides of the quadrangle in Fig. 473 
now has an equation of the form Xi = 0: 

OA: x2 = O. 

AB: x4 = 0, 

BC: X3 = 0, 

CO: Xl = O. 

A vertex of the quadrangle is the intersection of two sides. Hence at a vertex. n - 1/1 = 4 - 2 = 2 of the 
variables are /ero and the others are nonnegallve. Thus at A we have x2 = 0, \"4 = 0, and so on. • 
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THEOREM 1 

CHAP. 22 Unconstrained Optimization. Linear Programming 

Our example suggests that a general linear optimization problem can be brought to the 
following normal form. Maxill1i~e 

(5) 

subject to tlte cOllStrail1ts 

(6) 

Xi ~ 0 (i = I, ... , 11) 

with all bj nonnegative. (If a bj < O. multiply the equation by -1.) Here Xl' .... Xn 

include the slack variables (for which the c/s in f are zero). We assume that the equations 
in (6) are linearly independent. Then, if we choose values for 11 - m of the variables. the 
system uniquely detelmines the others. Of course. since we must have 

Xl ~ 0, ... , Xu :;; 0, 

this choice is not entirely free. 
Our problem also includes the minimization of an objective function f since this 

corresponds to maximizing - f and thus needs no separate consideration. 
An n-tuple (Xl' ••• ,xn ) that satisfies all the constraints in (6) is called afeasible poillt 

or feasible solution. A feasible solution is called an optimal solution iffor it the objective 
function .f becomes maximum. compared with the values of f at all feasible solutions. 

Finally, by a basic feasible solution we mean a feasible solution for which at least 
11 - III of the variables Xl' ••• , X" are zero. For instance, in Example 2 we have 11 = 4, 
III = 2. and the basic feasible solutions are the four vertices 0, A. B. C in Fig. 473. Here 
B is an optimal solution (the only one in this example). 

The following theorem is fundamental. 

,---------------------------------------

Optimal Solution 

Some optimal solutioll of a lil1ear progra/1lmil1g problem (5). (6) is also a basic J 
feasible .I'nlutimz of (5), (6). 

For a proof, see Ref. [F5], Chap. 3 (listed in App. I). A problem can have many optimal 
solutions and not all of them may be basic feasible solutions: but the theorem guarantees 
that we can find an optimal solution by searching through the basic feasible solutions 

only. This is a great simplification; but since there are ( Il) (Il) different ways 
1/ -Ill III 

of equating 11 - III of the 11 variables to zero, considering all these possibilities. dropping 
those which are not feasible and then searching through the rest would still involve very 
much work. even when 11 and /1l are relatively small. Hence a systematic search is needed. 
We shall explain an important method of this type in the next section. 
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1. What is the meaning of the slack variables X3' X4 in 
Example 2 in terms of the problem in Example I? 

2. Can we always expect a unique solution (as is the case 
in Example L)? 

3. Could we find a profit f(XI' X2) = QIXI + Q2X2 whose 
maximum is at an interior point of the quadrangle in 
Fig. 473? (Give a reason for your answer.) 

4. Why are slack variables always nonnegative? How 
many of them do we need? 

15-101 REGIONS AND CONSTRAINTS 

Describe and graph the region in the first quadrant of the 
xlx2-plane determined by the inequalities: 

5. Xl + 2X2 ~ IO 

Xl - X2 ~ 0 

X2 ::;; 2 

7. 2.0XI + 6.0X2 ~ 18.0 

5.0XI + 2.5x2 ~ 20.0 

8. 2XI - X2 ::;; 6 

4XI + 5X2 ~ 40 

Xl - 2X2 ::;; -3 

9. Xl + X2 ::;; 3 

Xl + X2 ~ 9 

-Xl +'\2 ::;; -3 

-Xl + X2 ~ 3 

10. Xl + X2 ::;; 2 

3xI + 5X2 ::;; 15 

2x) - X2 ::;; -2 

-Xl + 2X2 ~ LO 

111-151 MAXIMIZATION AND MINIMIZATION 

Maximize the given objective function f subject to the 
given constraints. 

11. f = -lOx) + 2X2, Xl::;; 0, X2::;; 0, 

943 

14. Minimize fin Prob. 13. 

15. Minimize f in Prob. 11. 

16. (Maximum output) Giant Ladders, Inc., wants to 
maximize its daily total output of large step ladders by 
producing Xl of them by a process PI and X2 by a 
process P 2, where PI requires 2 hours of labor and 4 
machine hours per ladder, and P2 requires 3 hours of 
labor and 2 machine hours. For this kind of work, 1200 
hours of labor and 1600 hours on the machines are at 
most available per day. Find the optimal Xl and X2' 

17. (Maximum profit) Universal Electric, Inc .. 
manufactures and sells two models of lamps, LI and 
L 2 , the profit being $150 and $100, respectively. The 
process involves two workers WI and W2 who are 
available for this kind of work 100 and 80 hours per 
month, respectiveLy. WI assembles LI in 20 min and 
L2 in 30 min. W2 paints LI in 20 min and L2 in 10 min. 
Assuming that all lamps made can be sold without 
difficulty. determine production figures that maximize 
the profit. 

18. (Minimum cost) Hardbrick, Inc., has two kilns. Kiln 
I can produce 3000 grey bricks, 2000 red bricks, and 
300 glazed bricks daily. For Kiln II the corresponding 
figures are 2000, 5000, and 1500. Daily operating costs 
of Kilns I and II are $400 and $600. respectively. Find 
the number of days of operation of each kiln so that 
the operation cost in filling an order of 18000 grey, 
34000 red, and 9000 glazed blicks is minimized. 

19. (Maximum profit) United MetaL Inc .. produces alloys 
B) (special brass) and B2 (yellow tombac). BI contains 
50% copper and 50% zinc. (Ordinary brass contains 
about 65% copper and 35% zinc.) B2 contains 75% 
copper and 25% zinc. Net profits are $120 per ton of 
Bl and $100 per ton of B2 . The daily copper supply is 
45 tons. The daily zinc supply is 30 tons. Maximize 
the net profit of the daily production. 

20. (Nutrition) Foods A and B have 600 and 500 calories, 
contain L5 g and 30 g of protein, and cost $1.80 and 
$2.10 per unit, respectively. Find the minimum cost 
diet of at least 3900 calories containing at least 150 g 
of protein. 
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22.3 Simplex Method 
From the last section we recall the following. A linear optimization problem (linear 
proglamming problem) can be written in normal form; that is: 

Maximize 

(1) 

subject to the cOllstraillts 

(2) 

Xi ~ 0 (i = I. .... 11). 

For finding an optimal solution of this problem. we need to consider only the basic feasible 
solutions (defined in Sec. 22.2), but there are still so many that we have to follow a 
systematic search procedure. In 1948 G. B. Dantzig published an iterative method, called 
the simplex method, for that purpose. In this method, one proceeds stepwise from one 
basic feasible solution to another in such a way that the objective function f always 
increases its value. Let us explain this method in terms of the example in the last section. 

In its original form the problem concerned the maximization of the objective function 

z = 40x1 + 88x2 

subject to 2'\'1 + &-2 ~ 60 

X2 ~ O. 

Converting the first two inequalities to equations by introducing two slack variables X3, 

X4' we obtained the normal form ofthe problem in Example 2. Together with the objective 
function (written as an equation;:: - 40X1 - 8!h2 = 0) this normal fonn is 

= 0 

(3) = 60 

where Xl ~ 0, ... , .1.'4 ~ O. This is a linear system of equations. To find an optimal 
solution of it, we may consider its augmented matrix (see Sec. 7.3) 

b 

(4) 



SEC. 22.3 Simplex Method 945 

This matrix is called a simplex tableau or simplex table (the illitial simplex table). These 
are standard names. The dashed lines and the letters 

-
~, b 

are for ease in further manipulation. 
Every simplex table contains two kinds of variables .r} By basic variables we mean 

those whose columns have only one nonzero entry. Thus X3' X4 in (4) are basic variables 
and Xl' -'"2 are nonbasic variables. 

Every simplex table gives a basic feasible solution. It is obtained by setting the nonbasic 
variables to zero. Thus (4) gives the basic feasible solution 

.\"3 = 60/1 = 60, X4 = 60/1 = 60, z=o 

with .\"3 obtained from the second row and .\"4 from the third. 
The optimal solution (its location and value) is now obtained stepwise by pivoting, 

designed to take us to basic feasible solutions with higher and higher values of::: until the 
maximulll of z is reached. Here, the choice of the pivot equation and pivot are quite 
different from that in the Gauss elimination. The reason is that Xl> X2, .\"3, X4 are restricted 
to nonnegative values. 

Step 1. Operatioll 0 1 : Selection of the Column of the Pivot 
Select as the colunrn of the pivot the first column with a negative entry in Row 1. In (4) 
this is Column 2 (because of the -40). 

Operatioll O2 : Selection of the Row of the Pivot. Divide the right sides [60 and 60 in 
(4)] by the corresponding entries of the column just selected (6012 = 30. 60/5 = 12). 
Take as the pivot equation the equation that gives the smallest quotient. Thus the pivot 
is 5 because 60/5 is smallest. 

Operatioll 0 3 : Elimination by Row Operations. This gives zeros above and below the 
pivot (as in Gauss-Jordan, Sec. 7.8). 

With the notation for row operations as introduced in Sec. 7.3, the calculations in Step 
give from the simplex table To in (4) the following simplex table (augmented matrix). 

with the blue letters referring to the previous table. 

z b 

(5) [-~--t--~--~z~.;-t-~---~~:-t-j!~-l I I I 

o : 5 2: 0 : 60 

Row I + 8 Row 3 

Row 2 - 0.4 Row 3 

We ,ee that basic variables are now Xh X3 and nonbasic variables are -1."2, .\"4. Setting the 
latter to zero, we obtain the basic feasible solution given by T 1, 

Xl = 60/5 = 12, X3 = 36/1 = 36, ::: = 480. 

This is A in Fig. 473 (Sec. 22.2). We thus have moved from 0: (0, 0) wIth::: = 0 to A: 
(12, 0) with the greater::: = 480. The reason for this increase is our elimination of a term 
(-40.1."1) with a negative coefficient. Hence elimillation is applied only to Ilegative e1ltries 
in Row I but to no others. This motivates the selection of the COIUIIlIl of the pivot 
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We now motivate the selection of the row of the pivot. Had we taken the second row 
of To instead (thus 2 as the pivot), we would have obtained z = 1200 (verify!), but this 
line of constant revenue ~ = 1200 lies entirely outside the feasibility region in Fig. 473. 
This motivates our cautious choice of the entry 5 as our pivot because it gave the smallest 
quotient (60/5 = 12). 

Step 2. The basic feasible solution given by (5) is not yet optimal because of the negative 
entry -72 in Row 1. Accordingly, we perform the operations 0 1 to 0 3 again, choosing 
a pivot in the column of -72. 

Operatioll 0 1, Select Column 3 of T 1 in (5) as the column of the pivot (because -72 < 0). 

Operation 02' We have 3617.2 = 5 and 60/2 = 30. Select 7.2 as the pivot (because 5 < 30). 

Operation 0 3 , Elimination by row operations gives 

z b 

T2 = ~-~-i--~--~~-f--J~----~~.~-i-~:~-] 
: : 1: o I 5 0 I I 50 
I I 3.6 0.9 I 

(6) 

Row I + 10 Row 2 

Row 3 
1 

""'::"-Row 2 
7.'2 

We see that now Xl' X2 are basic and x3 , X4 nonbasic. Setting the latter to zero, we obtain 
from T 2 the basic feasible solution 

Xl = 50/5 = 10, X2 = 36/7.2 = 5, .: = 840. 

This is B in Fig. 473 (Sec. 22.2). In this step . .: has increased from 480 to 840. due to the 
elimination of -72 in T l . Since T2 contains no more negative entries in Row I, we 
conclude that z = f(10, 5) = 40 . 10 + 88 . 5 = 840 is the maximum po:"sible revenue. 
It is obtained if we produce twice as many S heaters as L heaters. This is the solution of 
our problem by the simplex method of linear programming. • 

Minimization. If we want to millimize <: = f(x) (instead of maximize), we take as the 
columns of the pivots those whose entry in Row I is positive (instead of negative). In 
such a Column k we consider only positive entries Tjk and take as pivot a ~ik for which 
b/tjk is smallest (as before). For examples, see the problem set . 

•... _-_ .. _ ....... _....... .. - ......... _ .... ~ --. ----- .... ..... 
-=9l SIMPLEX METHOD 
L _ 

Write in nonnal form and solve by the simplex method, 
assuming all xJ to be nonnegative. 

1. Maximize.f = 3Xl + 2X2 subject to 3x1 + 4.l2 ~ 60. 
4Xl + 3X2 ~ 60. IOxl + 2X2 ~ 120. 

2. Prob. 16 in Problem Set 22.2. 

3. Maximize the profit in the daily production of XI metal 
frames Fl ($90 profit/frame) and X2 frames F2 ($50 
profit/frame) under the restrictions XI + 3X2 ;§; 1800 
(material). Xl + .\"2 ;§; 1000 (machine hours), 
3Xl + X2 ;§; 2400 (labor). 

4. Maximize f = 2Xl + 3X2 + \"3 subject to 
X\ + X2 + X3 ;§; 4.8, lOxI + X3 ~ 9.9, -"2 - X3 ;§; 0.2. 

5. The problem in the text with the order of the constmims 
interchanged. 

6. Minimize f = 4Xl - IOx2 - 20.\"3 subject to 
3.\"1 + 4X2 + 5.\"3 ~ 60, 2.\"1 + .\"2 ~ 20, 
2Xl + 3X3 ~ 30. 

7. MinimiLe f = 5Xl - 20X2 subject to - 2Xl + 1Ox2 ;§; 5, 
2Xl + 5x2 ~ 10. 

8. Prob. 20 in Problem Set 22.2. 
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9. Maximize f = 34xI + 29x2 + 32x3 subject to 
8Xl + 2X2 + X3 ~ 54. 3xI + 8X2 + 2X3 ~ 59. 
Xl + X2 + 5X3 ~ 39. 

10. CAS PROJECT. Simplex Method. (a) Write a 
program for graphing a region R in the first quadrant 
of the xlx2-plane determined by linear constraints. 

22.4 Simplex Method: 

947 

(b) Write a program for maximizing::: = {{IXI + 1I2X2 

in R. 

(el Write a program for maximi7ing 
::: = {{lXI + ... + lInX" subject to linear constraints. 

(d) Apply your programs to problems in this problem 
set and the previous one. 

Difficulties 
We recall from the last section that in the simplex method we proceed stepwise from one 
basic feasible solution to another, thereby increasing the value of the objective function 
f until we reach an optimal solution. Occasionally (but rather infi'equently in practice). 
two kinds of difficulties may occur. 

The first of these is degeneracy. A degenerate feasible solution is a feasible solution 
at which more than the usual number 11 - 111 of variables are zero. Here 11 is the number 
of variables (slack and others) and 111 the number of constraints (not counting the '~i ~ 0 
conditions). Tn the last section, 11 = 4 and 111 = 2, and the occurring basic feasible solutions 
were nondegenerate; n - 111 = 2 variables were zero in each such solution. 

In the case of a degenerate feasible solution we do an extra elimination step in which 
a basic variable that is zero for that solution becomes nonbasic (and a nonbasic variable 
becomes basic instead). We explain this in a typical case. For more complicated cases 
and techniques (rarely needed in practice) see Ref. [F5J in App. I. 

E X AMP L E 1 Simplex Method, Degenerate Feasible Solution 

AB Steel. Inc .. produces two kinds of iron 11' '2 by using three kinds ot raw matenal RI . R2• R3 (scrap iron and 
two kind, of ore) as shown. Maximi7e the daily profit. 

Raw Material Needed 
Raw per Ton Raw Material Available 

Material per Day (tons) 
[ron 11 iron 12 

Rl 2 I 16 

R2 I 8 

R3 0 3.5 

Net profit 
$150 $300 per ton 

SoIZlti01l. Let Xl and X2 denote the amount (in tons) of iron '} and 12, respectively. produced per day. Then 
our problem is as follows. Maximize 

;: = I(x) = 150Xl + 300X2 

subject to the constraints Xl ~ O. -'"2 ~ 0 and 

(raw material RI ) 

(raw material R2 ) 

(raw material R3 ). 
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By introducing slack variable~ X3' X4. X5 we obtain the normal form of the con~tr.lints 

16 

(1) 8 

Xi;;;; 0 (i = I. .... 5). 

As in the last section we obtain from (\ ) and (2) the initial simplex tahle 

b 

(3) To = [-~l-~~Q-~J~O-l-~---~---~-r~~-l I I I. 

o : : 0 0 : H 
I I I o I 0 I 0 0 I 3.5 

We see that xl. x2 are nonbasic variables and x3' x4' x!) are basic. With Xl = x2 = 0 we have frolll (3) the basic 
feasible solution 

X3 = 1611 = 16. X5 = 3.511 = 3.5. ;: = O. 

Thi~ is 0: (0.0) in Fig. 474. We have 11 = 5 variables Xj' m = 3 constraints, and 11 - 111 = 2 variables equal 
to zero in our ",Iution. which thus is nondegenerate. 

Step 1 of Pivoting 

Operatioll 0 1 : Column Selection of Pivot. Column 2 hince -150 < 0). 

Operatioll O2: Row Selection of Pivot. 1612 = H, 811 = 8; 3.510 is not possible. Hence we could choose 
Row 2 or Row 3. We choose Row 2. The pivot is L 

Operation 0 3: Elimination by Row Operations. This gives the simplex table 

Xl -"2 X3 X4 X5 b 

-------------------------------

[ ~ 
0 -225 75 0 0 I 

I~ 1 
Rm, I '5 Rm\ 

I 

2 0 0 
I 

16 I 
(4) Tl = I 

0 1 1 0 I 0 Rm 4 Ro' 2 -2 
I 

0 0 0 
I 
I 3.5 Row 4 

We see that the basic variables are X], X4.'\5 and the nonbasic are x2' t3' Setting the nonoosic variables to rero, 
we obtain from T] the basic feasible solution 
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Xl = 1611 = 8. X4 = 0/1 = O. X5 = 3.5/1 = 3.5. ~ = 1200 

This is A: (8. 0) in Fig. 474. This solution in degenerate because X4 = 0 (in addition to X2 = O. x3 = 0): 
geometrically: the straight line x4 = 0 also pa"es through A. This requires the next step. in which x4 will become 
nonbasic. 

Step 2 of Pivoti1lg 

(5) 

Operatioll 0 1 : Column Selection of Pivot. Column 3 (since -225 < 0). 

Operatioll O2: Row Selection of Pivot. 16/1 = 16.0/! = O. Hence! must serve as the piVOL 

Operatioll 0 3 : Elimination by Row Operations. This gives the following simplex table. 

h 

[ 

~ _:_ Q - - - .9_:_ -::1JQ. - - ~-?.O - - - - Q. _~! ~Q_] 
o : 2 0 : 2 -2 0: I() 

I I I 

0: 0 !: -! I 0: 0 

o : 0 0 : - 2 : 3.5 

Ro", I 

Row .! Rm . 

Row -I- - 2 Row .• 

We see that the basic variables are Xl. x2. x5 and the nonbasic are x3' x4' Hence x4 has become nonbasic. as 
intended. By equating the nonbasic variables to /ero we obtain from T 2 the basic feasible solution 

Xl = 16/2 = 8. -'2 = O/! = o. -'5 = 3.511 = 3.5. ;: = 1200. 

This is still A: (8. 0) in Fig. 474 and;: has not increa,ed. But this opens the way to the maximum. which we 
reach in the next step. 

Step J of Pivoting 

Operatioll 0 1 : Column Selection of Pivot. Column 4 (since -150 < 0). 

Operatioll O2: Row Selection of Pivot. 16/2 = 8. O/(-!) = O. 3.511 = 3.5. We crultakc I as the pivot. (With 
-! as the pivot we would nm leave A. Try iL) 

Operatioll 0 3 : Elimination by Row Operations. This gives the simplex table 

b 

(6) 

[

_1_ ~_ Q - - - Q - ~ _0 __ J~O ___ !?Q - ~ J 2?J __ ] 
o : 2 0: 0 2 -2: 9 

I I I 
o I 0 ! I 0 0 -21 I 1.75 

I 2 I I 

o : 0 0: -2 : 3.5 

Row 150 Row-l-

Row 2 Row-l-

We see that basic variables are Xl' X2' X3 and non basic X4' X5' Equating the latter to zero we obtain from T3 the 
basic feasible solution 

Xl = 912 = 4.5. X3 = 3.5/1 = 3.5. ;: = 1725. 

This is B: (-1-.5.3.5) in Fig. 474. Since Row of T3 has no negative entries. we have reached the maximum 
daily profit ::max = f(4.5. 3.5) = 150' 4.5 + 300' 3.5 = SI725. This is obtained by u~ing 4.5 tons of iron h 
~U~cl~~ • 

Difficulties in Starting 
As a second kind of difficulty, it may sometimes be hard to find a basic feasible solution 
to start from. In such a case the idea of an artificial variable (or several such variables) 
is helpful. We explain this method in terms of a typical example. 
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E X AMP L E 2 Simplex Method: Difficult Start, Artificial Variable 

Maximize 

(7) 

subject to the constraints Xl ~ O. X2 ~ 0 and (Fig. 475) 

Solutioll. By means of ~Iack variables we achieve the normal foml of the constrrnnts 

(8) 

Xi ~ 0 (i = I, .... 51. 

=0 

= 1 

=2 

Note that the first slack variable is negative (OT zero). which makes \3 nonnegative within the fea~ibilit) region 
(and negative outside). From (7) and (8) we obtain the simplex table 

b 

r

-!- r--L- -~:-l- _Q ___ <L __ ~_ T-~-1 
o I I -2 I -1 0 0 I 1 

I I I. 
o I I -I I 0 I 0 I :2 

I I I 

o : : 0 0 : 4 

Xl. X2 are nonbasic. and we would like to take x3. '\4. X5 as basic variables. By our usual process of equating 
the nonbasic variables to zero we obtain from this table 

Xl = O. .1."3 = 1I(-l) = -1, X4 = 211 = 2. "5 = 4/1 = 4 . ~ = O. 

"3 < 0 indicates that (0, 0) lies outside the feasibility region. Since X3 < O. we cannot proceed immediately. 
Now. instead of searching for other basic variables. we use the following idea. Solving the second equation in 
(8) for .1."3. we have 

To this we now add a variable X6 on the right. 

2 
B f=7 

\ 
\ 

\ 
\ 

\ 

~ C 

o ,------A, ~ 
o 1 2 3 Xl 

Fig. 475. Feasibility region in Example 2 
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(9) 

X6 is called an artificial variable and is subject to the constraint X6 ~ O. 
We must take care that x6 (which is not part of the given problem!) will disappear eventually. We shall see 

that we can accomplish this by adding a term -MX6 with very large M to the objective function. Because of 
(7) and (9) (solved for x6) this gives the modified objective function for this "extended problem" 

(10) 

We see that the simplex table corresponding to (10) and (8) is 

\"1 b 

I I -2 - M -I +!M I MOO 0 I -M __ L ______________ ~ _________________ ~ ___ _ 

o : -! : -I 0 0 0: 
I I I 

To = o I -I I 0 0 0 I 2 
I I I 

0: : 0 0 0: 4 
I I I 

o I -! I - I 0 0 I 

The last row of this table results from (9) written as Xl - !X2 - x3 + x6 = 1. We see that we can now start. 
taking x4. x5. X6 as the basic variables and Xl' X2. X3 a, the nonbasic variables. Column 2 has a negative first 
entry. We can take the second entry (1 in Row 2) as the pivot. This gives 

b 

I I 0 -2 I -2 0 0 0 I 2 
---,-------,------------------T---

o : I -!: -I 0 0 0: I 
I I I 

T 1 = 0: 0 -!: 0 0: 

O:O~: 0 0:3 
I I I 

01001000 10 

This corresponds to Xl = 1,.1"2 = 0 (point A in Fig. 475). x3 = 0, -"4 = I, X5 = 3. X6 = O. We can now drop 
Row 5 and Column 7. In this way we get rid of \"6' as wanted. and obtain 

b 

r

-~ -t -~- -~! -t- ~~ ---~ ---~-l- ~-j 
I I I 

o I 0 _1 I 1 I 0 I I 
I 2 I I 
I 3 I I 

01021 0 13 

In Column 3 we choose 312 as the next pivot. We obtain 

b 

This corresponds to Xl = 2. -'"2 = 2 (this is B in Fig. 475). X3 = O. X4 = 2, X5 = O. In Column 4 we choose 4/3 
as the pivot, by the usual principle. This gives 
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b 

[-~-1-~----~-t-~---!---!-1-~-1 I I I. 

0:0 O:~ 1 ~:2 
I 3 I 3 3 I 3 

o I 0 "I () -" "I" 

This cone5ponds to Xl = 3. X2 = 1 (point C in Fig. 475). -"3 = ~. x4 = O. x5 = O. This is the maximum 
fmax = I(3. 1) = 7. • 

.•. -...... _ .... - ....... ......... ~ . 2E4 

If in a step you have a choice between pivots. take the one 
that comes first in the column considered. 

1. Maximize:;; = fleX) = 6xl + 12x2 subject to 
o ~ Xl ::0; 4. 0::0; X2 ~ 4. 6x1 + 12x2 ::0; 72. 

2. Do Prob. I with the last two constraints interchanged. 

3. Maximi7e the daily output in producing Xl glass plates 
by a process PI and X2 glass plates by a process P2 

subject to the constraints (labor hours. machine hours, 
raw material supply) 

4Xl + 2X2 ::0; 140. 

4. Maximize:;; = 300.\"1 + 500.\"2 subject to 
2Xl + 8X2 ~ 60. 2X1 + .\"2 ~ 30. 4XI + 4.\"2 ~ 60. 

5. Do Prob. 4 with the last two constraints interchanged. 
Comment on the resulting simplification. 

6. Maximize the total output f = Xl + X2 + X3 (production 
figures of three different production processes) subject 

to input constraints /limitation of machine time) 

4Xl + 5X2 + 8X3 ::0; 12, 
8X1 + 5X2 + 4X3 ::0; 12. 

7. Maximize f = 6.\"1 + 6.\"2 + 9.\"3 subject to 
.\"j ;;; 0 (j = I. .... 5), and Xl + .\"3 + X4 = 1. 
X2 + .\"3 + \"5 = I. 

8. Using an artificial variable. minimize f = 2x 1 - X2 

subject to Xl ;;; O. X2 ;;; 0, X1 + X2 ;;; 5, -Xl + X2 ~ I, 
5XI + 4X2 ::0; 40. 

9. Maximize f = 4Xl + X2 + 2X3 subject to Xl ;;; o. 
X2 ;;; O. X3 ::0; 0, Xl + X2 + x3 ::0; 1. Xl + X2 .\"3 ~ O. 

10. If one uses the method of artificial variables in a 
problem without solution. this nonexistence will 
become apparent by the fact that one cannot get rid of 
the artificial variable. TIIustrate this by trying to 
maximize f = 2Xl + X2 subject to Xl ;;; 0, X2 ;;; 0, 
2Xl + X2 ::0; 2, Xl + 2X2 ;;; 6, Xl + X2 ~ 4. 

==::,.:.,::.===:=:--:e-".;::&':==.:U S T ION SAN D PRO B L EMS 

1. What is the difference between constrained and 
unconstrained optimization? 

2. State the idea and the basic formulas of the method of 
steepest descent. 

3. Write down an algorithm for the method of steepest 
descent. 

4. Design a "method of steepest ascent" for determining 
maxima. 

5. What i~ linear programming? lt~ ba~ic idea? An 
objective function? 

6. Why can we not use methods of calculus for extrema 
in linear programming? 

7. Whar are slack variables? Artificial variables? Why did 
we use them'? 

8. Apply the method of steepest descent to 

f(x) = X1
2 + 1.5X22. starting from (6. 3). Do 3 steps. 

Why is the convergence faster than in Example 1. 
Sec. 22.1? 

9. What does the method of steepe~t de~cent amount to in 
the case of a single variable? 

10. In Prob. 8 start from Xo = [1.5 I ] T. Show that the next 
even-numbered approximations are X2 = kXo. X4 = k2xo. 
etc .. where k = OJl4. 

11. What happens in Example I of Sec. 22.1 if you replace 
the function fex) = X 1

2 + 3X22 by fex) = x 12 + 5X22? 

Do 5 steps, starting from Xo = [6 3]T. Is the 
convergence faster or slower? 

12. Apply the method of steepest descent to 
f(x) = 9X12 + X2

2 + 18.\'1 - 4X2, 5 steps. starting 
from Xo = [2 4]T. 

13. In Prob. 12, could you start from [0 O]T and do 5 steps? 
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14. Show that the gradients in Prob. 13 are orthogonal. Give 121-25] Maximize or minimize as indicated. 
a reason. 21. Maximize f = lOx. + 20X2 subject to Xl ~ 5. 

115-20 1 Graph or sketch the region in the first quadrant 
Xl + X2 ~ 6. X2 ~ 4. 

22. Maximize f = Xl + X2 subject to Xl + 2X2 ~ 10. 
2X1 + X2 ~ LO. X2 ~ 4. of the X1x2-plane detelwined by the following inequalities. 

15. 

17. 

19. 

Xl + 3X2 ~ 6 16. 

2X1 + X2 ~ 4 

-Xl + X2 ~ 0 18. 

XI + X2 ~ 4 

XI + X2 ~ 5 20. 

X2 ~ 3 

-XI + X2 ~ 2 

Xl - 2X2 ~ -2 

0.8X1 + X2 ~ 6 

Xl - 2x2 ~ -4 

2xI + X2 ~ 12 

XI + X2 ~ 8 

Xl + X2 ~ 2 

2X1 - 3X2 ~ -12 

Xl ~ 15 

23. Minimize f = 2X1 - IOx2 subject to Xl - X2 ~ 4. 
2xI + x2 ~ 14. Xl + X2 ~ 9. -Xl + 3x2 ~ 15. 

24. A factory produces two kinds of gaskets, G I • G2 • with 
net profit of $60 and $30. respectively. Maximize the 
total daily profit subject to the constraints (Xj = number 
of gaskets Gj produced per day) 

40X1 + 40X2 ~ 1800 (Machine hours), 

200X1 + 20X2 ~ 6300 (Labor). 

25. Maximize the daily output in producing XI chairs by 
a process PI and X2 chairs by a process P 2 subject to 
3x1 + 4X2 ~ 550 (machine hours), 5xI + 4X2 ~ 650 
(labor). 

--:!:.,: .. 'fI.=.:.,=:~"'=="==:._,=:':==:=' 

Unconstrained Optimization. Linear Programming 

In optimization problems we maximize or minimize an objective function.: = f(x) 

depending on control variables Xl' ••• , X'" whose domain is either unrestricted 
("unconstrained optimization," Sec. 22. I) or restricted by constraints in the fonn 
of inequalities or equations or both ("constrained optimization," Sec. 22.2). 

If the objective function is linear and the constraints are linear inequalities in 
X10 ••• , -'""" then by introducing slack variables X m +l, .•. , Xn we can write the 
optimization problem in normal form with the objective function given by 

(I) 

(where cm + 1 = ell = 0) and the constraints given by 

(2) 

Xl ~ o ... '. x., ~ O. 

[n this case we can then apply the widely used simplex method (Sec. 22.3), a 

systematic stepwise search through a very much reduced subset of all feasible 

solutions. Section 22 4 shows how to overcome difficulties with this method 
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Graphs. 
Combinatorial Optimization 

Graphs and digraphs (= directed graphs) have developed into powerful tools in areas, 
such as electrical and civil engineering, communication networks, operations research, 
computer science, economics, industrial management, and marketing. An essential factor 
of this growth is the use of computers in large-scale optimization problems that can be 
modeled by graphs and solved by algorithms provided by graph theory. This approach 
yields models of general applicability and economic imporlance. II lies in the center of 
combinatorial optimization, a term denoting optimization problems that are of 
pronounced discrete or combinatorial structure. 

This chapter gives an introduction to this wide area, which constitutes a shift of emphasis 
away from differential equation~. eigenvalues, and so on, and is full of new ideas as well 
as open problems-in connection, for instance, with efficient computer algorithms. The 
classes of problems we shall consider include transportation of minimum cost or time, 
best assignment of workers to jobs, most efficient use of communication networks, and 
many others. Problems for these classes often form the core of larger and more involved 
practical problems. 

Prerequisite: none. 
References and Answers 10 Problems: App. I Parl F, App. 2. 

23.1 Graphs and Digraphs 

954 

Roughly, a graph consists of points, called vertices, and lines connecting them, called 
edges. For example, these may be four cities and five highways connecting them, as in 
Fig. 476. Or the points may represent some people, and we connect by an edge those who 
do business with each other. Or the vertices may represent computers in a network and 
the edges connections between them. Let us now give a fonnal definition . 

Fig. 476. Graph consisting of 
4 vertices and 5 edges 

./JLOOP 

\
~ flsolated 

" vertex 

......------... 
'-------"" 

Double edge 

Fig. 477. Isolated vertex, loop, double 
edge. (Excluded by definition.) 
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DEFINITION 

DEFINITION 

Graph 

A graph G consists of two finite sets (sets having finitely many elements), a set V 
of points, called vertices, and a set E of connecting lines, called edges, such that 
each edge connects two vertices, called the endpoints of the edge. We write 

G = (V, E). 

Excluded are isolated vertices (vertices that are not endpoints of any edge), loops 
(edges whose endpoints coincide), and lIlultiple edges (edges that have both 
endpoints in common. See Fig. 477. 

CAUTION! Our three exclusions are practical and widely accepted, but not uniformly. 
For instance, some authors permit multiple edges and call graphs without them simple 
graphs. • 

We denote vertices by letters, Lt, v, ... or VI' V 2 , .•• or simply by numbers 1,2, ... 
(as in Fig. 476). We denote edges by el, e2, ... or by their two endpoints; for instance, 
el = (1, 4), e2 = (1, 2) in Fig. 476. 

An edge (Vi' V) is called incident with the vertex Vi (and conversely); similarly, 
(Vi' Vj) is incident with Vj. The number of edges incident with a vertex V is called the 
degree of v. Two vertices are called adjacent in G if they are connected by an edge in 
G (that is, if they are the two endpoints of some edge in G). 

We meet graphs in ditlerent fields under different names: as "networks" in electrical 
engineering, "structures" in civil engineering, "molecular structures" in chemistry, 
"organizational structures" in economics, "sociograms," "road maps," "telecommunication 
networks," and so on. 

Digraphs (Directed Graphs) 
Nets of one-way streets, pipeline networks, sequences of jobs in construction work, flows 
of computation in a computer, producer-consumer relations, and many other applications 
suggest the idea of a "digraph" (= directed graph), in which each edge has a direction 
(indicated by an arrow, as in Fig. 478). 

Fig. 478. Digraph 

Digraph (Directed Graph) 

A digraph G = (V, E) is a graph in which each edge e = (i,j) has a direction from 
its "initial point" i to its "terminal point" j. 

Two edges connecting the same two points i, j are now permitted, provided they have 
opposite directions, that is, they are (i,j) and (j, i). Example. (1,4) and (4, 1) in Fig. 478. 
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EXAMPLE 1 

CHAP. 23 Graphs. Combinatorial Optimization 

A subgraph or subdigraph of a given graph or digraph G = (V. E), respectively, is a 
graph or digraph obtained by deleting some of the edges and vertices of G. letaining the 
other edges of G (together with their pairs of endpoints). For instance, el' e3 (together 
with the vertices I, 2. 4) form a subgraph in Fig. 476. and e3, e4, e5 (together with the 
vertices l. 3. 4) fonn a subdigraph in Fig. 478. 

Computer Representation of Graphs and Digraphs 
Drawings of graphs are useful to people in explaining or illustrating specific situations. 
Here one should be aware that a graph may be <;ketched in various ways; see Fig. 479. 
For handling graphs and digraphs in computers. one uses matrices or lists as appropriate 
data stmctures. as follows. 

(a) (b) (c) 

Fig. 479. Different sketches of the same graph 

Adjacency Matrix of a Graph G: 

{/ij = {I 
o 

Matrix A = [{lU] with entries 

if G has an edge (i, j), 

else. 

Thus £Iij = 1 if and only if two veItices i and j are adjacent in G. Here, by definition, no 
vertex is considered to be adjacent to itself; thus, {/i; = O. A is symmetric, {/ij = {lji- (Why?) 

The adjacency matrix of a graph is generally much smaller than the so-called illcidellce 
matrix (see Probs. 21, 22) and is preferred over the latter if one decides to store a graph 
in a computer in matrix form. 

Adjacency Matrix of a Graph 

Vertex 2 3 4 

Vertex I 

[~ 
0 

J 
2 0 

3 0 

4 

Adjacency Matrix of a Digraph G: Matrix A = [aij] with entries 

{/ij = {I 
o 

if G has a directed edge (i, j), 

else. 

This matrix A is not symmetric. (Why?) 

• 
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E X AMP L E 2 Adjacency Matrix of a Digraph 

To vertex 2 3 4 

From vertex I 

[i 
0 

;] 
2 0 0 

3 0 

4 0 U • 
Lists. The vertex incidence list of a graph shows for each vertex the incident edges. 
The edge incidence list shows for each edge its two endpuints. Similarly for a digraph; 
in the vertex list, outgoing edges then get a minus sign, and in the edge list we now have 
ordered pairs of vertices. 

E X AMP L E 3 Vertex Incidence List and Edge Incidence List of a Graph 

This graph is the same as in Example I. except for notation. 

Vertex Incident Edges Edge Endpoints 

VI el' e5 el VI, V 2 

V2 el' C2, e3 C2 V2 , V3 

V3 e2' C4 C3 V 2 , V4 

V4 C3• C4 , e5 e4 V 3• V4 

e 5 VI. V4 • 
"Sparse graphs" are graphs with few edges (far fewer than the maximum possible number 
n(n - I )/2. where n is the number of vertices). For these graphs. matrices are not efficient. 
Lists then have the advantage of requiring much less storage and being easier to handle; 
they can be ordered, sorted, or manipulated in various other ways directly within the 
computer. For instance, in tracing a "walk" (a connected sequence of edges with pairwise 
common endpoints), one can easily go back and furth between the two lists just discussed, 
instead of scanning a large column of a matrix for a single 1. 

Computer science has deVeloped more refined lists, which, in addition to the actual 
content, contain "pointers" indicating the preceding item or the next item to be scanned 
or both items (in the case of a "walk": the preceding edge or the subsequent one). For 
details, see Refs. [E 16] and L F7]. 

This section was devoted to basic concepts and notations needed throughuut this chapter, 
in which we shall discuss some of the most impurtant classes of combinatorial optimization 
problems. This will at the same time help us to become more and more familiar with 
graphs and digraphs. 
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1. Sketch the graph consisting of the vertices and edges 
of a square. Of a tetrahedron. 

2. Worker WI can do jobs 11 and 13 , worker W2 job 14 , 

worker W3 jobs 12 and J3 . Represent this by a graph. 

3. Explain how the following may be regarded as graphs 
or digraphs: flight connections between given cities: 
memberships of some persons in some committees; 
relations between chapters of a book: a tennis 
tournament; a family tree. 

4. How would you represent a net of one-way and two-way 
streets by a digraph? 

5. Give further examples of situations that could be 
represented by a graph or digraph. 

6. Find the adjacency matrix of the graph in Fig. 476. 

7. When will the adjacency matrix of a graph be 
symmetric? Of a digraph? 

18-131 ADJACENCY MATRIX 

Find the adjacency matrix of the graph or digraph. 

8. 

10. 

11. 

12. 

13. 

Sketch the graph whose adjacency matrix is: 

0 

0 
14. 

0 

0 

0 0 0 

0 0 0 
15. 

0 0 0 

0 0 0 

0 

0 0 
16. 

0 0 

0 

Sketch the digraph whose adjacency matrix is: 

17. The matrix in Prob. 14. 

18. The matrix in Prob. 16. 

19. (Complete graph) Show that a graph G with 11 vertices 
can have at most 11(11 - 1)/2 edges, and G has exactly 
n(1l - I )12 edges if G is complete, that is, if every pair 
of vertices of G is joined by an edge. (Recall that loops 
and multiple edges are excluded.) 

20. In what case are all the off-diagonal entries of the 
adjacency matrix of a graph G equal to I? 

Incidence Matrix of a Graph: Matrix B = [bjk] with 
entries 

if vertex j is an endpoint of edge ek 

otherwise. 

Find the incidence matrix of: 

21. The graph in Prob. 9. 

22. The graph in Prob. 8. 
Incidence Matrix of a Digraph: Matrix B = a;jk] with 

entries 

if edge ek leaves vertex j 

if edge ek enters vertex j 

othelwise. 

Find the incidence matrix of: 

23. The digraph in Prob. II. 

24. The digraph in Prob. 13. 

25. Make a vertex incidence list ofthe digraph in Prob. 13. 
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23.2 Shortest Path Problems. Complexity 
Beginning in this section, we shall discuss some of the most important classes of 
optimization problems that concern graphs and digraphs as they arise in applications. Basic 
ideas and algorithms will be explained and illustrated by small graphs, but you should 
keep in mind that real-life problems may often involve many thousands or even millions 
of vertices and edges (think of telephone networks, worldwide air travel, companies that 
have offices and stores in all larger cities). Then reliable and efficient systematic methods 
are an absolute necessity-solution by inspection or by trial and error would no longer 
work, even if "'nearly optimal" solutions are acceptable. 

We begin with shortest path problems, as they arise, for instance, in designing shortest 
(or least expensive, or fastest) routes for a traveling salesman. for a cargo ship. etc. Let 
us first explain what we mean by a path. 

In a graph G = (V, E) we can walk from a vertex VI along some edges to some other 
vertex vk- Here we can 

(A) make no restrictions. or 

(B) require that each edge of G be traversed at most once, or 

(C) require that each vertex be visited at most once. 

In case (A) we call this a walk. Thus a walk from VI to Vk is of the form 

(1) 

where some of these edges or vertices may be the same. In case (B), where each edge 
may occur at most once, we call the walk a trail. Finally, in case (C), where each vertex 
may occur at most once (and thus each edge automatically occurs at most once), we call 
the trail a path. 

We admit that a walk. trail. or path may end at the vertex it started from. in which case 
we call it closed; then Vk = VI in (1). 

A closed path is called a cycle. A cycle has at least three edges (because we do not 
have double edges; see Sec. 23.1). Figure 480 illustrates all these concepts. 

Fig. 480. Walk, trail, path, cycle 

1 - 2 - 3 - 2 is a walk (not a trail). 
4 1 2 - 3 - 4 - 5 is a trail (not a path). 
1 - 2 - 3 - 4 - 5 is a path (not a cycle). 
1 - 2 - 3 - 4 - 1 is a cycle. 

Shortest Path 
To define the concept of a shortest path, we assume that G = (V, E) is a weighted graph, 
that is, each edge (Vi, V) in G has a given weight or length lij > O. Then a shortest path 
VI ----;. Vk (with fixed VI and Vk) is a path (1) such that the sum of the lengths of its edges 

112 + 123 + 134 + ... + Ik-I,K 

(/12 = length of (Vb V2 ), etc.) is minimum (as small as possible among all paths from 
VI to Vk)' Similarly, a longest path VI ----;. Vk is one for which that sum is maximum. 



960 CHAP. 23 Graphs. Combinatorial Optimization 

Shortest (and longest) path problems are among the most important optimization problems. 
Here, "length" lij (often also called "cost" or "weight") can be an actual length measured 
in miles or travel time or gasoline expenses, but it may also be something entirely different. 

For instance, the "traveling salesman problem" requires the determination of a shortest 
Hamiltonian i cycle in a graph, that is, a cycle that contains all the vertices of the graph. 

As another example, by choosing the "most profitable" route VI --4 Vk, a salesman may 
want to maximize "Llij, where lij is his expected commission minus his travel expenses 
for going from town i to townj. 

In an investment problem, i may be the day an investment is made,j the day it matures, 
and lij the resulting profit, and one gets a graph by considering the various possibilities 
of investing and reinvesting over a given period of time. 

Shortest Path if All Edges Have Length I = 1 
Obviously, if all edges have length I, then a shortest path VI - Vk is one that has the 
smallest number of edges among all paths VI - Vk in a given graph G. For this problem 
we discuss a BFS algorithm. BFS stands for Breadth First Search. This means that in 
each step the algorithm visits all neighhnring (all adjacent) vertices of a vertex reached. 
as opposed to a DFS algorithm (Depth First Search algorithm), which makes a long trail 
(as in a maze). This widely used BFS algorithm is shown in Table 23.1. 

We want to find a shortest path in G from a vertex s (start) to a vertex t (terminal). To 
guarantee that there is a path from s to t, we make sure that G does not consist of separate 
portions. Thus we assume that G is connected, that is, for any two vertices V and w there 
is a path V _ w in G. (Recall that a vertex V is called adjacent to a vertex 11 if there is 
an edge (u, v) in G.) 

Table 23.1 Moore's BFS for Shortest Path (All Lengths One) 
Proceedings of the Illfemationai Symposillm for Switching TIleory. Part II. pp. 285-292. Cambridge: Harvard 
University Press. 1959. 

ALGORITHM MOORb [G = (V, E), s, t] 

This algorithm determines a shortest path in a connected graph G = (V, E) from a vertex 
s to a vertex t. 

INPUT: Connected graph G = (V, E), in which one vertex is denoted by sand 
one by t, and each edge (i, j) has length lij = 1. Initially all vertices are 
unlabeled. 

OUTPUT: A shortest path s ---+ t in G = (V. £) 

1. Label s with O. 
2. Set i = O. 
3. Find all unlabeled vertices adjacent to a vertex labeled i. 
4. Label the vertices just found with i + l. 
5. If vertex t is labeled. then "backtracking" gives the shortest path 

k (= label of t), k - 1, k - 2, ... , 0 

OUTPUT k, k - 1, k - 2, ... , O. Stop 
Else increase i by I. Go to Step 3. 

End MOORE 

lWILLIAM ROWAN HAMILTON (1805-1865), Irish mathematician, known for his work in dynamics 
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E X AMP L E 1 Application of Moore's BFS Algorithm 

Find a shortest path s ---+ t in the graph G shown in Fig. 481. 

Solution. Figure 481 shows the labels. The blne edges form a shortest path (length 4). There is another 
shortest path s ---+ t. (Can yon find it?) Hence in the program we must introduce a rule that makes backtracking 
unique because otherwise the computer would not know what to do next if at some step there is a choice (for 
instance, in Fig. 481 when it got back to the vertex labeled 2) The following rule seems to be natural. 

Backtracking rule. Using the numbeIing of the vertices from I to II (not the labeling'). at each step, if a 
vertex labeled i i, reached, take as the next ve11ex that with the smallest number (not label!) among all the 
vertices labeled i-I. • 

2 

Fig. 481. Example 1, given graph and result of labeling 

Complexity of an Algorithm 
Complexity of Moore's algorithm. To find the vertices to be labeled 1, we have to scan 
all edges incident with s. Next, when i = 1, we have to scan all edges incident with vertices 
labeled I, etc. Hence each edge is scanned twice. These are 2m operations (Ill = number 
of edges of G). This is a function c(m). Whether it is 2171 or 5111 + 3 or 12m is not so essential; 
it is essential that c(m) is proportional to 111 (not nz2

, for example); it is of the "order" 1II. 

We write for any function alll + b simply Oem), for any function am2 + bm + d simply 
0(11/ 2

), and so on; here, 0 suggests order. The underlying idea and practical aspect are 
as follows. 

lnjudging an algorithm, we are mostly interested in its behavior for very large problems 
(large m in the present case), since these are going to determine the limits of the 
applicability of the algorithm. Thus, the essential item is the fastest growing term (am 2 

in alll2 + bill + d, etc.) since it will overwhelm the others when III is large enough. Also, 
a constant factor in this term is not very essential; for instance, the difference between 
two algorithms of orders. say, 5111 2 and 8m2 is generally not very essential and can be 
made irrelevant by a modest increase in the speed of computers. However, it does make 
a great practical difference whether an algorithm is of order 11/ or m2 or of a still higher 
power lII P • And the biggest difference occurs between these "polynomial orders" and 
"exponential orders," such as 2'11. 

For instance, on a computer that does I 09 operations per second. a problem of size 
m = 50 will take 0.3 second with an algorithm that requires /715 operation~, but 13 days 
with an algorithm that requires 2m operations. But this is not our only reason for regarding 
polynomial orders as good and exponential orders as bad. Another reason is the gain in 
using afaster computer. For example let two algorithms be Oem) and 0(111 2

). Then, since 
1000 = 31.62

, an increase in speed by a factor 1000 has the effect that per hour we can 
do problems 1000 and 31.6 times as big, respectively. But since 1000 = 29.97• with an 
algorithm that is 0(2"'), all we gain is a relatively modest increase of 10 in problem size 
because 29.97 • 2m = 2>n+9.97. 
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The symbol 0 is quite practical and commonly used whenever the order of growth is 
essential. but not the specific form of a function. Thus if a function g(m) is of the form 

gem) = kh(m) + more slowly growing terms (k *" 0, constant), 

we say that g(m) is of the order h(111) and write 

g(m) = O(lZ(111)). 

For instance, 

am + b = 0(111). 5 . 2m + 3m 2 = 0(21n). 

We want an algorithm .iI to be "efficient." that is. "good" with respect to 

(i) Time (number C.,l(111) of computer operations), or 

(ii) Space (storage needed in the internal memory) 

or both. Here c. J suggests "complexity" of .iI. Two popular choices for C~'I are 

(Worst case) cjm) = longest time 9'1 takes for a problem of size /11, 

(Average case) c.cim) = average time sl takes for a problem of size 111. 

In problems on graphs, the "size" will often be 11l (number of edges) or 11 (number of 
vertices). For our present simple algorithm, cJm) = 2m in both cases. 

For a "good" algorithm.iI, we want that c.jm) does not grow too fast. Accordingly, 
we call .cJ1 efficient if C,,'1(111) = O(mk) for some integer k ~ 0; that is, C". I may contain 
only powers of m (or functions that grow even more slowly, such as In m), but no 
exponential functions. Furthermore, we call sJ polynomially bounded if .9l is efficient 
when we choose the "worst case" C,,«111). These conventional concepts have intuitive 
appeal. as our discussion shows. 

Complexity should be investigated for every algorithm, so that one can also compare 
different algorithms for the same task. This may often exceed the level in this chapter; 
accordingly, we shall confine ourselves to a few occasional comments in this direction. 

[1=6] SHORTEST PATH 5. S 6. __ t 

/\/~( sQ\ ! Find a shortest path P: s --> t and its length by Moore's 
BFS algorithm; si--erch the graph with the labels and indicate 
P by heavier lines (as in Fig. 481). 

1. 

2't~\ 
\ ·V~ 

......... /"-J 
s 

4. / "':::) '" 0 

~~-''b 
t/ 

/\_1-1- ........ 
V\/_. /" • 

• 

7. (Nonuniqueness) A shonest path s --> t for given sand 
t need not be unique. Illustrate this by finding another 
shortest path s --> t in Example I in the text. 

8. (Maximum length) If P is a shortest path between any 
two vertices in a graph with n vertices, how many edges 
can P at most have'? In a complete graph (with all edges 
of length 1)7 Give a reason. 

9. (Moore's algorithm) Show that if a vertex v has label 
.A(v) = k, then there is a path s --> v of length k. 
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10. Call the length of a shortest path s ~ v the distance 
of v from s. Show that if v has distance /, it has label 
A(v) = I. 

11. (Hamiltonian cycle) Find and sketch a Hamiltonian 
cycle in the graph of Prob. 3. 

12. Find and sketch a Hamiltonian cycle in the graph of a 
dodecahedron. which has 12 pentagonal faces and 
20 vertices (Fig. 482). This is a problem Hamilton 
himself considered. 

Fig. 482. Problem 12 

13. Find and sketch a Hamiltonian cycle In Fig. 479. 
Sec. 23.1. 

14. (Euler graph) An EllIeI' graph G is a graph that has a 
clo:-.ed Euler trail. An Euler trail is a trail that contains 
every edge of G exactly once. Which subgraph with 
four edges of the graph in Example I, Sec. 23.1. is an 
Euler graph? 

15. Is the graph in Fig. 483 an Euler graph? (Give a reason.) 

4 
3}-------{ 

Fig. 483. Problems 15, 17 

23.3 Bellman's Principle. 

963 

16. Find 4 different closed Euler trails in Fig. 484. 

17. 

2 4 

/\/\ 
3 5 

Fig. 484. Problem 16 

The postman problem is the problem of finding a 
closed walk W: s ~ s (s the post office) in a graph G 
with edges (i,j) of length lij > 0 such that every edge 
of G is traversed at least once and the length of W is 
minimum. Find a solution for the graph in Fig. 483 by 
inspection. (The problem is also called the Chinese 
postman problem since it was published in the journal 
Chinese MathenlOtic.I' 1 (1962),273-277.) 

18. Show that the length of a shortest postman trail is the 
same for every starting verteX. 

19. (Order) Show that 0(1113
) + 0(1113

) = 0(1113
) and 

kO(111P ) = O(mP )' 

20. Show that ~ = 0(111), O.02em + 100m2 = O(em ). 

21. If we switch from one computer to another that is 100 
times as fast. what is our gain in problem size per hour 
in the use of an algorithm that is 0(111), 0(1112

). 0(1115
). 

O(e"")? 

22. CAS PROBLEM. Moore's Algorithm. Write a 
computer program for the algorithm in Table 23.1. Test 
the program with the graph in Example I. Apply it to 
Probs. 1-3 and to some graphs of your own choice. 

Dijkstra's Algorithm 
We continue our discussion of the shorrest path problem in a graph G. The last section 
concerned the special case that all edges had length 1. But in most applications the edges 
(i, j) will have any lengths lij > 0, and we now turn to this general case, which is of 
greater practical importance. We write lij = :x; for any edge (i,j) that does not exist in G 
(setting 'Xl + a = :x; for any number a, as usual). 

THEOREM 1 

We consider the problem of finding shortest paths from a given veltex. denoted by I 
and called the origin, to all other vel1ices 2. 3 ..... Il of C. We let Lj denote the length 
of a shortest path p/ I ~ j in G. 

Bellman's Minimality Principle or Optimality Principle2 

{l Pj : I ~ j is a ShOrTeST path from 1 TO j ill G lllld (i. j) is tlze llist edge of Pj 

(Fig. 485), Then Pi: 1 ~ i [obtained by droppi1lg (i, j) from Pj ] is a sh017est path 
I~i. 

2RICHARD BELLMAN (1920--1984). American mathematician, known for his WOIX in dynamic programming. 
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P. 
I 

~ __________ ~A~ __________ ~\ ~ 

"'/-v~ j 

Fig. 485. Paths P and Pi in Bellman's minimality principle 

PROOF Suppose that the conclusion is false. Then there is a path P;"': I _ i that is shorter than 
Pi' Hence if we now add U. j) to Pi*, we get a path I _ j that is shorter than Pj' This 
contradicts our assumption that Pj is "hortest. • 

From Bellman's principle we can derive basic equations as follows. For fixed j we may 
obtain various paths 1 _ j by taking shortest paths Pi for vmious i for which there is in 
G an edge (i,j), and add U,.i) to the conesponding Pi' These paths obviously have lengths 
Li + lij (Li = length of Pi)' We can now take the minimum over i. that is. pick an i for 
which Li + lij is smallest. By the Bellman principle. this gives a shortest path I ~ j. It 
has the length 

Ll = 0 
(1) 

L· = min (L· + I) 
:J i*j 1, 1,J' 

j = 2, ... , fl. 

These are the Bellman equations. Since Iii = 0 by definition, instead of mini'1'j we can 
simply write mini' These equations suggest the idea of one of the best-known algorithms 
for the shortest path problem, as follows. 

Dijkstra's Algorithm for Shortest Paths 
Dijkstra's3 algorithm is shown in Table 23.2, where a connected graph G is a graph in 
which for any two vertices v and 1I' in G there is a path v _ w. The algorithm is a labeling 
procedure. At each stage of the computation. each vertex v gers a label, either 

(PU a permallent label = length Lv of a shortest path 1 ----7 V 

or 

(TL) a temporary label = upper bound Lv for the length of a shortest path 1 ~ v. 

We denote by '!P;£ and 2J;£ the sets of vertices with a permanent label and with a temporary 
label, respectively. The algorithm has an initial step in which vertex I gets the permanent 
label Ll = 0 and the other vertices get temporary labels, and then the algorithm alternates 
between Steps 2 and 3. In Step 2 the idea is to pick k "minimally." In Step 3 the idea is 
that the upper bounds will in general improve (decrease) and must be updated accordingly. 
Namely, the new temporary label I j of vertex j will be the old one if there is no 
improvement or it will be Lk + Ikj if there is. 

3 
EDSGER WYBE DIJKSTRA (1930-2002), Dutch computer scientist. 1972 recipient of the ACM TurinG" 

Award. His algorithm appeared in Numerische Mathematik J (1959),269-271. b 
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Table 23.2 Dijkstra's Algorithm for Shortest Paths 

ALGORITHM DIJKSTRA [G = (V, E), V = {L ... , 17}, lij for all (i, j) in E] 

Given a connected graph G = (V, i',") with vertices 1, ... , n and edges (i, j) having 
lengths liJ > 0, this algorithm determines the lengths of shortest paths fi'om vertex I to 
the vertices 2, ... , n. 

INPUT: Number of vertices 17, edges (i, j), and lengths lij 

OUTPUT: Lengths Lj of sh011est paths I -? j, j = 2, ... , n 

1. lnitiul step 

Vertex I gets PL: LI = O. 
Vertexj (= 2, .. ',1/) gets TL: ~ = Ilj (= C/J if there is no edge (1,j) in G). 
Set qp5£ = {I}, 'j5£ = {2, 3, ... , n}. 

2. Fixing a permanent label 

Find a k in 'j5£ for which Lk is miminum, set Lk = Lk. Take the smallest k if 
there are several. Delete k from 'j5£ and include it in f!P5£. 
If 'j5£ = 0 (that is, 'j5£ is empty) then 

OUTPUT L 2 , ••. , Ln. Stop 

Else continue (that is, go to Step 3). 

3. Updating tempnral}" labels 

For all j in 'j5£, set Lj ~ mink {Lj, Lk + lk.i} (that is, take the smaller of Lj and 
Lk + Ikj as your new Lj ). 

Go to Step 2. 

End DIJKSTRA 

E X AMP L E 1 Application of Dijkstra's Algorithm 

Applying Dijkstra's algorithm to the graph in Fig. 4b6a, find shortest paths from vertex I to vertices 2, 3, 4. 

Solution. We list the steps and computations. 

1. Ll = 0, L2 = 8, La = 5, L4 = 7, 

2. L3 = min [L2.L3 , L4 } = 5. k = 3. 

3. L2 = min {8,L3 + /32J = min {8, 5 + IJ = 6 

L4 = min [7, L3 + 134} = min [7, x} = 7 

2. L2 = min {L2' L4 ) = min [6,7) = 6, k = 2. 

3. L4 = min {7,L2 + /24) = min [7,6 + 2} = 7 

2. 4 = 7. k = 4 

qp5f. = {I}, 

'!P5f.={1.3}, 

'If':£ = {I, 2, 3], 

'd''£= [1,2,3,4}, 

Figure 486b shows the resulting shortest paths. of lengths Lz = 6. L3 = 5.4 = 7. 

(a) Given graph G (b) Shortest paths in G 

Fig. 486. Example 1 

Complexity. Dijkstra's algorithm is 0(n2). 

'!J5f. = [2,3, 4} 

'!J5f. = {2, 4} 

'!J5f. = [4} 

'!J:£ = 0. 

• 
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PROOF Step 2 requires comparison of elements, first II - 2, the next time 11 - 3, etc., a total 
of (11 - 2)(11 - 1)/2. Step 3 requires the same number of comparisons, a total of 
(11 - 2)(11 - I )/2, as well m; additions, fIrst Il - 2, the next time 11 - 3, etc., dgain a [otal of 
(ll - 2)(11 - I )/2. Hence the total number of operations is 3(11 - 2)(11 - 1)/2 = O(1l2 ) .• 

1. The net of roads in Fig. 487 connecting four villages 
is to be reduced to minimum length. but so that one 
can still reach every village from every other village. 
Which of the roads should be retained? Find the 
solution (a) by inspection. (b) by Dijkstra's 
algorithm. 

·t 5. 

6. 

18 

Fig. 487. Problem 1 

2-=7] DIJKSTRA'S ALGORITHM 

Find shortest paths for the following graphs. 

2. 3. 

8. Show that in Dijkstra's algorithm, for L" there is a path 
P: I ~ k of length Lk . 

9. Show that in Dijkstra's algorithm. at each instant the 
demand on storage is light (data for less than II edges) 

10. CAS PROBLEM. Dijkstra's Algorithm. Write a 
program and apply it to Probs. 2--4. 

23.4 Shortest Spanning Trees: 
Greedy Algorithm 

So far we have discussed shortest path problems. We now turn to a particularly important 
kind of graph. called a tree. along with related optimization problems that arise quite often 
in practice. 

By definition. a tree T is a graph that is connected and has no cycles. "Connected" 
was defined in Sec. 23.3; it means that there is a path fmm any vertex in T to any other 
veltex in T. A cycle is a path s ~ t of at least three edges that is closed (t = s); see also 
Sec. 23.2. Figure 488a shows an example. 

CAUTION! The terminology varies; cycles are sometimes also called circuits. 
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A spanning tree T in a given connected graph G = (V, E) is a tree containing all the 
17 vertices of G. See Fig. 488b. Such a tree has 17 - 1 edges. (Proof?) 

A shortest spanning tree T in a connected graph G (whose edges (i, j) have lengths 
lij> 0) is a spanning tree for which 'Llij (sum over all edges of 7) is minimum compared 
to 'Llij for any other spanning tree in G. 

Trees are among the most important types of graphs, and they occur in various 
applications. Familiat examples ate family trees and organization charts. Trees can be used 
to exhibit, organize, or analyze electrical networks, producer-consumer and other business 
relations, infonnation in database systems, syntactic structure of computer programs, etc. 
We mention a few specific applications that need no lengthy additional explanations. 

The set of shortest paths from vertex I to the vertices 2 ..... 17 in the last section forms 
a spanning tree. 

Railway lines connecting a number of cities (the vertices) can be set up in the form of 
a spanning tree, the "length" of a line (edge) being the construction cost, and one wants 
to minimize the total construction cost. Similarly for bus lines, where "length" may be 
the average annual operating cost. Or for steamship lines (freight lines), where "length" 
may be profit and the goal is the maximization of total profit. Or in a network of telephone 
lines between some cities, a shortest spanning tree may simply represent a selection of 
lines that connect all the cities at minimal cost. In addition to these examples we could 
mention others from distribution networks. and so on. 

We shall now discuss a simple algorithm for the problem of finding a shortest spanning 
tree. This algorithm (Table 23.3) is patticularly suitable for spatse graphs (graphs with 
very few edges: see Sec. 23.1). 

Table 23.3 Kruskal's Greedy Algorithm for Shortest Spanning Trees 
Proceedings of the American Mathematical Society 7 (1956), 48-50. 

ALGORITHM KRUSKAL [G = (V, E), lij for all (i,j) in EJ 

Given a connected graph G = (V, E) with edges (i.j) having length lij > O. the algorithm 
detelmines a shortest spanning tree Tin G. 

INPUT: Edges (i, j) of G and their lengths lij 

OUTPUT: ShOltest spanning tree T in G 

1. Order the edges of G in ascending order of length. 
2. Choose them in this order as edges of T, rejecting an edge only if it forms a 

cycle with edges already chosen. 

If 17 - I edges have been chosen. then 
OUTPUT T (= the set of edges chosen). Stop 

EndKRUSKAL 

CaJ A cycle (b) A spanning tree 

Fig. 488. Example of (a) a cycle, (b) a spanning tree in a graph 
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E X AMP L E 1 Application of Kruskal's Algorithm 

Using Kmskars algorithm. we shall determine a shortest spanning tree in the gmph in Fig. 489. 

Fig. 489. Graph in Example 1 

Solution. See Table 23.4. In some of the intennediate stages the edges chosen form a disconnected gmph 
(see Fig. 490); this is typical. We stop after n - I = 5 choices since a spanning tree has II - I edges. In our 
problem the edges chosen are in the upper part of the list. This is typical of problems of any ~ize: in general, 
edges farther down in the list have a smaller chance of being chosen. • 

Table 23.4 Solution in Example 1 

Edge Length Choice 

(3,6) 1st 
(I. 2) 2 2nd 
(1,3) 4 3rd 
(4.5) 6 4th 
(2.3) 7 Reject 
(3,4) 8 5th 
(5.6) 9 

(2,4) 11 

The efficiency of Kruskars method is greatly increased by 

Double Labeling of Vertices. Each vertex i carries 1I double label (ri, Pi), where 

ri = Root of the subtree to which i belongs, 

Pi = Predecessor of i ill its subtree, 

Pi = 0 for roots. 

This simplifies 

Rejecting. If (i. j) is next in the list to be considered, reject (i. j) if ri = ') (that is. i and 
j are in the same subtree. so that they are already joined by edges and (i. j) would thus 
create a cycle). If ri i= I} include (i, j) ill T. 

If there are several choices for ri, choose the smallest. If subtrees merge (become a 
single tree), retain the smallest root as the root of the new subtree. 

For Example I the double-label list is shown in Table 23.5. In storing it, at each instant 
one may retain only the latest double label. We show all double labels in order to exhibit 
the proces~ in all its stages. Labels that remain unchanged are nO[ listed again. Underscored 
are the two I' s that are the common root of vertices 2 and 3, the reason for rejecting the 
edge (2, 3). By reading for each vertex the latest label we can read from this list that I is 
the vertex we have chosen as a root and the tree is as shown in the last part of Fig. 490. 
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1 2 
--"'I 
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f 
3/ 

" 
3~ 

6 

First Second Third Fourth Fifth 

Fig. 490. Choice process in Example 1 

This is made possible by the predecessor label that each vertex carries. Also, for accepting 
or rejecting an edge we have to make only one comparison (the roots of the two endpoints 
of the edge). 

Ordering is the more expensive part of the algorithm. It is a standard process in data 
processing for which various methods have been suggested (see Sorting in Ref. [E25] 
listed in App. 1). For a complete list of 111 edges, an algorithm would be Oem log211/), 
but since the 17 - 1 edges of the tree are most likely to be found earlier, by inspecting 
the q « 1/1) topmost edges, for such a list of q edges one would have 
O(q log2 /11). 

Table 23.5 List of Double Labels in Example 1 

Choice 1 Choice 2 Choice 3 Choice 4 Choice 5 
Vertex (3,6) n,2) (1,3) (4,5) (3,4) 

(1,0) 
2 (1, 1) 

3 (3,0) (1, 1) 
4 l4,0) n, 3) 
5 (4,4) (1,4) 

6 (3, 3) (1,3) 

11-61 KRUSKAL'S ALGORITHM 3. 

Find a shortest spanning tree by Kruskal' s algorithm. 

1. 2. 
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7. CAS PROBLEM. Kruskal's Algorithm. Write a 
corresponding program. (Sorting is discussed in Ref. 
[E25] listed in App. I.) 

8. Design an algorithm for obtaining longest spanning 
trees. 

9. Apply the algorithm in Prob. 8 to the graph in Example 
I. Compare with the result in Example I. 

10. To get a minimum spanning tree, instead of adding 
shortest edges, one could think of deleting longest 
edges. For what graph5 would this be feasible? 
Describe an algorithm for this. 

11. Apply the method suggested in Prob. IO to the graph 
in Example 1. Do you get the same tree? 

12. Find a shortest spanning tree in the complete graph of 
all possible 15 connections between the six cities given 
(distances by airplane. in miles. rounded). Can you 
think of a practical application of the result? 

Dallas Denver Los Angele<; New York Washington, DC 

Chicago 800 900 1800 700 650 

Dallas 650 1300 1350 1200 

Denver 850 1650 1500 

Los Angeles 2500 2350 

New York 200 
I 

13. (Forest) A (not necessarily connected) graph without 
cycles is called a forest. Give typical examples of 
applications in which graphs occur that are forests or 
trees. 

16. If a graph has no cycles, it must have at least 2 vertices 
of degree 1 (definition in Sec. 23.\). 

17. A tree with exactly two vertices of degree 1 must be a 
path. 

I ]4-20 I GENERAL PROPERTIES OF TREES 18. A tree with 11 vertices has 11 - I edges. (Proof by 
induction.) Prove: 

14. (l:niqueness) The path connecting any two vertice~ 1I 

and u in a tree is unique. 

19. If two vertices in a tree are joined by a new edge. a 
cycle is formed. 

15. If in a graph any two vertices are connected by a unique 
path, the graph is a tree. 

20. A graph with 11 vertices is a tree if and only if it has 
11 - 1 edges and has no cycles. 

23.5 Shortest Spanning Trees: Prim's Algorithm 
Prim's algorithm shown in Table 23.6 is another popular algorithm for the shortest 
spanning tree problem (see Sec. 23.4). This algorithm avoids ordering edges and gives a 
tree T at each stage. a property that Kruskal's algorithm in the last section did not have 
(look back at Fig. 490 if you did not notice it). 

In Plim's algorithm, starting from any ~ingle vertex, which we call I, we "grow" the 
tree T by adding edges to it, one at a time, according to some rule (in Table 23.6) until 
T finally becomes a spanning tree, which is shortest. 

We denote by U the set of vertices of the growing tree T and by S the set of its edges. 
Thus, initially U = {I} and S = 0; at the end, U = V. the vertex set of the given graph 
G = (V. E), whose edges (i, j) have length lij > 0, as before. 
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Thus at the beginning (Step 1) the labels 

of the vertices 2 .... , 11 

are the lengths of the edges connecting them to vertex I (or 00 if there is no such edge in 
G). And we pick (Step 2) the shortest of these as the first edge of the growing tree T and 
include its other endj in U (choosing the smallestj if there are several, to make the process 
unique). Updating labels in Step 3 (at this stage and at any later stage) concerns each 
vertex k not yet in U. Vertex k has label Ak = li(k),k from before. If Ijk < Ak , this means 
that k is closer to the new member j just included in U than k is to its old "closest neighbor" 
i(k) in U. Then we update the label of k, replacing Ak = li(k).k by Ak = Ijk and setting 
i(k) = j. If. however, Ijk :;;:: Ak (the old label of k), we don't touch the old label. Thus the 
label Ak always identifies the closest neighbor of k in U, and this is updated in Step 3 as 
U and the tree T grow. From the final labels we can backtrack the final tree, and from 
their numeric values we compute the total length (sum of the lengths of the edges) of this 
tree. 

Table 23.6 Prim's Algorithm for Shortest Spanning Trees 
Bell System Technical Joltl1l1l136 (1957). 1389-I·WL 

For an improved version of the algorithm. see Cheriton and Tmjan. SIAM Jolt,."al on COmplltlition 5 
(1976).724-7-12. 

ALGORITHM PRIM [G = (V, E), V = {I, ... , 11}, lij for all (i, j) in E] 

Given a connected graph G = (V, E) with vertices 1,2, ... ,11 and edges (i,j) having 
length lij > O. this algorithm dete1l11ine~ a shortest spanning tree Tin G and its length 
L(n 
INPUT: n. edges (i. j) of G and their lengths lij 
OUTPUT: Edge set 5 of a shortest spanning tree T in G: L(T) 
[Initially, alll'ertices are lInlabeled.] 

1. Initial step 
Set i(k) = I, U = {I}, 5 = 0. 
Label vertex k (= 2, ... ,11) with Ak = Ii/e 1= :G if G has no edge n. k)j. 

2. Addition of an edge to the cree T 
Let Aj be the smallest Ale for vertex k not in U. Include veltex j in U and edge 
(i(j), j) in 5. 
If U = V then compute 

L(T) = "'2:/ij (sum over all edges in 5) 
OUTPUT 5. UT). Stop 
[5 is the edge set of a shortest spanning tree T ill G.] 

Else continue (that is. go to Step 3). 

3. Label updating 
For every k not in U. if Ijle < Ak • then set Ale = lile and i(k) = j. 
Go to Step 2. 

End PRIM 
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Fig. 491. Graph in Example 1 

E X AMP L E 1 Application of Prim's Algorithm 

Find a shortest spanmng tree in the graph In Fig. 4Yl (which is the ~ame as in Example I. Sec. 23.4, so that we 
can <:ompare). 

Solutio1/. The steps are a~ follows. 

1. irk) = I, U = IlJ, S = 0, initial labels see Table 23.7. 

2. A2 = 112 = 2 is smallest, U = 11. 2J. S = {(I, 2)/ 

3. Update labels as shown in Table 23.7. column (I). 

2. A3 = 113 = 4 is smallest. U = II. 2. 3}. S = {(I, 2), (I. 3») 

3. Update labels a~ shown in Table 23.7. column (Il). 

2. A6 = 136 = I is smallest. U = II. 2. 3. 6J. S = 1(1. 21. (I. 3). (3. 6)J 

3. Update labels as shown in Table 23.7, column (III). 

2. A4 = 134 = 8 is smallest, U = II, 2, 3, 4, 6J, S = 10,2), (I. 3), (3. 4), (3, 6») 

3. Update labels a~ shown in Table 23.7, column (IV). 

2. A5 = 145 = 6 is smallest. U = V. S = (I, 2). (I. 3). (3. 4). (3. 6). (4, 5). Stop. 

The tree is the same as in Example I. Sec. 23.4. Its length is 21. You will find it interesting to compare the 
growth process of the present tree with that in Sec. 23.4. • 

Table 23.7 Labeling of Vertices in Example 1 

Vertex 
Initial 
Label 

2 112 = 2 
3 113 = 4 

4 :x; 

5 :x; 

6 :x; 

11-71 PRIM'S ALGORITHM 

Find a sh0l1est spanning tree by Prim's algorithm. Sketch it. 

1. For the graph in Prob. I, Sec. 23.4 

2. For the graph in Prob. 2. Sec. 23.4 

3. For the graph in Prob. 4, Sec. 23.4 

4. 

(I) 

113 = 4 

124 = 11 
x 

x 

6. 

Relabeling 

(ll) (Ill) (IV) 
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7. 

8. (Complexity) Show that Prim's algorithm has 
complexity 0(n2). 

9. How does Prim's algorithm prevent the formation of 
cycles as one grows T? 

10. For a complete graph (or one that is almost complete), 
if our dara is an 11 X 11 distance table (as in Prob. 12, 
Sec. 23.4). sho'" that the present algorithm [which is 
0(112

)] cannot easily be replaced by an algorithm of 
order less than 0(/12

). 

11. In what case will Prim's algorithm give S = E as the 
final result? 

12. TEAM PROJECT. Center of a Graph and Related 
Concepts. (a) Distance, eccentricity. Call the length 
of a shortest path u ~ v in a graph C = (V. E) the 
distance d(u, v) from II to v. For fixed u, call the 
greatest £1(11. u) as u ranges over V the ecce1ltricity E(II) 

of u. Find the eccentricity of vertices I, 2, 3 in the 
graph in Prob. 7. 

23.6 Flows in Networks 
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(b) Diameter, radius, center. The diameter d(C) of 
a graph C = (V, E) is the maximum of li(li. u) as u and 
u vary over V. and the radius r(C) is the smallest 
eccentricity E(V) of the vertices v. A vertex v with 
E(V) = r(C) is called a ce1ltral rertex. The set of all 
central vertices is called the center of C. Find d(C), 
r(C) and the center of the graph in Prob. 7. 

(c) What are the diameter, radius, and center of the 
spanning tree in Example I? 

(d) Explain how the idea of a center can be used in 
setting up an emergency service facility on a 
transportation network. In setting up a fire station. a 
shopping center. How would you generalize the 
concepts in the case of two or more such facilities? 

(e) Show that a tree T whose edges all have length I 
has center consisting of either one vertex or two 
adjacent vel1ices. 

<0 Set up an algorithm of complexity 0(11) for finding 
the center of a tree T. 

13. What would the result be if you applied Prim's 
algorithm to a graph that is not connected? 

14. CAS PROBLEM. Prim's Algorithm. Write a 
program and apply it to Probs. 4--6. 

After shortest path problems and problems for trees. as a third large area in combinatorial 
optimization we discuss flow problems in networks (electrical, water, communication, 
traffic, business connections, etc.), turning from graphs to digraphs (directed graphs; see 
Sec. 23.1). 

By definition, a network is a digraph G = (V, E) in which each edge (i,j) has assigned 
to it a capacity Cij > 0 r = maximum possible flow along (i, j)], and at one vertex, s, 
called the source, a flow is produced that flows along the edges of the digraph G to another 
vertex, t, called the target or sink, where the flow disappears. 

In applications, this may be the flow of electricity in wires, of water in pipes. of cars 
on roads, of people in a public transportation system. of goods from a producer to 
consumers, of e-mail from senders to recipients over the Internet, and so on. 

We denote the flow along a (directed!) edge (i, j) by fij and impose two conditions: 

1. For each edge (i, j) in G the flow does not exceed the capacity Cij, 

(1) ('"Edge condition"). 

2. For each vertex i, not s or t, 

Inflow = Outflow ("Vertex condition," "Kirchhoff's law"); 
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in a formula, 

(2) 
k 

lnnuw 

j { 

0 if vertex i =1= s. i =1= t. 

= - f at the source s, 

f at the target (sink) t, 

where f is the total flow (and at s the inflow is zero. whereas at t the outflow is zero). 
Figure 492 illustrates the notation (for some hypothetical figures). 

Fig. 492. Notation in (2): inflow and outflow for a vertex i (not 5 or t) 

Paths 
By a path VI ~ Vk from a ve11ex VI to a ve11ex Vk in a digraph G we mean a sequence 
of edges 

regardless of their directiolls ill G, that forms a path as in a graph (see Sec. 23.2). Hence 
when we travel along this path from VI to Vk we may traverse some edge ill its given 
direction-then we call it a forward edge of our path-or opposite to its given direction­
then we call it a backward edge of our path. In other words. our path consists of one­
way streets. and forward edges (backward edges) are those that we travel in the right 
direction (in the wrong direction). Figure 493 shows a forward edge (u. v) and a backward 
edge (w. v) of a path VI ~ Vk' 

CAUTION! Each edge in a network has a given direction, which we COllnot change. 
Accordingly, if (u, v) is a forward edge in a path VI ~ Vk, then (u, v) can become a backward 
edge only in another path Xl ~ Xj in which it is an edge and is traversed in the opposite 
direction as one goes from Xl to.\); see Fig. 494. Keep this in mind. to avoid misunderstandings. 

Fig. 493. Forward edge (u. v) and 
backward edge (w. v) of a path v, ~ Vk 

Flow Augmenting Paths 

Fig. 494. Edge (u, v) as forward edge in the path 
V, ~ Vk and as backward edge in the path X, ~ Xj 

Our goal will be to maximize thejlow from the sourCe s to the target t of a given network. 
We shall do this by developing mcthods for increasing an existing flow (including the 
special case in which the latter is zero). The idea then is to find a path P: s ~ t all of 
whose edges are not fully used, so that we can push additional flow through P. This 
suggests the following concept. 
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DEFINITION 

EXAMPLE 1 

Flow Augmenting Path 

A flow augmenting path in a network with a given flow Iij on each edge (i, j) is a 
path P: s ~ t such that 

(i) no forward edge is used to capacity; thus Iij < Cij for these; 

(ii) no backward edge has flow 0; thus Iij > 0 for these. 

Flow Augmenting Paths 

Find flow augmenting paths in the network in Fig. 495, where the first number is the capacity and the second 
number a given flow. 

Fig. 495. Network in Example 1 
First number = Capacity, Second number = Given flow 

Solution. In practical problems. networks are large and one needs a sy .• tematic method for augmenting 
flows, wllich we discllss ill tile next sectioll. In our small network, which should help to illustrate and clarify 
the concepts and ideas, we can find flow augmenting paths by inspection and augment the existing flow f = 9 
in Fig. 495. (The outtlow from s is 5 + 4 = 9, which equals the inflow 6 + 3 into t.) 

We use the notation 

for forward edges 

llij = hj for backward edge~ 

II = min ti ij taken over all edges of a path. 

From Fig. 495 we see that a flow augmenting path PI: s --> t is Pt= 1 - 2 - 3 - 6 (Fig. 496). with 
j.I2 = 20 - 5 = 15. etc .. and j. = 3. Hence we can use PI to increase the given flow 9 to f = 9 + 3 = 12. 
All three edges of PI are forward edges. We augment the flow by 3. Then the flow in each of the edges of PI 

is increased by 3. so that we now have .fI2 = 8 (instead of 5), f23 = 11 (instead of 8), and h6 = 9 (instead 
of 6). Edge (2. 3) is now used to capacity. The flow in the other edges remains as before. 

We shall now try to increase the flow in thi~ network in Fig. 495 beyond f = 12. 
There is another flow augmenting path P2 : s --> t. namely. P2 : J - 4 - 5 - 3 - 6 (Fig. 496). [t shows how a 

backward edge comes in and how it is handled. Edge (3. 5) is a backward edge. It has now 2, so that tl.35 = 2. 
We compute tl.14 = 10 - 4 = 6. etc. (Fig. 496) and .i = 2. Hence we can use P2 for another augmentation to 
get f = 12 + 2 = 14. The new flow is shown in Fig. 497. No further augmentation is possible. We shall confirm 
later that f = 14 is maximum. • 

"'23 = 3 
)-------i!~3 

r
~6"'4 

s~ "'35=2 @t 

~4~5 
""45 = 3 

Fig. 496. Flow augmenting paths in Example 1 
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Cut Sets 
A "cut set" is a set of edges in a network. The underlying idea is simple and natural. If 
we want to find out what i~ flowing from s to t in a network, we may cut the network 
somewhere between sand t (Fig. 497 shows an example) and see what is t10wing in the 
edges hit by the cut. because any flow from s to t must sometimes pass through some of 
these edges. These form what is called a cut set. [In Fig. 497, the cut set consists of the 
edges (2, 3), (5, 2), (4, 5).] We denote this cut set by (S, T). Here S is the set of vertices 
on that side of the cut on which s lies (S = {s, 2, 4} for the cur in Fig. 497) and T is the 
set of the other vertices (T = {3, 5, t} in Fig. 497). We say that a cut "partitiolls" the 
vertex set V into two parts Sand T. Obviously, the corresponding cut set (S, T) consists 
of all the edges in the network with one end in S and the other end in T. 

Fig. 497. Maximum flow in Example 1 

By definition, the capacity cap (S, T) of a cut set (S, T) is the sum of the capacities of all 
forward edges in (S, T) (forward edges only!), that is, the edges that are directed from S to T, 

(3) cap (S, T) = LCij [sum over the forward edges of (S, T)]. 

Thus, cap (S, T) = II + 7 = 18 in Fig. 497. 
The other edges (directedji-ol11 T to S) are called backward edges of the cut set (S, T), 

and by the net flow through a cut set we mean the sum of the t10ws in the forward edges 
minus the sum of the flows in the backward edges of the cut set. 

CAUTION! Distinguish well between forward and backward edges in a cut set and in 
a path: (5, 2) in Fig. 497 is a backward edge for the cut shown but a forward edge in the 
path 1 - 4 - 5 - 2 - 3 - 6. 

For the cut in Fig. 497 the net flow is II + 6 - 3 = 14. For the same cut in Fig. 495 (not 
indicated there), the net flow is 8 + 4 - 3 = 9. In both cases it equals the flow f. We claim 
that this is not just by chance, but cuts do serve the purpose for which we have introduced them: 

Net Flow in Cut Sets 

AllY gil'e1l flow ill a network G is the net flow through a1lY cut set (S, T) of G. 

PROOF By Kirchhoff's law (2), multiplied by - L at a vertex i we have 

(4) L fij - L fh = [0 
j 1 f 

if i =I- 05, t, 

if i = s. 
~~ 

Oulilow Inflow 
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THEOREM 2 

Here we can sum over j and I from 1 to 11 (= number of vertices) by putting fij = 0 for 
j = i and also for edges without flow or nonexisting edges; hence we can write the two 
sums as one, 

if i =I- s, t, 

if i = s. 

We now sum over all i in S. Since s is in S, this sum equals f: 

(5) :L :L (fij - fji) = f· 
iES jEV 

We claim that in this sum, only the edges belonging to the cut set contlibute. Indeed, 
edges with both ends in T cannot contribute, since we sum only over i in S; but edges 
(i,j) with both ends in S contribute + fij at one end and - fij at the other, a total contribution 
of O. Hence the left side of (5) equals the net flow through the cut set. By (5), this is equal 
to the flow f and proves the theorem. • 

This theorem has the following consequence. which we shall also need later in this section. 

Upper Bound for Flows 

A pow f ill a network G cannot exceed the capacity of any cut set (S, 1) in G. 

PROOF By Theorem I the flow f equals the net flow through the cut set. f = f 1 - f 2' where f 1 

is the sum of the flows through the forward edges and f2 (~ 0) is the sum of the flows 
through the backward edges of the cut set. Thus f ~ fl' Now f 1 cannot exceed the sum 
of the capacities of the forward edges; but this sum equals the capacity of the cut set, hy 
definition. Together, f ~ cap (S, 1), as asserted. • 

THEOREM 3 

Cut sets will now bring out the full importance of augmenting paths: 

Main Theorem. Augmenting Path Theorem for Flows 

A pow from s to t in a network G is maximum (f and only (f there does not exist a 
flow augmenting path s ~ t ill G. 

PROOF (a) If there is a flow augmenting path P: s ~ t, we can use it to push through it an 
additional flow. Hence the given t10w cannot be maximum. 

(b) On the other hand, suppose that there is no flow augmenting path s ~ t in G. Let 
So be the set of all vertices i (induding .1') such that there is a flow augmenting path s ~ i, 
and let To be the set of the other vertices in G. Consider any edge (i, j) with i in So and 
j in To. Then we have a t10w augmenting path s ~ i since i is in So, but s ~ i ~ j is not 
t10w augmenting because j is not in So. Hence we must have 

(6) 
[

forward 
if (i, j) is a edge of the path s ~ i ~ j. 

backward 
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Otherwise we could use (i, j) to get a flow augmenting path s ---+ ; ---+ j. Now (So, To) 
defines a cut set (since I is in To: why?). Since by (6), forward edges are used to capacity 
and backward edges carry no flow, the net flow through the cut set (So, To) equals the 
sum of the capacities of the forward edges. which is cap (So. To) by definition. This net 
t10w equals the given flow f by Theorem 1. Thus f = cap (So, To). We also have 
f ~ cap (So, To) by Theorem 2. Hence f must be maximum since we have reached 
~w~. • 

The end of this proof yields another basic result (by Ford and Fulkerson, Canadian JOlln1al 
of Mathematics 8 (1956), 399-404), namely. the so-called 

THEOREM 4 Max-Flow Min-Cut Theorem 

The maximum flow ill any network G equals the capacity of a "minimum cut set"' 
(= a cut set of minimum capacity) in G. 

PROOF We have just seen that f = cap (So, To) for a maximum flow f and a suitable cut set 
(So, To). Now by Theorem :2 we also have f ~ cap (S. T) for this f and any cut set (S, T) 

in G. Together, cap (So, To) ~ cap (S, n. Hence (So, To) is a minimum cut set. 
The existence of a maximum flow in this theorem follows for rational capacities from 

the algorithm in the next section and for arbitrary capacities from the Edmonds-Karp BFS 
also in that section. • 

The two basic tools in connection with networks are flow augmeming paths and cut sets. 
In the nexl section we show how flow augmenting paths can be used in an algorithm for 
maximum flows. 

-•... _ .... _ .... _ ........ .-. .. --
= __ ..... -.· ..... lA__.. _____ ...... 

11-41 FLOW AUGMENTING PATHS 3. 
Find flow augmenting paths: 

1. 

2. 4. 
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~! MAXIMUM FLOW 15. [L 2. 4. 6 I 
Find the maximum flow by inspection: 16. [1,2.3.4,51 

S. In Prob. 1. 

6. In Prob. 2. 
17. In Fig. 498 find a minimum cut set and its capacity. 

7. In Prob. 3. 

8. In Prob. 4. 

!9-11! CAPACITY 

In Fig. 495 find T and cap (5. T) if 5 equals 

9. [1,2.31 

10. [I. 2.4.51 Fig. 498. 

11. [1, 3, 51 

12. Find a minimum cut set in Fig. 495 and verify that its 
capacity equals the maximum flow I = 14. 

18. Why are backward edge~ not considered III the 
definition of the capacity of a cut set? 

19. In which case can an edge U, j) be used as a forward 
as well as a backward edge of a path in a network with 
a given flow? 

13. Find examples of flow augmenting paths and the 
maximum flow in the network in Fig. 498. 

lB~ CAPACITY 
In Fig. 498 find T and cap (5. T) if 5 equals 

14. [1,2,41 

23.7 Maximum Flow: 

20. (Incremental network) Sketch the network in Fig. 
498, and on each edge (i,j) write Cij - Iij and Iij' Do 
you recognize that from this "incremental network" one 
can more easily see flow augmenting paths? 

Ford-Fulkerson Algorithm 
Flow augmenting paths, as discussed in the last section. are used as the basic tool in the 
Ford-Fulkerson4 algorithm in Table 23.8 on the next page in which a given flow (for instance, 
zero flow in all edges) is increased until it is maximum. The algOlithm accomplishes the 
increa-;e by a stepwise construction of flow augmenting paths. one at a time. until no further 
such paths can be constructed, which happens precisely when the tlow is maximum. 

In Step I, an initial t10w may be given. In Step 3, a vertex j can be labeled if there is 
an edge (i. j) with i labeled and 

("forward edge") 

or if there is an edge (j, i) with i labeled and 

f ·· > 0 • JZ ("backward edge"). 

To scan a labeled vertex i means to label every unlabeled vertex j adjacent to i that can 
be labeled. Before scanning a labeled vertex i, scan all the vertices that got labeled before 
i. This BFS (Breadth First Search) strategy was suggested by Edmonds and Karp in 
1972 (Journal ofrhe Associariollfor Compllring Machinery 19, 248-64). It has the effect 
that one gets shortest possible augmenting paths. 

4LESTER RANDOLPH FORD (horn 1927) and DELBERT RAY FULKERSON (1924-1976), American 
mathematicians known for their pioneering work on flow algorithms. 
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Table 23.8 Ford-Fulkerson Algorithm for Maximum Flow 
Cllllllcllll1l JOl/mlll of Mathematics 9 (1957),210--218 

I ALGORITHM FORD-FULKERSON 

[G = (V, E), vertices 1 (= s) . .... 11 (= t). edges (i.j), Cij] 

This algorithm computes the maximum flow in a network G with source s. sink t. and 
capacities Cij > 0 of the edges (i, j). 

INPUT: 11, s = I, t = 11. edges (i, j) of G. Cij 

OUTPUT: Maximum flow f in G 

1. Assign an initial flow fij (for instance, fij = 0 for all edges), compute f. 
2. Label s by 0. Mark the other veltices "lIlllabeled." 

3. Find a labeled vertex i that has not yet been scanned. Scan i as follows. For every 
unlabeled adjacent veltexj, if Cij > fij' compute 

and 
[

L11j 

j,j = . 
mm (Ll· Ll .) l' 1J if i > I 

if i = 1 

and labelj with a ':forward label" (i+, L1j ); or if fji > 0, compute 

and labelj by a "backward label"' (C, Ll). 

If no such j exists then OUTPUT f. Stop 

[f is the maximum flmr.] 

Else continue (that is, go to Step -l). 

4. Repeat Step 3 until t is reached. 

[This gives a flow allgmellting path P: s ~ t.] 

[f it is impossible to reach t then OUTPUT f. Stop 

[f is the maximum flow.J 

Else continue (that is. go to Step 5). 

5. Backtrack the path P, using the labels. 

6. Using P, augment the existing flow by !::"t. Set f = .f + Ll,. 

7. Remove all labels from veltices 2, ... , 11. Go to Step 3. 

End FORD-FULKERSON 

E X AMP L ElFord-Fulkerson Algorithm 

Applying the Ford-Fulkerson algorithm, determine the maximum flow for the network in Fig. 499 (which is 
the same as that in Example I. Sec. 23.6. ~o that we can compare). 

Solu lion. The algorithm proceeds as follows. 

1. An initial flow.f = 9 is given. 

2. Label of (= I) by 0. Mark 2, 3, 4. 5, 6 "unlabeled." 
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Fig. 499. Network in Example 1 with capacities (first numbers) and given flow 

3. Scan I. 

Compute J.12 = 20 - 5 = IS = J.2. Label 2 by (1 +, IS). 

Compute J.14 = 10 - 4 = 6 = ,).4' Label 4 by (1 +. 6). 

4. Scan 2. 

Compute .1.23 = II - 8 = 3. ~3 = min (~2' 3) = 3. Label 3 by (2+. 3). 

Compute ~5 = min (tl.2• 3) = 3. LabelS by (T, 3). 

Scan 3. 

Compute .1.36 = 13 - 6 = 7, J.6 = ~t = min (~3' 7) = 3. Label 6 by (3+, 3). 

5. P: I - 2 - 3 - 6 (= t) is a flow augmenting path. 

981 

6. J.t = 3. Augmentation gives h2 = 8. 123 = II. 136 
1 = 9 + 3 = 12. 

9. other /;j unchanged. Augmented flow 

7. Remove labels on vertices 2 ..... 6. Go 10 Step 3. 

3. Scan I. 

Compute .112 = 20 - 8 = 12 = .:).2' Label 2 by (I +, 12). 

Compute ~14 = 10 - 4 = Ii = tl.4. Label 4 by 11 +, 6). 

4. Scan 2. 

Compute J.5 = min (.1.2, 3) = 3. LabelS by (2-, 3). 

Scan 4. [No I'ertex left forlabelillg.] 

Scan 5. 

Compute,).3 = min (.15 , 2) = 2. Label 3 by (5-. 1). 

Scan 3. 

Compute J.36 = 13 - 9 = 4 . .16 = min (.1.3, 4) = 2. Label Ii by (3+, 2). 

5. P: I - 2 - 5 - 3 - 6 (= t) is a flow augmenting path. 

6. .1.r. = 2. Augmentalion gives h2 = 10./52 = I. i35 = 0, 136 = II, other Ji] unchanged. Augmented 
flow 1 = 12 + 2 = 14. 

7. Remove labels on vertice~ 2, ... , Ii. Go to Step 3. 

One can now scan I and then scan 2, as before, but in scanning 4 and then 5 one finds that no vertex is left for 
labeling. Thus one can no longer reach 1. Hence the flo" obtained (Fig. 500) is maximum, in agreement with 
our result in the last section. • 

Fig. 500. Maximum flow in Example 1 
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1. Do the computations indicated near the end of Example 
1 in detail. 

2. Solve Example 1 by Ford-Fulkerson with initial now 
O. Is it more work than in Example I? 

3. Which are the "bottleneck" edges by which the flow 
in Example 1 is actually limited? Hence which 
capacities could be decreased without decreasing the 
maximum How? 

14-71 MAXIMUM FLOW 

Find the maximum How by Ford-Fulkerson: 

4. In Prob. 2, Sec. 23.6. 

5. In Prob. I, Sec. 23.6. 

6. In Prob. 4, Sec. 23.6. 

7. In Prob. 3, Sec. 23.6. 

8. What is the (simple) reason that Kirchhoffs law is 
preserved in augmenting a flow by the use of a flow 
augmenting path? 

9. How does Ford-Fulkerson prevent the fOimation of 
cycles? 

10. How can you see that Ford-Fulkerson follows a BFS 
technique? 

11. Are the consecutive How augmenting paths produced 
by Ford-Fulkerson unique"! 

12. (Integer flow theorem) Prove that if the capacities in 
a network G are integers. then a maximum How exists 
and is an integer. 

13. CAS PROBLEM. Ford-Fulkerson. Write a program 
and apply it to Probs. 4-7. 

23.8 Bipartite Graphs. 

14. If the Ford-Fulkerson algorithm stops without reaching 
t. sho~ that the edges with one end labeled and the 
other end unlabeled form a cut set (S. T) whose 
capacity equals the maximum flow. 

15. (Several sources and sinks) If a network has several 
sources Sl' ... , Sk' sho\\ that it can be reduced to the 
case of a single-source network by introducing a new 
vertex S and connecting S to Slo •.•• Sk by k edges of 
capacity 0/:). Similarly if there are several sinks. lllustrate 
tlus idea by a network with two sources and two sinks. 

16. Find the maximum flow in the network in Fig. 50 I with 
two sources (factories) and two sinks (consumers). 

17. Find a minimum cut set in Fig. 499 and its capacity. 

18. Show that in a network G with all Cij = I, the maximum 
flow equals the number of edge-disjoint paths s ~ t. 

19. In Prob. 17, the cut set contains precisely all forward 
edges used to capacity by the maximum How 
(Fig. 500). Is this just by chance? 

20. Show that in a network G with capacities all equal to 
I, the capacity of a minimum cut set (S, T) equals the 
minimum number q of edges whose deletion destroys 
all directed paths S ~ t. (A directed path v ~ w is a 
path in which each edge has the direction in which it 
is traversed in going from v to w.) 

Fig. 501. Problem 16 

Assignment Problems 
From digraphs we return to graphs and discuss another impOitant class of combinatOlial 
optimization problems that arises in assignment problems of workers to jobs, jobs to 
machines, goods to storage, ships to piers. classes to classrooms, exams to time periods, 
and so on. To explain the problem, we need the following concepts. 

A bipartite graph G = (V, E) is a graph in which the veltex set V is partitioned into two 
sets 5 and T (without common elements, by the definition of a partition) such that every 
edge of G has one end in 5 and the other in T. Hence there are no edges in G that have both 

ends in 5 or both ends in T. Such a graph G = (V, E) is also written G = (5, T; E). 
Figure 502 shows an illustration. V consists of seven elements, three workers a, b, c, 

making up the set 5, and four jobs I, 2. 3, 4, making up the set T. The edges indicate that 
worker {/ can do the jobs 1 and 2, worker b the jobs I, 2, 3, and worker c the job 4. The 
problem is to assign one job to each worker so that every worker gets one job to do. This 
suggests the next concept, as follows. 



SEC. 23.8 Bipartite Graphs. Assignment Problems 983 

DEFINITION Maximum Cardinality Matching 

A matching in G = (S. T; E) is a set M of edges of G such that no two of them 
have a vertex in common. If M consists of the greatest possible number of edges. 
we call it a maximum cardinality matching in G. 

For in<;tance, a matching in Fig. 502 is Ml = {(a. 2), (b. l)}. Another is M2 = {(a, 1), 
(b, 3), (c, 4)}; obviously, this is of maximum cardinality. 

s T 

:~: 
c ____ 

4 

Fig. 502. Bipartite graph in the assignment 
of a set 5 = {a, b, c} of workers 
to a set T = {l, 2. 3. 4} of jobs 

A vertex v is exposed (or /lot covered) by a matching M if v is not an endpoint of an 
edge of M. This concept. which always refers to some matching, will be of interest when 
we begin to augment given matchings (below). If a matching leaves no vertex exposed. 
we call it a complete matching. Obviously, a complete matching can exist only if Sand 
T consist of the same number of vertices. 

We now want to show how one can stepwise increase the cardinality of a matching M 
until it becomes maximmn. Central in this task is the concept of an augmenting path. 

An alternating path is a path that consists alternately of edges in M and not in M 
(Fig. 503A). An augmenting path is an alternating path both of whose endpoints (a and b 
in Fig. 503B) are exposed. By dropping from the matching M the edges that are on an 
augmenting path P (two edges in Fig. 503B) and adding to M the other edges of P (three 
in the figure), we get a new matching, with one more edge than M. This is how we use 
an augmenting path in augmenting a given matching by one edge. We assert that this 
will always lead, after a number of steps, to a maximum cardinality matching. Indeed, the 
basic role of augmenting paths is expressed in the following theorem. 

(Al Alternating path 

(8) Augmenting path P 

Fig. 503. Alternating and augmenting paths. 
Heavy edges are those belonging to a matching M. 
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THEOREM 1 Augmenting Path Theorem for Bipartite Matching 

A matching M ill a bipartite graph G = (S, T; E) is of mllximum cardillality if alld 
only if there does not exist an augmenting path P witlz respect to M. 

PROOF (a) We show that if such a path P exists. then M is not of maximum cardinality. Let P 
have q edges belonging to M. Then P has q + I edges not belonging to M. (In Fig. 503B 
we have q = 2.) The endpoints a and b of P are exposed. and all the other vertices on P 
are endpoints of edges in M. by the definition of an alternating path. Hence if an edge of 
M is not an edge of P. it cannot have an endpoint on P since then M would not be a 
matching. Consequently. the edges of M not on P. together with the q + 1 edges of P not 
belonging to M form a matching of cardinality one more than the cardinality of M because 
we omitted q edges from M and added q + I instead. Hence M cannot be of maximum 
cardinality. 

(b) We now show that if there is no augmenting path for M, then M is of maximum 
cardinality. Let M';' be a maximum cardinality matching and consider the graph H 
consisting of all edges that belong either to M or to M*. but not to both. Then it is possible 
that two edges of H have a vertex in common. but three edges cannot have a vertex in 
common since then two of the three would have to belong to M (or to M*), violating that 
M and M-;' are matchings. So every v in V can be in common with two edges of H or with 
one or none. Hence we can characterize each "component" (= maximal cOllllected subset) 
of H as follows. 

(A) A component of H can be a closed path with an even number of edges (in the case 
of an odd number, two edges from M or two from M* would meet. violating the matChing 
property). See (A) in Fig. 504. 

(B) A component of H can be an open path P with the same number of edges from M 
and edges from M*, for the following reason. P must be alternating. that is, an edge of 
M is followed by an edge of M*. etc. (since M and M':' are matchings). Now if P had an 
edge more from M*, then P would be augmenting for M [see (B2) in Fig. 504]. 
contradicting our assumption that there is no augmenting path for M. If P had an edge 
more from M, it would be augmenting for M'~ [see (B3) in Fig. 504]. violating the 
maximum cardinality of M*. by part (a) of this proof. Hence in each component of H. the 
two matchings have the same number of edges. Adding to this the number of edges that 
belong to both M and M* (which we left aside when we made up H), we conclude that 
M and M* must have the same number of edges. Since M* is of maximum cardinality, 
this shows that the same holds for M, as we wanted to prove. • 

. .. 
(Al 

, .... 

'"._---_. --. 
-EdgefromM 

---- Edge from M'" 

(81) .----__ .---._- '---"-'_--.. (Possible) 

(82) .--- ... __ - __ ---. - .--- .. (Augmenting for M) 

(83) ___ .---. ~'---''''''''''--4. (Augmenting for M") 

Fig. 504. Proof of the augmenting path theorem for bipartite matching 
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This theorem suggests the algorithm in Table 23.9 for obtaining augmenting paths. in 
which vertices are labeled for the purpose of backtracking paths. Such a label is ill additiol1 
to the number of the vertex, which is also retained. Clearly, to get an augmenting path. 
one must start from an exposed vertex. and then trace an alternating path until one arrives 
at another exposed vertex. After Step 3 all vertices in S are labeled. In Step 4. the set T 
contains at least one exposed vertex. since otherwise we would have stopped at Step I. 

Table 23.9 Bipartite Maximum Cardinality Matching 

ALGORITHM MATCHING [G = (S, T; E), M, n] 

This algorithm determines a maximum cardinality matching M in a bipartite graph G by 
augmenting a given matching in G. 

INPUT: Bipartite graph G = (S, T; E) with ve11ices I, ... ,11, marching Min G (for 
instance, M = 0) 

OUTPUT: Maximum cardinality matching M in G 

1. If there is no exposed vertex in S then 

OUTPUT M. Stop 

[M is of maxilllulIl cardillality ill G.] 

Else label all exposed vertices ill S with 0. 

2. For each i in S and edge U, j) l10t in M, label j with i, unless already labeled. 

3. For each 11011exposed j in T. label i with j, where i is the other end 

of the unique edge U. j) in M. 

-I. Backtrack the alternating paths P ending on an exposed vertex in T 

by using the labels on the ve11ices. 

5. If no P in Step 4 is augmenting then 

OUTPUT M. Stop 

[M is of maximum cardinality ill G.] 

Else augment M by using an augmenting path P. 

Remove all labels. 

Go to Step I. 

End MATCHING 

E X AMP L E 1 Maximum Cardinality Matching 

Is the matching Ml in Fig. SOSa of maximum cardinality? If not. augment it until maximum cardinality is reached. 

(aJ Given graph 

and matChing M
J 

3 

3 

S T 

5 3 7 2 

o 4 B 3 

(b) Matching M2 
and new labels 

Fig. 505. Example 1 
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Solution. We apply the algorithm. 

1. Label I and.J. with 0. 

2. Label 7 with I. Label 5. 6. !l with 3. 

3. Label 2 with 6, and 3 with 7. 

[All I'afices are now labeled (IS shown in Fig. 474a.] 

4. PI: 1 - 7 - 3 - 5. [By backtracking, PI is augmenting.] 

P2: I - 7 - 3 - 8. [P2 is lIugmellfillg.j 

5. Augment MI by using Pl' dropping (3,7) from MI and including (I, 7) and (3. 5). 

Remove all label~. Go to Step I. 

Figure 474b shows the resulting matching M2 = {(I. 7). (2, 6). (3. 5)j. 

1. Label.J. with 0. 

2. Label 7 with 2. Label 6 and !l with 3. 

3. Label I with 7. and 2 with 6. and 3 with 5. 

4. P3 : 5 - 3 - 8. [P3 is aitematillg but /lot aug11lellfing.] 

5. Stop. M2 is otl1lllxi11l11111 cardillality (namely, 3) . 

.. --
11-6/ BIPARTITE OR NOT? I S-lO I AUGMENTING PATHS 
Are the following graphs bipartite? If you answer is yes, 
find S and T. 

1.~ 

3.~ 

~ 

2. cp------<f 

dr---4 

hnd an augmenting path: 

s.:\: 
~ 
~ 
~ 

10. 

7 

9. 

111-131 MAXIMUM CARDINALITY MATCHING 

• 

Augmenting the given matching, find a maximum 
cardinality matching: 

7. Can you obtain the answer to Prob. 3 from that to 
Prob. I? 

11. In Prob. 9. 

12. In Prob. 8. 

13. In Prob. 10. 



Chapter 23 Review Questions and Problems 

14. (Scheduling and matching) Three teachers Xl, X2' -'3 

teach four classes )'1, Y2, Y3, Y4 for these numbers of 
periods: 

Y1 Y2 y .3 " .4 

Xl 0 1 1 

X2 1 I 1 

-'"3 0 1 1 

Show that this arrangement can be represented by a 
bipartite graph G and that a teaching schedule for one 
period corresponds to a matching in G. Set up a 
teaching schedule with the smallest possible number of 
periods. 

15. (Vertex coloring and exam scheduling) What is 
the smallest number of exam periods for six subjects 
a, b, c, d, e, t if some of the students simultaneously 
take a, b, t, some c, d, e, some a, c, e, and some c, e? 
Solve this as follows. Sketch a graph with six vertices 
a, ... , t and join vertices if they represent subjects 
simultaneously taken by some students. Color the 
vertices so that adjacent vertices receive different 
colors. (Use numbers L 2, ... instead of actual colors 
if you want) What is the minimum number of colors 
you need? For any graph G, this minimum number is 
called the (vertex) chromatic number Xv(G). Why is 
this the answer to the problem? Write down a possible 
schedule. 

16. How many colors do you need in vertex coloring the 
graph in Prob. 5? 

17. Show that all trees can be vertex colored with two 
colors. 

18. (Harbor management) How many piers does a 
harbor master need for accommodating six cruise ships 
51, "', 56 with expected dates of arrival A and 
departure D in July, (A, D) = (10, 13), (13, 15), 
(14, 17), (\2, 15), (16, 18), (\4, 17), respectively, if 
each pier can accommodate only one ship, arrival being 
at 6 a:m and departures at 11 p:m? Hint. Join 5i and 5j 

by an edge if their intervals overlap. Then color 
vertices. 

19. What would be the answer to Prob. 18 if only the five 
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ship~ 51> ... , 55 had to be accommodated? 

20. (Complete bipartite graphs) A bipartite graph 
G = (5, T: E) is called complete if every vertex in 5 
is joined to every vertex in Tby an edge, and is denoted 
by Kn1,,%, where n1 and n2 are the numbers of vertices 
in 5 and T, respectively. How many edges does this 
graph have? 

21. (Planar graph) A planar graph is a graph that can be 
drawn on a sheet of paper so that no two edges cross. 
Show that the complete graph K4 with four vertices is 
planar. The complete graph K5 with five vertices is not 
planar. Make this plausible by attempting to draw K5 

so that no edges cross. Interpret the result in terms of 
a net of roads between five cities. 

22. (Bipartite graph K3,3 not planar) Three factories 1, 
2, 3 are each supplied underground by water, gas, and 
electricity, from points A, E, C, respectively. Show that 
this can be represented by K3 •3 (the complete bipartite 
graph G = (5. T; £) with 5 and T consisting of three 
vertices each) and that eight of the nine supply lines 
(edges) can be laid out without crossing. Make it 
plausible that K3 .3 is not planar by attempting to draw 
the ninth line without crossing the others. 

23. (Four- (vertex) color theorem) The famous Jour-color 
theorem states that one can color the vertices of any 
planar graph (so that adjacent vertices get different 
colors) with at most four colors. It had been conjectured 
for a long time and was eventually proved in 1976 
by Appel and Haken [Illinois J. Math 21 (1977), 
429-5671. Can you color the complete graph K5 with 
four colors? Does the result contradict the four-color 
theorem? (For more details, see Ref. [F8] in App. I.) 

24. (Edge coloring) The edge chromatic number xeCG) of 
a graph G is the minimLUll number of colors needed for 
coloring the edges of G so that incident edges get 
different colors. Clearly, Xe(G) ;;; max d(u), where d(lI) 
is the degree of vertex u. If G = (5, T; E) is bipartite, 
the equality sign holds. Prove this for Kn .n . 

25. Vizing's theorem states that for any graph G (without 
multiple edges!). max d(u) ~ Xe(G) ~ max d(u) + I. 
Give an example of a graph for which Xe( G) does 
exceed max d(u). 

.. - :«;::.,w. :::''''==::== S T ION SAN D PRO B L EMS 

1. What is a graph? A digraph? A tree? A cycle? A path? 

2. State from memory how you can handle graphs and 
digraphs on computers. 

3. Describe situations and problems that can be modeled 
using graphs or digraphs. 

4. What is a shortest path problem? Give applications. 

5. What is BFS? DFS? In what connection did these 
concepts occur? 

6. Give some applications in which spanning trees playa 
role. 

7. What are bipartite graphs? What applications motivate 
this concept? 
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8. What is the traveling salesman problem? 

9. What is a network? What optimization problems are 
connected with it? 

10. Can a forward edge in one path be a backward edge in 
another path? [n a cut set? Explain. 

11. There is a famous theorem on cut sets. Can you 
remember and explain it? 

112-171 MATRICES FOR GRAPHS OR DIGRAPHS 

Find the adjacency matrix of: 

12. 

14. 

16. 

~ 
B 

15. 

fA 
\!dJ 
17.~ 

~ 

21. Make a vertex incidence list of the digraph in Prob. 13. 

22. Make a vertex incidence list of the digraph in Prob. 14. 

/23-28/ SHORTEST PATHS 
Find a shortest path and its length by Moore's BFS 
algorithm. assuming that all the edges have length I: 

23. / ......... t 24. 
/.:~~>---:\ 
sVI~/ 

Find shortest paths by Dijkstra's algorithm: 

26. }gt48 2 27. 017 3 
2 810 10 6 2 

28 
4 3 

4 2 3 4 

28. 

29. (Shortest spanning tree) Find a shortest spanning tree 
for the graph in Prob. 26. 

30. Find a shortest ~panning tree in Prob. 27. 

31. Cayley's theorem states that the number of spanning 
trees in a complete graph with II vertices is nn-2. Verify 
this for f1 = 2. 3. 4. 

32. Show that 0(1Il3) + 0(1112) = 0(11/3). 

133-341 MAXIMUM FLOW. 
Find the maximum flow. where the given numbers are 
capacities: 

33. 

34. 

35. Company A has offices in Chicago. Los Angeles. and 
New York. Company B in Boston and New York. 
Company C in Chicago, Dallas, and Los Angeles. 
Represent this by a bipartite graph. 

36. (Maximum cal'dinality matching). Augmenting the 
given matching. find a maximum cardinality matching: 
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Graphs and Combinatorial Optimization 

Combinatorial optimization concerns optimIzation problems of a discrete or 
combinatorial stmcture. It uses graphs and digraphs (Sec. 23.1) as basic tools. 

A graph G = (V. E) consists of a set V of vertices VI, V2, .•.• V n • (often simply 
denoted by I. 2 .... , /I) and a set E of edges el' e2' .... em. each of which connects 
two ve11ices. We also write (i. j) for an edge with vertices i and j as endpoints. A 
digraph (= directed graph) is a graph in which each edge has a direction (indicated 
by an arrow). For handling graphs and digraphs in computers. one can use matrices 
or lists (Sec. 23.1). 

This chapter is devoted to important classes of optimization problems for graphs 
and digraphs that all arise from practical applications. and corresponding algorithms, 
as follows. 

In a shortest path problem (Sec. 23.2) we determine a path of minimum length 
(consisting of edges) from a vertex s to a ve11ex t in a graph whose edges (i.j) have 
a "'length" lij > O. which may be an actual length or a travel time or cost or an 
electrical resistance [if (i, j) is a wire in a net], and so on. Dijkstra's algorithm 
(Sec. 23.3) or, when all lij = I, Moore's algorithm (Sec. 23.2) are suitable for 
these problems. 

A tree is a graph that is connected and has no cycles (no closed paths). Trees are 
very important in practice. A ~P(/l111illg tree in a graph G is a tree containing all the 
vertices of G. If the edges of G have lengths, we can detenrune a shortest spanning 
tree, for which the sum of the lengths of all its edges is minimum, by Kruskal's 
algorithm or Prim's algorithm (Sees. 23.4, 23.5). 

A network (Sec. 23.6) is a digraph in whieh each edge (i. j) has a capacity 
Cij > 0 [= maximum possible flow along (i. j)] and at one ve11ex, the source s. a 
flow is produced that flows along the edges to a vertex t, the sink or target, where 
the flow disappears. The problem is to maximize the tlow, for instance. by applying 
the Ford-Fulkerson algorithm (Sec. 23.7), which uses flow augmenting paths 
(Sec. 23.6). Another related concept is that of a cut set, as defined in Sec. 23.6. 

A bipartite graph G = (V, E) (Sec. n.8) is a graph whose vertex set V consists 
of two parts Sand T such that every edge of G has one end in S and the other in T, 
so that there are no edges connecting vertices in S or ve11ices in T. A matching in 
G is a set of edges. no two of which have an endpoint in common. The problem 
then is to find a maximum cardinality matching in G. that is. a matching M that 
has a maximum number of edges. For an algorithm. see Sec. 23.8. 
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CHAPTER 25 
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Probability, 
Statistics 

Data Analysis. Probability Theory 

Mathematical Statistics 

Probability theory (Chap. 24) provides models of probability distributions (theoretical 
models of the observable reality involving chance effects) to be tested by statistical 
methods, and it will also supply the mathematical foundation of these methods in Chap. 25. 

Modern mathematical statistics (Chap. 25) has various engineering applications, for 
instance, in testing materials, control of production processes, quality control of production 
outputs, perfOlmance tests of systems, robotics. and automatization in general, production 
planning, marketing analysis, and so on. 

To this we could add a long list of fields of applications, for instance, in agriculture, 
biology, computer science, demography, economics, geography, management of natural 
resources, medicine, meteorology, politics, psychology, sociology, traffic control, urban 
planning, etc. Although these applications are very heterogeneous, we shall see that most 
statistical methods are universal in the sense that each of them can be applied in various 
fields. 

Additional Software for Probability and Statistics 
See also the list of software at the beginning of Part E on Numerical Analysis. 
DATA DESK. Data Description, Inc., Ithaca, NY. Phone 1-800-573-5121 or 
(607) 257-1000, website at www.datadescription.com. 
MINITAB. Minitab, Inc., College Park, PA. Phone 1-800-448-3555 or (814) 238-3280, 
website at www.minitab.com. 
SAS. SAS Institute, Inc., Cary, NC. Phone 1-800-727-0025 or (919) 677-8000, website 
at www.sas.com. 
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S-PLUS. Insightful Corporation, Inc., Seattle, W A. Phone 1-800-569-0123 or 
(206) 283-8802, website at www.insightful.com. 
SPSS. SPSS, Inc., Chicago, [L. Phone 1-800-543-2185 or (312) 651-3000, website at 
www.spss.com. 
STATISTIC.I\. StatSoft, Inc., Tulsa, OK. Phone (918) 749-1119, website at 
www.statsoft.com. 
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CHAPTER 24 

Data Analysis. 
Probability Theory 

We first show how to handle data numelically or in terms of graphs, and how to extract 
information (average size. spread of data, etc.) from them. If these data are influenced by 
"chance," by factors whose effect we cannot predict exactly (e.g., weather Jata, stock 
prices, lifespans of tires, etc.), we have to rely on probability theory. This theory 
originated in games of chance, such as flipping coins, rolling dice, or playing cards. 
Nowadays it gives mathematical models of chance processes called random experiments 
or, briefly, experiments. In such an experiment we observe a random variable X, that 
is, a function whose values in a trial (a pelfOimance of an experiment) occur "by chance" 
(Sec. 24.3) according to a probability distribution that gives the individual probabilities 
with which possible values of X may occur in tlle long run. (Example: Each of the six 
faces of a die should occur witll the same probability. l/6.) Or we may simultaneously 
observe more than one random variable, for instance. height alld weight of persons or 
hardness alld tensile strength of steel. This is discussed in Sec. 24.9, which will abo give 
the basis for tlle mathematical justification of the statistical methods in Chap. 25. 

Prereqllisite: Calculus. 
References and Answers to Problems: App. L Part G, App. 2. 

24.1 Data Representation. Average. Spread 
Data can be represented numelically or graphically in various ways. For instance, your daily 
newspaper may contain tables of stock plices and money exchange rates, curves or bar charts 
illustrating economical or political developments, or pie charts showing how your tax dollar 
is spent. And there are numerous other representations of data for special purposes. 

In this section we discuss the use of standard representations of data in statistics. (For 
these, software packages, such as DATA DESK and MINITAB, are available, and Maple 
or Mathematica may also be helpful; see pp. 778 and 991) We explain corresponding 
concepts and methods in terms of typical examples, beginning with 

(1) 89 84 87 81 89 86 91 90 78 89 87 99 83 89. 

These are 11 = 14 measurements of the tensile strength of sheet steel in kg/mm2, recorded 
in the order obtained and rounded to integer values. To see what is going on, we sort 
these data, that is, we order them by size, 

(2) 78 81 83 84 86 87 87 89 89 89 89 90 91 99. 

S0l1ing is a standard process on the computer; see Ref. [E25], listed in App. 1. 

993 
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Graphic Representation of Data 
We shall now discuss standard graphic representations used in statistics for obtaining 
information on properties of data. 

Stem-and-Leaf Plot 
This is one of the simplesl but most useful representations of data. For (I) it is shown in 
Fig. 506. The numbers in (1) range from 78 to 99; see (2). We divide these numbers into 
5 groups, 75-79, 80-84, 85-89, 90-94, 95-99. The integers in the tens position of the 
groups are 7,8,8,9,9. These form the stem in Fig. 506. The first lealis 8 (representing 
78). The second leaf is 134 (representing 81, 83, 84), and so on. 

The number of times a value occurs is called its absolute frequency. Thus 78 has 
absolute frequency 1, the value 89 has absolute frequency 4, etc. The column to the extreme 
left in Fig. 506 shows the cumulative absolute frequencies, that is, the sum of the absolute 
frequencies of the values up to the line of the leaf. Thus, the number 4 in the second line 
on the left shows that (1) has 4 values up to and including 84. The number 11 in the next 
line shows that there are II values not exceeding 89, etc. Dividing the cumulative absolute 
frequencies by 11 (= 14 in Fig. 506) gives the cumulative relative frequencies. 

Histogram 
For large sets of data, histograms are better in displaying the distribution of data than 
stem-and-leaf plots. The principle is explained in Fig. 507. (An application to a larger 
data set is shown in Sec. 25.7). The bases of the rectangles in Fig. 507 are the x-intervals 
(known as class intervals) 74.5-79.5, 79.5-84.5, 84.5-89.5, 89.5-94.5, 94.5-99.5, whose 
midpoints (known as class marks) are x = 77, 82, 87. 92, 97, respectively. The height 
of a rectangle with class mark x is the relative class frequency frel(X), defined as the 
number of data values in that class interval, divided by 1l (= 14 in our case). Hence the 
areas of the rectangles are proportional to these relative frequencies, so that histograms 
give a good impression of the distribution of data. 

Center and Spread of Data: Median, Quartiles 
As a center of the location of data values we can simply take the median, the data value 
that falls in the middle when the values are ordered. In (2) we have 14 values. The seventh 
of them is 87, the eighth is 89, and we split the difference, obtaining the median 88. (In 
general, we would get a fraction.) 

The spread (vmiabil ity) of the data values can be measured by the range R = Xmax - xmin' 
the largesl minus the smallest data values, R = 99 - 78 = 21 in (2). 

Leaf unit = 1.0 

1 7 8 
4 8 134 

11 8 6779999 
13 9 01 
14 9 9 

Fig. 506. Stem-and-Ieaf plot 
of the data in (I) and (2) 

0.5 

0.4 

0.3 

0.2 

0.1 

o 
x 

Fig. 507. Histogram of the data in 
(I) and (2) (grouped as in Fig. S06) 
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Better information gives the interquartile range IQR = qu - qv Here the upper 
quartile qu is the middle value among the data values above the median. The lower 
quartile qL is the middle value among the data values below the median. Thus in (2) we 
have qu = 89 (the fourth value from the end), qL = 84 (the fOlllth value from the 
beginning). and IQR = 89 - 84 = 5. The median is also called the middle quartile and 
is denoted by qM. The rule of "splitting the difference" (just applied to the middle quartile) 
is equally well used for the other quartiles if necessary. 

Boxplot 

The boxplot of (I) in Fig. 508 is obtained from the five numbers xmin, qv qM, qu, Xmax 
just determined. The box extends from qL to quo Hence it has the height IQR. The position 
of the median in the box shows that the data distribution is not symmetric. The two lines 
extend from the box to Xmin below and to Xmax above. Hence they mark the range R. 

Boxplots are particularly suitable for making comparisons. For example, Fig. 508 shows 
boxplots of the data sets (I) and 

(3) 91 89 93 91 87 94 92 85 91 90 96 93 89 

(consisting of 11 = 13 values). Ordeling gives 

(4) 85 87 89 89 90 91 91 91 92 93 93 94 96 

(tensile strength, as before). From the plot we immediately see that the box of (3) is shorter 
than the box of (I) (indicating the higher quality of the steel sheets!) and that qM is located 
in the middle of the box (showing the more symmetric form of the distribution). Finally, 
'"max is closer to qu for (3) than it is for (l), a fact that we shall discuss later. 

For plotting the box of (3) we took from (4) the values xmin = 85, qL = 89, qM = 91, 
qu = 93, Xmax = 96. 

Outliers 

An outlier is a value that appears to be uniquely different from the rest of the data set. It 
might indicate that something went wrong with the data collection process. In connection 
with qumtiles an outlier is conventionally defined as a value more than a distance of 1.5 
IQR from either end of the box. 

100 

95 

gqU 
90 qM 

qu 

I 
qL 

qM 

85 
qL 

80 

75 

Data set 0) Data set (3) 

Fig. 508. Boxplots of data sets (1) and (3) 
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For the data in (1) we have lQR = 5, qL = 84, qu = 89. Hence outliers are smaller 
than 84 - 7.5 or larger than 89 + 7.5, so that 99 is an outlier [see (2)]. The data (3) have 
no outliers, as you can readily verify. 

Mean. Standard Deviation. Variance 
Medians and quartiles are easily obtained by ordering and counting. practically without 
calculation. But they do not give full information on data: you can change data values to 
some extent without changing the median. Similarly for the qUaItiles. 

The average size of the data values can be measured in a more refined way by tlle mean 

(5) 
1 n I 

.t = - 2: Xj = - (xl + X2 + ... + X,.). 

11 j=l 11 

This is the aritllmetic mean of the data values, obtained by taking their sum and dividing 
by the data si::e 11. Thus in (I). 

x = l~ (89 + 84 + ... + 89) = 6~1 = 87.3. 

Every data value contributes, and changing one of them will change the mean. 
Similarly, the spread (variability) of tlle data values can be measured in a more refined 

way by the standard deviation s or by its square, the variance 

(6) 

Thus, to obtain the variance of the data, take the difference .\1 - .r of each data value fi·om 
the mean, square it, take the sum of these 1l squares, and divide it by /I - 1 (not 11, as we 
motivate in Sec. 25.2). To get the standard deviation s, take the square root of S2. 

For example, using.t = 61117, we get for the data (I) tlle variance 

S2 = 113 [(89 - 6~1)2 + (84 - 6il )2 + ... + (89 - 6i l )21 = 1~6 = 25.14. 

Hence the standard deviation is s = V176/7 = 5.014. Note that the standard deviation 
has the same dimension as the data values (kg/mm2, see at the beginning), which is an 
advantage. On the other hand, the variance is preferable to the standard deviation in 
developing statistical metl1Ods. as we shall see in Chap. 25. 

CAUTION! Your CAS (Maple, for instance) may use lin instead of 1/(n - 1) in (6), 
but the latter is better when 11 is small (see Sec. 25.2). 

-.•. -... --.... _ ...... --- --.... -............. --..... ~ 
'1_1°1 DATA REPRESENTATIONS 3.56 58 54 33 41 30 44 37 51 46 56 

Represent the data by a stem-and-leaf plot, a histogram, and 38 38 49 39 

a boxplot: 4. 12.1 10 12.4 10.5 9.2 17.2 11.4 11.8 

1. 20 21 20 19 20 19 
14.7 9.9 

21 19 
5. 70.6 70.9 69.1 71.3 70.5 69.7 7l.5 69.8 

2. 7 6 4 0 7 1 2 4 6 6 71.1 68.9 70.3 69.2 71.2 70.4 72.8 
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6. 

7. 

8. 

9. 

-0.52 0.11 -0.48 0.94 0.24 -0.19 -0.55 

Reaction 
2.3 2.2 
2.6 1.3 

time 
2.4 
2.5 

[sec] of an 
1.5 2.3 2.3 
2.1 2.4 2.2 

Carbon content ['k J of coal 

89 90 89 84 80 !i8 90 
87 86 82 85 76 89 87 

automatic switch 
2.4 2.1 2.5 2.4 

2.3 2.5 2.4 2.4 

89 88 90 !i5 
86 86 

Weight offilled bottles [g] in an automatic tilling process 

403 399 398 401 400 401 401 

11. The data in Prob. I. 

12. The data in Prob. 2. 

13. The data in Prob. 5. 

14. The data in Prob. 6. 

15. The data in Prob. 9. 

16. 5 22 7 23 6. Why is Ix - qMI so large? 

17. Construct the simplest possible data with.t = 100 but 
qM = O. 

10. Gasoline consumption [gallons per mile] of six cars of 
the same model 

18. (Mean) Prove that t must always lie between the 
smallest and the largest data values. 

19. (Outlier, reduced data) Calculate s for the data 
4 I 3 10 2. Then reduce the data by deleting 
the outlier and calculate s. Comment. 

14.0 14.5 13.5 14.0 14.5 14.0 

111-161 AVERAGE AND SPREAD 20. WRITING PROJECT. Average and Spread. 
Find the mean and compare it with the median. Find the 
standard deviation and compare it with the interquartile range. 

Compare QM' IQR and .t, s, illustrating the advantages 
and disadvantages with examples of your own. 

24.2 Experiments, Outcomes, Events 
We now turn to probability theory. This theory has the purpose of providing mathematical 
models of situations affected or even governed by "chance effects," for instance, in weather 
foreca~ting, life insurance, quality of technical products (computers. batteries, steel sheets, 
etc.). traffic problems, and, of course, games of chance with cards or dice. And the accuracy 
of these models can be tested by suitable observations or experiments-this is a main 
purpose of statistics to be explained in Chap. 25. 

We begin by defining some standard terms. An experiment is a process of measurement 
or observation, in a laboratory, in a factDlY, on the street, in nature, or wherever; so 
"experiment" is used in a rather general sense. Our interest is in expeliments that involve 
randomness, chance effects, so that we cannot predict a result exactly. A trial is a single 
performance of an experiment. Its result is called an outcome or a sample point. n trial" 
then give a sample of size 11 consisting of n sample points. The sample space S of an 
experiment is the set of all pussible outcumes. 

E X AMP L E S 1 - 6 Random Experiments. Sample Spaces 

(1) In'peeting a IightbuIb. S = {Defective. Nondefeetive}. 

(2) RoIling a die. S = {I. 2. 3.4,5. Ii}. 

(3) Measuring tensile strength of wire. S the numbers in some interval. 

(4) Measuring coppel' content of brass. S: 50% to 909<, say. 

(5) Counting daily traffic acciden(, in New York. S the integers in some interval. 

(6) Asking for opinion about a new car model. S = (Like. Dislike. Undecided). 

The subsets of S are called events and the outcomes simple events. 

E X AMP L E 7 Events 

• 

In (2). evcms are A = {l. 3, 5} ("Odd /lllmbe,.··), B = {2. 4. 6} ("El'ell Illlmbe,."). C = {5. 6}, etc. Simple 
events are {I}. {2} .... , {6}. 
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If in a trial an outcome a happens and a E A (a is an element of A), we say that A happens. 
For instance, if a die turns up a 3, the event A: Odd number happens. Similarly, if C in 
Example I happens (meaning 5 or 6 turns up), then D = {4, 5, 6} happens. Also note that 
S happens in each triaL meaning that some event of S always happens. All this is quite natural. 

Unions, Intersections, Complements of Events 
In connection with basic probability laws we shall need the following concepts and facts 
about events (subsets) A, B, C, ... of a given sample space S. 

The union A U B of A and B consists of all points in A or B or both. 

The intersection A n B of A and B consists of all points that are in both A and B. 

If A and B have no points in common. we write 

AnB=0 

where 0 is the empty set (set with no elements) and we call A and B mutually exclusive 
(or disjoint) because in a trial the occurrence of A excludes thal of B (and conversely)­
if your die turns up an odd number, it cannot turn up an even number in the same trial. 
Similarly, a coin cannot turn up Head and Tail at the same time. 

Complement AC of A. This is the set of all the points of S Ilot in A. Thus, 

An AC = 0, AU N = S. 

In Example 7 we have AC = B, hence A U AC = {l, 2, 3, 4, 5, 6} = S. 
Another notation for the complement of A is A (instead of AC

), but we shall not use this 
because in set theory A is used to denote the closure of A (not needed in our work). 

Unions and intersections of more events are defined similarly. The union 

of events AI' ... , Am consists of all points that are in at least one Aj . Similarly for the 
union A I U A2 U ... of infinitely many subsets A b A2, ... of an ififinite sample space 
S (that is, S consists of infinitely many points). The intersection 

of AI> ... , Am consists of the points of S thar are in each of these events. Similarly for 
the intersection Al n A2 n ... of infinitely many subsets of S. 

Working with events can be illustrated and facilitated by Venn diagrams I for showing 
unions, intersections. and complements, as in Figs. 509 and 510, which are typical 
examples thal give the idea. 

E X AMP L E 8 Unions and Intersections of 3 Events 

In rolling a die, consider the events 

A: Number greater thall 3, B: Number less thall 6. c: Evell /lumber. 

Then A n B = (4, 5), B n c = (2. 4). C n A = (4, 6), An B n c = {4). Can you sketch a Venn diagram 
of this? Furthermore. A U B = S. hence A U B U C = S (why?). • 

I JOHN VENN (1834-1923), English mathematician. 
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s s 

UmonAuB Intersection A n B 

Fig. 509. Venn diagrams showing two events A and B in a sample space 5 
and their union A U B (colored) and intersection A n B (colored) 

Fig. 510. Venn diagram for the experiment of rolling a die, showing 5, 
A = {1, 3, 5}, C = {5, 6}, A U C = {l, 3, 5, 6}, A n C = {5} 

--........ --.... _ ....... .-. .. ---- .. --........... ~.-----.... ---
11-91 SAMPLE SPACES, EVENTS 

Graph a sample space for the expeliment: 

1. Tossing 2 coins 

2. Drawing 4 screws from a lot of right-handed and 
left-handed screws 

3. Rolling 2 dice 

4. Tossing a coin until the fIrst Head appears 

5. Rolling a die until the first "Si,," appears 

6. Drawing bolts from a lot of 20, containing one 
defective D, until D is drawn. one at a time tmd 
assuming sampling without replacement. that is, 
bolts drawn are not returned to the lot 

7. Recording the lifetime of each of 3 lightbulbs 

8. Choosing a committee of 3 from a group of 5 people 

9. Recording the daily maximum tempemture X and the 
maximum air pressure Y at some point in a city 

10. In Prob. 3, circle and mark the events A: Equal faces, 
B: Sum exceeds 9, C: SUIll equals 7. 

11. In rolling 2 dice, are the events A: SIIII1 divisible by 3 
and B: Sum dil'isible by 5 mutually exclusive? 

12. Answer the question in Prob. 11 for rolling 3 dice. 

13. In Prob. 5 list the outcomes that make up the event E: 
First "Six" in rolling at most 3 times. Describe E C

• 

14. List all 8 subsets of the sample space S = (a, b, c}. 

115-201 VENN DIAGRAMS 

15. In connection with a trip to Europe by some students, 
consider the events P that they see Paris, G that they 
have a good time. and M that they run out of money. 
and describe in words the events 1, .. " 7 in the 
diagram. 

G 

Problem 15 

16. Using Venn diagrams, graph and check the mles 

A U (B n C) = (A U B) n (A U C) 

A n (B U C) = (A n B) U (A n C) 

17. (De Morgan's laws) Using Venn diagrams. graph and 
check De Morgan's laws 

(A U B)c = A C n BC 

(A n B)c = A C U BC
• 
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18. Using a Venn diagram. show that A <;;; B if and only if 
An B = A. 

(A C)C = A, SC = 0, 0 c = S, 

A UN = S, AnN = 0. 

19. Show that, by the definition of complement, for any 
subset A of a sample space S, 

20. Using a Venn diagram, show that A <;;; B if and only if 
AU B = B. 

24.3 Probability 

DEFINITION 1 

The "probability" of an event A in an experiment is supposed to measure how frequently 
A is about to occur if we make many trials. If we flip a coin, then heads H and tails T 
will appear about equally often-we say that Hand T are "equally likely." Similarly, for 
a regularly shaped die of homogeneous material ("fair die") each of the six outcomes 
1, ... , 6 will be equally likely. These are examples of experiments in which the sample 
space S consists of finitely many outcomes (points) that for reasons of some symmetry 
can be regarded as equally likely. This suggests the following definition. 

First Definition of Probability 

If the sample space S of an experiment consists of finitely many outcomes (points) 
that are equally likely, then the probability peA) of an event A is 

(1) 
Number of points in A 

peA) = 
Number of points in S 

From this definition it follows immediately that. in particular, 

(2) peS) = 1. 

E X AMP L E 1 Fair Die 

In rolling a fair die once. what is the probability peA) of A of obtaining a 5 or a 6? The probabilIty of B: "El'en 
11l1llzber"? 

Solutioll. The six outcomes are equally likely. so that each has probability 1/6. Thus peA) = 2/6 = 1/3 
because A = (5, 6J has 2 points, and PCB) = 3/6 = 112. • 

Definition 1 takes care of many games as well as some practical applications, as we shall 
see, but celtainly not of all experiments, simply because in many problems we do not 
have finitely many equally likely outcomes. To arrive at a more general definition of 
probability, we regard probability as the coullterpart of relative frequellcy. Recall from 
Sec. 24.1 that the absolute frequency f(A) of an event A in n trials is the number of times 
A occurs, and the relative frequency of A in these trials is f(A)ln; thus 

(3) 
Number of times A occurs 

Number of trials 
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DEFINITION 2 

Now if A did not occur, then f(A) = O. If A always occurred. then f(A) = 11. These are 
the extreme cases. Division by 11 gives 

(4*) 

In particular, for A = S we have f(S) = 11 because S always occurs (meaning that some 
event always occurs; if necessary, see Sec. 24.2, after Example 7). Division by 11 gives 

(5*) fre1(S) = I. 

Finally. if A and B are mutually exclusive, they cannot occur together. Hence the absolute 
frequency of their union A U B must equal the sum of the absolute frequencies of A and 
B. Division by 11 gives the same relation for the relative frequencies, 

(6*) f re1(A U B) = f rei (A) + fre1(B) (A n B = 0). 

We are now ready to extend the definition of probability to experiments in which equally 
likely outcomes are not available. Of course, the extended definition should include 
Definition 1. Since probabilities are supposed to be the theoretical cOllnterpmt of relative 
frequencies, we choose the properties in (4*), (5*), (6"") as axioms. (Historically, such a 
choice is the result of a long process of gaining experience on what might be best and 
most practical.) 

General Definition of Probability 

Given a sample space S, with each event A of S (subset of S) there is associated a 
number P(A), called the probability of A. such that the following axioms of 
probability are satisfied. 

1. For every A in S, 

(4) 0:0;: peA) :0;: I. 

2. The entire sample space S has the probability 

(5) peS) = 1. 

3. For mutually exclusive events A and B (A n B = 0; see Sec. 24.2), 

(6) peA U B) = peA) + PCB) (A n B = 0). 

If S is infinite (has infinitely many points). Axiom 3 has to be replaced by 
3'. For mutually exclusive events AI> A2 • •.• , 

(6') 

In the infinite case the subsets of S on which peA) is defined are restricted to form a 
so-called u-algebra. as explained in Ref. (GR6j (not (G6]!) in App. 1. This is of no 
practical consequence to us. 
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Basic Theorems of Probability 
We shall see that the axioms of probability will enable us to build up probability theory 
and its application to statistics. We begin with three basic theorems. The first of them is 
useful if we can get the probability of the complement A C more easily than peA) itself. 

Complementation Rule 

For an event A and its complemellt AC in a sample space S, 

(7) peN) = I - peA). 

PROOF By the definition of complement (Sec. 24.2). we have S = A U A C and A n A C 0. 
Hence by Axioms 2 and 3, 

I = peS) = peA) + P(AC
). thus • 

EXAMPLE 2 Coin Tossing 

THEOREM 2 

Five coin~ are tossed simultaneously. Find the probability of the event A: At least one head tums up. Assume 
that the coins are fair. 

Solution. Since each coin can [Urn up heads or mils, the sample space consists of 25 = 32 Olilcomes. Since 
the coins are fair. we may assign the same probability (1/32) to each outcome. Then the event AC (No heads 
tum LIp) consists of only 1 outcome. Hence P(A c

) = 1/32, and the answer is peA) = 1 - P(Ac) = 31/32. • 

The next theorem is a simple extension of Axiom 3, which you can readily prove by 
induction. 

Addition Rule for Mutually Exclusive Events 

For mutually exclusive events AI, ... , Am in a sample space S, 

E X AMP L E 3 Mutually Exclusive Events 

THEOREM 3 

If the probability that on any workday a garage will get 10-20,21-30,31-40, over 40 cars to service is 0.20, 
0.35, 0.25, 0.12, respectively, what is the probability that on a given workday the garage gets at least 21 cars 
to service? 

Solution. Since these are mutually exclusive events, Theorem 2 gives the answer 0.35 + 0.25 + 0.12 = 0.72. 
Check this by the complementation rule. • 

In many cases, events will not be mutually exclusive. Then we have 

Addition Rule for Arbitrary Events 

For events A and B in 1I sample space, 

(9) peA U B) = peA) + PCB) - peA n B). 
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PROOF C, D. E in Fig. 511 make up A U B and are mutually exclusive (disjoint). Hence by 
Theorem 2. 

peA U B) = P( C) + P(D) + peE). 

This gives (9) because on the right P(C) + P(D) = peA) by Axiom 3 and disjointness; 
and peE) = PCB) - PW) = PCB) - peA n B). also by Axiom 3 and disjointness. • 

A B 

Fig. 511. Proof of Theorem 3 

Note that for mutually exclusive events A and B we have A n B = 0 by definition and. 
by comparing (9) and (6), 

(10) P(0) = O. 

(Can you also prove this by (5) and om 
E X AMP L E 4 Union of Arbitrary Events 

THEOREM 4 

In tossing a fair die. what is the probability of getting an odd number or a number less than 4? 

Solutioll. Let A be the event "Odd number" and B the event "Numberless than 4." Then Theorem 3 gives 
the answer 

P(AUB)=~+~-~=~ 

because A n B = .. Odd lIl//uber less thall 4" = {I, 3}. • 
Conditional Probability. Independent Events 
Often it is required to find the probability of an event B under the condition that an event 
A occurs. This probability is called the conditional probability of B given A and is denoted 
by p(BIA). In this case A serves as a new (reduced) sample space, and that probability is 
the fraction of peA) which corresponds to A n B. Thus 

(11) 
PeA n B) 

p(BIA) = peA) 

Similarly, the cunditiO/wl probability of A gil'en B is 

(12) p(AIB) = peA n B) 
PCB) 

Solving (II) and (12) for peA n B), we obtain 

Multiplication Rule 

If A and B lire events in a sample space Sand peA) *- 0, PCB) *- O. then 

(13) peA n B) = P(A)P(BIA) = P(B)P(AIB). 

[peA) *- 01. 

[PCB) *- 0]. 
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E X AMP L E 5 Multiplication Rule 

In producing screw~.letA mean "screw too slim" and B "screw too short." Let peA) = 0.1 and let the conditional 
probability that a slim sere", is also too short be p(BIA) = n.2. What is the probability that a scre'" that we pick 
randoml) from the lot produced will be both too slim and too short? 

Solution. PIA n B) = p(A)p(BIA) = 0.1 • 0.2 = 0.02 = 2'7c. by Theorem 4. • 
Independent Events. If events A and B are such that 

(14) P(A n B) = P(A)P(B), 

they are called independent events. Assuming P(A) * O. P(B) * 0, we see from (II )-( 13) 
that in this case 

p(AIB) = peA), P(BIA) = PCB). 

This means that the probability of A does not depend on the occurrence or nonoccurrence 
of B, and conversely. This justifies the term "independent." 

Independence of III Events. Similarly, 111 events A I, ••• , Am are called independent if 

(ISa) 

as well as for every k different events Ajl , Ah , ... , Aj ". 

(ISb) 

where k = 2. 3, ... , 111 - l. 

Accordingly. three events A. B. C are independent if and only if 

(16) 

peA n B) = P(A)P(B), 

PCB n 0 = P(B)P( 0, 

P(C n A) = P(C)P(A). 

peA n B n 0 = P(A)P(B)P(O. 

Sampling. Our next example has to do with randomly drawing objects, one at a time, 
from a given set of objects. This is called sampling from a popUlation, and there are 
two ways of sampling, as follows. 

1. In sampling with replacement, the object that was drawn at random is placed back 
to the given set and the set is mixed thoroughly. Then we draw the next object at 
random. 

2. In sampling without replacement the object that was drawn is put aside. 

E X AMP L E 6 Sampling With and Without Replacement 

A box contains 10 screws. three of which are defective. Two screws are drawn at random. Find the probability 
that none of the lWO screws is defective. 

Solution. We consider the event~ 

A: First drawn screll' 1100ldefectil'e. 

B: Second drawl1 screw /101ulefectil'e. 
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Clearly. PIA) = -k becau,e 7 of the 10 screw, are nomlefective and we sample at ramI om. so thm each screw 
has the same probability (to) of being picked. If we sample with replacement. the situation before the second 
drawing is the same as at the beginning. and PCB) = -k. The events are independent. and the answer is 

PeA n B) = P(A)P(B) = 0.7' 0.7 = 0.49 = 49<)}. 

If we sample without replacement. then PIA) = -k, a~ before. If A has occurred. then there are 9 ~crews left 
in the box, 3 of which are defective. Thus P(B/A) = ~ = ~. and 1l1eorem 4 yields the answer 

PIA n B) = -k . ~ = 47<)}. 

Is it intuitively clear that this value mu,t be smaller than the preceding one'! • 

-.•. .... -- . - ••• "'A 

1. Three screws are drawn at random from a lot of 100 
screws. 10 of which are defective. Find the probability 
that the screws drawn will be nondefective in drawing 
(a) with replacement. (b) without replacement. 

2. In Prob. I find the probability of E: At least I defective 
(i) directly. (ii) by using complements; in both cases 
(a) and (b). 

3. If we inspect paper by drawing 5 sheets without 
replacement from every batch of 500. what is the 
probability of getting 5 clean sheets although 2% of 
the sheets contain spots') First guess. 

4. Under what conditions will it make practically no 
difference whether we sample with or witholll 
replacement? Give numeric examples. 

5. If you need a right -handed screw from a box containing 
20 right-handed and 5 left-handed screws. what is the 
probability that you get at least one right-handed screw 
in drawing 2 screws with replacement? 

6. If in Prob. 5 you draw without replacement. does the 
probability decrease or increase? First think, then 
calculate. 

7. What gives the greater probability of hitting some target 
at least once: (a) hitting in a shot with probability 112 
and firing I shot. or (b) hitting in a shot with probability 
1I4 and firing 2 shots? First guess. Then calculate. 

8. Suppose that we draw cards repeatedly and with 
replacement from a file of 100 cards. 50 of which refer 
to male and 50 to female persons. What is the 
probability of obtaining the second "female" card 
before the third "male" card? 

9. What is the complementary event of the event 
considered in Prob. 8'1 Calculate its probability and use 
it to check your result in Prob. 8. 

10. In rolling two fair dice. what is the probability of 
obtaining a sum greater than 4 but not exceeding 7'1 

11. In roIling two fair dice. what is the probability of 
obtaining equal numbers or numbers with an even 
product? 

12. Solve Prob. II by considering complements. 

13. A motor drives an eiectIic generator. During a 30-day 
period. the motor needs repair with probability 8%- and 
the generator needs repair with probability 49'r. What 
is the probability that during a given period. the entire 
apparatus (consisting of a motor and a generator) will 
need repair? 

14. If a circuit contains 3 automatic switches and we want 
that. with a probability of 959'c. during a given time 
interval they are all working. what probability of failure 
per time interval can we admit for a single switch? 

15. If a certain kind of tire has a life exceeding 25 000 miles 
with probability 0.95. what is the probability that a set of 
4 of these tires on a car will last longer than 25000 miles? 

16. In Prob. 15. what is the probability that at least one of 
the tires will not last for 25 000 miles? 

17. A pressure control apparatus contains 4 valves. The 
apparatus will not work unless all valves are operative. 
If the probability of failure of each valve during some 
interval of time is 0.03. what is the corresponding 
probability of failure of the apparatus? 

18. Show that if B is a subset of A, then P(B) ~ peA). 

19. Extending Theorem 4. show that 
PeA n B n C) = P(A)P(BIA)P(CiA n B). 

20. You may wonder whether in (16) the last relation 
follows from the others. but the answer is no. To see 
this. imagine that a chip is drawn from a box containing 
4 chips numbered 000,01 I. 101, 110. and let A. B. C 
be the events that the first. second. and third digit. 
respectively. on the drawn chip is 1. Show that then 
the first three formulas in (16) hold but the last one 
does not hold. 
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24.4 Permutations and Combinations 

THEOREM 1 

Permutations and combinations help in finding probabilities peA) = alk by systematically 
counting the number a of pointf> of which an event A consists; here, k is the number of 
points of the sample space S. The practical difficulty is that a may often be surprisingly 
large, so that actual counting becomes hopeless. For example, if in assembling some 
instrument you need 10 different screws in a certain order and you want to draw them 
randomly from a box (which contains nothing else) the probability of obtaining them in 
the required order is only 1/3 628800 because there are 

10! = I . 2' 3 ·4·5·6·7' 8 . 9 . 10 = 3628800 

orders in which they can be drawn. Similarly, in many other situations the numbers of 
orders, anangements, etc. are often incredibly large. (If you are unimpressed. take 20 
screws-how much bigger will the number be?) 

Permutations 
A permutation of given things (elements or objects) is an arrangement of these things in 
a row in some order. For example, for three letters a, b, c there are 3! = I . 2 . 3 = 6 
permutations: abc, acb, bac, bca, cab, cba. This illustrates (a) in the following theorem. 

Permutations 

(a) Different t/zings. The lUt1llber of permutations of n different things taken 
all at a time is 

l 
(1) n! = I . 2 . 3 ... Il (read "n.factorial"). 

(b) Classes of equal things. If n given things can be divided into c classes of 
alike things differing from class to class, then the number of permutations of 
these things taken all at a time is 

n! 
(2) (Ill + n2 + ... + llc = 11) 

where nj is the 1lumber of things ill the jth class. 

PROOF (a) There are 11 choices for filling the first place in the row. Then n - I things are still 
available for filling the second place, etc. 

(b) 171 alike things in class 1 make n1 ! permutations collapse into a single permutation 
(those in which class I things occupy the same 111 positions), etc., so that (2) follows 
from (I). • 
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E X AMP L E 1 Illustration of Theorem l(b) 

THEOREM 2 

If a box contains 6 red and 4 blue balls. the probability of drawing first the red and then the blue balls is 

p ~ 6!4!110! = 11210 = 0.5%. • 
A permutation of n things taken k at a time is a permutation containing only k of the 
n given things. Two such permutations consisting of the ~ame k elements. in a different 
order, are different, by definition. For example, there are 6 different permutations of the 
three letters a, b, e, taken two letters at a time, ab, ae, be, ba, ea, eb. 

A permutation of Il things taken k at a time with repetitions is an arrangement 
obtained by putting any given thing in the first position, any given thing, including a 
repetition of the one just used, in the second, and continuing until k positions are filled. 
For example, there are 32 = 9 different such permutations of a, b, e taken 2 letters at a 
time, namely, the preceding 6 permutations and aa, bb, ec. You may prove (see Team 
Project 18): 

Permutations 

TIle number of different pennutations of n different things taken k at a time without 
repetitions is 

n! 
(3a) n(n - 1)(n - 2) ... (n - k + 1) = 

(n - k)! 

alld with repetitions is 

(3b) 

E X AMP L E 2 Illustration of Theorem 2 

In a coded telegram the letters are arranged in groups of five letters, called words. From (3b) we see that the 
number of different such words is 

265 
= II 8!B 376. 

From (3a) it follows that the number of different such words containing each letter no more tiMn once is 

26!/(26 - 5)! = 26' 25 . 24 . 23' 22 = 7893600. • 
Combinations 
In a permutation, the order of the selected things is essential. In contrast, a combination 
of given things means any selection of one or more things without regard to order. There 
are two kinds of combinations, as follows. 

The number of combinations of Il different things, taken k at a time, without 
repetitions is the number of sets that can be made up from the n given things, each set 
containing k different things and no two sets containing exactly the same k things. 

The number of combinations of Il different things, taken k at a time, with repetitions 
is the number of sets that can be made up of k things chosen from the given n things, 
each being used as often as desired. 
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For example, there are three combinations of the three letters a, b, c, taken two letters 
at a time, without repetitions. namely, lib, lIC, bc, and six such combinations with 
repetitions, namely, lib, lIC, be, aa, bb, cc. 

THEOREM 3 Combinations 

The Ilumber of d~fferent combinations of 11 d!fferent things taken. k at a time. withollt 
repetitiollS. is 

(4a) C) = 
n! 

k!(n - k)! 

n(n - 1) ... (n - k + I) 

I' 2· .. k 

lind the number of those combinlltions with repetitions is 

(4b) 

PROOF The statement involving (4a) follows from the first part of Theorem 2 by noting that there 
are k! permutations of k things from the given n things that differ by the order of the 
elements (see Theorem I). but there is only a single combination of those k things of the 
type characterized in the first statement of Theorem 3. The last statement of Theorem 3 
can be proved by induction (see Team Project 18). • 

E X AMP L E 3 Illustration of Theorem 3 

The number of samples of five lightbulbs that can be selected from a 1m of 500 bulbs is r see (4a 11 

(
500) 500! 

5 = 5!495! = 

Factorial Function 

500 . 499 . 498 . -1-97 . 496 

1·2·3'4·5 

In (I )-(4) the factorial function is basic. By definition. 

(5) O! = L 

= 255 244 687 600. 

Values may be computed recursively from given values by 

(6) (n + l)! = (II + l)n!. 

• 

For large 11 the function is very large (see Table A3 in App. 5). A convenient approximation 
for large 11 is the Stirling formula2 

(7) (e = 2.718 ... ) 

2 jAMES STIRUI\G 0692-1770). Scots mathematician. 
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EXAMPLE 4 

where - is read "asymptotically equal" and means that the ratio of the two sides of (7) 

approaches 1 as 11 approaches infinity. 

Stirling Formula 

[ n! By (7) 

4! 23.5 
I IO! 3598696 

l 20! 2.422 79 . 1018 

Binomial Coefficients 

Exact Value 

24 
3628800 

2 432 902 008 176 640 000 

The binomial coefficients are defined by the formula 

(8) (
0) = o(a - 1)(0 - 2) ... (0 - k + 1) 

k k! 

The numerator has k factors. FUlthermore. we define 

(9) (~) = I, in particular, (~) = 1. 

For integer II = 11 we obtain from (8) 

(10) 

Binomial coefficients may be computed recursively, because 

(11) 
(

0 + 1) 
k + 1 

Formula (8) also yields 

(12) 

Relative Error 

2.1% 

0.8% 

0.4% • 

(k ~ 0, integer). 

(n ~ 0, 0 ~ k ~ n). 

(k ~ 0, integer). 

(k ~ 0, integer) 
(m > 0). 

There are numerous further relations; we mention two important ones, 

(13) 

and 

(14) 

~ (k+S) = (l1+k) 
s=o k k + 1 

(k ~ O. n ~ 1, 
both integer) 

(r ~ 0, integer). 



1010 CHAP. 24 Data Analysis. Probability Theory 

1. List all pennutations of four digits I, 2, 3, 4, taken all 
at a time. 

2. List (a) all permutations, (b) all combinations without 
repetitions, (c) all combinations with repetitions, of 5 
letters G, e, i, 0, 1I taken 2 at a time. 

3. In how many ways can we assign 8 workers to 8 jobs 
(one worker to each job and conversdy)? 

4. How many samples of 4 objects can be drawn from a 
lot of 80 objects? 

5. In how many different ways can we choose a 
committee of 3 from 20 persons? First guess. 

6. In how many different wa) s can we select a committee 
consisting of 3 engineers. 2 biologists. and 2 chemists 
from 10 engineers, 5 biologist~, and 6 chernists? First 
guess. 

7. Of a lot of 10 items, 2 are defective. (a) Find the number 
of different samples of 4. Find the number of samples 
of 4 containing (b) no defectives, (c) I defective, (d) 2 
defectives. 

8. If a cage contains 100 mice, two of which are male, 
what is the probability that the two male mice will be 
included if 12 mice are randomly selected? 

9. An urn contains 2 blue, 3 green, and 4 red balls. We 
draw I ball at random and put it aside. Then we draw 
the next ball, and so on. Find the probability of drawing 
at first the 2 blue balls, then the 3 green ones, and 
finally the red ones. 

10. By what factor is the probability in Prob. 9 decreased 
if the number of balls is doubled (4 blue, etc.)? 

11. Detennine the number of different bridge hands. (A 
bridge hand consists of 13 cards selected from a full 
deck of 52 cards.) 

12. In how many different ways can 5 people be seated at 
a round table? 

13. If 3 suspects who committed a burglary and 6 innocent 
persons are lined up, what is the probability that a 
witne~s who is not sure and has to pick three persons 
will pick the three suspects by chance? That the witness 
picks 3 innocent persons by chance? 

24.5 Random Variables. 

14. (Birthday problem) What is the probability that in a 
group of 20 people (that includes no twins) at least two 
have the same birthday. if we assume that the 
probability of having birthday on a given day is 11365 
for every day. First guess. 

15. How many different license plates showing 5 symbols, 
nanlely, 2 letters followed by 3 digits. could be made? 

16. How many automobile registrations may the police 
have to check in a hit-and-run accident if a witness 
reports KDP5 and cannot remember the last two digits 
on the license plate but is certain that all three digits 
were different? 

17. CAS PROJECT. Stirling formula. (a) Using (7), 

compute approximate values of n! for 11 = I, ... ,20. 

(b) Detennine the relative error in (a). Find an 
empirical formula for that relative error. 

(el An upper bound for that relative error is e1
/
12n 

- L. 
Try to relate your empirical formula to this. 

(d) Search through the literature for further 
infonnation on Stirling's fonnula. Write a short report 
about your findings, arranged in logical order and 
illustrated with numeric examples. 

18. TEAM PROJECT. Permutations, Combinations. 
(a) Prove Theorem 2. 

(b) Prove the last statement of Theorem 3. 

(e) Derive (11) from (8). 

(d) By the binomial theorem, 

so that llkbn - k has the coefficient (~). Can you 
conclude this from Theorem 3 or is this a mere 
coincidence? 

(e) Prove (14) by using the binomial theorem. 

(f) Collect further formulas for binomial coefficients 
from the literature and illustrate them numerically. 

Probability Distributions 
In Sec. 24.1 we considered frequency distributions of data. These distributions show the 

absolute or relative frequency of the data values. Similarly, a probability distribution 

or, briefly, a distribution, shows the probabilities of events in an experiment. The quantity 

that we observe in an experiment will be denoted by X and called a random variable (or 
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DEFINITION 

stochastic variable) because the value it will assume in the next trial depends on chance, 
on randomness-if you roll a dice, you get one of the numbers from I to 6, but you don't 
know which one will show up next. Thus X = Number a die tUnIS up is a random variable. 
So is X = Elasticity of rubber (elongation at break). ("Stochastic" means related to chance.) 

If we COUllt (cars on a road, defective screws in a production, tosses until a die shows 
the first Six), we have a discrete random variable and distribution. If we measure 
(electric voltage, rainfall, hardness of steel), we have a continuous random variable and 
distribution. Precise definitions follow. In both cases the distribution of X is determined 
by the distribution function 

(1) F(x) = P(X ~ x); 

this is the probability that in a trial, X will assume any value not exceeding x. 

CAUTION! The terminology is not uniform. F(x) is sometimes also called the 
cumulative distribution function. 

For (I) to make sense in both the discrete and the continuous case we formulate 
conditions as follows. 

r Random Variable 

A random variable X is a function defined on the sample space S of an experiment. 
Its values are real numbers. For every number 11 the probability 

P(X = a) 

with which X assumes a is defined. Similarly, for any interval 1 the probability 

P(X E I) 

with which X assumes any value in 1 is defined. 

Although this definition is very general, practically only a very small number of 
distributions wil1 occur over and over again in applications. 

From (I) we obtain the fundamental formula for the probability corresponding to an 
interval a < x ~ b, 

(2) Pea < X ~ b) = F(b) - F(a). 

This follows because X ~ a ("X assumes any value not exceeding a") and a < X ~ b 
("X assumes any value in the illterval a < x ~ b") are mutually exclusive events, so that 
by (1) and Axiom 3 of Definition 2 in Sec. 24.3 

F(b) = P(X ~ b) = P(X ~ a) + Pea < X ~ b) 

= F(a) + Pea < X ~ b) 

and subtraction of F(a) on both sides gives (2). 
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Discrete Random Variables and Distributions 
By definition, a random variable X and its distribution are discrete if X assumes only 
finitely many or at most countably many values Xl' -'"2' X3, .... called the possible values 
of X, with positive probabilities PI = P(X = Xl), P2 = P(X = X2), P3 = P(X = X3), ... , 
whereas the probability P(X E 1) is zero for any interval 1 containing no possible value. 

Clearly, the discrete distribution of X is also determined by the probability function 
f(x) of X, defined by 

(3) {

p 
f(x) = ~ 

otherwise 
(j = 1,2 . ... ), 

From this we get the values of the distribution function F(x) by taking sums, 

(4) 

where for any given x we sum all the probabilities Pj for which Xj is smaller than or equal 
to that of x. This is a step function with upward jumps of size Pj at the possible values 
Xj of X and constant in between. 

E X AMP L E 1 Probability Function and Distribution Function 

Figure 512 shows the probability function f(x) and the distribution function F(x) of the discrete random variable 

x = Number a fair die tums up. 

X has the possible values x = 1, 2, 3, 4, 5, 6 with probability 116 each. At these x the distribution function has 
upward jumps of magnitude 1/6. Hence from the graph of flx) we can construct the graph of F(x), and conversely. 

In Figure 512 (and the next one) at each jump the fat dot indicates theftmctioll value at the jump! • 

t(xl 
Y6[ I I I I I I 

o 

F(x) 

1 

1 
2" 

o 

5 

5 

x 

x 

Fi-. 512. Probability function {(x) 
and distribution function F(x) of the 

random variable X = Number 
obtained in tossing a fair die once 

o 

F(x) 

30 
36 

20 
36 

10 
36 

5 10 12 x 

, ! [ 

10 12 x 

Fig. 513. Probability function {(x) and 
distribution function F(x) of the random 
variable X = Sum of the two numbers 
obtained in tossing two fair dice once 
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E X AMP L E 2 Probability Function and Distribution Function 

The random variable X = Slim of the two Illlll/bers t .... o fair dice tum "I' is discrete and has the possible values 
2 (= 1 + II. 3.4 ..... 12 (= 6 + 6). There are 6' 6 = 36 equally likely outcomes (I. 1) (I. 2) ....• (6. 6). 
where the first number is lhat shown on the first die and the second number that on the other die. Each such 
outcome has probability 1/36. Now X = 2 occurs in the case of the outcome O. I): X = 3 in the case of the 
lwo outcomes (I. 2) and (2. I \: X = 4 in the case of the three outcomes (1. 3), (2. 2). (3. I): and so on. Hence 
fix) = PIX = x) and F(x) = PIX ~ x) have the values 

x 2 3 4 5 6 7 8 9 10 II 12 

I 
i f(x) 1136 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2136 1136 

I F(x) 1136 3/36 6/36 10136 15/36 21/36 26/36 30136 33136 35/36 36/36 

Figure 513 shows a bar chan of this function and the graph of the distribution funcllon. which is again a srep 
function. with jumps (of different height!) at the possible values of X. 

Two useful formulas for discrete distributions are readily obtained as follows. For the 
probability cOlTesponding to intervals we have from (2) and (4) 

(5) P(a < X ~ b) = F(b) - F(a) = 2: Pj (X discrete). 
a<xJ~b 

This is the sum of all probabilities Pj for which Xj satisfies a < Xj ~ b. (Be careful about 
< and ~!) From this and peS) = I (Sec. 24.3) we obtain the following formula. 

(6) 2: Pj = I 
j 

(sum of all probabilities). 

E X AMP L E 3 illustration of Formula (5) 

In Example 2. compme [he probability of a sum of at least 4 and at mo~t 8. 

Solution. P(3 < X ~ 8) = F(8) - F(3) = ~ - :k = ~. 

E X AMP L E 4 Waiting Time Problem. Countably Infinite Sample Space 

• 
In to~sing a fair coin. let X = Number of trials limit the first head appears. Then. by independence of events 
(Sec. 24.3). 

PiX = 1) = P(H) _ 1 
-2 

PIX = 2) = P(TH) = ~.~ 

PIX = 3) = P(TTH) = ! . ~ .! = ~. etc. 

(H = Head) 

(T= Tail) 

and in general PiX = II) = (!)n. II = 1. 2 •.... Also. (6) can be confirmed by the slim form lila for the geometric 
series. 

1 1 1 
2 + 4 + 8 + ... = -I + 1 - ~ 

=-1+2=1. • 
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Continuous Random Variables and Distributions 
Discrete random variables appear in experiments in which we count (defectives in a 
production, days of sunshine in Chicago. customers standing in a line, etc.). Continuous 
random variables appear in experiments in which we measure (lengths of screws, voltage 
in a power line, Brinell hardness of steel, etc.). By definition. a random variable X and 
its distribution are of continuous type or, briefly. continuous, if its distribution function 
F(x) [defined in (1)] can be given by an integral 

(7) F(x) = r f(v) dv 
-00 

(we write v because x is needed as the upper limit of the integral) whose integrand f(x), 

called the density of the distribution, is nonnegative, and is continuous, perhaps except 
for finitely many x-values. Differentiation gives the relation of f to F as 

(8) f(x) = F'(x) 

for every x at which f(x) is continuous. 
From (2) and (7) we obtain the very important formula for the probability corresponding 

to an interval: 

(9) 
b 

Pta < X ~ b) = F(b) - F(a) = I f(v) dv. 
a 

This is the analog of (5). 
From (7) and peS) = I (Sec. 24.3) we also have the analog of (6): 

(10) Ioo 

f(v) dv = 1. 
_00 

Continuous random variables are simpler than discrete ones with respect to intervals. 
Indeed, in the continuous case the four probabilities corresponding to a < X ~ b, 
a < X < b, a ~ X < b, and a ~ X ~ b with any fixed a and b (> a) are all the same. 
Can you see why? (Answer. This probability is the area under the density curve, as in 
Fig. 514, and does not change by adding or subtracting a single point in the interval of 
integration.) This is different from the discrete case! (Explain.) 

The next example illustrates notations and typical applications of our present 
formulas. 

Curve of density 

f(X)~ 

/ 1~<bJ 
a b x 

Fig. 514. Example illustrating formula (9) 
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E X AMP L E 5 Continuous Distribution 

Let X have the density function I(x) = O.75( I - x 2
) if -I ~ x ~ I and 7ero otherwi~e. Find the distribution 

function. Find the probabilities P( -~ ~ X ;;; ~) and PC! ~ X ~ 2). Find x such that P(X ~ x) = 0.95. 

Solutioll. From (7) we obtain F(x) = 0 if x ~ -I, 

F(x) = 0.75 IX (I - v2 ) dv = 0.5 + 0.75x - 0.25x3 

-1 

if-I <x~ I, 

and F( t) = I if x > l. From this and (9) we get 

1/2 

P{-~ ~ X ~~) = F@ - F{-~) = 0.75 I (I - v2
) dv = 68.75% 

-1/2 

(because P( -~ ~ X ~~) = P{ -~ < X ;;; ~) for a continuous distribution) and 

1 

P{~ ~ X ~ 2) = F(2) - F(!) = 0.75 f (1 - v2
) dv = 31.64%. 

1/4 

(Note that the upper limit of integration is I, not 2. Why?) Finally, 

P{X ~ x) = F(x) = 0.5 + 0.75x - 0.25,3 = 0.95. 

Algebraic simplification gives 3x - x3 
= 1.8. A solution is x = 0.73, approximately. 

Sketch fet) and mark x = -~,~, !. and 0.73. so that you can see the results (the probabilities) as areas under 
the curve. Sketch also Fex). • 

Further examples of continuous distributions are included in the next problem set and in 

later sections. 

_·.·_.w· ____ y _ ....... .-.--,_ - ........ -... - ..... ,--.-----....,;. ..... 
1. Graph the probability function f(x) = h 2 

(x = 1, 2, 3,4, 5; k suitable) and the distribution 
function. 

2. Graph the density function fIx) = b:2 (Q ~ X ~ 5: 
k suitable) and the distribution function. 

3. (Uniform distribution) Graph f and F when the 
density is f(x) = k = const if -4 ~ x ~ 4 and 0 
elsewhere. 

4. In Prob. 3 find P(O ~ x ~ 4) and c such that 
P( -c < X < c) = 95%. 

5. Graph f and F when f{ -2) = f(2) = 1/8, 

f( -1) = f(1) = 3/8. Can f have further positive 
values? 

6. Graph the distribution function F(x) = I - e-3x if 
x > 0, F(x) = 0 if x ~ 0, and the density f(x). Find x 
such that F(x) = 0.9. 

7. Let X be the number of years before a particular type 
of machine will need replacement. Assume that X has 
the probability function f(l) = 0.1, f(2) = 0.2, 
f(3) = 0.2, 1(4) = 0.2. 1(5) = 0.3. Graph I and F. 
Find the probability that the machine needs no 

replacement during the first 3 years. 

8. If X has the probability function f(x) = k/2x 
(x = O. l. 2 ... '). what are k and P(X ~ 4)? 

9. Find the probability that none of the three bulbs in 
a traffic signal must be replaced during the first 1200 
hours of operation if the probability that a bulb must 
be replaced is a random variable X with density 
f(x) = 6[0.25 - (x - 1.5)2] when 1 ~ x ~ 2 and 
fIx) = 0 otherwise. where x is time mea~ured in 
mUltiples of 1000 hours. 

10. Suppose that certain bolts have length L = 200 + X mm, 
where X is a random variable with density 
f(x) = ~(l - x 2

) if - 1 ~ x ~ I and 0 otherwise. 
Determine c so that with a probability of 95% a bolt 
will have any length between 200 - c and 200 + c. 
Hint: See also Example 5. 

11. Let X [millimeters] be the thickne~~ of washers a 
machine turns out. Assume that X has the density 
f(x) = h if 1.9 < x < 2.1 and 0 otherwise. Find k. 
What is the probability that a washer will have 
thickness between 1.95 mm and 2.05 mm? 
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12. Suppose that in an automatic process of filling oil 
into cans, the content of a can (in gallons) is 
Y = 50 + X. where X is a random variable with 
density fIx) = I - Ixl when Ixl :=; 1 and 0 when 
Ixl > I. Graph fIx) and F(x). In a lot of 100 cans, about 
how many will contain 50 gallons or more'? What is 
the probability that a can will contain less than 49.5 
gallons? Less than 49 gallons? 

that X is between ::!.5 (40% profit) and 5 (20% profit)? 

15. Show that b < c implies P(X:=; b) :=; PIX :=; c). 

16. If the diameter X of axles has the density fIx} = k if 
119.9 :=; x ~ 120.1 and 0 otherwise, how many 
defectives will a lot of 500 axles approximately contain 
if defectives are axles slimmer than 119.92 or thicker 
than 120.08? 

13. Let the random variable X with density fIx) = ke-;c if 
o ~ x :=; 2 and 0 otherwise (x = time measured in 
years) be the time after which cel1ain ball bearings are 
worn out. Find k and the probability that a bearing will 
last at least I year. 

14. Let X be the ratio of sales to profits of some fiml. 
Assume that X has the distribution function F(x) = 0 
if x < 2, F(x) = (x2 - 4)/5 if 2 :=; x < 3. F(x) = I if 
x ~ 3. Find and graph the density. What is the probability 

17. Let X be a random variable that can as~ume evelY real 
value. What are the complements of the events X ~ b. 
X<~X~~X>~b:=;X~~b<X~~ 

18. A box contains 4 right-handed and 6 left-handed 
screws. Two screws are drawn at random without 
replacement. Let X be the number of left-handed screws 
drawn. Find the probabilities PIX = m. PIX = I). 
PIX = 2). P( I < X < 2), P(X :=; I). PIX ~ I). 
PIX > I), and P(0.5 < X < 10). 

24.6 Mean and Variance of a Distribution 
The mean J-L and variance 0'2 of a random variable X and of its distribution are the theoretical 
counterpalts of the mean x and variance S2 of a frequency distribution in Sec. 24.1 and 

serve a similar purpose. Indeed, the mean characterizes the central location and the variance 

the spread (the variability) of the distribution. The mean J-L (mu) is defined by 

(a) 

(1) 

(b) 

/1- = 2: xjf(xj) 
j 

J-L = {" xf(x) dx 
-x 

and the variance 0'2 (sigma square) by 

(a) 

(2) 
(b) 

0'2 = 2: L~j - J-L)2f(xj) 
j 

0'2 = f"" (x - J-L)2f{x) dx 
-= 

(Discrete distribution) 

(Continuous distribution) 

(Discrete distribution) 

(Continuous distribution). 

a (the positive square root of (T2) is called the standard deviation of X and its distribution. 
f is the probability function or the density, respectively, in (a) and (b). 

The mean J-L is also denoted by E(X) and is called the expectation of X because it gives 

the average value of X to be expected in many trials. Quantities such as J-L and 0'2 that 

measure certain properties of a distribution are called parameters. J-L and 0'2 are the two 

most important ones. From (2) we see that 

(3) 

(except for a discrete "distribution" with only one possible value, so that 0'2 = 0). We 

assume that J-L and 0'2 exist (are finite), a<; is the ca<;e for practically all distributions that 
are useful in applications. 
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E X AMP L E 1 Mean and Variance 

The random variable X = Number o.{heads ina single toss o{ a lair coin has the possible values X = 0 and X = I 
with probabiliues PIX = 0) = ~ and PIX = 1) = i. From (1 a) we thus obtain the mean f.L = o·l + 1 ·l = ~. and 
(2a) yields the variance 

• 
E X AMP L E 1 Uniform Distribution. Variance Measures Spread 

THEOREM 1 

The distribution with the den~ity 

fIx) = b - 1I if a<x<b 

and.f = 0 otherwise is called the uniform distribution on [he interval a < x < h. From (I b) (or from Theorem 
I. below) we find that f.L = (0 + b)l2. and (2b) yields the variance 

b 2 
2 _ I (. _ (/ + b)2 _1_ . _ (b - l/) 

(T - .~ 2 b-l/ d.\- 12 
a 

Figure 515 illustrates that the spread is large if and only if (T2 is large. 

{(x) 

If-----, 

o 1 

F(x) 

(0 2 
= 1/12) 

x -1 

-1 

((x) 

1 

F(x) 

1 

o 2 x 

2 x 

Fig. 515. Uniform distributions having the same mean (0.5) but different variances u' 

• 

Symmetry. We can obtain the mean JL without calculation if a distribution is symmetric. 
Indeed, you may prove 

Mean of a Symmetric Distribution 

If a distribution is symmetric ~rith re!oJpect to x = c, that is, f(c - x) = f(c + x), 
thell JL = c. (Examples I and 2 illustrate this.) 

Transformation of Mean and Variance 
Given a random variable X with mean JL and variance (]"2. we want to calculate the mean 
and variance of X* = al + a2X. where al and a2 are given constants. This problem is 
important in statistics, where it appears often. 
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THE 0 REM 2 Transformation of Mean and Variance 

(a) If a random variable X has mean J.L and variance (]"2, then the random 
variable 

(4) 

has the mean J.L * and variance (]"*2. where 

(5) and 

(b) In particular, the standardized random variable Z corresponding to X, 

given by 

(6) 
X-J.L 

Z=-­
(]" 

has the mean 0 and the variance 1. 

PROOF We prove (5) for a continuous distribution. To a small interval I of length .it" on the 
x-axis there corresponds the probability f(X)flx [approximately; the area of a rectangle of 
base .i,. and height f(x)]. Then the probability f(x).::lx must equal that for the corresponding 
interval on the x*-axis, that is, f*(x*)Llx*, where f* is the density of X* and Llx* is the 
length of the interval on the x*-axis corresponding to l. Hence for differentials we have 
f*(x*) dx* = f(x) dx. Also. x* = al + a2x by (4). so that (lb) applied to X* gives 

J.L* = I"" x*f*(x*) dx* 
-co 

x 

= I (al + a2x )f(x) dx 
-x 

= al {Xl f(x) dx + a2 I= xf(x) dx. 
-x -CD 

On the right the first integral equals 1, by (10) in Sec. 24.5. The second integral is J.L. This 
proves (5) for J.L *. It implies 

From this and (2) applied to X*, again using f*(x*) dx* = f(x) dx. we obtain the second 
formula in (5), 

(]"*2 = IX (x* - J.L *)21*(x*) dx* = a2
2 !"C (x - J.L)2f(x) dx = a22(]"2. 

-~ -x 

For a discrete distribution the proof of (5) is similar. 
Choosing a l = - J.LI(]" and a2 = I/(]" we obtain (6) from (4), writing X* = Z. For these 

{II, a2 formula (5) gives J.L* = 0 and (]"*2 = 1, as claimed in (b). • 
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Expectation, Moments 
Recall that (1) defines the expectation (the mean) of X, the value of X to be expected on 
the average, written IL = E(X). More generally, if g(x) is non constant and continuous for 
all x, then g(X) is a random variable. Hence its mathematical expectation or, briefly, its 
expectation E(g(X» is the value of g(X) to be expected on the average. defined [similarly 
to (I)] by 

(7) E(g(X» = 2: g(.l)f(xj) 
j 

or E(g(X» = fC g(x)f(x) dx. 
-x 

In the first fonnula, f is the probability function of the discrete random variable X. In the 
second formula, f is the density of the continuous random variable X. Important special 
cases are the kth moment of X (where k = L 2 .... ) 

(8) E(Xk) = 2: x/ f(xj) 
j 

or 

and the kth central moment of X (k = L, 2, ... ) 

(9) E([X - IL]k) = 2: (Xj - ILlf(X.i) 
j 

This includes the first moment. the mean of X 

(10) IL = E(X) 

or {Xl (x _ ILlf(x) dx. 
-x 

[(8) with k = I]. 

It also includes the second central moment, the variance of X 

(11) [(9) with k = 2]. 

For later use you may prove 

(12) E(l) = 1. 

11-:.6J MEAN, VARIANCE 7. What is the expected daily profit if a store sells X air 
conditioners per day with probability f(lO) = 0.1, 
fell) = 0.3, f(12) = 0.4, f(13) = 0.2 and the profit 
per conditioner is $55? 

Find the mean and the variance of the random variable X 
with probability function or density f(x). 

1. f(x) = 2x (0;:;; x ;:;; I) 

2. f(O) = 0.512, f(l) = 0.384, f(2) = 0.096, 
f(3) = 0.008 

3. X = Number a fair die turns up 

4. Y = -4X + 5 with X as in Prob. 1 

5. Uniform distribution on [0, 8] 

6. f(x) = 2e-2x (x ~ 0) 

8. What is the mean life of a light bulb whose life X [hours] 
has the density f(x) = O.OOle-O

.
OOlx (x ~ O)? 

9. If the mileage (in multiples of 1000 mi) after which a tire 
must be replaced is given by the random variable X with 
density f(x) = ()e- flx (x > 0). what mileage can you 
expect to get on one of these tires? Let e = 0.04 and find 
the probability that a tire will last at least 40000 mi. 
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10. What sum can you expect in rolling a fair die 10 times? 
Do it. Repeat this experiment 20 times and record how 
the sum varies. 

11. A small filling station is supplied with gasoline every 
Saturday afternoon. Assume that its volume X of sales 
in ten thousands of gallons has the probability density 
f(x) = 6x( I - x) if 0 ~ x ~ 1 and 0 otherwise. 
Determine the mean. the vaIiance. and the standardized 
variable. 

12. What capacity must the tank in Prob. II have in order 
that the probability that the tank will be emptied in a 
given week be 5%'1 

13. Let X [cm] be the diameter of bolts in a production. 
Assume that X has the density 
f(x) = k(x - 0.9)( 1.1 - x) if 0.9 < x < 1.1 and 0 
otherwise. Detern1ine k. sketch fIx). and find JL and u 2

. 

14. Suppose that in Prob. 13. a bolt is regarded as being 
defective if its diameter deviates from 1.00 cm by more 
than 0.09 cm. What percentage of defective bolts 
should we then expect? 

15. For what choice of the maximum possible deviation c 
from 1.00 cm shall we obtain 3o/c defectives in Probs. 
13 and 14? 

16. TEAM PROJECT. Means, Variances, Expectations. 
(a) Show that E(X - IL) = 0, (]"2 = E(X 2) - IL2. 

(b) Prove (10)-(12). 

(c) Find all the moments of the uniform distribution 
on an interval a ~ x ~ b. 

(d) The skewness 'Y of a random variable X is defined 
by 

(13) 
1 3 

'Y = 3 E([X - ILl ). 
(]" 

Show that for a symmetric distribution (whose third 
central moment exists) the skewness is 7ero. 

(e) Find the skewness of the distribution with density 
fIx) = xe-x when x > 0 and fIx) = 0 otherwise. 
Sketch f(x). 

(I) Calculate the skewness of a few simple discrete 
distributions of your own choice. 

(g) Find a non symmetric discrete distribution with 3 
possible values. mean O. and skewness O. 

24.7 Binomial, Poisson, and Hypergeometric 
D istri butions 

These are the three most important discrete distributions. with numerous applications. 

Binomial Distribution 
The binomial distribution occurs in games of chance (rolling a die, see below, etc.), 
quality inspection (e.g., counting of the number of defectives), opinion polls (counting 
number of employees favoring certain schedule changes, etc.), medicine (e.g., recording 
the number of patients recovered by a new medication), and so on. The conditions of its 
OCCUlTence are as follows. 

We are interested in the number of times an event A occurs in n independent trials. In 
each trial the event A has the same probability P(A) = p. Then in a trial, A will not occur 
with probability q = I - p. rn 11 trials the random variable that interests us is 

x = Number oj times the event A occurs in 11 trials. 

X can assume the values 0, I. .... 11. and we want to detennine the corresponding 

probabilities. Now X = x means that A occurs in l" trials and in n - x trials it does not 
occur. This may look as follows. 
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A A··· A B B··· B. 
(1) 

'---v----' ~ 

x times 11 - x times 

Here B = AC is the complement of A, meaning that A does not Occur (Sec. 24.2). We now 
use the assumption that the trials are independent, that is. they do not influence each other. 
Hence (I) has the probability (see Sec. 24.3 on independent events) 

pp ... p . qq'" q = p"·qn-x. 
(1 *) '-------v-----' '-------v-----' 

x times 11 - x times 

Now (l) is just one order of ananging x A's and 11 - x B's. We now use Theorem l(b) 
in Sec. 24.4, which gives the number of permutations of 11 things (the 11 outcomes of the 
II trials) consisting of 2 classes, class I containing the III = x A's and class 2 containing 
the 11 - III = 11 - x B's. This number is 

n! 
= (:) . x!(n - x)! 

Accordingly, (1 *) multiplied by this binomial coefficient gives the probability P(X = x) of 
X = x, that is, of obtaining A precisely x times in 11 trials. Hence X has the probability function 

(2) (\' = 0, I, ... , /l) 

and I(x) = 0 otherwise. The distribution of X with probability function (2) is called the 
binomial distribution or Be1'1loll11i distriblltion. The occunence of A is called sllccess 
(regardless of what it actually is: it may mean that you miss your plane or lose your watch) 
and the nonoccunence of A is calledfailllre. Figure 516 shows typical examples. Numeric 
values can be obtained from Table A5 in App. 5 or from your CAS. 

The mean of the binomial distribution is (see Team Project 16) 

(3) J.L = np 

and the variance is (see Team Project 16) 

(4) (]'2 = npq. 

0.5 

jll 
°O!:---'--'-~----:C5 O!--,--'-...L~5 0 5 O:--,--'-...L.1....:!5 0~~-'-.......,.5 

p=O.l p=O.2 p=O.5 p=O.8 p =0.9 

Fig. 516. Probability function (2) of the binomial distribution for n = 5 and various values of p 
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For the symmetric case of equal chance of success and failure (p = q = 112) this gives 
the mean nl2, the variance nJ4, and the probability function 

(2*) f(x) = (:) (~r (x = 0, 1, ... , n). 

E X AMP L E 1 Binomial Distribution 

Compute the probability of obtaining at least two "Six" in rolling a fair die 4 times. 

Solution. p = peA) = P("Six") = 1/6, q = 5/6. n = 4. The event "At leasr two 'Six'" occurs if we obtain 
2 or 3 or 4 "Six." Hence the answer is 

P = J(2) + J(3) + J(4) = (~) (i r ( % r + (~) (i r ( %) + (:) (i r 
I 171 

= - (6·25 + 4·5 + I) = -- = 13.2%. 
64 1296 • 

Poisson Distribution 
The discrete distribution with infinitely many possible values and probability function 

(5) f(x) = (x = 0, 1, . , .) 

is called the Poisson distribution, named after S. D. Poisson (Sec, 18.5). Figure 517 
shows (5) for some values of f.L. It can be proved that this distribution is obtained as a 
limiting case of the binomial distribution, if we let p ~ ° and n ~ 00 so that the mean 
f.L = np approaches a finite value. (For instance, f.L = np may be kept constant.) The 
Poisson distribution has the mean f.L and the variance (see Team Project 16) 

(6) 

Figure 517 gives the impression that with increasing mean the spread of the distribution 
increases, thereby illustrating formula (6), and that the distribution becomes more and 
more (approximately) symmetric. 

0.5 

o 5 10 

11 = 0.5 11=1 11=2 11=5 

Fig. 517. Probability function (S) of the Poisson distribution for various values of J1, 
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E X AMP L E 2 Poisson Distribution 

If the probability of producing a defective screw is I' = 0.01. what is the probability that a lot of 100 screw~ 
will contain more than 2 defectives'! 

Solutioll. The complementary event is AC
: Not more thaI! 2 defeethoes. For its probability we get from the 

binomial distribution with mean M = 111' = I the value [see (2)] 

(
100) (100) P(Ac ) = 0 (J.YY lOO + I (J.OI • 0.yy99 + (

100) 2 98 
2 0.01' 0.Y9 . 

Since p is very small. we can approximale this by the much more conveniem Poisson distriblllion with mean 
J1. = 111' = 100· 0.01 = I. obtaining [see (5)] 

= 91.97%. 

Thu, PIA) = 8.03%. Show that the binomial distribution gives PIA) = 7.94%, so that the Poi~son approximation 
is quite good. • 

E X AMP L E 3 Parking Problems. Poisson Distribution 

If on the average. 2 cars enter a certain parking lot per minute. what is the probability that during any given 
minute 4 or more car, will enter the lot? 

Solutioll. To understand that the Poisson distribution is a model of the situation. we imagine the minute to 

be divided into very many short time intervals, let p be the (constant) probability that a car will enter the lot 
during any such short interval. and assume independence of the events that happen during those imervals. Then 
we are dealing with a binomial distribution with very large 11 and very small 1', which we can approximate by 
the Pois~on distriblllion with 

M = 1117 = 2, 

because 2 cars enter on the average. The complementary event of the event ·'4 cars or more during a given 
minute" is "3 cars orfewer elller the lot" and ha~ the prohability 

(
20 21 22 23 ) 

f(O) + f(l) + f(2) + f(3) = e-2 -0
1 

+ - + - + -
I! 2! 3! 

= 0.857. 

Answer: l·t3"k. (Why did we consider that complement"!) • 

Sampling with Replacement 
This mean, that we draw things from a given set one by one, and after each trial we 
replace the thing drawn (put it back to the given set and mix) before we draw the next 
thing. This guarantees independence of trials and leads to the binomial distribution. 
Indeed, if a box contains N things, for example. screws. M of which are defective, the 
probability of drawing a defective screw in a trial is p = MIN. Hence the probability of 
drawing a nondefective screw is q = 1 - p = 1 - MIN, and (2) gives the probability of 
drawing x defectives in n trials in the form 

(7) _ (11) (M)X ( M)n-X f(x) - - I--
x N N 

(x = 0, I, ... , 11). 
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Sampling without Replacement. 
Hypergeometric Distribution 
Sampling without replacement means that we return no screw to the box. Then we no 
longer have independence of trials (why?). and instead of (7) the probability of drawing 
x defectives in n trials is 

(8) I(x) = (x = 0, I, ... , 11). 

The distribution with this probability function is called the hypergeometric distribution 
(because its moment generating function (see Team Project 16) can be expres~ed by the 
hypergeometric function defined in Sec. 5.4, a fact that we shall not use). 

Derivation of (8). By (4a) in Sec. 24.4 there are 

(a) (:) different ways of picking 11 things from N. 

(b) (~) different ways of picking x defectives from M, 

(c) (N - M\ different ways of picking n - x nondefectives from N - M, 
n - x J 

and each way in (b) combined with each way in (c) gives the total number of mutually 
exclusive ways of obtaining x defectives in 11 drawings without replacement. Since (a) is 
the total number of outcomes and we draw at random. each such way has the probability 

l/(Ij . From this, (8) follows. • 

The hypergeometric distribution has the mean (Team Project 16) 

(9) 

and the variance 

(10) 

M 
J.L=/l­

N 

nM(N - MeN - 11) 

N 2(N - I) 

E X AMP L E 4 Sampling with and without Replacement 

We want to draw random samples of two gaskets from a box containing 10 gaskets. three of which are defective. 
Find the probability function of the random variable X = Number of defectives ill the sample. 

Solution. We have N = 10. M = 3. N - M = 7. Il = 2. For sampling with replacement. (7) yields 

f(x) = (~) ( I~ r ( 170 r-x 

J(O) = 0.49, f(l) = 0.42, J(2) = 0.09. 

For sampling without replacement we have to use (8), finding 

21 3 
fCO) = f(l) = 45 "" 0.47. f(2) = 45 = 0.07. • 
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If N, M, and N - M are large compared with n, then it does not matter too much whether 
we sample with or without replacemellt, and in this case the hypergeometric distribution 
may be approximated by the binomial distribution (with p = MIN), which is somewhat 
simpler. 

Hence in slimp ling from an indefinitely large population ("infinite population") we 
1Il11\' use the binomial distribution, regardless of whether we sample with or withollI 
replacement. 

===== -... -... -.. ".-~ ..... : .. -.. .. --
1. Four fair coins are tossed simultaneously. Find the 

probability function of the random variable X = Number 
of heads and compute the probabilities of obtaining no 
heads, precisely I head, at least I head, not more than 
3 heads. 

2. If the probability of hitting a target in a single shot is 
10% and 10 shots are fired independently. what is the 
probability that the target will be hit at least once? 

3. In Prob. 2, if the probability of hitting would be 5% 
and we fired 20 shots. would the probability of hitting 
at least once be less than. equal to, or greater than in 
Prob. 2? Guess first, then compute. 

4. Suppose that 3% of bolts made by a machine are 
defective, the defectives occurring at random during 
production. If the bolts are packaged 50 per box, 
what is the Poisson approximatIOn of the probabilit) 
that a given box will contain x = 0, 1, ... , 5 
defeClives? 

5. Let X be the number of cars per minute passing a certain 
point of some road between 8 A.M. and 10 A.M. on a 
Sunday. Assume that X has a Poisson disuibution with 
mean 5. Find the probability of observing 3 or fewer 
cars during any given minute. 

6. Suppose thar a telephone switchboard of some 
company on the average handles 300 calls per hour, 
and that the board can make at most 10 connections 
per minute. Using the Poisson disU'ibution, estimate the 
probability that the board will be overtaxed during a 
given minute. (Use Table A6 in App. 5 or your CAS.) 

7. (Rutherford-Geiger experiments) In 1910. E. 
Rutherford and H. Geiger showed experimenrally that 
the number of alpha particles emitted per second in a 
radioactive process is a random variable X having a 
Poisson distribution. If X has mean 0.5, whar is the 
probability of observing two or more particles during 
any given second? 

8. A process of manufacturing screws is checked every 
hour by inspecting 11 screws selected at random from 
that hour's production. If one or more screws are 
defective, the process is halted and carefully examined. 
How large should n be if the manufacturer wants the 
probability to be about 95% that the process will be 

haIted when 10% of the screws being produced are 
defective? (Assume independence of the quality of any 
screw of that of the other screws.) 

9. Suppose that in the production of 50-n resistors, 
nondefective items are those that have a resistance 
between 45 nand 55 n and the probability of a 
resistor's being defective is 0.2%. The resistors are sold 
in lots of 100, with the guarantee that all resistors are 
nondefective. What is the probability that a given lot 
will violate this guarantee? (Use the Poisson 
distribution.) 

10. Let P = lo/c be the probability that a certain type of 
lightbulb will fail in a 24-hr test. Find the probability 
that a sign consisting of 10 such bulbs will bum 24 
hours with no bulb failures. 

11. Guess how much less the probability in Prob. 10 would 
be if the sign consisted of 100 bulbs. Then calculate. 

12. Suppose that a certain type of magnetic tape contains. 
on the averdge, 2 defects per 100 meters. What is the 
probability that a roll of tape 300 meters long will 
contain (a) x defects, (b) no defects? 

13. Suppose thar a test for extrasensory perception consists 
of naming (in any order) 3 cards randomly drawn from 
a deck of 13 cards. Find the probability that by chance 
alone, the person will correctly name (a) no cards, 
(b) I card, (c) 2 cards, (d) 3 cards. 

14. A carton contains 20 fuses, 5 of which are defective. 
Find the probability that. if a sample of 3 fuses is 
chosen from the carton by random drawing without 
replacement, x fuses in the sample will be defective. 

15. (Multinomial distribution) Suppose a trial can result in 
precisely one of k mutually exclusive events Ab ... , Ak 

with probabilities PI' .•• , Pk' respectively, where 
PI + ... + Pk = 1. Suppose that /I independent trials 
are performed. Show that the probability of getting 
Xl AI's, ..• , Xk Ak's is 

where 0 ~ Xj ~ II, j = I, ... , k. and 
Xl + ... + Xk = 11. The distribution having this 
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probability function is called the lIlultinomial 

distribution. 

(b) Shov. that the binomial distribution has the 
moment generating function 

16. TEAM PROJECT. Moment Generating Function. 
The moment generating function G(t) is defined by 

tX ~ tx· 
G(t) = E(e J) = .L.J e 'f(xj) 

or 

G(t) = E(etx) = fX et·t:f(x) dx 
-x 

(c) Using (b), prove (3). 

(d) Prove (4). 

= (pet + q)". 

where X is a discrete or continuous random variable, 
respectively. 

(e) Show that the Poisson distribution has the moment 
generating function G{t) = e-lLelLe ' and prove (6). 

(a) Assuming that termwise differentiation and 
differentiation under the integral sign are permissible, 
show that E(Xk) = dkl(O), where d k ) = dkG/dtk. in 
particular, /L = G' (0). 

24.8 Normal Distribution 

(f) Prove x (~) = M (~ = !) . 
Using this. prove (9). 

Turning from discrete to continuous distributions, in this section we discuss the normal 
distribution. This is the most important continuous distribution because in applications 
many random variables are normal random variables (that is, they have a normal 
distribution) or they are approximately normal or can be transformed into normal random 
variables in a relatively simple fashion. Furthermore, the normal distribution is a useful 
approximation of more complicated distributions. and it also occurs in the proofs of various 
statistical tests. 

The normal distribution or Gauss distribution is defined as the distribution with the 
density 

(1) I [_ 21 (x -cr J.L )2J f(x) = -- exp 
d\!2; 

(cr> 0) 

where exp is the exponential function with base e = 2.718 .... This is simpler than it 
may at first look. fex) has these features (see also Fig. 518). 

1. J.L is the mean and cr the standard deviation. 

2. l/(dV2;) is a constant factor that makes the area under the curve of f(x) from -x 

to x equal to L as it must be by (0), Sec. 24.5. 

3. The curve of f(x) is symmetric with respect to x = J.L because the exponent is 
quadratic. Hence for J.L = 0 it is symmetric with respect to the y-axis x = 0 
(Fig. 518, "bell-shaped curves"). 

4. The exponential function in (1) goes to zero very fast-the faster the smaller the 
standard deviation cr is, as it should be (Fig. 518). 
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((x) 

cr = 1.0 

2 x 

Fig. 518. Density (1) of the normal distribution with /L = 0 for various values of u 

Distribution Function F(x) 
From (7) in Sec. 24.5 and (I) we see that the normal di<;tribution has the distribution 
function 

(2) Fex) = .~ IX exp [- 21 (u - J.L )2J du. 
(TV 27T -00 (T 

Here we needed x as the upper limit of integration and wrote u (instead of x) in the integrand. 
For the conesponding standardized normal distribution with mean 0 and standard 

deviation I we denote F(x) by <P(.:). Then we simply have from (2) 

(3) 
I Z 

cI>(.:) = -- I e-u2/2 duo 
Vh -x 

This integral cannot be integrated by one of the methods of calculus. But this is no serious 
handicap because its values can be obtained from Table A 7 in App. 5 or from your CAS. 
These values are needed in working with the normal distribution. The curve of cI>(z) is 
S-shaped. It increases monotone (why?) from 0 to 1 and intersects the vertical axis at 
112 (why?), as shown in Fig. 519. 

Relation Between F(x) and «I>(z). Although your CAS will give you values of F(x) in 
(2) with any J.L and (T directly, it is important to comprehend that and why any such an 
F(x) can be expressed in terms of the tabulated standard cI>(z), as follows. 

y 

,",(xl 

1.0 ~ 

0.8 / 

0.6 

o. 

/0.2 

-3 -2 -1 0 2 3 x 

Fig. 519. Distribution function <I>(z) of the normal distribution with mean 0 and variance 1 
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THE 0 REM 1 Use of the Normal Table A7 in App. 5 

The distributioll fimctioll FCr) of the nonnal distriblltioll with allY J.L and 0" r see (2)] 
is related to the stalldardi-;.ed distribution filllCtiOIl <1>(.:) ill (3) by the formula 

(4) (
x-J.L) F(x) = <I> -0"- . 

PROOF Comparing (2) and (3) we see that we should set 

THEOREM 2 

u= Then v = x gives u= 
0" 0" 

as the new upper limit of integration. Also v - J.L = O"U, thus dv = 0" du. Together, since 
0" drops out. 

F(x) = --- e-u2/ 2 0" du = <I> __ J.L_ 
I I(X-P)/u ( X - ) 

O"~ -ex: 0" • 
Probabilities corresponding to intervals will be needed quite frequently in statistics in 
Chap. 25. These are obtained as follows. 

Normal Probabilities for Intervals 

The probability that a normal random variable X with mean J.L and standard 

del'iatioll 0" assume allY vallie ill all inten'al a < x ~ b is 

(
b-J.L) (a-J.L) (5) Pea < X ~ b) = F(b) - F(a) = <I> -0"- - <J:> -0"- . 

PROOF Formula (2) in Sec. 24.5 gives the first equality in (5). and (4) in this section gives the 
~~~~~. . 
Numeric Values 
In practical work with the normal disnibution it is good to remember that about 2/3 of all 
values of X to be observed will lie between J.L ± 0", about 95% between J.L ± 20", and practically 
all between the three-sigma limits J.L ± 30". More precisely, by Table A7 in App. 5, 

(a) P(J.L - 0" < X ~ J.L + 0") = 68% 

(6) (b) P(J.L - 20" < X ~ J.L + 20") = 95.5% 

(c) P(J.L - 30" < X ~ J.L + 30") = 99.7%. 

Formulas (6a) and (6b) are illustrated in Fig. 520. 
The formulas in (6) show that a value deviating from JL by more than 0", 20", or 30" will 

occur in one of about 3, 20, and 300 trials, respectively. 
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Fig. 520. Illustration of formula (6) 
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In tests (Chap. 25) we shall ask conversely for the intervals that corre<;pond to certain 
given probabilities; practically most important are the probabilities of 95%, 99%, and 
99.9%. For these, Table AS in App. 5 gives the answers J.L ± 2u, J.L ± 2.5u, and 
J.L ± 3.3u, respectively. More precisely, 

(a) P(J.L - 1.96u < X ~ J.L + 1.96u) = 95% 

(7) (b) P(J.L - 2.5Su < X ~ J.L + 2.5Su) = 99% 

(e) P(J.L - 3.29u < X ~ J.L + 3.29u) = 99.9%. 

Working With the Normal Tables A7 and AS in App. 5 
There are two normal tables in App. 5, Tables A7 and A8. If you want probabilities, use 
Table A7. If probabilities are given and corresponding intervals or x-values are wanted, 
use Table AS. The following examples are typical. Do them with care. verifying all values, 
and don't just regard them as dull exercises for your software. Make sketches of the density 
to see whether the results look reasonable. 

E X AMP L E 1 Reading Entries from Table A7 

If X is standardi7ed nonnal (so that /L = O. a = 1), then 

P(X ~ 2.'14) = 0.9927 = 99~% 

P(X~ -1.16) = 1 - <1>(1.16) = 1 - 0.8770 = 0.1230 = 12.3'J1: 

P(X ~ 1) = 1 - P(X ~ I) = 1 - 0.H413 = 0.1587 by (7), Sec. 24.3 

PO.O ~ X ~ 1.8) = <1>(1.8) - <1>(1.0) = 0.9641 - 0.8413 = 0.1228. • 
E X AMP L E 2 Probabilities for Given Intervals, Table A7 

Let X be normal with mean 0.8 and variance 4 (so that a = 2). Then by (4) and (5) 

( 
2.44 - 0.80 ) 

P(X ~ 2.44) = F(2.44) = q) 2 = <1>(0.82) = 0.7939 = 80% 

or if you like it better (similarly in the other cases) 

( 
X - 0.80 2.44 - 0.80 ) 

P(X ~ 2.44) = P 2 ~ 2 = P(Z ~ 0.82) = 0.7939 

(
1-08) PIX ~ 1) = I - P(X ~ 1) = I - <I> --2-'- = I - 0.5398 = 0.4602 

P(1.0 ~ X ~ 1.8) = <1>(0.5) - <1>(0.1) = 0.6915 - 0.5398 = 0.1517. • 



1030 CHAP. 24 Data Analysis. Probability Theory 

E X AMP L E 3 Unknown Values c for Given Probabilities, Table AS 

Let X be nonnal with mean 5 and variance 0.04 (hence standard deviation 0.1). Find c or k corresponding to 

the given probability 

PIX ~ c) = 950/(. ( 
c - 5) 

<P 0:2 = 95%. 
c - 5 

0.1 = 1.645. c = 5.319 

P(5 - k ~ X ~ 5 + k) = 90%, 5 + k = 5.319 (as before: why?) 

P(X ~ c) = 19C. thus PIX ~ c) = 99%. 
c-5 0:2 = 2.326. c = 5.46S. • 

E X AMP L E 4 Defectives 

In a production of iron rods let the diameter X be nunnally distributed with mean 2 in. ilnd standard deviation 
0.008 in. 

(a) What percentage of defectives can we expect if we ,et the tolerance limit, at 2 ::':: 0.01 in.? 

(b) How should we set the tolerance limits to allow for 4'lt defectives? 

Solutioll. (a) I!'k because from (S) and Table A7 we obtain for the complementary event the probability 

( 
2.02 - 2.00) ( 1.9H - 2.00 ) 

P( 1.98 ~ X ~ 2.02) = <I) 0.008 - <I) 0.008 

= <1)(2.5) - <P( -2.S) 

= 0.9938 - (I - 0.9938) 

= 0.9876 

= 98~%. 

(b) 2 ::':: 0.0164 because for the complementary event we have 

or 

so that Table A8 gives 

0.96 = P(2 - c ~ X ~ 2 + c) 

0.98 = P(X ~ 2 + c) 

(
1+C-2) 

0.98 = <P 0 . 
0.08 

2+c-2 

0.008 
= 2.0S4. c = 0.0164. 

Normal Approximation of the Binomial Distribution 
The probability function of the binomial distribution is (Sec. 24.7) 

• 

(8) (x = 0, 1, ... , n). 

If 11 is large, the binomial coefficients and powers become very inconvenient. It is of great 
practical (and theoretical) importance that in this case the normal distribution provides a 
good approximation of the binomial distribution, according to the following theorem, one 
of the most important theorems in all probability theory. 
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THEOREM 3 Limit Theorem of De Moivre and Laplace 

For large n. 

(9) f(x) ~ f*(x) (x = 0, 1, ... , n). 

Here f is given by (8). The function 

(10) f* (x) = ---c=---== V2;v,;pq 
x - np 

v;pq 

is the density of the n01711al distribution with mean J.L = np and variance (j2 = npq 
(the mean and variance of the billomial distribution). The symbol ~ (read 

asymptotically equal) means that the ratio of both sides approaches 1 as n 
approaches so. Flirthe17nore. fbr any llOllIlegative integers a and b (> a). 

(11 ) 

Pea ~ X ~ b) = ~a (:) p~:qn-x ~ cI>(f3) - cI>(ex), 

a - IIp - 0.5 b - I1p + 0.5 
13= ex= v,;pq v,;pq 

A proof of this theorem can be found in [03] listed in App. 1. The proof shows that the 

term 0.5 in ex and 13 is a correction caused by the change from a discrete to a continuous 
distribution. 

11-131 NORMAL DISTRIBUTION 

1. Let X be normal with mean 80 and variance 9. 
Find P(X > 83). P(X < 81), P(X < 80), and 
P(78 < X < 82). 

2. Let X be normal with mean 120 and variance 16. Find 
P(X;;;; 126), P(X > 116), P(l25 < X < 130). 

3. Let X be normal with mean 14 and variance 4. Determine 
c such that P(X ;;;; c) = 95%, P(X ;;;; c) = 5%, 
P(X;;;; c) = 99.5%. 

4. Let X be normal with mean 4.2 and variance 0.04. 
Find c such that P(X ;;;; c) = 50%, P(X > C) = 10%, 
P(-c < X - 4.2;;;; c) = 99%. 

5. If the lifetime X of a certain kind of automobile 
battery is normally distributed with a mean of 4 yr 
and a standard deviation of I yr, and the manufacturer 
wishes to guarantee the battery for 3 yr, what 
percentage of the batteries will he have to replace 

under the guarantee? 

6. If the standard deviation in Prob. 5 were smaller. 
would that percentage be smaller or larger? 

7. A manufacturer knows from experience that the 
resistance of resistors he produces is normal with mean 
/L = 150 n and standard deviation (T = 5 n. What 
percentage of the resistors will have resistance between 
148 nand 152 n? Between 140 nand 160 n? 

8. The breaking strength X [kg] of a certain type of 
plastic block is normally distributed with a mean of 
1250 kg and a standard deviation of 55 kg. What is 
the maximum load such that we can expect no more 
than 5% of the blocks to break? 

9. A manufacturer produces airmail envelopes whose 
weight is normal with mean /L = 1.950 grams and 
standard deviation if = 0.025 grams. The envelopes 
are sold in lots of 1000. How many envelopes in a lot 
will be heavier than 2 grams? 
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10. If the resistance X of ce11ain wires in an electrical 
network is normal with mean 0.01 D and standard 
deviation 0.001 D, how many of 1000 wires will meet 
the specification that they have resistance between 
0.009 and 0.011 Q? 

11. If the mathematics scores of the SAT college entrance 
exams are normal with mean 480 and standard 
deviation 100 (these are about the actual values over 
the past years) and if some college sets 500 as the 
minimum score for new students, what percent of 
students will not reach that score? 

12. If the monthly machine repair and maintenance cost X 
in a ce11ain factory is known to be normal with mean 
$12000 and standard deviation $2000, what is the 
probability that the repair cost for the next month will 
exceed the hudgeted amount of $150007 

13. [f sick-leave time X used by employees of a company 
in one month is (very roughly) normal with mean 1000 
hours and standard deviation 100 hours. how much 
time t should be budgeted for sick leave during the next 
month if t is to be exceeded with probability of only 
20o/c? 

14. TEAM PROJECT. Normal Distribution. (a) Derive 
the formula~ in (6) and (7) from the appropriate normal 
table. 

(b) Show that cI>(-:) = I - cI>(:). Give an example. 

(e) Find the points of inflection of the curve of (1). 

(d) Considering cI>2(ao) and introducing polar 
coordinates in the double integral (a standard trick 
worth remembering), prove 

(12) 
1 IX 2 

cI>(x) = ~ e- ll 12 dll = 1. 
\. 2'11" -x 

(e) Show that u in (1) is indeed the standard deviation 
of the normal distribution. [Use (12).] 

(I) Bernoulli's law oflarge nwnbers.ln an experiment 
let an event A have probability p (0 < P < I), and let 
X be the number of time~ A happens in /I independent 
trials. Show that for any given E > 0, 

as /1-+ x. 

(g) Transformation. If X is normal with mean J.L 

and variance u 2
, show that X* = clX + C2 (cI > 0) 

is normal with mean J.L* = CIJ.L + C2 and variance 
U*2 = C1

2
U

2
. 

15. WRITING PROJECT. Use of Tables. Give a 
systematic discussion of the use of Tables A 7 and A8 
for obtaining P(X < b), P(X > a), P(a < X < fA 
PIX < c) = k. P(X > c) = k. as well as 
P(J.L - C < X < J.L + c) = k: include simple examples. 
If you have a CAS. describe to what extent it makes 
the use of those tables superfluous; give examples. 

24.9 Distributions of Several Random Variables 
Distributions of two or more random variables are of interest for two reasons: 

1. They occur in experiments in which we observe several random variables, for 
example, carbon content X and hardness Y of steel, amount of fertilizer X and yield of 

corn Y, height Xl' weight X2 , and blood pressure X3 of persons, and so on. 

2. They will be needed in the mathematical justification of the methods of statistics in 
Chap. 25. 

In this section we consider two random variables X and Yor, as we also say, a two­

dimensional random variable (X, Y). For (X, Y) the outcome of a trial is a pair of numbers 

X = x, Y = y, briefly (X, Y) = (x, y), which we can plot as a point in the XY-plane. 

The two-dimensional probability distribution of the random variable (X, Y) is given 

by the distribution function 

(1) F(:.:, y) = P(X ~ x, Y ~ y). 

This is the probability that in a trial, X will assume any value not greater than x and in 

the same trial, Y will assume any value not greater than y. This corresponds to the blue 

region in Fig. 521, which extends to -00 to the left and below. F(x, y) determines the 
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Fig. 521. Formula (1) 

probability distribution uniquely, because in analogy to formula (2) in Sec. 24.5, that is, 
Pea < X ~ b) = F(b) - F(a), we now have for a rectangle (see Prob. 14) 

As before, in the two-dimensional case we shall also have discrete and continuous 
random variables and distributions. 

Discrete Two-Dimensional Distributions 
In analogy to the case of a single random variable (Sec. 24.5), we call (X, Y) and its 
distribution discrete if (X, Y) can assume only finitely many or at most countably infinitely 
many pairs of values (XI' YI), (X2' )'2), '" with positive probabilities, whereas the 
probability for any domain containing none of those values of (X, Y) is zero. 

Let (x;, -':) be any of those pairs and let P(X = Xi' Y = Yj) = Pij (where we admit that 
Pij may be 0 for certain pairs of subscripts i, j). Then we define the probability function 
f(x. y) of ex, Y) by 

(3) f(x, y) = Pij if x = Xi, Y = Yj and f(x, y) = 0 otherwise; 

here, i = 1,2, ... andj = 1,2, ... independently. In analogy to (4), Sec. 24.5, we now 
have for the distribution function the formula 

(4) 

Instead of (6) in Sec. 24.5 we now have the condition 

(5) 2: 2: f(Xi' Yj) = 1. 
j 

E X AMP LEI Two-Dimensional Discrete Distribution 

If we ~imilltaneously toss a dime and a nickel and consider 

x = Number of heads the dime turns up, 

Y = Number of heads the nickel turns up, 

then X and Y can have the values 0 or 1. and the probability function is 

fCO, 0) = fO, 0) = f(O, 1) = f(1, 1) =~, f(x, y) = ° otherwise. • 
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y 

Fig. 522. Notion of a two-dimensional distribution 

Continuous Two-Dimensional Distributions 
In analogy to the case of a single random variable (Sec. 24.5) we caIl (X, Y) and its 
distribution continuous if the corresponding distribution function F(x, \') can be given by 
a double integral 

(6) I
,j IX 

F(x, y) = f(x*, y*) dx* dy* 
-00 -':X:l 

whose integrand f, called the density of (X, Y), is nonnegative everywhere, and is 
continuous, possibly except on finitely many curves. 

From (6) we obtain the probability that (X, Y) assume any value in a rectangle 
(Fig. 522) given by the formula 

(7) 

E X AMP L E 2 Two-Dimensional Uniform Distribution in a Rectangle 

Let R be the rectangle "1 < x ~ f31' "2 < Y ~ f32' The density (see Fig. 523) 

(8) f(x. y) = Ilk if (x. y) i~ in R. f(x, y) = 0 otherwise 

defines the so-called uniform distribution ill the rectallgle R: here k = (f31 - "1)({32 - "2) is the area of R. 
The distribution function is shown in Fig. 524. • 

o 
Fig. 523. Density function (8) of the 

uniform distribution 

x 

y 

o 
Fig. 524. Distribution function of the 

uniform distribution defined by (8) 

Marginal Distributions of a Discrete Distribution 

x 

This is a rather natural idea, without counterpart for a single random variable. It amounts 
to being interested only in one of the two variables in (X, Y), say, X, and asking for its 
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distribution, called the marginal distribution of X in (X, V). So we ask for the probability 
P(X = x, Yarbitrary). Since (X, Y) is discrete, so is X. We get its probability function, 
call it f1(x), from the probability function f(x, y) of (X, Y) by summing over y: 

(9) f1(x) = P(X = x, Yarbitrary) = 2: f(x, y) 
y 

where we sum all the values of f(x, y) that are not 0 for that x. 
From (9) we see that the distribution function of the marginal distribution of X is 

(10) 

Similarly, the probability function 

(11) f2(Y) = P(X arbitrary. Y = y) = 2: f(x. y) 
:r 

determines the marginal distribution of Y in (X, V). Here we sum all the values of 
f(x, y) that are not zero for the conesponding y. The distribution function of this marginal 
distribution is 

(12) 
y*~y 

E X AMP L E 3 Marginal Distributions of a Discrete Two-Dimensional Random Variable 

In drawing 3 cards with replacement from a bridge deck let us consider 

(X. Yl. x = NlIl11ber of queens. Y = Number of kings or lIces. 

The deck has 52 cards. These include 4 queens. 4 kings. and 4 aces. Hence in a single trial a queen has probability 
4/52 = 1/13 and a king or ace 8/52 = 2/13. This gives the probability function of (X, Y), 

3! ( I )X ( 2 )Y ( 10 )3-T-Y /<x,\") = - - -
. x! y! (3 - x - y)! 13 13 13 

(x + y ~ 3) 

and fIx. y) = 0 otherwise. Table 24.1 shows in the center the values of fIx, y) and on the right and lower margins 
the values of the probability functions hex) am] hey) of the marginal distributions of X and Y, respectively .• 

Table 24.1 Values of the Probability Functions f{x, y), fl{X), f 2{Y) in Drawing 
Three Cards with Replacement from a Bridge Deck, where X is the Number 
of Queens Drawn and Y is the Number of Kings or Aces Drawn 

y 0 I 2 3 f1(x) 
x 

0 1000 600 120 8 1728 
2197 2197 2197 2197 2197 

1 ,IOU 120 12 0 432 
2197 2197 2197 2197 

2 30 6 0 0 36 
2197 2197 2197 

3 1 0 0 0 1 
2197 2197 

f2(Y) 1331 726 132 8 
2197 2197 2197 2197 
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Marginal Distributions of a Continuous Distribution 
This is conceptually the same as for discrete distributions. with probability functions and 
sums replaced by densities and integrals. For a continuous random variable (X, Y) with 
density f(x, y) we now have the marginal distribution of X in (X. Yl. defined by the 
distribution function 

(13) Fl(x) = P(X ;:;; x, -QO < Y < ce) = IX fl(X*) dx* 
-co 

with the density f 1 of X obtained from f(x. y) by integration over y, 

(14) fleX) = I= f(x, y) dy. 
-x 

Interchanging the roles of X and Y, we obtain the marginal distribution of Y in (X, Y) 
with the distribution function 

(15) 
y 

F 2(y) = P( -x < X < ce, y;:;; y) = I f2(V*) dy* 
-x 

and density 

(16) f2(Y) = fX f(x, y) dx. 
-co 

Independence of Random Variables 
X and Y in a (discrete or continuous) random variable (X, Y) are said to be independent 
if 

(17) 

holds for all (x, y). Otherwise these random variables are said to be dependent. These 
definitions are suggested by the corresponding definitions for events in Sec. 24.3. 

Necessary and sufficient for independence is 

(IS) 

for all x and y. Here the f's are the above probability functions if (X, Y) is discrete or 
those densities if (X, Y) is continuous. (See Prob. 20.) 

E X AMP L E 4 Independence and Dependence 

In tossing a dime and a nickel. X = Number of heads all the dillie, Y = Number of headf all the nickel may 
assume the values 0 or I and are independent. The random variables in Table 24.1 are dependent. • 

Extension of Independence to II-Dimensional Random Variables. This will be needed 
throughout Chap. 25. The distribution of such a random variable X = (Xl> ... , Xn) is 
determined by a distribution function of the form 
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The random variables Xl> .... Xn are said to be independent if 

(19) 

for all (Xl> ••• , xn). Here FiXj) is the distribution function of the marginal distlibution 
of Xj in X, that is, 

Otherwise these random variahles are said to be dependent. 

Functions of Random Variables 
When 11 = 2, we write Xl = X, X2 = Y, Xl = X, X2 = y. Taking a nonconstant continuous 

function g(x, y) defined for all x, y, we obtain a random variable Z = g(X, Y). For example, 
if we roll two dice and X and Yare the numbers the dice turn up in a trial, then 
Z = X + Y is the sum of those two numbers (see Fig. 513 in Sec. 24.5), 

In the case of a discrete random variable (X, Y) we may obtain the probability function 
f(:::.) of Z = g(X. Y) by summing all f(x, y) for which g(x, y) equals the value of :::. 
considered; thus 

(20) f(:::.) = P(Z = :::.) = LL f(x, y). 
g(x.y)~z 

Hence the distribution function of Z is 

(21) F(::.) = P(Z ~ :::.) = LL f(x, y) 
g(x,Y)""Z 

where we sum all values of f(x, y) for which g(x, y) ~ z. 
In the case of a continuous random variable eX, Y) we similarly have 

(22) F(z) = P(Z ~ z) = f f f(x, y) dx dy 
g(x,Y)""z 

where for each z we integrate the density f(x, y) of (X, Y) over the region g(x, y) ~ z in 
the xy-plane. the boundary curve of this region being g(x, v) = z. 

Addition of Means 
The number 

(23) 
{ 

L L g(x, y)f(x. y) 

x Y 
E(g(X, Y» = x x 

ix ixg(X, y)f(x, y) dx dy 

[(X, Y) discrete] 

[(X, Y) continuous] 
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is called the mathematical expectatio/1 or, briefly, the expectation of g(X, Y). Here it is 
assumed that the double series converges absolutely and the integral of Ig(x, y)I.f(x, y) over 
the xy-plane exists (is finite). Since summation and integration are linear processes, we 
have from (23) 

(24) E(ag(X, Y) + bh(X, Y» = aE(g(X, Y» + bE(h(X, Y». 

An imponam special case is 

E(X + Y) = E(X) + E( Y), 

and by induction we have the following result. 

Addition of Means 

The mean (expectation) of a sum of random variables equals the Sll1l1 of the means 
(expectations), that is, 

Furthermore, we readily obtain 

Multiplication of Means 

The mean (e.\pectation) of the product (~lilldependellt random variables equals the 
product qf the meam (expectatiolls), that is, 

(26) 

PROOF If X and Yare independent random variahles (both discrete or hoth continuous), then 
E(XY) = E(X)E(Y). In fact, in the di~crete case we have 

E(XY) = 2: 2: xyf(x, y) = 2: xfl(x) 2: yf2(Y) = E(X)E(y), 
x y y 

and in the continuous case the proof of the relation is similar. Extension to /1 independent 
random variables gives (26), and Theorem 2 is proved. • 

Addition of Variances 
This is another matter of practical impOltance that we shall need. As before, let Z = X + Y 

and denote the mean and Valiance of Z by I-t and u 2
• Then we first have (see Team Project 

16(a) in Problem Set 24.6) 
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THEOREM 3 

From (24) we see that the first term on the right equals 

For the second term on the right we obtain from Theorem I 

[E(z)f = [E(X) + E(y)]2 = lE(X)f + 2E(X)E(Y) + [E(y)]2. 

By substituting these expressions into the formula for u 2 we have 

u 2 = E(X2) - [E(X)]2 + E(y2) - [E(Y)]2 

+ 2[E(XY) - E(X)E(Y)]. 

From Team Project 16, Sec. 24.6, we see that the expression in the first line on the right 
is the sum of the variances of X and Y, which we denote by U1

2 and U22, respectively. 
The quantity in the second line (except for the factor 2) is 

(27) UXY = E(XY) - E(X)E(Y) 

and is called the covariance of X and Y. Consequently, our result is 

(28) 

If X and Y are independent, then 

E(XY) = E(X)E(Y): 

hence UXY = 0, and 

(29) 

Extension to more than two variables gives the basic 

Addition of Variances 

The variance of the sum of independent random variables equals the sum of the 
variances of these variables. 

CAUTION! In the numerous applications of Theorems 1 and 3 we must always 
remember that Theorem 3 holds only for independent variables. 

This is the end of Chap. 24 on probability theory. Most of the concepts, methods, and 
special distributions discussed in this chapter will play a fundamental role in the next 
chapter, which deals with methods of statistical inference, that is, conclusions from 
samples to populations. whose unknown properties we want to know and try to discover 
by looking at suitable properties of samples that we have obtained. 
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1. Let f(x, y) = k when 8 ~ x ~ 12 and 0 ~ y ~ 2 and 
zero elsewhere. Find k. Find P(X ~ 11, 1 ~ Y ~ 1.5) 
and P(9 ~ X ~ 13, Y ~ I). 

2. Find P(X > 2, Y> 2) and P(X ~ 1. Y ~ 1) if (X. Y) 
has the density f{x, y) = 1/8 if x ~ O. Y ~ 0, X -t- Y ~ 4. 

3. Let f(x, y) = k if x > O. y > 0, x + y < 3 and 0 
otherwise. Find k. Sketch f(x, y). Find P(X + Y ~ I), 

P(Y> X). 

4. Find the density of the marginal distribution of X in 
Prob 2. 

5. Find the density of the marginal distribution of Y in 
Fig. 523. 

6. If certain sheets of wrapping paper have a mean weight 
of 10 g each. with a standard deviation of 0.05 g. what 
are the mean weight and standard deviation of a pack 
of IO 000 sheets? 

7. What are the mean thickness and the standard deviation 
of transformer cores each consisting of 50 layers of 
sheet metal and 49 insulating paper layers if the metal 
sheets have mean thickness 0.5 mm each with a 
~tandard deviation of 0.05 mm and the paper layers 
have mean 0.05 mm each with a standard deviation of 
O.02mm? 

S. If the weight of certain (empty) containers has mean 
2 Ib and standard deviation 0.1 lb. and if the filling of 
the containers has mean weight 751b and standard 
deviation 0.8 lb. what are the mean weight and standard 
deviation of filled containers'! 

9. A 5-gear assembly is put together with spacers between 
the gears. The mean thickness of the gear~ is 5.020 em 
with a standard deviation of 0.003 cm. The mean 
thickness of the spacers is 0.040 cm with a standard 
deviation of 0.002 cm. Find the mean and standard 
deviation of the a~sembled units consisting of 5 randomly 
selected gears and 4 randomly selected spacers. 

10. Give an example of two different discrete distributions 
that have the same marginal distributions. 

11. Show that the random vatiables with the densities 

f(l:, y) = X + Y 

and 

g(x, y) = (x + ~)(y + ~) 

if 0 ~ x ~ I, 0 ~ Y ~ I and f(x. y) = 0 and 
g(x. y) = 0 elsewhere. have the same marginal 
distribution. 

12. Let X [cm 1 and Y [cm 1 be the diameter of a pin and 
hole. respectively. Suppose that (X, Y) has the 
density 

f(x, y) = 2500 if 

0.99 < x < 1.01. 1.00 < Y < 1.02 

and 0 otherwise. (a) Find the marginal distributions. 
(b) What is the probability that a pin chosen at random 
will fit a hole whose diameter is l.00? 

13. An electronic device consists of two components. Let 
X and Y [months] be the length of time until failure of 
the first and second component, respectively. Assume 
that (X, Y) has the probability density 

f(x, y) = 0.01 e -O.l(x+y) if x > 0 and y > 0 

and 0 otherwise. (a) Are X and Y dependent or 
independent? (b) Find the densities of the marginal 
distributions. (c) What is the probability that the first 
component has a lifetime of 10 months or longer? 

14. Prove (2). 

15. Find P(X > Y) when (X. Y) has the density 

ftx, Y) = 0.25e-O.5 (x+y) if x ~ 0, y ~ 0 

and 0 otherwise. 

16. Let (X. Y) have the density 

f(x, y) = k if x2 + y2 < 1 

and 0 otherwise. Determine k. Find the densities of 
the marginal distributions. Find the probability 

P(X2 + y2 < 1/4). 

17. Let (X, Y) have the probability function 

f(O.o) = f(1. I) = lIS. 

f(O, 1) = f(l. 0) = 3/8. 

Are X and Y independent? 

IS. Using Theorem 1, obtain the formula for the mean of 
the hypergeometrie distribution. Can you use Theorem 
3 to obtain the variance of that distribution? 

19. Using Theorems I and 3, obtain the formulas for the 
mean and the variance of the binomial distribution. 

20. Prove the statement involving (18). 
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. ::a.::iI ... ':==IU STIONS AND PROBLEMS 

1. Why did we begin the chapter with a section on handling 
data? 

2. What are stem-and-Ieaf plots? Boxplots? Histograms? 
Compare their advantages. 

3. What quantities measure the average size of data? The 
spread? 

4. Why did we consider probability theory? What is its 
role in statistics? 

5. What do we mean by an experiment? By a random 
variable related with it? What are outcomes? Events? 

6. Give examples of experiments in which you have 
equally likely cases and others in which you don't. 

7. State the definition of probability from memory. 

8. What is the difference between the concepts of a 
permutation and a combination? 

9. State the main theorems on probability. IIIustmte them 
by simple examples. 

10. What is the distribution of a random variable? The 
distribution function? The probability function'! The 
density? 

11. State the definitions of mean and variance of a random 
variable from memory. 

12. If peA) = PCB) and A <::;; B, can A =1= B? 

13. If E =1= S (= the sample space), can P(E) = I? 

14. What distributions correspond to sampling with 
replacement and without replacement? 

15. When will an experiment involve a binomial 
distribution? A hypergeometric distribution? 

16. When will the Poisson distribution be a good 
approximation of the binomial distribution? 

17. What do you know about the approximation of the 
binomial distribution by the normal distribution? 

18. Explain the use of the tables of the normal distribution. 
If you have a CAS, how would you proceed without the 
tables? 

19. Can the probability function of a discrete random 
variable have infinitely many positive values? 

20. State the most important facts about distributions of two 
random variables and their marginal distributions. 

21. Make a stem-and-Ieaf plot, histogram, and boxplot of 
the data 22.5. 23.2, 22.1, 23.6, 23.3, 23.4, 24.0, 20.6, 
23.3. 

22. Do the same task as in Prob. 21, for the data 210, 213, 
209,218,210,215,204,211,216,213. 

23. Find the mean, standard deviation, and variance in 
Prob.21. 

24. Find the mean, standard deviation, and variance In 

Prob.22. 

25. What are the outcomes of the sample space of 
X: Tossing a coin until the first Head appears? 

26. What are the outcomes in the sample space of the 
experiment of simultaneously tossing three coins? 

27. A box contains 50 screws, five of which are defective. 
Find the probability function of the random variable 
X = Number of defective screws in drawing tl1'O screws 
without replacement and compute its values. 

28. Find the values of the distribution function in Prob. 27. 

29. Using a Venn diagram, show that A <::;; B if and only if 
AUB=B. 

30. Using a Venn diagram, show that A <::;; B if and only if 
An B =A. 

31. If X has the density f(x) = 0.5x (0 :;::: x :;::: 2) and 
o otherwise, what are the mean and the Vallance of 
X* = -2X + 5? 

32. If 6 different inks are available, in how many ways can 
we select two colors for a printing job? Four colors? 

33. Compute 5! by the Stirling formula and find the absolute 
and relative errors. 

34. Two screws are randomly drawn without replacement 
from a box containing 7 right-handed and 3 left­
handed screws. Let X be the number of left-handed 
screws drawn. Find P(X = 0), P(X = I), P(X = 2), 
P(I < X < 2), P(O < X < 5). 

35. Find the mean and the variance of the distribution 
having the density f(x) = ~e-Ixl. 

36. Find the skewness of the distribution with density 
f(x) = 2(1 - x) if 0 < x < I, f(x) = 0 otherwise. 

37. Sketch the probability function f(x) = x 2/30 

(x = 1, 2, 3,4) and the distribution function. Find /-L. 

38. Sketch F(x) = 0 if x :;::: 0, F(x) = 0.2x if 0 < x :;::: 5, 
F(x) = 1 if x > 5, and its density f(x). 

39. If the life of tires is normal with mean 25 000 km and 
variance 25 000 000 km2

, what is the probability that a 
given one of those tires will last at least 30 000 km? At 
least 35000 km? 

40. If the weight of bags of cement is normal with mean 
50 kg and standard deviation 1 kg, what is the 
probability that 100 bags will be heavier than 5030 kg? 
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Data Analysis. Probability Theory 

A random experiment, briefly called experiment, is a process in which the result 
("outcome") depends on "chance" (effects of factors unknown to us). Examples are 
games of chance with dice or cards, measuring the hardness of steel. observing 
weather conditions, or recording the number of accidents in a city. (Thus the word 
"experiment" is used here in a much wider sense than in common language.) The 
outcomes are regarded as points (elements) of a set S, called the sample space, 
whose subsets are called events. For events E we define a probability PtE) by the 
axioms (Sec. 24.3) 

o ~ peE) ~ I 

(1) peS) = I 

peEl u £2 U ... ) = peEl) + P(£2) + 

These aXiOms are motivated by properties of frequency distributions of data 
(Sec. 24.1). 

The complement ~ of E has the probability 

(2) P(EC
) = 1 - peE). 

The conditional probability of an event B under the condition that an event A 
happens is (Sec. 24.3) 

(3) p(BIA) = peA n B) 
peA) 

[peA) > 0]. 

Two events A and B are called independent if the probability of their simultaneous 
appearance in a trial equals the product of their probabilities, that is, if 

(4) PtA n B) = P(A)P(B). 

With an experiment we associate a random variable X. This is a function defined 
on S whose values are real numbers; furthermore, X is such that the probability 
p(X = a) with which X assumes any value a, and the probability pea < X ~ b) 
with which X assumes any value in an interval a < X ~ b are defined (Sec. 24.5). 
The probability distribution of X is determined by the distribution function 

(5) F(x) = P(X ~ x). 

In applications there are two important kinds of random variables: those of the 
discrete type, which appear if we count (defective items, customers in a bank, etc.) 
and those of the continuous type, which appear if we measure (length, speed, 
temperature, weight, etc.). 



Summary of Chapter 24 

A discrete random variable has a probability function 

(6) f(x) = P(X = x}. 

Its mean 11- and variance a 2 are (Sec. 24.6) 

(7) 11- = L xjf(xj) 
j 

and u 2 
= L (Xj - 11-}2f(xj) 

j 
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where the Xj are the values for which X has a positive probability. Important discrete 
random variables and distributions are the binomial. Poisson. and hypergeometric 
distributions discussed in Sec. 24.7. 

A continuous random variable has a density 

(8) f(x} = F'(x} [see (5)j. 

Its mean and variance are (Sec. 24.6) 

11- = fO xf(x) dx 
-= 

and u 2 = fC (x - 11-)2f(x) dt:. 
-oc 

(9) 

Very important is the normal distribution (Sec. 24.8), whose density is 

(l0) I [1 (x - 11- )2J f(1;) = -- exp - - _._-
u\,f2; 2 u 

and whose distribution function is (Sec. 24.8: Tables A 7. A8 in App. 5) 

(II) 

A two-dimensional random variable (X, Y) occurs if we simultaneously observe 
two quantities (for example, heightX and weight Yof adults}. Its distribution function 
is (Sec. 24.9) 

( 12) F(x, y} = P(X ~ x, Y ~ y}. 

X and Y have the distribution functions (Sec. 24.9) 

(13) FI(x} = P(X ~ x, Yarbitrary) and F2(y) = P(x arbitrary, Y ~ y) 

respectively; their distribution-; are called marginal distributions. If both X and Y 
are discrete. then (X. Y) has a probability function 

f(x, y} = P(X = x, Y = y}. 

If both X and Yare continuous. then (X. Y) has a density f(x, y). 
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CHAPTER 2 5 

Mathematical Statistics 

In probability theory we set up mathematical models of processes that are affected by 
"chance". In mathematical statistics or, briefly. statistics, we check these models against 
the observable reality. This is called statistical inference. It is done by sampling, that 
is, by drawing random samples, briefly called samples. These are sets of values from a 
much larger set of values that could be studied, called the popUlation. An example is 
10 diameters of screws drawn from a large lot of screws. Sampling is done in order to 
see whether a model of the population is accurate enough for practical purposes. If this 
is the case, the model can be used for predictions, decisions, and actions, for instance, in 
planning productions, buying equipment, investing in business projects, and so on. 

Most important methods of statistical inference are estimation of parameters 
(Secs. 25.2). determination of confidence intervals (Sec. 25.3), and hypothesis testing 
(Secs. 25.4. 25.7. 25.8). with application to quality control (Sec. 25.5) and acceptance 
sampling (Sec. 25.6). 

In the last section (25.9) we give an introduction to regression and correlation analysis, 
which concern experiments involving two variables. 

Prerequisite: Chap. 24. 
Sections that may be omitted in a shorter course: 25.5, 25.6. 25.8. 
References, Answers to Problems. a1ld Statistical Tables: App. I Part G, App. 2, 

App.5. 

25.1 Introduction. Random Sampling 
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Mathematical statistics consists of methods for designing and evaluating random 
experiments to obtain information about practical problems. such as exploring the relation 
between iron content and density of iron ore, the quality of raw material or manufactured 
products, the efficiency of air-conditioning systems, the performance of certain cars, the 
effect of advertising, the reactions of consumers to a new product, etc. 

Random variables occur more frequently in engineering (and elsewhere) than one 
would think. For example, properties of mass-produced articles (screws, lightbulbs. etc.) 
always show random variation, due to small (uncontrollable!) differences in raw material 
or manufacturing processes. Thus the diameter of screws is a random variable X and we 
have nOlldefecfive screws. with diameter between given tolerance limits, and defective 
screws, with diameter outside those limits. We can ask for the distribution of X, for the 
percentage of defective screws to be expected, and for necessary improvements of the 
production process. 
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Samples are selected from populations-20 screws from a lot of 1000, 100 of 5000 
voters, 8 beavers in a wildlife conservation project-because inspecting the entire 
population would be too expensive, time-consuming, impossible or even senseless (think 
of destructive testing of lightbulbs or dynamite). To obtain meaningful conclusions, 
samples must be random selections. Each of the 1000 screws must have the same chance 
of being sampled (of being drawn when we sample), at least approximately. Only then 
will the sample mean x = (Xl + ... + X20)120 (Sec. 24.1) of a sample of size 11 = 20 
(or any other 11) be a good approximation of the population mean JL (Sec. 24.6); and the 
accuracy of the approximation will generally improve with increasing II, as we shall see. 
Similarly for other parameters (standard deviation, variance, etc.). 

Independent sample values will be obtained in experiments with an infinite sample 
space S (Sec. 24.2), certainly for the normal distribution. This is also true in sampling with 
replacement. It is approximately true in drawing small samples from a large finite population 
(for instance. 5 or 10 of 1000 items). However. if we sample without replacement from a 
small population, the effect of dependence of sample values may be considerable. 

Random numbers help in obtaining samples that are in fact random selections. This 
is sometimes not easy to accomplish because there are many subtle factors that can bias 
sampling (by personal interviews, by poorly working machines, by the choice of nontypical 
observation conditions, etc.). Random numbers can be obtained from a random number 
generator in Maple, Mathematica, or other systems listed on p. 991. (The numbers are 
not truly random, as they would be produced in flipping coins or rolling dice, but are 
calculated by a tricky formula that produces numbers that do have practically all the 
essential features of true randomness.) 

E X AMP L E 1 Random Numbers from a Random Number Generator 

To select a sample of size n = 10 from 80 given ball bearings, we number the bearings from I to 80. We then 
let the generator randomly produce 10 of the integers from I to 80 and include the bearings with the numbers 
obtained in our sample. for example. 

44 55 53 03 52 61 67 78 39 54 

or whatever. 
Random numbers are also contained in (older) statistical tables. • 

Representing and processing data were considered in Sec. 24.1 in connection with 
frequency distributions. These are the empirical counterparts of probability distributions 
and helped motivating axioms and properties in probability theory. The new aspect in this 
chapter is randomness: the data are samples selected randomly from a population. 
Accordingly, we can immediately make the connection to Sec. 24.1. using stem-and-leaf 
plots, box plots. and histograms for representing samples graphically. 

Also, we now call the mean x in (5), Sec. 24.1, the sample mean 

(1) 

We call 11 the sample size, the variance S2 in (6), Sec. 24.1, the sample variance 

(2) 
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and its positive square root s the sample standard deviation .. \', 52, and 5 are called 
parameters ~l a sample; they will be needed throughout this chapter. 

25.2 Point Estimation of Parameters 
Beginning in this section, we shall discuss the most basic practical tasks in statistics and 
corresponding statistical methods to accomplish them. The first of them is point estimation 
of parameters, that is, of quantities appearing in distributions, such as p in the binomial 
distribution and JL and u in the normal distribution. 

A point estimate of a parameter is a number (point on the real line). which is computed 
from a given sample and serves as an approximation of rhe unknown exact value of the 
parameter of the population. An interval estimate is an interval ("confidence il1terval"') 
obtained from a sample; such estimates will be considered in the next section. Estimation 
of parameters is of great practical importance in many applications. 

As an approximation of the mean JL of a popUlation we may take the mean .X' of a 
corresponding sample. This gives the estimate /L = .\' for JL, that is, 

(1) JL=X= tXl + ... + x.,,) 
11 

where n is the sample size. Similarly. an estimate &2 for the variance of a popUlation is 
the variance S2 of a corresponding sample, that is, 

(2) 

Clearly, (1) and (2) are estimates of parameters for distributions in which JL or u 2 

appear explicity as parameters. such as the normal and Poisson distributions. For the 
binomial distribution, p = JLln lsee (3) in Sec. 24.71. From (1) we thus obtain for p 

the estimate 

x 
(3) jJ= 

1l 

We mention that (1) is a special case of the so-called method of moments. In this 
method the parameters to be estimated are expressed in terms of the moments of the 
distribution (see Sec. 24.6). In the resulting formulas those moments of the distribution 
are replaced by the corresponding moments of the sample. This gives the estimates. Here 
the kth moment of a sample X10 •••• Xn is 
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Maximum Likelihood Method 
Another method for obtaining estimates is the so-called maximum likelihood method of 
R. A. Fisher [Messellger Math. 41 (1912). 155-160]. To explain it we consider a discrete 
(or continuous) random variable X whose probability function (or density) f(x) depends 
on a single parameter e. We take a corresponding sample of 11 illdepelldent values 
Xl' •••• X1]" Then in the discrete ca~e the probability that a sample of size 1l consists 
precisely of those 11 values is 

(4) 

In the continuous case the probability that the sample consists of values in the small 
intervals}.; ~ x ~ Xj + tu (j = 1,2, .. ',11) is 

(5) 

Since f(xj) depends on e, the function I in (5) given by (4) depends on Xl • .•. , Xn and 
e. We imagine Xl, ••. , Xn to be given and fixed. Then I is a function of e. which is called 
the likelihood function. The basic idea of the maximum likelihood method is quite simple, 
as follows. We choose that approximation for the unknown value of e for which I is as 
large as possible. If I is a differentiable function of e, a necessary condition for I to have 
a maximum in an interval (not at the boundary) is 

(6) = o. ae 

(We write a partial derivative. because I depends also on Xlo •••• xn") A solution of (6) 
depending onx1' ... , Xn is called a maximum likelihood estimate for e. We may replace 
(6) by 

(7) 
a In I 

ae = 0, 

because f(xj) > 0, a maximum of I is in general positive, and In I is a monotone increasing 
function of I. This often simplifies calculations. 

Several Parameters. If the distribution of X involves r parameters e1 , ..• , en then 
instead of (6) we have the r conditions al/ae1 = 0, ... , rJllae,. = 0, and instead of (7) 
we have 

(8) = O. 

E X AMP L E 1 Normal Distribution 

a In I 

ae,. = o. 

Find maximum likelihood estimates tor (JI = /L and (J2 = u in the case of the normal distribution. 

Solutioll. From (1). Sec. 24.8. and (4) we obtain the likelihood function 

I = (~)n (~)n e-h 

"271" u 
where 
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Taking logarithms. we have 

In 1= -11 In v T;;- - /I In u - h. 

The first equation in (8) is vOn I)lvf.L = O. written out 

hence 
" L '\J - /If.L = O. 

j~l 

The ~olution is the desired estimate [L for f.L: we find 

LXj=.r. 
Il j=l 

The ~econd equation in (8) i~ a(ln l)trlu = O. written out 

v In 1 11 

u 

ill! 

au 

Replacing f.L by [Land solving for u 2
• we obtain the estimate 

-2 1 ~ _ 2 
U = - L.. (Xj - xl 

n j=l 

which we shall use in Sec. 25.7. Note that this differs from (2). We cannot discuss criteria for the goodness of 
estimates but want to mention that for 'mall 11. formula (2) is preferable. • 

•... _ ............ _ ...... ..-. . ..-. -- ... ---......... ~--.-~ .... ... 
1. Find the maximum likelihood estimate for the 

parameter f.L of a nOlmal distribution with known 
variance u 2 = uo2

. 

2. Apply the maximum likelihood method to the normal 
distribution with f.L = O. 

3. (Binomial distribution) Derive a maximum likelihood 
estimate for p. 

4. Extend Prob. 3 as follows. Suppose that 111 times 11 

trials were made and in the first 11 trials A happened 
kl times, in the second n trials A happened k2 times, 
... , in the mth 11 triab A happened km times. Find a 
maximum likelihood estimate of p based on this 
information. 

5. Suppose that in Prob. 4 we made 4 times 5 trials and 
A happened 2, I, .. k 4 times, respectively. Estimate p. 

6. Consider X = Number of independent trials IImil all 
el'ent A occurs. Show that X has the probability 
function f(x) = pqX-l. X = l. 2 ..... where p is the 
probability of A in a single trial and q = I - p. Find 
the maximum likelihood estimate of p corresponding 
to a sample .\'1, ••• , Xn of observed values of X. 

7. In Prob. 6 find the maximum likelihood estimate of p 
corresponding to a single observation x of X. 

8. In rolling a die. suppose that we get the first Six in the 
7th trial and in doing it again we get it in the 6th trial. 
Estimate the probability p of getting a Six in rolling 
that die once. 

9. (Poisson distribution) Apply the maximum likelihood 
method to the Poisson distribution. 

10. (Uniform distribution) Show that in the case of the 
parameters a and b of the uniform distribution (see 
Sec. 24.6), the maximum likelihood estimate cannot be 
obtained by equating the first derivative to zero. How 
can we obtain maximum likelihood estimates in this 
case? 

11. Find the maximum likelihood estimate of e in the 
density f(x) = ee-HX if x ~ 0 and f(x) = 0 if x < O. 

12. In Prob. I I. find the mean f.L. substitute it in fex). find 
the maximum likelihood estimate of IL. and show that 
It is identical with the estimate for f.L which can be 
obtained from that for e in Prob. I I. 

13. Compute e in Prob. 11 from the sanlple 1.8, 0.4. 0.8. 
0.6. 1.4. Graph the sample distribution function Fcx) 

and the distribution function F(x) of the random 
variable, with e = e. on the same axes. Do they agree 
reasonably well? (We consider goodness of fit 
systematically in Sec. 25.7.) 



SEC 25.3 Confidence Intervals 

14. Do the same task as in Frob. 13 if the given sample is 
0.5.0.7.0.1. 1.1. 0.1. 

15. CAS EXPERIMENT. Maximum Likelihood 
Estimates. (MLEs). Find experimentally how much 

25.3 Confidence Intervals 
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MLEs can differ depending on the ~ample ~ize. Hillf. 

Generate many samples of the same size II. e.g .. of the 
standardized normal distribution. and record i and S2. 

Then increase /I. 

Confidence intervals1 for an unknown parameter 8 of some distribution (e.g .. 8 = J-L) are 
intervals 81 :2: 8 :2: 82 that contain 8, not with certainty but with a high probability 'Y. 
which we can choose (95% and 99% are popular). Such an interval is calculated from a 
sample. 'Y = 95% means probability I - 'Y = 5% = 1/20 of being wrong--Dne of about 
20 such intervals will not contain 8. Instead of writing 81 :2: e ~ 82 , we denote this more 
distinctly by writing 

(1) 

Such a special symbol, CONE seems worthwhile in order to avoid the misunderstanding 
that 8 mllst lie between 81 and 82 , 

'Y is called the confidence level, and 81 and 82 are called the lower and upper 
confidence limits. They depend on 'Y. The larger we choose 'Y. the smaller is the error 
probability 1 - 'Y, but the longer is the confidence interval. If 'Y ---7 I, then its length goes 
to infinity. The choice of 'Y depends 011 the kind of application. In taking no umbrella, a 
5% chance of getting wet is not tragic. In a medical decision of life or death, a 5% chance 
of being wrong may be too large and a I % chance of being wrong ('Y = 99%) may be 
more desirable. 

Confidence intervals are more valuable than point estimates (Sec. 25.2). Indeed. we can 
take the midpoint of (1) as an approximation of 8 and half the length of ( I) as an "error 
bound" (not in the strict sense of numerics. but except for an error whose probability we 
know). 

81 and 82 in (1) are calculated from a sample Xl, ...• Xn . These are 11 observations of 
a random variable X. Now comes a standard trick. We regard Xl, ••• , X

11 
as single 

observations of n random variables Xl' ... , Xn (with the same distribution, namely, that 
ofX)· Then 81 = 81(X1, ••• , xn) and 82 = 82(x1 , .•• , xn) in (I) are observed values of 
two random variables 8 1 = 8 1(X1 , ..• , Xn) and 8 2 = 8 2(X1 , ••• , X,,). The condition 
(I) involving 'Y can now be written 

(2) 

Let us see what all this means in concrete practical cases. 
In each case in this section we shall first state the steps of obtaining a confidence interval 

in the form of a table, then consider a typical example, and finally justify those steps 
theoretically. 

1 JERZY NEYMAN (1894-1981 l. American statistician, developed the theory of confidence intervals (Alll/als 
of Mathematical Statistics 6 (1935). 111-116). 
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Confidence Interval for JL of the Normal Distribution 
with Known (J"2 

(3) 

Table 25.1 Determination of a Confidence Interval for the Mean p. of 
a Normal Distribution with Known Variance u 2 

Step 1. Choose a confidence level y (95%, 99%, or the like). 

Step 2. Determine the conesponding c: 

0.95 0.99 0.999 'Y I 0.90 

1.1)60 2.576 3.21) 1 c 1.645 

Step 3. Compute the mean .f of the sample Xl> •••• Xu-

Step -I. Compute k = cuIyr-;;. The confidence interval for jL is 

CONFy Ix - k ~ p. ~ x + k). 

E X AMP L E 1 Confidence Interval for jL of the Normal Distribution with Known u 2 

THEOREM 1 

Deterimine a 95'ff confidence interval for the mean of a normal distribution with variance 0-
2 

= 9. using a 
sample of 11 = 100 values with mean x = 5. 

Solution. Step 1. l' = 0.95 is required. Step 2. The corresponding c equals 1.960; see Table 25.1. 
Step 3 .. r = 5 is ghen. Step 4. We need k = 1.960' 3/v'lOo = 0.588. Hence r - k = 4.412 .. 1' + k = 5.588 
and the confidence interval is CONFo.95 [4.412 ::'" /L::'" 5.588}. 

This is sometimes written /L = 5 ::':: 0.588, but we shall not lise this notation, which can be misleading. 
With your CAS YOll can determine this interval more directly. Similarly for the other examples in this ,eetion ... 

Theory for Table 25.1. The method in Table 25.1 follows from the basic 

Sum of Independent Normal Random Variables 

Let Xl' ... , X" be illdependent nonnal random variables each (~fwhich has mean 
jL and I'ariallce u 2

. Theil the followillg holds. 

la) The Slllll Xl + ... + Xn is Ilonlla! with meall IljL alld variallce IlU2
. 

(b) The following random variable X is normal with mean jL and variallce u 2/n. 

(4) 
I 

X = - (Xl + ... + Xn) 
n 

le) The followillg ralldom variable Z is Ilonllal with melill 0 alld variallce l. 

(5) 

PROOF The statements about the mean and variance in (a) follow from Theorems 1 and 3 in 
Sec. 24.9. From this and Theorem 2 in Sec. 24.6 we see that X has the mean (I/1l)lljL = jL 
and the variance (l11ly2nu2 = u 2/n. This implies that Z has the mean 0 and variance I. 
by Theorem 2(b) in Sec. 24.6. The nonnality of Xl + ... + Xn is proved in Ref. [031 
listed in App. 1. This implies the normality of (4) and (5). • 
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Derivation of (3) in Table 25.1. Sampling from a normal distribution gives independent 
sample values (see Sec. 25.1). so that Theorem I applies. Hence we can choose 'Yand 
then determine c such that 

(6) ( 
X-11- ) P( -c ~ Z ~ c) = P -c ~ ~ ~ c = <D(c) - (1:>( -c) = 'Y. 
a/v 11 

For the value 'Y = 0.95 we obtain ::.(D) = 1.960 from Table AS in App. 5. as used in 
Example 1. For 'Y = 0.9. 0.99. 0.999 we get the other values of c listed in Table 25.1. 
Finally. all we have to do is to convert the inequality in (6) into one for 11- and insert 
observed values obtained from the sample. We multiply -c ~ Z ~ c by -I and then by 
a/V;;. writing car\!;; = k (as in Table 25.1), 

P( - c ~ Z ~ c) = P( c ~ - Z ~ - c) = P (c ~ JL - X :> - c) 
a/V;; = 

= PCk ~ JL - X ~ -k) = 'Y. 

Adding X gives P(X + k ~ JL ~ X - k) = 'Y or 

(7) P(X - k ~ JL ~ X + k) = y. 

Inserting the observed value.X' of X gives (3). Here we have regarded Xl> •••• Xn as single 
observations of Xl' ...• X" (the standard trick!). so tha!..xI + ... + Xn is an observed 
value of Xl + ... + Xn and .X' is an observed value of X. Note further that (7) is of the 
form (2) with 8 1 = X - k and 8 2 = X + k. • 

E X AMP L E 2 Sample Size Needed for a Confidence Interval of Prescribed Length 

How large must 11 be in Example I if we want to obtain a 95% confidence interval of length L = OA? 

Solution. ll1e interval (3) has the length L = 2k = 'leu'v;,. Solving for 11. we obtain 

In the present case the answer is 11 = (2 . 1.960' 310.4)2 = 870. 
Figure 525 shows how L decreases as 11 increases and that for l' = 99% the confidence interval is substantially 

longer than for l' = 95% (and the same sample size Ill. • 

0.6 r-,,---------, 

0.4 

Llu 

0.2 

-+- L-- _ 

00 500 
n 

Fig. 525. Length of the confidence interval (3) (measured in multiples of tT) 
as a function of the sample size n for 'Y = 95% and y = 99% 
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Confidence Interval for J.L of the Normal Distribution 
With Unknown 0-2 

In practice a 2 is frequently unknown. Then the method in Table 25.1 does not help and 
the whole theory changes, although the steps of determining a confidence interval for /-L 

remain quite similar. They are shown in Table 25.2. We see that k differs from that in 
Table 25.1, namely, the sample standard deviation s has taken the place of the unknown 
standard deviation a of the popUlation. And c now depends on the sample size 11 and must 
be determined from Table A9 in App. 5 or from your CAS. That table lists values z for 
given values of the distribution function (Fig. 526) 

(8) 
Z ( u2 )-(1n+ 1)/2 

F(~) = K", I I + - du _= III 

of the t-distribution. Here, I1l (= I, 2, ... ) is a parameter, called the number of degrees 
of freedom of the distribution (abbreviated d.f.). [n the present case. 
I7l = 1l - I; see Table 25.2. The constant Km is such that F(x) = 1. By integration it 
turns out that Km = r(~111 + ~)/[V;;;;: r(~1Il)]. where r is the gamma function (see (24) 
in App. A3.1). 

(9) 

(10) 

T 'lIe 25.2 Determination of a Confidence Interval for the Mean I.t 
of a Normal Distribution with Unknown Variance 0"2 

Step 1. Choose a confidence level y (95%.99%. or the like). 

Step 2. Determine the solution c of the equation 

F(c) = ~(l + y) 

from the table of the t-distribution with 11 - I degrees of freedom 
(Table A9 in App. 5; or use a CAS; 11 = sample size). 

Step 3. Compute the mean x and the variance S2 of the sample 
Xb··· 'Xno 

Step 4. Compute k = cst\;;;. The confidence interval is 

CONF l' {x - k :2i /-L :2i x + k}. 

y 

3 d.f. 

0.8 r.~~f~ l.°l~ 
0.6 r 

y 

o 

d' 
-3 -2 -1 0 2 3 x 

Fir 526. Distribution functions of the t­
distnbution with 1 and 3 dJ. and of the 

standardized normal distribution (steepest curve) 

Fig. 527. Densities of the t-distribution 
with 1 and 3 dJ. and of the standardized 

normal distribution 
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Figure 527 compares the curve ofthe density ofthe t-distribution with that of the normal 
distribution. The latter is steeper. This illustrates that Table 25.1 (which uses more 
information, namely, the known value of ( 2

) yields shorter confidence intervals than Table 
25.2. This is confirmed in Fig. 528, which also gives an idea of the gain by increasing 
the sample size. 

2,--,-rr-----,----,----, 

\\ 
L'lL l.5 

lL-____ ~ ____ ~ ____ _L ____ ~ 

o 10 11 20 

Fig. 528. Ratio of the lengths L' and L of the confidence 
intervals (10) and (3) with y = 95% and y = 99% as a function 

of the sample size n for equals and (T 

E X AMP L E 3 Confidence Interval for p. of the Normal Distribution with Unknown u 2 

THEOREM 2 

Five independent measurements of the point of int1ammation (flash point) of Diesel oil (D-2) gave the values 
(in OF) 144 147 146 142 144. Assuming normality. determine a 99% confidence interval for the mean. 

Solutioll. Step 1. y = O.l)l) is required. 

Step 2. FCc) = ~(1 + y) = 0.995. and Table A9 in App. 5 with 11 - I = 4 d.f. gives c = 4.60. 

Step 3 .. "i' = 144.6, s2 = 3.8. 

Step 4. k = V3.8. 4.60/Vs = 4.01. The confidence interval is CONFo.99 {140.5 ;;;; fL ;;;; 148.7J. 

If the variance (T2 were known and equal 10 the sample variance s2. thus 0"2 = 3.8. then Table 25.1 would 
give k = culV-;' = 2.576V3.8/V5 = 2.25 and CONFR99 {142.35;;;; fL;;;; 146.85J. We see that the present 
interval is almost twice as long as that obtained from Table 25.1 (with 0"2 = 3.8). Hence for small sample, the 
ditlerence is considerable! Sec also Fig. 528. • 

Theory for Table 25.2. For deriving (10) in Table 25.2 we need from Ref. lG3] 

Student's t-Distribution 

Let Xl ..... Xn be independent normal random variables with the same mean p. 
and the slime raricmce a 2 • Then the rllndom variable 

(11) 
X-p. 

T=--
S/V;; 

has a t-distribution [see (8)] with 11 

by (4) alld 

(12) 

I degrees oj ji·eedo/Jl (d.f.): here X is given 
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Derivation of (10). This is similar to the derivation of (3). We choose a number 'Y 
between 0 and I and determine a number (' from Table A9 in App. 5 with 11 - I dJ. (or 
from a CAS) such that 

(13) P(-c ~ T~ c) = F(c) - F(-c) = ')'. 

Since the t-distribution is symmetric, we have 

F( -c) = I - F(c), 

and (13) assumes the form (9). Substituting (11) into (13) and transforming the result as 
before, we obtain 

(14) P(X - K ~ /-L ~ X + K) = 'Y 

where 

K = cS/Y;;. 

By inserting the observed values .'t of X and S2 of S2 into (14) we finally obtain (10) .• 

Confidence Interval for the Variance 0-
2 

of the Normal Distribution 
Table 25.3 shows the steps. which are similar to those in Tables 25.1 and 25.2. 

(15) 

(16) 

Table 25.3 Determination of a Confidence Interval for the Variance 
0"2 of a Normal Distribution, Whose Mean Need Not Be Known 

Step 1. Choose a confidence level 'Y (95%, 99%. or the like). 

Step 2. Determine solutions Cl and C2 of the equations 

from the table of the chi-square distribution with 11 - I degrees of 
freedom (Table AlO in App. 5; or use a CAS: 11 = sample size). 

Step 3. Compute (n - 1 )S2, where S2 is the variance of the sample 

Step 4. Compute kl = (11 - l)s2/c] and k2 = (/1 - I)S2/C2 . The 
confidence interval is 

E X AMP L E 4 Confidence Interval for the Variance of the Normal Distribution 

Detennine a 95'i!' confidence interval (16) for the variance. using Table 25.3 and a sample (tensile strell"th of 
. 2 . e 

sheet steel m kg/mm . rounded to mteger values) 

89 84 R7 81 89 R6 91 90 78 89 R7 99 83 R9. 
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THEOREM 3 

Solution. Step 1. 'Y = 0.95 is required. 

Step 2. For 11 - I = 13 we find 

("I = 5.01 and c2 = 24.7~. 

Step 3. 13s2 
= 326.9. 

Step -I. l3s21c1 = 65.25. l3s21c2 = 13.21. 

The confidence interval is 

CONFo.95 {l3.2l ~ fT2 ~ 65.25}. 

This IS rather large, and for obtaining a more precise result, one would need a much larger sample. • 

Theory for Table 25.3. In Table 25.1 we used the normal distribution. in Table 25.2 
the t-distribution. and now we shall use the X2-distribution (chi-square distribution), 
whose distlibution function is F(:::) = 0 if.: < 0 and 

z 

F(.:) = em f e-u/211cm-2)/2 du 
o 

y 

0.8 

0.6 

0.4 

0.2 

o 4 6 

if.: ~ 0 (Fig. 529). 

8 10 x 

Fig. 529. Distribution function of the chi-square distribution with 2, 3, 5 dJ. 

The parameter III (= 1. 2, ... ) is called the number of degrees of freedom (d.L), and 

Note that the distribution is not symmetric (see also Fig. 530). 
For deriving (16) in Table 25.3 we need the following theorem. 

Chi-Square Distribution 

Under the assllmptions il1 Theorem 2 the random variable 

(17) 

with S2 giren by (12) has a chi-square distribution with 11 - I degrees offreedom 

Proof in Ref. [03]. listed in App. I. 
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y 

0.5 

\ 
0.4 2 d.f. 

0.3 

0.2 I 
I 

,~ 3 d.f. 

0.1 : 

o 2 4 6 8 10 x 

Fig. 530. Density of the chi-square distribution with 2, 3, 5 dJ. 

Derivation of (16). This is similar to the derivation of (3) and (10). We choose a 
number l' between 0 and 1 and determine c] and C2 from Table AIO, App. 5, such that 
[see (15)] 

Subtraction yields 

Transforming CI ~ Y ~ C2 with Y given by (17) into an inequality for u 2
, we obtain 

n - 1 2 2 n - I 2 ---s ~u ~---s. 
C2 CI 

By inserting the observed value S2 of S2 we obtain (16). 

Confidence Intervals for Parameters 
of Other Distributions 

• 

The methods in Tables 25.1-25.3 for confidence intervals for J.1- and u 2 are designed for 
the normal distribution. We now show that they can also be applied to other distrihutions 
if we use large samples. 

We know that if Xl' ... , Xn are independent random variables with the same mean JL 
and the same valiance u 2

, then their sum Yn = Xl + ... + X" has the following properties. 

(A) Yn has the mean nJL and the variance nu2 (by Theorems I and 3 in Sec. 24.9). 

(B) If those variables are normal, then Yn is normal (by Theorem 1). 

If those random variables are not normal, then (B) is not applicable. However, for large 
n the random variable Yn is still approximately normal. This follows from the central limit 
theorem, which is one of the most fundamental results in probability theory. 
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THEOREM 4 Central Limit Theorem 

Let Xl> ... , X", ... be independent random variables that have the same 
distribution function and therefore the same mean /-L and the same variance a 2

. Let 
Yn = Xl + ... + Xn . Then the random variable 

(18) 

is asymptotically normal with mean 0 and variance 1; that is. the distribution 
function F n(X) of Zn satisfies 

I x 
lim Fn(x) = <I>(x) = -- I e-u2/2 duo 
n~oo -yI2; -00 

A proof can be found in Ref. [03] listed in App. 1. 

Hence when applying Tables 25.1-25.3 to a non normal distribution, we must use 
sllfficiently large samples. As a rule of thumb, if the sample indicates that the skewness 
of the distribution (the asymmetry; see Team Project 16(d), Problem Set 24.6) is small, 
use at least Il = 20 for the mean and at least n = 50 for the variance. 

_ ••• w ..... • __ .... _ ....... ..-. • ..-. _ ... -.. ..... --. ... --- ..., 

11-71 MEAN (VARIANCE KNOWN) 

1. Find a 95% confidence interval for the mean JL of a 
normal population with standard deviation 4.00 from 
the sample 30. 42, 40, 34, 48, 50. 

2. Does the interval in Prob. I gel longer or shorter if we 
take 'Y = 0.99 instead of 0.95? By what factor? 

3. By what factor does the length of the interval in Prob. 1 
change if we double the sample size? 

4. Find a 90% confidence interval for the mean JL of a 
nonnal population with variance 0.25, using a sample 
of 100 values with mean 212.3. 

5. What sample size would be needed for obtaining a 95% 
confidence interval (3) of length 2u? Of length u"? 

6. (Use of Fig. 525) Find a 95% confidence interval for 
a sample of 200 values with mean 120 from a normal 
distribution with variance 4, lIsing Fig. 525. 

7. What sample size i~ needed to obtain a 99% confidence 
interval of length 2.0 for the mean of a normal 
population with variance 25? Use Fig. 525. Check by 
calculation. 

18-121 MEAN (VARIANCE UNKNOWN) 

Fwd a 99% confidence interval for the mean of a nonnal 
popUlation from the sample: 

8. 425, 420. 425, 435 

9. Length of 20 bolts with sample mean 20.2 cm and 
sample variance 0.04 cm2 

10. Knoop hardness of diamond 9500, 9800, 9750, 9200, 
9400, 9550 

11. Copper content (%) of brass 66. 66. 65. 64. 66. 67, 64. 
65,63,64 

12. Melting point eC) of aluminum 660, 667. 654, 663, 662 

13. Find a 95% confidence interval for the percentage of 
cars on a certain highway that have poorly adjusted 
brakes. using a random sample of 500 cars stopped at 
a roadblock on that highway. 87 of which had poorly 
adjusted brakes. 

14. Find a 99% confidence interval for p in the binomial 
distribution from a classical result by K. Pearson, who 
in 24000 trials oftossing a coin obtained 12012 Heads. 
Do you think that the coin was fair? 
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[ii-20 I VARIANCE with mean 23 and 4 and variance 3 and I, respectively, 
what distribution does 4X1 - X2 have? Hint. Use Team 
Project 14(g) in Sec. 24.8. 

Find a Y5% confidence interval for the variance of a normal 
population from the sample: 

15. A sample of 30 values with variance 0.0007 

16. The sample in Prob. 9 

17. The sample in Prob. II 

18. Carbon monoxide emission (grams per mile) of a 
certain type of passenger car (cruising at 55 mph): 
17.3,17.8,18.0,17.7,18.2,17.4. 17.6. 18.1 

19. Mean energy (keV) of delayed neutron group (Group 
3, half-life 6.2 sec.) for uranium U235 fission: 435, 451, 
430,444,438 

20. Ultimate tensile strength (k psi) of alloy steel 
(Maraging H) at room temperature: 251, 255, 258, 253, 
253,252,250,252,255,256 

21. If X is normal with mean 27 and variance 16, what 
distributions do -X, 3X, and 5X - 2 have? 

22. If Xl and X2 are independent normal random variables 

23. A machine fills boxes weighing Y lb with X lb of salt, 
where X and Yare normal with mean 100lb and 51b 
and standard deviation 1 lb and 0.5 lb, respectively. 
What percent of filled boxes weighing between 104 Ib 
and 1061b are to be expected? 

24. If the weight X of bags of cement is normally 
distributed with a mean of 40 kg and a standard 
deviation of 2 kg, how many bags can a delivery truck 
carry so that the probability of the total load exceeding 
2000 kg will be 5%? 

25. CAS EXPERIMENT. Confidence lntervals. Obtain 
100 samples of size 10 of the standardized normal 
distribution. Calculate from them and graph the 
corresponding 95o/{' confidence intervals for the mean 
and count how many of them do not contain O. Does 
the result suppon the theory? Repeat the whole 
experiment. compare and comment. 

25.4 Testing of Hypotheses. Decisions 
The ideas of confidence intervals and of tests2 are the two most important ideas in modern 
statistics. In a statistical test we make inference from sample to population through testing 
a hypothesis, resulting from experience or observations, from a theory or a quality 
requirement, and so on. In many cases the result of a test is used as a basis for a decision, 
for instance, to buy (or not to buy) a certain model of car, depending on a test of the fuel 
efficiency (miles/gal) (and other tests, of course), to apply some medication, depending 
on a test of its effect; to proceed with a marketing strategy, depending on a test of consumer 
reactions, etc. 

Let us explain such a test in terms of a typical example and introduce the corresponding 
standard notions of statistical testing. 

E X AMP L E 1 Test of a Hypothesis. Alternative. Significance Level a 

We want to buy 100 coils of a certain kind of wire, provided we can verify the manufacturer's claim that the 
wire has a breaking limit /-t = /-to = 200 Ih (or more). This is a test ofthe hypothesis [also called /lull hypothesis} 

/-t = /-to = 200. We shall not buy the wire if the (statistical) test shows that actually /-t = /-t1 < /-to, the wire is 
weaker, the claim does not hold. /-tl is called the alternative (or alternative iz)lJOtizesis) of the test. We shall 
accept the hypothesis if the test suggests that it is true, except for a small error probability a, called the 
significance level of the test. Otherwise we reject the hypothesis. Hence a is the probability of rejecting a 
hypothesis although it is hue. The choice of a is up to us. SCk and I % are popular values. 

For the test we need a sample. We randomly select 25 coils of the wire, cut a piece from each coil, and 
determine the breaking limit experimentally. Suppose that this sample of n ~ 25 values of the breaking limit 
has the mean x = 1971b (somewhat less than the claim!) and the standard dcviation s = 6 lb. 

2Beginning around 1930, a systematic theory of tests was developed by NEYMAN (see Sec. 25.3) and EGON 
SHARPE PEARSON (1895-1980), English statistician, the son of Karl Pearson (see the footnote on p. 1066). 
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At this point we could only speculate whether this difference 197 - 200 = - 3 is due to randomness, is a 
chance effect. or whether it is significant, due to the actually inferior quality of the wire To continue beyond 
,peculation requires probability theory. as follows. 

We assume thaI the breaking limit is normall} distributed. (This as,umption could be tested by the method 
in Sec. 25.7. Or we could remember the central limit theorem (Sec. 25.3) and take a still larger sample.) Then 

x - /Lo 
T= 

SI\ ';; 

in (II). Sec. 25.3, with JL = /Lo has a t-distribution with 1/ - 1 degrees of freedom (1/ - I = 24 for our sample). 
Also X = 197 and s = 6 are observed values of X and S to be used later. We can now choose a significance 
level, say, a = 5%. From Table A9 in App. 5 or from a CAS we then obtain a critical value c such that 
peT ~ c) = a = 5%. For PIT ~ c) = I - a = 95'it the table gives c = 1.71. so that c = -c = -1.71 because 
of the symmetry of the distribution (Fig. 531). 

We now reason as follows-this is the crucial idea of the test. If the hypothesis is true, we have a chance of 
only a (= 5'it) that we observe a value t of T (calculated from a sample) that will fall between -:x; and -1.71. 
Hence if we nevertheless do observe such a t, we assert that the hypothesis cannot be true and we reject it. Then 
wc accept the alternative. If. however. t ~ c. wc accept the hypothesis. 

A simple calculation finally give~ t = (197 - 200)/(6rV25) = -2.5 as an observed value of T. Since 
-2.5 < -1.71. we reject the hypothesis (the manufacturer's claim) and accept the alternative /L = /Ll < 200, 
the wire ~eems to be weaker than claimed. • 

I 
Reject hypotheSiS~; Do not reject hypothesis 

: 95% 

a~~~ 
c =-1.71 0 

Fig. 531. t-distribution in Example 1 

This example illustrates the steps of a test: 

1. Formulate the hypothesis {} = 80 to be tested. (80 = /-Lo in the example.) 

2. Formulate an alternative 8 = 8}. (81 = /-Ll in the example.) 

3. Choose a significance level a (5%,1%,0.1%). 

4. Use a random variable e = g(Xl , ... , Kn) whose distribution depends on the 
hypothesis and on the alternative, and this distribution is known in both cases. Determine 
a critical ':.alue c from the distribution of e, assuming the hypothesis to be true. (In the 
example. e = T. and c is. obtained from peT ~ c) = a.) 

5. Use a sample Xl •... , Xn to determine an observed value e = g(x}, ... , xn) of e. 
(t in the example.) 

6. Accept or reject the hypothesis. depending on the size of e relative to c. (t < c in 
the example, rejection of the hypothesis.) 

Two important facts require further discussion and careful attention. The first is the 
choice of an alternative. In the example, /-L] < /-Lo, but other applications may require 
/-Ll > /-Lo or /-Ll '* /-Lo· The second fact has to do with errors. We know that a (the 
significance level of the test) is the probability of rejecting a true hypothesis. And we 
shall discuss the probability {3 of accepting afalse hypothesis. 
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One-Sided and Two-Sided Alternatives (Fig. 532) 
Let 8 be an unknown parameter in a distribution, and suppose tbat we want to test the 
hypothesis 8 = 80 , Then there are three main kinds of alternatives. namely, 

(1 ) 

(2) 

(3) 

(1) and (2) are one-sided alternatives, and (3) is a two-sided alternative. 
We call rejection region (or critical region) the region such that we reject the 

hypothesis if the observed value in the test falls in this region. In CD the critical c lies to 
the right of 80 because so does the alternative. Hence the rejection region extends to the 
right. This is called a right-sided test. In @ the critical c lies to the left of 80 (as in 
Example 1), the rejection region extends to the left, and we have a left-sided test 
(Fig. 532, middle part). These are one-sided tests. In @ we have two rejection regions. 
This is called a two-sided test (Fig. 532, lower part). 

All three kinds of alternatives occur in practical problems. For example, (1) may arise 
if 80 is the maximum tolerable inaccuracy of a voltmeter or some other instrument. 
Alternative (2) may occur in testing strength of material, as in Example 1. Finally, 80 in 
(3) may be the diameter of axle-shafts, and shafts that are too thin or too thick are equally 
undesirable, so that we have to watch for deviations in both directions. 

Acceptance Region 
Do not reject hypothesis 

(Accept hypothesis) 

c 

Rejection Region 
(Critical Region) 
Reject hypothesis 

Rejection Region 
(Critical Region) 

Reject hypothesis 

Acceptance Region 
Do not reject hypothesis 

(Accept hypothesis) 

~ __________________ ~----~I------------------------
8

0 

Rejection Region 
(Critical Region) 

Reject hypothesis 

c 

Acceptance Region 
Do not reject 
hypothesis 

(Accept hypothesis) 

0------ -----
8

0 

Re jectlon Region 
(Critical Region) 

Reject hypothesIs 

Fig. 532. Test in the case of alternative (1) (upper part of the figure), alternative 
(2) (middle part), and alternative (3) 

Errors in Tests 
Tests always involve risks of making false decisions: 

(I) Rejecting a true hypothesis (Type 1 error). 
ll' = Probability of making a Type I error. 

(II) Accepting a false hypothesis (Type II error). 
f3 = Probability of making a Type II error. 
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Clearly, we Cannot avoid these errors because no absolutely certain conclusions about 
populations can be drawn from samples. But we show that there are ways and means of 
choosing suitable levels of risks, that is, of values a and {3. The choice of a depends on 
the nature of the problem (e.g., a small risk a = 1 % is used if it is a matter of life or 
death). 

Let us discuss this systematically for a test of a hypothesis ti = tio against an alternative 
that is a single number el , for simplicity. We let el > eo, so that we have a right-sided 
test. For a left-sided or a two-sided test the discussion is quite similar. 

We choose a critical c > eo (as in the upper part of Fig. 532, by methods discussed 
below). From a given sample Xl> ••• , Xn we then compute a value 

with a suitable g (whose choice will be a main point of our further disc~ssion; for instance, 
take g = (Xl + ... + Xn)l11 in the case in which e is the mean). If e > c, we reject the 
hypothesis. If e ~ c, we accept it. Here, the value e can be regarded as an observed value 
of the random variable 

(4) 

becam,e Xj may be regarded as an observed value of Xj' j = L ... , 11. In this test there 
are two possibilities of making an error, as follows. 

Type I Error (see Table 25.4). The hypothesis is true but is rejected (hence the 
alternative is accepted) because e assumes a value e > c. Obviously, the probability of 
making such an error equals 

(5) 

a is called the significance level of the test, as mentioned before. 

Type II Error (see Table 25.4). The hypothesis is false but is accepted because e 
assumes a value e ~ c. The probability of making such an error is denoted by {3; thus 

(6) 

7] = I - {3 is called the power of the test. Obviously, the power TJ is the probability of 
avoiding a Type I1 error. 

Table 25.4 Type I and Type II Errors in Testing a Hypothesis 
() = ()o Against an Alternative () = ()J 

Unknown Truth 

e = eo e = el 

'0 
True decision Type II error 

Cl) e = eo P=l-a P=f3 E. 
'-' 
'-' 
'-' Type 1 error True decision <C 

e = el P=a P=I-{3 
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Formulas (5) and (6) show that both (]' and f3 depend on c, and we would like to choose 
c so that these probabilities of making errors are as small as possible. But the important 
Figure 533 shows that these are conflicting requirements because to let (]' decrease we 
must shift c to the right, but then f3 increases. In practice we first choose (]' (5%, sometimes 
1%), then determine c, and finally compute f3. If f3 is large so that the power 1] = 1 - f3 
is small, we should repeat the test, choosing a larger sample, for reasons that will appear 
shortly. 

" Density of e if 
the hypothesis 
is true 

: / Density of & if 
l;f the alternative 

,,. ..... -T - ............... is true 

// I " 
" I ... 

// I " 
I ... 
I " 
I " a-::::----...! ............... _ 

eo c el 

Acceptance region ~ Rejection region (Critical regIOn) 

Fig. 533. Illustration of Type I and II errors in testing a hypothesis 
e = eo against an alternative e = e, (> eo, right-sided test) 

If the alternative is not a single number but is of the form (1}-(3), then f3 becomes a 
function of e. This function f3( e) is called the operating characteristic (OC) of the test 
and its curve the OC curve. Clearly, in this case 1] = 1 - f3 also depends on e. This 
function 1](e) is called the power function of the test. (Examples will follow.) 

Of course, from a test that leads to the acceptance of a certain hypothesis Bo, it does 
not follow that this is the only possible hypothesis or the best possible hypothesis. Hence 
the terms "not reject" or "fail to reject" are perhaps better than the term "accept." 

Test for IL of the Normal Distribution with Known u 2 

The following example explains the three kinds of hypotheses. 

E X AMP L E 2 Test for the Mean of the Normal Distribution with Known Variance 

Let X be a normal random variable with variance a 2 = 9. Using a sample of size 11 = 10 with mcan.Y, test the 
hypothesis /L = /Lo = 24 against the three kinds of alternatives. namely. 

(a) /L> /Lo (b) /L < /Lo (c) /L '* /Lo' 

Solution. We choose the significance level a = 0.05. An estimate of the mean will be obtained from 

I 
X = - (Xl + ... + X17)' 

11 

If the hypothesis is true. X is normal with mean /L = 24 and variance (T
2 /n = 0.9. see Theorem I, Sec. 25.3. 

Hence we may obtain the critical value (' from Table A8 in App. 5. 

Case (a). Right-Sided Test. We determine e from PIX > e)fL~24 = a = 0.05, that is. 

- (e-24) P(X ;" C)fL~24 = <P vo:9 = I - a = 0.95. 

Table A~ in App. 5 _gives (e - 24)/VO.9 = 1.645, and e = 25.56. which is grcater than /Lo, as in the upper 
part of FIg. 532. If x ;" 25.56, the hypothesis is accepted. If.ct' > 25.56, it is rejected. The power function of 
the test is (Fig. 534) 
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0.8 

0.6 

O.Ll 

0.2 

20 fLO 28 fL 

Fig. 534. Power function 1)(fL) in Example 2, case (a) (dashed) and case (c) 

7}(fL) = P(X > 25.56)" = I - P(X ~ 25.56)" 

(7) 

(
25.56 - fL) 

= I - <P vo.9 = I - <P(26.94 - 1.05fL} 
0.9 

Case (b). Left-Sided Test. The critical value c is obtained from the equation 

- (c - 24) PiX ~ C),,-24 = <P Yo.9 = a = 0.05. 

Table A8 in App. 5 yields c = 24 - 1.56 = 22.44. If x ~ 22.44. we accept the hypothesis. If x < 22.44. we 
reject it. Ihe power function of the test is 

(8) - ( 22.44 - fL ) 
7}(fL) = P(X ~ 22.44)" = <1> ~ = <1>(23.65 

~ VO.9 

Case (c). Two-Sided Test. Since the normal distribution is symmetric. we choose cl and c2 equidistant from 
fL = 24. say. cl = 24 - k and c2 = 24 + k. and detennine k from 

P(24 - k ~ X ~ 24 + k) ~2 = <1>( k ) - <p(- k ) = I - a = 0.95. 
,,4 VO.9 VO.9 

Table A8 in App. 5 gives k/Y0.9 = 1.960. hence k = 1.86. This gives the values cl = 24 - 1.86 = 22.14 
and c2 = 24 + 1.86 = 25.86. If x is not smaller than cl and not greater than c2. we accept the hypothesis. 
Otherwise we reject it. The power function of the test is (Fig. 534) 

7}(fL} = P(X < 22.14)" + P(X > 25.86)" = P(X < 22.14)" + I - P(X ~ 25.86)" 

(9) =1+<1> -<P (
22.14 - fL) (25.86 - fL) 

Yo.9 VO.9 

= I + <1>(23.34 - 1.05fL) - <P(27.26 - 1.05fL). 

Consequently. the operating characteristic f3(.fL) = I - 7}(fL) (see before i is (Fig. 535) 

If we take a larger sample. ~ay. of size 11 = 100 (instead of 10). then a 2
/1l = 0.09 (instead of 0.9) and the 

critical values are Cl = 23.41 and c2 = 24.59, as can be readily verified. Ihen the operating characteristic of 
the test is 

f3(fL) = <p( 24.59 - fL) _ <1>( 23.41 . fL) 
VO.09 V'0.09 

= <P(81.97 - 3.33fL) - <P(78.03 - 3.33fL}. 
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Figure 535 shows that the corresponding OC curve is steeper than that for 11 = 10. l11is means that the increase 
of 11 has led to an improvement of the test. In any practical case, 11 is chosen as small as possible but SO large that 
the test brings out deviations bet",een J-L and J.Lo that are of practical interest. For instance. if deviations of ±2 units 
are of interest. we see from Fig. 535 that 11 = 10 is much too small because when J-L = 24 - 2 = 22 or J-L = 24 
+ 2 = 26 f3 is almost 50%. On the other hand, we see that" = I 00 is sufticient for that purpose. • 

(3(p.) 

1.0 

0.8 

0.6 

0.4 

0.2 

\ 
\ 

P.o 

n = 10 

\ 
n= 100 

, ....... 6-

26 28 p. 

Fig. 535. Curves of the operating characteristic (OC curves) in 
Example 2, case (e), for two different sample sizes n 

Test for J.L When u 2 is Unknown, and for u 2 

E X AMP L E 3 Test for the Mean of the Normal Distribution with Unknown Variance 

The tensile strength of a sample of /I = 16 manila ropes (diameter 3 in.) was measured. The sample mean was 
x = 4482 kg, and the sample standard deviation was s = 115 kg (N. C. Wiley, 41st Annual Meeting of the 
American Society for Testing Materials). Assuming that the tensile strength is a normal random variable, test 
the hypothesis J.Lo = 4500)..g against the alternative J-LI = 4400 kg. Here J.Lo may be a value given by the 
manufacturer. while J-Ll may result from previous experience. 

Solution. We choose the significance level a = S%. If the hypothesis i~ true, it follows from Theorem 2 in 
Sec. 25.3, that the random variable 

x - J-Lo 
T= 

Sry';; 

x - 4500 

S/4 

has at-distribution ",ith 11 - I = IS d.f. The test is left-sided. TIle critical value c is obtained from 
peT < c)I'O = a = 0.05. Table A9 in App. 5 gives c = -1.7S. As an observed value of T we obtain from the 
sample t = (4482 - 4S00)/( 11S/4) = -0.626. We see that t > c and accept the hypothesis. For obtaining 
numeric values of the power of the test. we would need tables called noncentral Student t-tables: we shall not 
discuss this question here. • 

E X AMP L E 4 Test for the Variance of the Normal Distribution 

Using a sanlple of size n = 15 and '<lmple varilmce s2 = 13 from a normal population, test the hypothe,is 
u 2 = Uo 2 = 10 against the alternative u 2 = Ul

2 = 20. 

Solution. We choose the significance level a = 5%. If the hypothesis is true, then 

S2 
y= (/I - 1)­

(J',2 o 

S2 
2 

1410 = lAS 

has a chi-square distribution with n - I = 14 d.f. by Theorem 3, Sec. 2S.3. From 

P(Y> c) = a = O.OS. that is. PlY ~ c) = 0.9S, 

and Table AIO in App. 5 with 14 degrees of freedom we obtain c = 23.68. This is the critical value of Y. Hence 
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EXAMPLE 5 

to S2 = Uo 2Y1(11 - 1) = 0.7I4Y there corresponds the critical value c* = 0.714' 23.68 = 16.91. Since 
.1'2 < c*. we accept the hypothesis. 

If the alternative is true, the random variable Y1 = l4S2/U12 = 0.7S2 has a chi-square distribution with 14 
dJ. Hence our test has the power 

From a more extensive table of the chi-square distribution (e.g. in Ref. [G3] or [G8]) or from your CAS, you 
see that 7J = 62%. Hence the Type II risk is very large. namely. 38%. To make this risk smaller. we would 
have to increase the sample size. • 

Comparison of Means and Variances 

Comparison of the Means of Two Normal Distributions 

Using a sample Xl> ••. , x n , from a normal distribution with unknown mean /L,- and a sample Yl, ... , Yn
2 

from 
another normal distribution with unknown mean /Ly, we want to test the hypothesis that the means are equal, 
/Lx = /Ly, against an altemative, say, /Lx > /Ly. The variances need not be known but are assumed to be equal.3 

Two cases of comparing means are of practical importance: 

Case A. The samples have the same size. Furthermore, each value of the first sample corre~ponds to precisely 
one value of the otlzer. because conesponding values result from the same person or thing (paired comparison)­
for example, two measurements of the same thing by two different methods or two measurements from the two 
eyes of the same person. More generally, they may result from pairs of similar individuals or things, for example, 
identical twins, pairs of used front tires from the same car, etc. Then we should form the differences of 
conesponding values and test the hypothesis that the population conesponding to the differences has mean 0, 
using the method in Example 3. If we have a choice. this method is better than the following. 

Case B. The tl\'O samples are indepel1dent and not necessarily of the same size. Then we may proceed as 
follows. Suppose that tbe altemative is /Lx > /Ly. We choose a significance level a. Then we compute the sample 
means X and y as well as (nl - I)s,< 2 and (n2 - l)sy 2, where '\·x2 and Sy 2 are the sample variances. Using Table 
A9 in App. 5 with 111 + n2 - 2 degrees of freedom. we now determine (" from 

(10) peT ~ c) = I-a. 

We finally compute 

(11) to = 
nln2(111 + n2 - 2) 

"1 + 112 V(nl 

x-y 

It can be shown that this is an observed value of a random variable that has a t-distribution with nl + 112 - 2 
degrees of freedom, provided the hypothesis is true. If to ~ c, the hypothesis is accepted. If to > G, it is rejected. 

If the alternative is /Lx * /Ly' then (] 0) must be replaced by 

(10*) peT ~ Gl) = 0.5a, peT ~ c2) = I - O.Sa. 

Note that for sanlples of equal size "1 = n2 = n, formula (11) reduces to 

(12) 

3This assumption of equality of variances can be tested, as shown in the next example. If the test shows that 
they differ significantly, choose two samples of tbe same size nl = n2 = n (not too small, > 30, say), use tbe 
test in Example 2 together with the fact that (12) is an observed value of an approximately stillldardized normal 
random variable. 
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To illustrate the computations. let us consider the two samples (xl' ...• .lnl ) and (.'"1 ....• -""2) given by 

105 lOR 103 103 107 124 105 
and 

89 92 84 97 103 107 III 97 

showing the relative output of tin plate worker~ under two different working conditions p. J. B. Worth. JUllrnol 
ofJndll.<triol Engineering 9. 2--19-253). Assuming that the conesponding populations are normal and have the 
smne variance. let us test the hypothesis iJ-:c = iJ-y against the alternative iJ-x *' iJ-y' (Equality of varimlCes will 
be tested in the next example.) 

Solution. We find 

. 1' = 105.125. y ~ 97.500 . sx2
= 106.125. Sy 

2 
= 84.000. 

We choose the significance level a = 5'k. From (10") with 0.5a = 2.5'if.. 1 - O.5a = 97.5'k and Table A9 in 
App.5 with 14 degrees of freedom we obtain ("1 = -2.1--1 and ("2 = 2.14. Fonnula (12) with n = 8 giYes the 
value 

to = v'8. 7.625/\ '"i9o.i25 = 1.56. 

Since ("1 ~ to ~ ("2' we accept the hypothesis iJ-x = iJ-y that under both conditions the mean output is the same. 
Case A applies to the example becau~e the two first sample values conespond to a certain type of work. the 

next two were obtained in another kind of work. etc. So we may use the differences 

16 16 6 o o 13 8 

of corresponding sample values and the method in Example 3 to test the hypothesis,.,. = O. where,.,. is the memt 
of the population cOITcsponding to the differences. As a logical alternativc we take,.,. *' O. The sample mean is 
d = 7.625. and the sample variance is -,2 = --15.696. Hence 

t = v'8 (7.625 - O)/V --15.696 = 3.19. 

From P( T ~ ("1) = 2.5'k. P( T ~ ("2) = 97.5'7c and Table A9 in App. 5 with 11 - I = 7 degrees of freedom we 
obtain ("1 = - 2.36. ("2 = 2.36 and reject the hypothesis because t = 3.19 does not lie between ("1 and ("2' Hence 
our pre~ent test. in which we used more information (but the ,ame samples). shows that the difference in output 
is ~ignificant. • 

E X AMP L E 6 Comparison of the Variance of Two Normal Distributions 

Using the fWO ~amples in the last example. test the hypothesis u.t .
2 = U y 2: a"ume thm the corresponding 

populations are normal and the nature of the experiment suggests the altemative u x
2 > u y

2
. 

Sollttioll. We find -'x2 = 106.125, Sy2 = 8--1.000. We choose the signiticance level a = 5'k. Using 
p( V ~ (") = I - a = 95'if. and Table All in App. 5. with (n1 - I. n2 - 1) = (7. 7) degrees of freedom. we 
determine (" = 3.79. We finally compute Vo = s:r2/Sy2 = 1.26. Since Vo ~ (". we accept the hypothesis. If 
Vo > (". we would reject it. 

This test is justified by the fact that Vo i~ an ob,erved value of a random variable that ha, a ,o-called 
F-distribution with (n1 - 1.112 - I) degrees of freedom. provided the hypothesis is true. (Proof in Ref. IG3] 
li,ted in App. I.J The F-distribution with (111. n) degree, of freedom was introduced by R. A. Fisher4 and has 
the distribution function F(:::) = 0 if : < 0 and 

(13) 

z 

F(:::) = Kmn f ,<'n-2)/2(l1It + n)-<11t+n)/2 dt 

o 
(::: ~ 0). 

• 
4After the pioncering work of the English statistician and biOlogist. KARL PEARSON (1857-1936). the 

founder of the English school of statistics. and WILLIAM SEALY GOSSET (]876-1937). who discovered the 
t-di,tribution (mtd published under the name ·Student"). the English statistician Sir RONALD AYLMER FISHER 
(1890-1962). professor of eugenic~ in London (1933-1943) and professor of genetics in Cambrid"e Enuland 
(19~3:-1957) and Adelaide, Australia (1957-1962), had great influence on the ~fllfther developmen~;f m~dern 
statIstics. 
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This long section contained the basic ideas and concepts of testing, along with typical 
applications and you may perhaps want to review it quickly before going on, because the 
next sections concern an adaption of these ideas to tasks of great practical importance and 
resulting tests in connection with quality control, acceptance (or rejection) of goods 
produced. and so on . 

... _ .. -.. 
1. Test JL = a against JL > 0, assuming normality and 

using the sample 1. -\. I. 3. -8. 6. a (deviations of 
the azimuth [multiples of 0.01 radian] in some 
revolution of a satellite). Choose a = 5'k. 

2. In one of his classical experiments Buffon obtained 
2048 heads in tossing a coin 4040 times. Was the coin 
fair'? 

3. Do the same test as in Prob. 2. using a result by 
K. Pearson. who obtained 6 019 heads in 12000 trials. 

4. Assuming normality and known variance u 2 = 4. test 
the hypothesis fL = 30.0 again~t the alternative (a) 
JL = 28.5. (b) JL = 30.7. using a sample of size 10 with 
mean x = 28.5 and choosing a = 5%. 

5. How does the result in Prob. 4(a) change if we use a 
smaller sample. say. of size 4. the other data (.ct = 28.5, 
a = 5%. etc.) remaining as before? 

6. Detemine the power of the test in Prob. 4(a). 

7. What is the rejection region in Prob. 4 in the case of a 
two-sided test with a = 5'k? 

8. Using the sample 0.80. 0.81, 0.81. 0.82, 0.81. 0.82, 
0.80,0.82. 0.81. 0.81 (length of nails in inches), test 
the hypothesis JL = 0.80 in. (the length indicated on 
the box) against the alternative JL *' 0.80 in. (A"sume 
normality. choose a = 5%.) 

9. A firm sells oil in cans containing 1000 g oil per can 
and is interested to know whether the mean weight 
differs significantly from 1000 g at the 5% level. in 
which case the filling machine has to be adjusted. Set 
up a hypothesis and an alternative and perform the test. 
assuming normality and using a sample of 20 fillings 
with mean 996 g and standard deviation 5 g. 

10. If a sample of 50 tires of a certain kind has a mean life 
of 32 000 mi and a standard deviation of 4000 mi. can 
the manufacturer claim that the true mean life of such 
tires is greater than 30000 mi? Set up and test a 
corresponding hypothesis at a 5% level, assuming 
normality. 

11. If simultaneous measurements of electric voltage by 
two different types of voltmeter yield the differences 
(in volts) 0.8. 0.2, -0.3.0.1. 0.0. 0.5, 0.7. 0.2, can we 
assert at the 5% level that there is no Significant 
difference in the calibration of the two types of 
instruments'! (Assume normality.) 

12. If a standard medication cures about 70% of patients 
with a certain disease and a new medication cured 148 
of the first 200 patients on whom it was hied, can we 
conclude that the new medication is better? (Choose 
a = 5%.) 

13. Suppose that in the past the standard deviation of 
weights of certain 25.0-oz packages tilled by a machine 
was 0.4 oz. Test the hypothesiS Ho: u = 0.4 against 
the alternative HI: U> 0.4 (an undesirable increase). 
using a sample of 10 packages with ~tandard deviation 
0.507 and assuming normality. (Choose a = 5%.) 

14. Suppose that in operating battery-powered electrical 
equipment, it is less expensive to replace all batteries 
at fixed intervals than to replace each battery 
individually when it breaks down, provided the 
standard deviation of the lifetime is less than a certain 
limit. say. less than 5 hours. Set up and apply a suitable 
test. using a sample of 28 values of lifetime~ with 
standard deviation s = 3.5 hours and assuming 
normality: choose a = 5%. 

15. Brand A gasoline was used in 9 automobiles of the 
same model under identical conditions. The 
corresponding sample of 9 values (miles per gallon) 
had mean 20.2 and standard deviation 0.5. Under the 
same conditions. high-power brand B gasoline gave a 
sample of 10 values with mean 21.8 and standard 
deviation 0.6. Is the mileage of B significantly better 
than that of A'? (Test at the 5% level; assume 
normality.) 

16. The two samples 70. 80. 30. 70. 60. 80 and 140. 120, 
130. 120. 120. 130. 120 are values of the differences 
of temperatures (OC) of iron at two stages of casting. 
taken from two different crucibles. Is the variance of 
the first population larger than that of the second? 
(Assume normality. Choose a = 5%.) 

17. Using samples of sizes 10 and 16 with variances 

Sx 
2 = 50 and Sy 

2 = 30 and assuming normality of the 
corresponding popUlations, test the hypothesis 
Ho: a./ = uy2 against the alternative u/ > uy2 . 

Choose a = 5%. 

18. Assuming normality and equal varIance and usmg 
independent samples with 1/1 = 9, .r = 12 . . \'x = 2, 

1/2 = 9, Y = 15, Sy = 2. test Ho: JLx = JLy against 
JLx *' fLy; choose a = 5%. 
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19. Show that for a nonnal distribution the two types of 
en'ors in a test of a hypothesis Ho: IL = JLo against an 
alternative HI: IL = ILl can be made as small as one 
pleases (not zero) by taking the sample sufficiently large. 

the normal distribution with mean 100 and variance 25. 
For each sample test the hypothesis ILo = 100 against 
the alternative ILl > 100 at the level of a = 10% Record 
the number of rejections of the hypothesis. Do the whole 
experiment once more and compare. 

20. CAS EXPERIMENT. Tests of Means and 
Variances. (a) Obtain 100 samples of size 10 each from 

25.5 Quality Control 

(b) Set up a similar experiment for the variance of a 
normal distribution and perform it 100 times. 

The ideas on testing can be adapted and extended in various ways to serve basic practical 
needs in engineering and other fields. We show this in the remaining sections for some 
of the most important tash; solvahle by statistical methods. As a first such area of 
problems, we discuss industrial quality control, a highly successful method used in 
various industries. 

No production process is so perfect that all the products are completely alike. There 
is always a small variation that is caused by a great number of small. uncontrollable 
factors and must therefore be regarded as a chance variation. It is important to make 
sure that the products have required values (for example, length. strength, or whatever 
property may be essential in a particular case). For this purpose one makes a test of the 
hypothesis that the products have the required property. say. fL = fLo, where fLo is a 
required value. If this is done after an entire lot has been produced (for example, a lot 
of 100 000 screws), the test will tell us how good or how bad the products are, but it 
it obviously too late to alter undesirable results. It is much better to test during the 
production run. This is done at regular intervals of time (for example, every hour or 
half-hour) and is called quality control. Each time a sample of the same size is taken, 
in practice 3 to 10 times. If the hypothesis is rejected. we stop the production and look 
for the cause of the trouble. 

If we stop the production process even though it is progressing properly, we make a 
Type I error. If we do not stop the process even though something is not in order. we 
make a Type II error (see Sec. 25.4). The result of each test is marked in graphical form 
on what is called a control chart. This was proposed by W. A. Shew hart in 1924 and 
makes quality cuntrol particularly effective. 

Control Chart for the Mean 
An illustration and example of a control chart is given in the upper part of Fig. 536. This 
control chart for the mean shows the lower control limit LCL, the center control line 
CL, and the upper control limit UCL. The two control limits correspond to the critical 
values Cl and C2 in case (c) of Example 2 in Sec. 25.4. As soon as a silmple mean falls 
outside the range between the control limits, we reject the hypothesis and assert that the 
production process is "out of control"; that is, we assert that there has been a shift in 
process level. Action is called for whenever a point exceeds the limits. 

If we choose control limits that are too loose, we shall not detect process shifts. On the 
other hand, if we choose control limits that are too tight, we shall be unable to run the 
process because of frequent searches for nonexistent trouble. The usual significance level 
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is Q' = 1%. From Theorem I in Sec. 25.3 and Table A8 in App. 5 we see that in the case 
of the normal distribution the corresponding control limits for the mean are 

(1) 
0" 

LCL = lLo - 2.58 ~! ' 
Vll 

0" 
UCL = lLo + 2.58 ---;= . 

\'11 

Here 0" is assumed to be known. If 0" is unknown, we may compute the standard deviations 
of the first 20 or 30 samples and take their arithmetic mean as an approximation of 0". 

The broken line connecting the means in Fig. 536 is merely to display the results. 
Additional, more subtle controls are often used in industry. For instance, one observes 

the motions of the sample means above and below the centerline, which should happen 
frequently. Accordingly, long runs (conventionally of length 7 or more) of means all above 
(or all below) the centerline could indicate trouble. 
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Fig. 536. Control charts for the mean (upper part of figure) and 
the standard deviation in the case of the samples on p. 1070 
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Table 25.5 Twelve Samples of Five Values Each 
(Diameter of Small Cylinders, Measured in Millimeters) 

Sample 
Sample Values 

Number 

I 4.06 4.08 4.08 4.08 4.10 
2 4.10 4.10 4.12 4.12 4.12 

3 4.06 4.06 4.08 4.10 4.12 
4 4.06 4.08 4.08 4.10 4.12 
5 4.08 4.10 4.12 4.12 4.12 

6 -1-.08 4.10 4.10 4.10 4.12 

7 4.06 4.08 4.08 4.10 4.12 

8 4.08 4.08 4.10 4.10 4.12 

9 4.06 4.08 4.10 4.12 4.14 

10 4.06 4.08 4.10 4.12 4.16 

II 4.12 4.14 4.14 4.14 4.16 
12 4.14 4.14 4.16 4.16 4.16 

Control Chart for the Variance 

-
x s R 

4.080 0.014 0.04 

4.112 0.011 0.02 
4.084 0.026 0.06 
4.088 0.023 0.06 
4.108 0.018 0.04 

4.100 0.014 0.04 

4.088 0.023 0.06 
4.096 0.017 0.04 
4.100 0.032 0.08 
4.104 0.038 0.10 

4.140 0.014 0.04 
4.152 0.011 0.02 

In addition to the mean, one often controls the variance. the standard deviation, or the 
range. To set up a control chart for the variance in the case of a normal distribution, we 
may employ the method in Example 4 of Sec. 25.4 for detennining control limits. It is 
customary to use only one control limit. namely. an upper control limit. Now from Example 
4 of Sec. 25.4 we have S2 = uo2 Y/(n - I), where because of our normality assumption 
the random variable Y hao.; a chi-square distribution with 11 - 1 degrees of freedom. Hence 
the desired control limit is 

(2) UCL = 
n-I 

where (' is obtained from the equation 

P(Y> c) = a, that is, P(Y ~ c) = I - a 

and the table of the chi-square distribution (Table AIO in App. 5) with 11 - 1 degrees of 
freedom (or from your CAS); here a (51k or I st. say) is the probability that in a properly 
running process an observed value S2 of S2 is greater than the upper control limit. 

If we wanted a control chart for the variance with both an upper control limit UCL and 
a lower control limit LCL. these Iimi[s would be 

(3) 
u 2c LCL= __ 1 

1/-1 
and UCL= 

where Cl and C2 are obtained from Table A I 0 with 11 - I d.f. and the equations 

(4) and 
a 

P(Y ~ C2) = I - -. 
2 
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Control Chart for the Standard Deviation 
To set up a control chart for the standard deviation, we need an upper control limit 

(5) 
uVc 

UCL= 
Vn"=l 

obtained from (2). For example, in Table 25.5 we have 11 = 
corresponding population is normal with standard deviation u 
a = I %, we obtain from the equation 

5. Assuming that the 
0.02 and choosing 

P(Y ~ c) = I - a = 99% 

and Table A lOin App. 5 with 4 degrees of freedom the critical value c = 13.28 and from 
(5) the corresponding value 

UCL= 
0.02vrns 

V4 
= 0.0365, 

which is shown in the lower part of Fig. 536. 
A control chart for the standard deviation with both an upper and a lower control limit 

is obtained from (3). 

Control Chart for the Range 
Instead of the variance or standard deviation, one often controls the range R (= largest 
sample value minus smallest sample value). It can be shown that in the case of the normal 
distribution, the standard deviation u is proportional to the expectation of the random 
variable R* for which R is an observed value, say, u = AnE(R*), where the factor of 
proportionality An depends on the sample size 11 and has the values 

II 2 3 4 5 6 7 8 9 10 

An = uIE(R*) 0.89 0.59 0.49 0.43 0.40 0.37 0.35 0.34 0.32 

11 12 14 16 18 20 30 40 50 

0.31 0.29 0.28 0.28 0.27 0.25 0.23 0.22 

Since R depends on two sample values only, it gives less information about a sample 
than s does. Clearly, the larger the sample size 11 is, the more information we lose in using 
R instead of s. A practical rule is to use s when 11 is larger than 10. 

I. Suppose a machine for filling cans with lubricating oil 
is set so that it will generate fillings which form a 
normal population with mean I gal and standard 
deviation 0.03 gal. Set up a conrrol chart of the type 
shown in Fig. 536 for controlling the mean (that is. find 
LCL and VCL). a~suming that the sample size is 6. 

2. (Three-sigma control chart) Show that in Prob. I, the 

requirement of the significance level a = 0.3% leads 
to LCL = J.L - 3ulY;; and VCL = J.L + 3ulY;;, and 
find the corresponding numeric values. 

3. What sample size should we choose in Prob. 1 if we 
want LCL and VCL somewhat closer together. say. 
VCL - LCL = 0.05. without changing the significance 
level'! 
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4. How does the meaning of the control limits ( I ) change 
if we apply a control chart with these limits in the case 
of a population that is not normal? 

5. How should we change the sample size in controlling the 
mean of a normal population if we want the difference 

UCL - LCL 

to decrease to half its original value? 

6. What LCL and UCL should we use instead of (1) if 
instead of x we use the sum Xl + ... + xn of the 
sample values? Detennine these limits in the case of 
Fig. 536. 

7. Ten samples of size 2 were taken from a production 
lot of bolts. The values (length in mm) are as shown. 
Assuming that the population is normal with mean 27.5 
and variance 0.024 and using (I ), set up a control chart 
for the mean and graph the sample means on the chart. 

Sample 
No. 

Length 

2 3 4 5 6 7 8 9 10 

27.4 27.4 '17.5 27.3 27.9 27.6 27.6 27.8 27.5 27.3 

27.6 27.4 '17.7 27.4 27.5 27.5 27.4 27.3 27.4 27.7 

8. Graph the means of the following 10 samples 
(thickness of washers. coded values) on a control chart 
for means, assuming that the population is normal with 
mean 5 and standard deviation 1.55. 

Time 8:008:309:00 9:30 10:00 10:30 11:00 11:3012:00 12:30 

13 3 5 7 7 4 5 6 5 5 
Sample 4 6 2 5 3 4 6 4 5 2 

Values 18 6 5 4 6 3 4 6 6 5 
.4 8 6 4 5 6 6 4 4 3 

9. Graph the ranges of the samples in Prob. 8 on a control 
chart for ranges. 

10. What effect on UCL - LCL does it have if we double 
the sample size? Ifwe switch from £l' = 1 % to £l' = 5%? 

11. Since the presence of a point outside control limits for 
the mean indicates trouble ("the process is out of 
contro]"), how often would we be making the mistake 
oflooking for nonexistent trouble if we used (a) I-sigma 
limits. (b) 2-sigma limits? (Assume normality.) 

12. Graph An = uIE(R*) as a function of 11. Why is An a 
monotone decreasing function of 11? 

13. (Number of defectives) Find formulas for the UCL, 
CL, and LCL (corresponding to 3u-limits) in the case 
of a control charI for the number of defectives, 
assuming that in a state of statistical control the fraction 
of defectives is p. 

14. How would progressive tool wear in an automatic lathe 
operation be indicated by a control chart of the mean? 
Answer the same question for a sudden change in the 
position of the tool In that operation. 

15. (Number of defects per unit) A so-called c-chart or 
defects-per-unit chart is used for the control of the 
number X of defects per unit (for instance, the number 
of defects per 10 meters of paper. the number of 
missing rivets in an airplane wing, etc.) (a) Set up 
formulas for CL and LCL, UCL corresponding to 

J.L ::':: 3u. 

assuming that X has a Poisson distribution. (b) Compute 
CL, LCL, and UCL in a control process ofthe number 
of imperfections in sheet glass; assume that this number 
is 2.5 per sheet on the average when the process is 
under control. 

16. (Attribute control charts). Twenty samples of size 
100 were taken from a production of containers. The 
numbers of defectives (leaking containers) in those 
samples (in the order observed) were 

376 

902 

45497056134 

12 8. 

From previous experience it was known that the 
average fraction defective is p = 5% provided that 
the process of production is mnning properly. Using 
the binomial distribution. ~et up afmction defectil'e chart 
(also called a p-chart). that is. choose the LCL = 0 
and determine the UCL for the fraction defective (in 
percent) by the use of 3-sigma limits. where u 2 is the 
variance of the random variable 

X = Fractioll defectil'e ill a sample of size 100. 

Is the process under control? 

17. CAS PROJECT. Control Charts. (a) Obtain 100 
samples of 4 values each from the normal distribution 
with mean 8.0 and variance 0.16 and their means. 
variances, and ranges. 

(b) Use these samples for making up a control chart 
for the mean. 

(c) Use them on a control chart for the standard 
deviation. 

(d) Make up a control chart for the range. 

(e) Describe quantitative properties of the samples 
that you can see from those charts (e.g., whether the 
corresponding process is under control, whether the 
quantities observed vary randomly, etc.). 
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25.6 Acceptance Sampling 
Acceptance sampling is usually done when products leave the factory (or in some cases 
even within the factory). The standard situation in acceptance sampling is that a producer 
supplies to a consumer (a buyer or wholesaler) a lot of N items (a carton of screws. for 
instance). The decision to accept or reject the lot is made by determining the number x 
of defectives (= defective items) in a sample of size 11 from the lot. The lot is accepted 
if x ~ c, where c is called the acceptance number, giving the allowable number of 
defectives. If x > c, the consumer rejects the lot. Clearly, producer and consumer must 
agree on a ce11ain sampling plan giving 11 and c. 

From the hypergeometric distribution we see that the event A: "Accept the lot" has 
probability (see Sec. 24.7) 

c 

(1) P(A) = P(X ~ c) = 2: 
x=o 

where M is the number of defectives in a lot of N items. In terms of the fraction defective 
e = MIN we can write (1) as 

(2) 

P(A; e) can assume n + 1 values conesponding to e = 0, liN, 21N, ... , NIN; here, n 
and c are fixed. A monotone smooth curve through these points is called the operating 
characteristic curve (OC curve) of the sampling plan considered. 

E X AMP L E 1 Sampling plan 

Suppose that certain tool bits are packaged 20 to a box. and the following sampling plan is u~ed. A sample of 
two tool bits is drawn, and the corresponding box is accepted if and only if both bits in the sample are good. 
In Ihis case, N = 20, 11 = 2, C = O. and (2) t<lies the form la factor 2 drops out) 

(20 - 208)(19 - 200) 

380 

The values of peA. 0) for 8 = O. 1120.2120 . ...• 20/20 and the re,ulting OC curve are shown in Fig. 537 on 
p. 1074. (Verify!) • 

In most practical cases e will be small (less than 10%). Then if we take small samples 
compared to N, we can approximate (2) by the Poisson distribution (Sec. 24.7); thus 

(3) (J.-t = ne). 
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p(A;e) 0.5 

Ii 

Fig. 537. OC curve of the sampling plan with n = 2 
and c = 0 for lots of size N = 20 

p(Ae) 0.5 

0.2 
Ii 

Fig. 538. OC curve in Example 2 

E X AMP L E 2 Sampling Plan. Poisson Distribution 

Suppose that for large lots the following sampling plan is used. A sample of size II = 20 is taken. If it contains 
not more than one defective. the lot is accepted. If the sample contains two or more defectives. the lot is rejected. 
In this plan, we obtain from (3) 

peA: /J) - e-2o o(1 + 20/J). 

The corresponding OC curve is shown in Fig. 538. • 
Errors in Acceptance Sampling 
We -;how how acceptance sampling fits into general test theory (Sec. 25.4) and what this 
means from a practical point of view. The producer wants the probability a of rejecting 
an acceptable lot (a lot for which 6 does not exceed a certain number 60 on which the 
two pm1ies agree) to be small. 60 is called the acceptable quality level (AQL). Similarly, 

P(A:Ii) 

95% 

50% 

15% 

S]~ 
\

Producer's risk 
a = 5° 

\ 
:;ollsumer's risk 

{3= 15°1-. 
-1"---------

I 
I 

o 60 iiI 

= 1% = 5% 
Good : Indifference ' Poor 

material, zone : material 

Fig. 539. OC curve, producer's and consumer's risks 
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the consumer (the buyer) wants the probability f3 of accepting an unacceptable lot (a lot 
for which e is greater than or equal to some e1 ) to be small. e1 is called the lot tolerance 
percent defective (L TPD) or the rejectable quality level (RQL). a is called producer's 
risk. It corresponds to a Type [ error in Sec. 25.4. f3 is called consumer's risk and 
corresponds to a Type II error. Figure 539 shows an example. We see that the points 
(eo, I - a) and (e1 • f3) lie on the OC curve. It can be shown that for large lots we can 
choose eo, el (> eo), a, f3 and then determine 11 and c such that the OC curve runs very 
close to those prescribed points. Table 25.6 shows the analogy between acceptance 
sampling and hypothesis testing in Sec. 25.4. 

Table 25.6 Acceptance Sampling and Hypothesis Testing 

Acceptance Sampling Hypothesis Testing 
---- . - - - - - ----+-------=-------------1 

Acceptable quality level (AQL) e = 80 

Lot tolerance percent defectives (LTPD) 
8 = 81 

Allowable number of defectives c 

Producer·s risk a of rejecting a lot 
with 8 ~ 80 

Consumer's risk {3 of accepting a lot 
with 8 ~ 81 

Hypothesis tI = tlo 

Alternative 8 = til 

Critical value c 
Probability a of making a Type Terror 
(significance level) 

Probability {3 of making a Type II error 

Rectification 
Rectification of a rejected lot means that the lot is inspected item by item and all defectives 
are removed and replaced by nondefective items. (This may be too expensive if the lot is 
cheap; in this case the lot may be sold at a cut-rate price or scrapped.) If a production 
turns out 100e% defectives, then in K lots of size N each, KN8 of the KN items are 
defectives. Now KP(A; 8) of these lots are accepted. These contain KPNe defectives, 
whereas the rejected and rectified lots contain no defectives, because of the rectification. 
Hence after the rectification the fraction defective in all K lots equals KPNeIKN. This is 
called the average outgoing quality (AOQ); thus 

(4) 

0.5 

AOQ(e) = ep(A; e). 

\ 
OC curve 

\ 

\ 

AOQL.-~ 
0/" .. f .. ~ 
o e* 0.5 

e 
Fig. 540. OC curve and AOQ curve for the sampling plan in Fig. 537 
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Figure 540 on p. 1075 shows an example. Since AOQ(O) = 0 and peA; 1) = 0, the AOQ 
curve has a maximum at some e = 8*, giving the average outgoing quality limit (AOQL). 
This is the worst average quality that may be expected to be accepted under rectification. 

-.... --.... -.... -~ .. .-.. -_ .. -.... ..... ...... 
1. Lots of knives are inspected by a sampling plan that 

uses a sample of size 20 and the acceptance number 
c = I. What are probabilitIes of accepting a lot with 
1%, 2%, 10% defectives (dull blades)? Use Table A6 
in App. 5. Graph the OC curve. 

2. What happens in Prob. I if the sample size is increased 
to 50? First guess. Then calculate. Graph the OC curve 
and compare. 

3. How will the probabilities in Prob. I with 11 = 20 change 
(up or down) if we decrease c to zero? First guess. 

4. What are the producer's and consumer's risks in 
Prob. I if the AQL is 1.5% and the RQL is 7.5'70? 

5. Large lots of batterie~ are inspected according to the 
following plan. 11 = 30 batteries are randomly drawn 
from a lot and tested. If this sample contains at most 
c = I defective battery, the lot is accepted. Otherwise 
it is rejected. Graph the OC curve of the plan, using 
the Poisson approximation. 

6. Graph the AOQ curve in Prob. 5. Determine the 
AOQL, assuming that rectification is applied. 

7. Do the work required in Prob. 5 if 11 = 50 and c = O. 

8. Find the binomial approximation of the hypergeometric 
distribution in Example 1 and compare the approximate 
and the accurate values. 

9. In Example 1, what are the producer's and consumer's 
risks if the AQL is 0.1 and the RQL is 0.6? 

10. Calculate peA; 0) in Example 1 if the sample size is 
increased from 11 = 2 to 11 = 3, the other data remaining 
as before. Compute peA; 0.10) and peA; 0.20) and 

25.7 Goodness of Fit. 

compare with Example I. 

11. Samples of 5 screws are drawn from a lot with fraction 
defective O. The lot is accepted if the sample contains 
(a) no defective screws, (b) at most 1 defective screw. 
Using the binomial distribution, find, graph, and 
compare the OC curves. 

12. Find the risks in the single sampling plan with 11 = 5 
and c = 0, assuming that the AQL is 00 = I % and the 
RQL is 01 = 15%. 

13. Why is it impossible for an OC curve to have a vertical 
portion separating good from poor quality? 

14. If in a single sampling plan for large lots of spark plugs, 
the sample size is 100 and we want the AQL to be 5% 
and the producer's risk 2%, what acceptance number 
c should we choose? (Use the normal approximation.) 

15. What is the consumer's risk in Prob. 14 if we want the 
RQL to be 12%? 

16. Graph and compare sampling plans with c = I and 
increasing values of II, say, 11 = 2. 3, 4. (Use the 
binomial distribution.) 

17. Samples of 3 fuses are drawn from lots and a lot is 
accepted if in the corresponding sample we find no 
more than I defective fuse. Criticize this sampling plan. 
In particular, find the probability of accepting a lot that 
is 509r defective. (Use the binomial distribution.) 

18. Graph the OC curve and [he AOQ curve for the single 
sampling plan for large lots with 11 = 5 and c = 0, and 
find the AOQL. 

To test for goodness of fit means that we wish to test that a certain function F(x) is the 

distribution function of a distribution from which we have a sample Xl' .•. ,xn . Then we 

test whether the sample distribution function F(x) defined by 

F(x) = SUIIl of the relative frequencies of all sample l'lllues x not exceedbza x 
J b 

fits F(x) "sufficiently well." If this is so, we shall accept the hypothesis that F(x) is the 
distribution function of the population; if not, we shall reject the hypothesis. 
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This test is of considerable practical importance, and it differs in character from the 
tests for parameters (IL. a 2

• etc.) considered so far. 
To test in that fashion, we have to know how much F(x) can differ from F(x) if the 

hypothesis is true. Hence we must first introduce a quantity that measures the deviation 
of F(x) from F(x), and we must know the probability distribution of this quantity under 
the assumption that the hypothesis is true. Then we proceed as follows. We determine a 
number c such that if the hypothesis is true, a deviation greater than c has a small 
preassigned probability. If, nevertheless, a deviation greater than c occurs, we have reason 
to doubt that the hypothesis is true and we reject it. On the other hand. if the deviation 
does not exceed c, so that F(x) approximates F(x) sufficiently well. we accept the 
hypothesis. Of course. if we accept the hypothesis, this means that we have insufficient 
evidence to reject it, and this does not exclude the possibility that there are other functions 
that would not be rejected in the test. In this respect the situation is quite similar to that 
in Sec. 25.4. 

Table 25.7 shows a test of that type, which was introduced by R. A. Fisher. This test 
is justified by the fact that if the hypothesis is true, then Xo 2 is an observed value of a 
random variable whose distribution function approaches that of the chi-square distribution 
with K - I degrees of freedom (or K - r - 1 degrees of freedom if r parameters are 
estimated) as 11 approaches infinity. The requirement that at least five sample values lie 
in each interval in Table 25.7 results from the fact that for finite 11 that random variable 
has only approximately a chi-square distribution. A proof can be found in Ref. [G3] listed 
in App. 1. If the sample is so small that the requirement cannot be satisfied. one may 
continue with the test, but then use the result with caution. 

Table 25.7 Chi-square Test for the Hypothesis That F(x) is the Distribution Fundion 
of a Population from Which a Sample XlJ ••• , Xn is Taken 

Step 1. Subdivide the x-axis into K intecvab 110 12, ... , IK such thm each interval contains 
at least 5 values of the given smuple Xl, ... , xn . Determine the number bj of smupJe 
values in the interval Ij , where j = I .... , K. If a sample value lies at a common 
boundary point of two intervals, add 0.5 to each of the two corresponding b;r 

Step 2. U:-ing F(x), compute the probability Pj that the random variable X under 
consideration assumes any value in the interval Ij , where j = 1, ... , K. Compute 

ej = IIPj. 

(This is the number of sample values theoretically expected in Ij if the hypothesis 
is true.) 

Step 3. Compute the deviation 

(1) 

Step 4. Choose a significance level (5%. I %. or the like). 

Step 5. Determine the solution c of the equation 

P(X2 ~ c) = I - Q' 

from the table of the chi-sqare distribution with K - I degrees of fi'eedom (Table 
AIO in App. 5). If rparameters of F(x) are unknown and their maximum likelihood 
estimates (Sec. 25.2) are used. then use K - r - I degrees of freedom (instead 
of K - I). If Xo 2 ~ c, accept the hypothesis. If Xo 2 > c, reject the hypothesis. 
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Table 25.8 Sample of 100 Values of the Splitting Tensile Strength (Ib/in?) 
of Concrete Cylinders 

320 380 340 410 380 340 360 350 320 370 
350 340 350 360 370 350 380 370 300 420 
370 390 390 440 330 390 330 360 400 370 
320 350 360 340 340 350 350 390 380 340 
400 360 350 390 400 350 360 340 370 420 
420 400 350 370 330 320 390 380 400 370 
390 330 360 380 350 330 360 300 360 360 
360 390 350 370 370 350 390 370 370 340 
370 400 360 350 380 380 360 340 330 370 
340 360 390 400 370 410 360 400 340 360 

D. L. IVEY. Splitting tensile tests on structural lightweight aggregate concrete. Texas Transp0l1ation 
Institute. College Station. Texas. 

Test of Normality 

Test whether the population from which the sample in Table 25.8 wa~ taken is normal. 

SolutiOIl. Table 25.8 show~ the values (column by column) in the order obtained in the experiment. Table 
25.9 gives the frequency distribution and Fig. 541 the histogram. It is hard to guess the outcome of the 
test-does the histogram resemble a normal density curve sufficiently well or not? 

The maximum likelihood estimates for IL and cr2 are jL = X = 364.7 and ;;2 = 712.9. The computation in 
Table 25.10 yields Xo2 

= 2.942. It is very intereMing that the interval 375 ... 385 contributes over 501ft of 
X02. From the histogram we see that the corresponding frequency looks much too small. The second largest 
contribution comes from 395 ... 405. and the histogram shows that the frequency seems somewhat too large. 
which is perhaps not obvious from inspection. 

Table 25.9 Frequency Table of the Sample in Table 25.8 

Tensile 
Strength 

x 
[lb/in.2

] 

300 
310 
320 
330 
340 

350 
360 
370 
380 
390 

400 
410 
420 
430 
440 

2 
Absolute 

Frequency 

2 

o 
4 

6 

II 

14 
16 
15 
8 

10 

8 

2 

3 

o 
1 

3 
Relative 

Frequency 

lex) 
0.02 
0.00 
0.04 
0.06 
0.11 

0.14 
0.16 
0.15 
0.08 
0.10 

0.08 
0.02 
0.03 
0.00 
0.01 

4 
Cumulative 

Absolute 
Frequency 

2 

2 
6 

12 
23 

37 
53 
68 
76 
86 

94 
96 
99 
99 

100 

5 
Cumulative 

Relative 

Freguency 
FlX) 

0.02 
0.02 
0.06 
0.12 
0.23 

0.37 
0.53 
0.68 
0.76 
0.86 

0.94 
0.96 
0.99 
0.99 
LOO 
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0.20,--------,---,----...,-----, 

0.15 

((x) 

0.10 

0.05 

o~ __ ~~~~~--~~~~ 
250 350 

[lb.lin.2
] 

Fig. 541. Frequency histogram of the sample in Table 25.8 

We choose a = 5%. Since K = 10 and we e5timated r = 2 parameters we have to usc Table AlO in App. 5 
with K - ,. - I = 7 degrees of freedom. We find c = 14.07 as the solution of P(X2 ~ c) = 95%. Since 
Xo 2 < c, we accept the hypothesis that the population is normal. • 

Table 25.10 Computations in Example 1 

Xj 
Xj - 364.7 

26.7 

-:x;···325 -x ... -1.49 

325 ... 335 -1.49 ... - 1.11 

335 ... 345 -1.11 ... -0.74 

345 ... 355 -0.74' .. -0.36 

355 ... 365 -0.36· . 0.01 

365 ... 375 0.01 ... 0.39 
375 ... 385 0.39' . 0.76 

385 ... 395 0.76" . 1.13 

395· .. 405 1.13 ... 1.51 
405 ... co 1.51 .. co 

1. If 100 flips of a coin result in 30 heads and 70 tails. 
can we assel1 on the 5% level that the coin is fair? 

2. If in 10 flips of a coin we get the same ratio as in 
Prob. I (3 heads and 7 tails), is the conclusion the same 
as in Prob. I? First conjecture. then compute. 

3. What would be the smallest number of heads in 
Prob. I under which the hypothesis "Fair coin" is still 
accepted (with ex = 5%)? 

4. If in rolling a die 180 times we get 39. 22. 41. 26. 20, 
32. can we claim on the 5% level that the die is fair? 

¢( Xj - 364.7) 
26.7 

ej hj Ternl in (1) 

0.0000 ... 0.0681 6.81 6 0.0% 

0.0681 ... 0.1335 6.54 6 0.045 

0.1335 ... 0.2296 9.61 11 0.201 

0.2296 ... 0.3594 12.98 14 0.080 

0.3594 ... 0.4960 13.66 16 0.401 

0.4960 ... 0.6517 15.57 15 0.021 

0.6517 ... 0.7764 12.47 8 1.602 

0.7764 ... 0.8708 9.44 10 0.033 

0.8708 ... 0.9345 6.37 8 0.417 

0.9345 . . . 1.0000 6.55 6 0.046 

X02 = 2.942 

5. Solve Prob. 4 if the sample is 25, 31. 33, 27, 29. 35. 

6. A manufacturer claims that in a process of producing 
kitchen knives, only 2.5% of the knives are dull. Test 
the claim against the alternative that more than 2.5% 
of the knives are dull, using a sample of 400 knives 
containing 17 dull ones. (Use ex = 5%.) 

7. Between 1 P.M. and 2 P.M. on five consecutive days 
(Monday through Friday) a certain service station has 
92,60. 66. 62. and 90 customers, respectively. Test the 
hypothesis that the expected number of customers during 
that hour is the same on lhose days. (Use ex = 591:.) 
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8. Test for normality at the I % level using a sample of 
/I = 79 (rounded) values x (tensile strength [kg/mm2] of 
steel sheets of 0.3 nun thickness). a = a(x) = absolute 
frequency. (Take the first two values together, also the 
last three, to get K = 5.) 

58 59 60 61 62 63 64 

10 17 27 8 9 3 

9. In a sample of 100 patients having a certain disease 45 
are men and 55 women. Does this support the claim 
that the disease is equally common among men and 
women? Choose a = 5%. 

10. In Prob. 9 find the smallest number (>50) of women 
that leads to the rejection ofthe hypothesis on the levels 
5%, 1%, 0.5%. 

11. Verify the calculations in Example 1 of the text. 

12. Does the random variable X = Number of accide/lTs 
per week in 1I certain foundry have a Poisson 
distribution if within 50 weeks. 33 were accident-free. 
I accident occurred in II of the 50 weeks. 2 in 6 of 
the weeks and more than 2 accidents in no week? 
(Choose a = 5%.) 

13. Using the given sample, test that the corresponding 
population has a Poisson distribution. x is the number 
of alpha particles per 7.5-sec intervals observed by E. 
Rutherford and H. Geiger in one of their classical 
experiments in 1910, and a(x) is the absolute frequency 
(= number of time periods during which exactly x 
particles were observed). (Use a = 5%.) 

x 

I 
0 2 3 4 5 6 

a 57 203 383 525 532 408 273 

t 

I 
7 8 9 10 II 12 ~B 

a 139 45 27 10 4 2 0 

14. Can we assert that the traffic on the three lanes of an 
expressway (in one direction) is about the same on each 
lane if a count gives 910. 850. 720 cars on the right. 
middle. and left lanes, respectively. during a particular 
time interval? (Use a = 5%.) 

15. If it i5 known that 25% of certain steel rod~ produced 
by a standard process will break when subjected to a 

load of 5000 lb, can we claim that a new process yields 
the same breakage rate if we find that in a sample of 
80 rods produced by the new process, 27 rods broke 
when subjected to that load? (Use a = 5%.) 

16. Three samples of 200 livets each were taken from a 
large production of each of three machines. The 
numbers of defective rivets in the samples were 7, 8, 
and 12. Is this difference significant? (Use a = 5%.) 

17. In a table of properly rounded function values, even 
and odd last decimals should appear about equally 
often. Test this for the 90 values of lI(:':) in Table Al 
in App. 5. 

18. Are the 5 tellers in a ceI1ain bank equally time-efficient 
if during the same time interval on a certain day they 
serve 120.95, 110, 108, 102 customers? (Use a = 5%.) 

19. CAS EXPERIMENT. Random Number Generator. 
Check your generator expelimentally by imitating 
results of 11 trials of rolling a fair die, with a convenient 
11 (e.g .. 60 or 300 or the like). Do this many times and 
see whether you can notice any "nonrandomness" 
features, for example. too few Sixes, too many even 
numbers. etc .. or whether your generator ~eems to work 
properly. Design and perform other kinds of checks. 

20. TEAM PROJECT. Difficulty with Random 
Selection. 77 students were asked to choose 3 of the 
imegers II, 12, 13, ... ,30 completely arbitrarily. The 
amazing result was as follows. 

'\lumber Il 12 13 14 15 16 17 18 19 20 

Frequ. 11 10 20 8 13 9 21 9 16 8 

Number 21 22 23 24 25 26 27 28 29 30 

rrequ. 12 8 15 10 10 9 12 8 13 9 

If the selection were completely random, the following 
hypotheses should be true. 

(a) The 20 numbers are equally likely. 

(b) The 10 even numbers together are as likely as the 
10 odd numbers together. 

(c) The 6 prime numbers together have probability 0.3 
and the 14 other numbers together have probability 0.7. 
Te~t these hypotheses. using a = 5%. Design further 
experiments that illustrate the difficulties of random 
selectiOn. 

25.8 Nonparametric Tests 
Nonparametric tests, also called distribution-free tests, are valid for any distribution. 

Hence they are used in cases when the kind of distribution is unknown, or is known but 

such that no tests specifically designed for it are available. In this section we shall explain 

the basic idea of these tests, which are based on "order statistics" and are rather simple. 
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If there is a choice, then tests designed for a specific distribution generally give better 
results than do nonparametric tests. For instance. this applies to the tests in Sec. 25.4 for 
the normal distribution. 

We shall discuss two tests in terms of typical examples. In deriving the distributions 
used in the test, it is essential that the distributions from which we sample are continuous. 
(Nonparametric tests can also be derived for discrete distributions, but this is slightly more 
complicated. ) 

E X AMP L E 1 Sign Test for the Median 

A median of the population is a solution x ~ Ii of the equation F(x) ~ 0.5. where F is the distribution function 
of the population. 

Suppose that eight radio operators were tested, first in rooms without air-conditioning and then m 
air-conditioned rooms over the same period of time. and the difference of errors (unconditioned minus 
conditioned) were 

9 4 o 4 o 7 11. 

Test the hypothesis Ii ~ 0 (that is, air-conditioning has no effect) against the alternative ji > 0 (that is. inferior 
performance in unconditioned rooms). 

Solution. We choose the significance level a ~ 5%. If the hypothesis is true. the probability p of a positive 
difference is the same as that of a negative difference. Hence in this case. l' ~ 0.5. and the random variable 

x = NLlmber of positil'e \'a/LIes omollg 11 I'a/ues 

has a binomial distribution with p = 0.5. Our sample has eight values. We omit the values O. which do not 
contribute to the decision. Then six values are left. all of which are positive. Since 

P(X ~ Ii) = (~) (0.5)6(0.5)0 

= 0.0156 

= 1.56% 

we do have observed an event whose probability is very small if the hypothesis is true: in fact 1.56% < a = 5%. 
Hence we assert that the alternative Ii > 0 is true. Thal is. the number of errors made in unconditioned rooms 
is significantly higher, so that installation of air conditioning should be considered. • 

E X AMP L E 2 Test for Arbitrary Trend 

A certain machine is used for cutting lengths of wire. Five successive piece, had the lengths 

29 31 28 30 32. 

Using this sample. test the hypothesis that there is no trend, that is. the machine does not have the tendency to 
produce longer and longer pieces or shorter and sh0l1er pieces. Assume that the type of machine suggests the 
alternative that there is positil'e trend, that is. there is the tendency of successive pieces to get longer. 

Solution. We count the number of transpositions in the sample. that is. the number of times a larger value 
precedes a smaller value: 

29 precedes 28 (1 transposition), 

31 precedes 28 and 30 (2 transpositions). 

The remaining three sample values follow in ascendmg order. Hence in the sample there are I .L 2 3 
transpositions. We now consider the random valiable 

T = Number of transpositiolls. 

If the hypothesis is true (no trend). then each of the 5! = 120 permutations of five elements I 2 3 4 5 has the 
same probability (11120). We alTange these permutations according to their number of transpositions: 
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T=O T=I T=2 T=3 

2 3 4 5 2 3 5 4 2 4 5 3 2 5 4 3 

2 4 3 5 2 5 3 4 3 4 5 2 

3 2 4 5 3 2 5 4 3 5 2 4 

2 3 4 5 3 4 2 5 4 2 5 3 
4 2 3 5 4 3 2 5 

2 1 3 5 4 5 2 3 4 

2 I 4 3 5 2 4 5 3 
2 3 4 5 2 5 3 4 etc. 

3 1 2 4 5 2 3 I 5 4 

2 3 4 5 
2 4 I 3 5 
3 2 5 4 

3 4 2 5 

3 2 4 5 
4 2 3 5 

From this we obtain 

P(T:o:; 3) = l~O + lio + l~O + )1;0 = )2io = 24%. 

We accept the hypothesis because we have ob~erved an event that ha, a relatively large probability (certainly 
much more than 5'k) if the hypothesis i~ true. 

Values of the distribution function of T in the case of no trend are shoINn in Table A12. App. 5. For insrance. 
if /I = 3. then FlO) = 0.167. F(I) = 0.500, F(2) = I - 0.167. If /I = 4. then F(O) = 0.042. F(l) = 0.167, 
F(2) = 0.375. F(3) = I - 0.375, F(4) = I - 0.167, and SO on. 

Our method and those values refer to contilluous distributions. Theoretically. we may then expect that all the 
\'alues of a sample arc different. Practically. some sample values may still be equal. because of rounding: If 111 

"alues are equal. add m(m - 1)14 (= mean value of thc transpo,itions in the case of the perIl1Ulalion~ of 111 

elements). that is.l for each pair of equal values. ~ for each triple. etc. • 

., -
1. What would change in Example 1. had we observed 

only 5 positive values? Only 4? 

2. Does a process of producing plastic pipes of length 
f.L = 2 meters need adjustment if in a sample. 4 pipes 
have the exact length and 15 are shorter and 3 longer 
than 2 meters? (Use the nonnal approximation of the 
binomial distribution.) 

3. Do the computations in Prob. 2 without the use of the 
DeMoivre-Laplace limit theorem (in Sec. 24.8). 

4. Test whether a thermostatic switch is properly set to 
200 e against the alternative that its setting is too low. 
Use a sample of9 values, 8 of which are less than 200e 
and I is greater than 20°e. 

5. Are air filters of type A better than type B filters if in 
IO trials. A gave cleaner air than B in 7 cases, B gave 
cleaner air than A in I case. whereas in 2 of the trials 
the results for A and B were practically the same? 

6. In a clinical experiment. each of 10 patients were given 
two different sedatives A and B. The following table 
shows the effect (increase of sleeping time. measured 
in hours). Using the sign test. find out whether the 
difference is significant. 

A 1.9 0.8 1.I 0.1 -0.1 4.4 5.5 1.6 4.6 3.4 
B 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0 

Difference 1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4 

7. Assuming that the populations corresponding to the 
samples in Prob. 6 are nOlmal. apply a suitable test for 
the normal distribution. 

8. Thirty new employees were grouped into 15 pairs of 
similar intelligence and expeIience and were then 
instructed in data processing by an old method (A) 
applied to one (randomly selected) person of each pair. 
and by a new presumably better method (B) applied to 
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the other person of each pair. Test for equality of 
methods against the alternative that (B) is better than 
(A), using the following scores obtained after the end 
of the training period. 

A 60 70 80 85 75 40 70 45 95 80 90 60 80 75 65 
I 

B 65 85 85 80 95 65 100 60 90 85 100 75 90 60 80 

9. Assuming normality. solve Prob. 8 by a suitable test 
from Sec. 25.4. 

10. Set up a sign test for the lower quartile q25 (defined by 
the condition F(q25) = 0.25). 

11. How would you proceed in the sign test if the 
hypothesis is fi = fio (any number) instead of fi = O? 

12. Check the table in Example 2 of the text. 

13. Apply the test in Example 2 to the following data 
(x = disulfide content of a certain type of wool, 
measured in percent of the content in umeduced fibers; 
y = saturation water content of the wool. measured in 
percent). Test for no trend against negative trend. 

15 30 40 50 55 80 100 

y 50 46 43 42 36 39 37 33 

14. Test the hypothesis that for a certain type of voltmeter. 
readings are independent of temperature T [0C] against 
the alternative that they tend to increase with T. Use a 
sample of values obtained by applying a constant 
voltage: 

15. 

16. 

17. 
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Temperature T rCJ 10 20 30 40 50 

Reading V [volts] 99.5 101.1 100.4 100.8 101.6 

In a swine-feeding experiment. the following gains in 
weight [kg] of 10 animals (ordered according to 
increasing amounts of food given per day) were 
recorded: 

20 17 19 18 23 16 25 28 24 22. 

Test for no trend against positive trend. 

Apply the test explained in Example 2 to the following 
data (x = diastolic blood pressure [mm Hgl. y = weight 
of hemt [in grams] of 10 patients who died of cerebral 
hemorrhage). 

A'121 120 95 123 140 112 92 100 102 91 

,) 521 465 352 455 490 388 301 395 375 418 

Does an increase in temperature cause an increase of 
the yield of a chemical reaction from which the 
following sample was taken"! 

Temperature tOe] 10 20 30 40 60 80 

Yield [kg/min] O.b 1.1 0.9 1.6 1.2 2.0 

18. Does the amount of feltilizer increase the yield of 
wheat X [kg/plot]? Use a sample of values ordered 
according to increasing amounts of fertilizer: 

41.4 43.3 39.6 43.0 44.1 45.6 -l4.5 46.7. 

25.9 Regression. Fitting Straight Lines. 
Correlation 

So far we were concerned with random experiments in which we observed a single quantity 

(random variable) and got samples whose values were single numbers. In this section we 

discuss experiments in which we observe or measure two quantities simultaneously, so 

that we get samples of pairs of values (Xl, .\'1), (X2' )'2), ... , (x"' JII). Most applications 
involve one of two kinds of experiments, as follows. 

1. In regression analysis one of the two variables. call it x. can be regarded as an 

ordinary variable because we can measure it without substantial en'or or we can even 

give it values we want. x is called the independent variable. or sometimes the 

controlled variable because we can control it (set it at values we choose). The other 

variable, Y. is a random variable, and we are interested in the dependence of Yon 

x. Typical examples are the dependence of the blood pressure Y on the age x of a 

person or, as we shall now say, the regression of Yon x. the regression of the gain 

of weight Y of certain animals on the daily ration of food x. the regression of the 

heat conductivity Y of cork on the specific weight x of the cork. etc. 
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2. In correlation analysis both quantities are random variables and we are interested 
in relations between them. Examples are the relation (one says "correlation") between 
wear X and wear Y of the front tires of cars, between grades X and Y of students in 
mathematics and in physics, respectively. between the hardness X of steel plates in 
the center and the hardness Y near the edges of the plates, etc. 

Regression Analysis 
In regression analysis the dependence of Y on x is a dependence of the mean /.L of Yon 
x, so that /.L = /.L(x) is a function in the ordinary sense. The curve of /.L(x) is called the 
regression curve of Y on x. 

In this section we discuss the simplest case, namely, that of a straight regression line 

(1) 

Then we may want to graph the sample values as n points in the xY-plane, fit a straight 
line through them, and use it for estimating /.L(x) at values of x that interest us, so that we 
know what values of Y we can expect for those x. Fitting that line by eye would not be 
good because it would be sUbjective; that is, different persons' results would come out 
differently, particularly if the point<; are scattered. So we need a mathematical method that 
gives a unique result depending only on the Il points. A widely used procedure is the method 
of least squares by Gauss and Legendre. For our task we may fOlmulate it as follows. 

Least Squares Principle 

The straight line should be fitted through the given points so that the slim of the 
squares of the distances of those points from the straight line is minimum, where 
tile distance is measured in the vertical direction (the y-direction). (Formulas below.) 

To get uniqueness of the straight line, we need some extra condition. To see this, take 
the sample (0, I), (0, -I). Then all the lines y = k1x with any kl satisfy the principle. 
(Can you see it?) The following assumption will imply uniqueness, as we shall find out. 

General Assumption (Al) 

The x-values Xl, ... , Xn in OLlr sample (Xl' Yl), ... , (Xn, Yn) are not all equal. 

From a given sample (Xl. Yl)' ••.. (X". Yn) we shall now determine a straight line by 
least ~quares. We write the line as 

(2) 

and call it the sample regression line because it will be the counterpart of the population 
regression line (1). 

Now a sample point (Xj, )J) has the vertical distance (distance measured in the 
y-direction) from (2) given by 

(see Fig. 542). 
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y 

x. 
J 

x 

Fig. 542. Vertical distance of a point (Xj' Yj) from a straight line Y = ko + k,x 

Hence the sum of the squares of these distances is 

(3) 

n 

q = ~ (Yj - ko - klXj)2. 
j~I 

1085 

In the method ofleast squares we now have to determine ko and kl such that q is minimum. 
From calculus we know that a necessary condition for this is 

(4) aq = 0 
ilko 

and 
ilq 

= o. 
ilkl 

We shall see that from this condition we obtain for the sample regression line the formula 

(5) 

Here i and.v are the means of the x- and the y-values in our sample, that is, 

(6) 

I 
(a) j: = - (Xl + ... + xn) 

11 

I 
(b) Y = - (."1 + . . . + Yn)· 

11 

The slope kl in (5) is called the regression coefficient of the sample and is given by 

(7) 
SXY 

S 2 
x 

Here the "sample covariance" Sxy is 

(8) 
1 n 

Sxy = --- ~ (x· - x)(,·· - y) = 
11 - I J -J - 11 - I 

J~l 

and Sx 
2 is given by 

(9a) 
1 n 

S 2 = -- ~ (Xo - x)2 = 
x f)-I J f)-I 

j~I 
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From (5) we see that the sample regression line passes through the point Ct', :n. by which it 
is detennined, together with the regression coefficient (7). We may call Sx 2 the variance of 
the x-values, but we should keep in mind that x is an ordinary variable. not a random variable. 

We shall soon also need 

(9b) 1 71 I [n I (71 )2] S 2 = -- ~ (y. _ 1')2 = -- ~ 1'.2 - - ~ 1'. . 
Y I ~ -J. 1 ~ -J ~-J 

11 - j=l Il - j~l n j=l 

Derivation of (5) and (7). Differentiating (3) and using (4), we first obtain 

iJq 

ako 

aq 
ak

l 

= -2 ~ )'i)j - ko - k1xj) = 0 

where we sum over j from 1 to 11. We now divide by 2, write each of the two sums as 
three sums, and take the sums containing )j and XjYj over to the right. Then we get the 
"normal equations" 

(10) 

= ~ , .. 
~.J 

This is a linear system of two equations in the two unknowns ko and k1 . Its coefficient 
determinant is [see (9)] 

11 

and is not zero because of Assumption (A I). Hence the system has a unique solmion. 
Dividing the first equation of (10) by 11 and using (6), we get ko = Y - k1x. Together with 
y = ko + k1x in (2) this gives (5). To get (7), we solve the system (10) by Cramer's rule 
(Sec. 7.6) or elimination, finding 

(II) 

This gives (7)-(9) and completes the derivation. [The equality of the two expressions in 
(8) and in (9) may be shown by the student: see Prob. 14]. • 

E X AMP L E 1 Regression Line 

The decrease of volume y ['i!-] of leather for certain fixed values of high pres~ure x [atmospheres I was measured. 
The resulh are shown in the first mo columns of Table 25.1 L Find the regression line of .'. on x. 

Solutioll. We see that 11 = 4 and obtain the values.r = 2800014 = 7000. -" = II}.O/4 = 4.75. and from (9) 
and (X) 
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Table 25.11 Regression of the Decrease of Volume y [%] 
of Leather on the Pressure x [Atmospheres] 

I 
Given Values Auxiliary Values 

Xj v· . J x} xjYj 

4000 2.3 16000000 9200 

6000 4.1 36000000 24600 
8000 5.7 64000000 45600 

10000 6.9 100000000 69000 

28000 19.0 216000000 148400 

2 I ( 28 000
2 

) 20 000 000 
Sx ="3 216000000 - --4- = 3 

. _ ~ ( . 28000'19) _ 15400 
~XIJ - 3 148400 4 - 3 . 

Hence k] = 15 ·:100120000000 = 0.00077 from (7). and the regression line is 

y - 4.75 = 0.000 77(x - 7000) or y = 0.000 77r: - 0.64. 

1087 

Note that y(O) = -0.64. which is physically meaningless. but typically indicates that a linear relation is merely 
an approximation valid 011 some restricted interval. • 

Confidence Intervals in Regression Analysis 
If we want to get confidence intervals, we have to make assumptions about the distribution 
of Y (which we have not made so far; least squares is a "geometric principle," nowhere 
involving probabilities!). We assume normality and independence in sampling: 

Assumption (A2) 

For each fixed x the random )'Qriable Y is /lonnalwith mean (I), that is, 

(12) 

and varial/ce (]"2 independent of x. 

Assumption (A3) 

The 11 pel.1lJ/7llaIlCeS of the experi1llellt by which we obtain a sample 

a re independent. 

K1 in (12) is called the regression coefficient of the population because it can be shown 
that under Assumptions (AI)-(A3) the maximum likelihood estimate of KI is the sample 
regression coefficient kl given by (11). 

Under Assumptions (A1)-(A3) we may now obtain a confidence interval for Kb as 
shown in Table 25.12. 
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Table 25.12 Determination of a Confidence Interval for Kl in (1) under Assumptions 
(Al)-(A3) 

Step 1. Choose a confidence level ')'(95%,99%, or the like). 

Step 2. Determine the solution c of the equation 

(13) F(c) = ~(1 + ')') 

from the table of the t-distribution with n - 2 degrees of freedom (Table A9 in 
App. 5; 11 = sample size). 

Step 3. Using a sample (Xlo Y1), .•• , (xn , Yn), compute (n - l)sx 2 from (9a), (n - l)S.TY 

from (8), kl from (7), 

n 

(14) (n - I )Sy 2 = ~ Yj 2 
-

n 

[as in (9b)], and 

(15) 

Step 4. Compute 

K=c 
(11 - 2)(n - I )s,.2 . 

The confidence interval is 

(16) 

E X AMP L E 2 Confidence Interval for the Regression Coefficient 

Using the sample in Table 25.1 L determine a confidence interval for /(1 by the method in Table 25.12. 

Solution. Step 1. We choose l' = 0.95. 

Step 2. Equation (13) takes the form HC) = 0.975, and Table A9 in App. 5 with 11 - 2 = 2 degrees offreedom 
gives c = 4.30. 

Step 3. From Example I we have 3s",2 = 20000000 and k1 = 0.00077. From Table 25.11 we compute 

Step 4. We thus obtain 

and 

192 

3sy
2 

= 102.2 - 4 

= 11.95, 

qo = I L')5 - 20 (X)O om . OJ)(J0772 

= 0.092. 

K = 4.30v'0.092/(2 . 20 000 (00) 

= 0.000206 

CONFo.95 (0.00056 ~ K1 ~ 0.000981. • 
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THEOREM 1 

Correlation Analysis 
We shall now give an introduction to the basic facts in correlation analysis: for proofs see 
Ref. [G2J or [G8] in App. I. 

Correlation analysis is concerned with the relation between X and Y in a two-dimensional 
random variable (X, Y) (Sec. 24.9). A sample consists of 11 ordered pairs of values 
(Xl' .\"1)' ... , (xn , y,,), as before. The interrelation between the \" and y values in the 
sample is measured by the sample covariance Sxy in (8) or by the sample correlation 
coefficient 

(17) 

with Sx and Sy given in (IJ). Here r has the advantage that it does not change under a 
multiplication of the X and y values by a factor (in going from feet to inches, etc.). 

Sample Correlation Coefficient 

The sample correlation coefficient r sati.~fies - I ~ r ~ 1. In particular. r = :::'::: 1 if 
and onl.r if the sample values lie on a straight line. (See Fig. 543.) 

The theoretical counterpart of r is the correlation coefficient p of X and Y, 

(18) p= 

where JLx = E(X) , JLy = E(Y), ux2 = E([X - JLxf), Uy2 = E([Y - JLy]2) (the means 
and variances of the marginal distributions of X and Y; see Sec. 24.9), and UXy is the 

r=l • r=O • 
10 • 10 • • • •• • • 

•• • 
• • • • • • • 

00 00 10 20 

r = 0.98 • r = -0.3 
10 • 10 • • • • • • • • • • • • • 

• • • • • 
00 10 20 00 10 20 

r = 0.6 r = -0.9 
10 • • 10 • • • • • • • •• 

• • • • • • • • 00 10 20 00 10 20 

.~. 543. Samples with various values of the correlation coefficient r 
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THEOREM 2 

THEOREM 3 

CHAP. 25 Mathematical Statistics 

covariance of X and Y given by (see Sec. 24.9) 

(19) UXY = E([X - J.Lx][Y - J.Ly]) = E(XY) - E(X)E(Y). 

The analog of Theorem 1 is 

Correlation Coefficient 

The correlation coefficient p satisfies - 1 ~ P ~ 1. In particular. p = :::': 1 if alld 
ollly if X alld Yare linearly related, that is. Y = yX + 8. X = y* Y + 8*. 

X and Yare called uncorrelated if p = O. 

Independence. Normal Distribution 

(a) Indepelldent X and Y (see Sec. 24.9) are uncorrelated. 

(b) If (X, Y) is nOl1llal (see below), then uncorrelated X alld Yare 
independent. 

Here the two-dimensional normal distribution can be introduced by taking two independent 
standardized normal random variables X*. Y*, whose joint distribution thus has the density 

(20) 
_1_ e-<x*2+y*2)/2 f*(x*. y*) = 
27T 

(representing a surface of revolution over the x*y*-plane with a bell-shaped curve as cross 
section) and setting 

X = J.Lx + uxX* 

Y = J.Ly + pUyX* + ~ uyY*. 

This gives the general two-dimensional normal distribution with the density 

1 
(21a) f(x, y) = 2 e-h(x,y)/2 

27TUXUy~ 
where 

(21b) hex. y) = 

In Theorem 3(b), normality is important, as we can see from the following example. 

E X AMP L E 3 Uncorrelated but Dependent Random Variables 

If X assumes -1, 0, I with probability 113 and Y = X2. then EO() = 0 and in (3) 

__ 3 3 1 3 1 3 1 
CTXY - E(XY) - E(X ) ~ (-1) . - + 0 . - +] . - = 0 

3 3 3' 

so that p = 0 and X and Yare uncorrelated. But they are cenainly not independent since they are even functlonally 
~~ . 
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Test for the Correlation Coefficient p 
Table 25.13 shows a test for p in the case of the two-dimensional normal distribution. 

t is an observed value of a random variable that has a t-distribution with n - 2 degrees 
of freedom. This was shown by R. A. Fisher (Biometrika 10 (1915), 507-521). 

Table 25.13 Test of the Hypothesis p = 0 Against the Alternative p > 0 in the Case 
of the Two-Dimensional Normal Distribution 

Step 1. Choose a significance level a (5%, 1 %, or the like). 

Step 2. Determine the solution c of the equation 

P(T:;;::: c) = I - a 

from the t-distribution (Table A9 in App. 5) with n - 2 degrees of freedom. 

Step 3. Compute r from (17), using a sample (XIo Yl), ... , (x", Yn)' 

Step 4. Compute 

t=r(~). ~~ 

If t ~ c, accept the hypothesis. If t > c, reject the hypothesis. 

E X AMP L E 4 Test for the Correlation Coefficient p 

Test the hypothesis p = 0 (independence of X and Y, because of Theorem 3) against the alternative p > 0, using 
the data in the lower left corner of Fig. 543. where r = 0.6 (manual soldering errors on 10 two-sided circuit 
boards done by 10 workers; x = front, y = back of the boards). 

Solution. We choose a = 5%; thus 1 - a = 95%. Since n = 10, n - 2 = 8, the table gives c = 1.86. 
Also. t = 0.6VS/0.64 = 2.12 > c. We reject the hypothesis and assert that there is a positive correlation. A 
worker making few (many) errors on the front side also tends to make few (many) errors on the reverse side of 
the board. • 

11-101 SAMPLE REGRESSION LINE 

Find and sketch or graph the sample regression line of Y 
and x and the given data as points on the same axes. 

1. (-1, 1), (0, 1.7), (1, 3) 

2. (3, 3.5), (5, 2), (7, 4.5), (9, 3) 

3. (2, 12), (5, 24), (9. 33), (14, 50) 

4. (11, 22), (15, 18), e17, 16), (20, 9), (22, 10) 

5. Speed x [mph] of a car 30 40 50 60 

Stopping distance y [tt] 150 195 240 295 

Also find the stopping disrance ar 35 mph. 

6. x = Deformation of a certain steel [mm], y = Brinell 
hardness [kg/mm2] 

x 6 9 II 13 22 26 28 33 35 

7. x = Revolutions per minute. y = Power of a Diesel 
engine [hpJ 

x 400 500 600 700 750 

y 580 1030 1420 18!m 2100 
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8. Humidity of air x [%] 10 20 30 40 

Expansion of gelatin y [%] 0.8 1.6 2.3 2.8 

9. Voltage x [V] 40 40 80 80 110 110 

Current)' [A] 5.1 4.8 10.0 LO.3 13.0 12.7 

Also find the resistance R [il] by Ohms' law 
(Sec. 2.9]. 

10. Force x [Ib] 2 4 6 8 

Extension y [in] of a spring 4.1 7.8 12.3 15.8 

Also find the spring modulus by Hooke's law 
(Sec. 2.4). 

111-131 CONFIDENCE INTERVALS 
Find a 95% confidence interval for the regression 
coefficient Kl, assuming that (A2) and (A3) hold and using 
the sample: 

11. In Prob. 6 

12. In Prob. 7 

13. In Prob. 8 

14. Derive the second expression for Sx 
2 in (9a) from the 

first one. 

15. CAS EXPERIMENT. Moving Data. Take a sample, 
for instance, that in Prob. 6, and investigate and graph 
the effect of changing y-values (a) for small.\', (b) for 
large x, (c) in the middle of the sampLe. 

~ .. ··1_'.'=01..· S T ION SAN D PRO B L EMS 

1. What is a sample? Why do we take samples? 

2. What is the role of probability theory in statistics? 

3. Will you get better results by taking larger samples? 
Explain. 

4. Do several samples from a certain popUlation have the 
same mean? The same variance? 

5. What is a parameter? How can we estimate it? Give an 
example. 

6. What is a statisticaL test? What errors occur in testing? 

7. How do we test in quality control? 

8. What is the x2-test? Give a simple example hom 
memory. 

9. What are nonparametric tests? When would you apply 
them? 

10. In what tests did we use the I-distribution? The 
X2 -distribution? 

11. What are one-sided and two-sided tests? Give typical 
examples. 

12. List some areas of application of statistical tests. 

13. What do we mean by "goodness of fiC? 

14. Acceptance sampling uses principles of testing. Explain. 

15. What is the power of a test? What can you do if the 
power is low? 

16. Explain the idea of a maximum likelihood estimate from 
memory. 

17. How does the length of a confidence interval depend on 
the sample size? On the confidence level? 

18. Couldn't we make the error in interval estimation zero 
simply by choosing the confidence level I? 

19. What is the Least squares principle? Give applications. 

20. What is the difference between regression and 
cOIl'elation analysis? 

21. Find the maximum likelihood estimates of mean and 
variance of a normal distribution using the sample 5, 4, 
6,5,3,5,7,4,6,5,8,6. 

22. Determine a 95% confidence interval for the mean fL of 
a normal population with variance 0"2 = 16, using a 
sample of size 400 with mean 53. 

23. What will happen to the length of the interval in Prob. 
22 if we reduce the sample size to 100? 

24. Determine a 99% confidence interval for the mean of a 
normal population with standard deviation 2.2, using the 
sample 28,24,31,27,22. 

25. What confidence interval do we obtain in Prob. 24 if 
we assume the variance to be unknown? 

26. Assuming normality, find a 95% confidence interval for 
the variance hom the sample 145.3, 145.1, 145.4, 146.2. 

127-291 Find a 95% confidence interval for the mean fL, 

assuming normality and using the sample: 

27. Nitrogen content [%] of steel 0.74. 0.75. 0.73, 0.75, 
0.74.0.72 

28. Diameters of 10 gaskets with mean 4.37 em and 
standard deviation 0.157 cm 

29. Density [g/cm3J of coke 1.40, 1.45, 1.39, 1.44, 1.38 



Summary of Chapter 25 

30. What sample size should we use in Prob. 28 if we want 
to obtain a confidence interval of length 0.1. assuming that 
the standard deviation of the samples is (about) the same? 

131-321 Find a 99'1t confidence interval for the variance 

0-
2

• assuning normality and using the sample: 

31. Rockwell hardness of tool bits 64.9. 64.1, 63.8. 64.0 

32. A sample of size II = 128 with variance s2 = 1.921 

33. Using a sample of IO values with mean 14.5 from a 
normal population with variance 0-

2 = 0.25. test the 
hypothesis flo = 15.0 against the alternative fLl = 14.4 
on the 5% level. 

34. In Prob. 33. change the alternative to fL =1= 15.0 and test 
as before. 

35. Find the power in Prob. 33. 

36. Using a sample of 15 values with mean 36.2 and 
variance 0.9. te~t the hypothesis fLo = 35.0 against the 
alternative fLl = 37.0. assuming normality and taking 
a = 1%. 

37. Using a sample of 20 values with variance 8.25 from a 
normal population. test the hyothesis 0-0

2 = 5.0 against 
the alternative 0-1

2 = 8.1. choosing a = 5%. 

38. A firm sells paint in cans containing I kg of paint per 
can and is interested to know whether the mean weight 
differs significantly from I kg, in which case the filling 
machine must be adjusted. Set up a hypothesis and an 
alternative and perform the test. assuming normality and 
using a sample of 20 fillings having a mean of 991 g 
and a standard deviation of 8 g. (Choose a = 5%.) 

39. Using samples of sizes to and 5 with variances s/ = 50 
and Sy 

2 = 20 and assuming normality of the conesponding 
populations. test the hypothesis Ho: 0".,,2 = o-y2 against 
the alternative 0".",2 > o-y 2. Choose a = 5%. 
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40. Assume the thickness X of washers to be normal with 
mean 2.75 mm and variance 0.00024mm2. Set up a 
control chaIt for fL. choosing a = I %, and graph the 
means of the five samples (2.74. 2.76). <2.74. 2.74). 
(2.79.2.81), (2.78, 2.76), (2.71. 2.75) on the chart. 

41. What effect on UCL - LCL in a control chart for the 
mean does it have if we double the sample size? If we 
switch from a = I % to a = 5'70? 

42. The following sample~ of screws (length in inches) were 
taken from an ongoing production. Assuming that the 
population is normal with mean 3.500 and variance 
0.0004, set up a control chart for the mean, choosing 
a = I %, and graph the sample means on the chart. 

Sample No. 

Length 

2 3 4 5 6 7 

3.49 3.48 3.52 3.50 3.51 3.49 3.52 3.53 
3.50 3.47 3.49 3.51 3.48 3.50 3.50 3.49 

43. A purchaser checks gaskets by a single sampling plan 
that uses a sample size of 40 and an acceptance number 
of I. Use Table A6 in App. 5 to compute the probability 
of acceptance of lots containing the following 
percentages of defective gaskets !'It. !%. I 'It, 2%. 5%. 
10%. Graph the OC curve. (Use the Poisson 
approximation.) 

44. Does an automatic cutter have the tendency of cutting 
longer and longer pieces of wire if the lengths of 
subsequent pieces [in.] were to.l. 9.8. 9.9, 10.2, 10.6, 
to.5? 

45. Find the least squares regression line to the data (-2. I). 
(0. 1). (2, 3), (4 ... n. (6. 5). 

We recall from Chap. 24 that with an experiment in which we observe some quantity 
(number of defectives. height of persons, etc.) there is associated a random variable 

X whose probability distribution is given by a distribution function 

(I) F(x) = P(X ~ x) (Sec. 24.5) 

which for each x gives the prObability that X assumes any value not exceeding x. 



1094 CHAP. 2S Mathematical Statistics 

In statIstIcs we take random samples Xl, ... , Xn of size n by performing that 
experiment n times (Sec. 25.1) and draw conclusions from properties of samples 
about properties of the distribution of the con-esponding X. We do this by calculating 
point estimates or confidence intervals or by peIiorming a test for parameters 
(/-L and (T2 in the normal distribution. p in the binomial distribution. etc.) or by a 
test for distribution functions. 

A point estimate (Sec. 25.2) is an approximate value for a parameter in the 
distribution of X obtained from a sample. Notably, the sample mean (Sec. 25.1) 

(2) 
1 n 1 

X = - 2: -'J = - (Xl + ... + XII) 

n j~l n 

is an estimate of the mean /-L of X, and the sample variance (Sec. 25.1) 

(3) 

is an estimate of the variance (T2 of X. Point estimation can be done by the basic 
maximum likelihood method (Sec. 25.2). 

Confidence intervals (Sec. 25.3) are intervals 81 ~ 8 ~ 82 with endpoints 
calculated from a sample such that with a high probability 'Y we obtain an interval 
that contains the unknown true value of the parameter 8 in the distribution of X. 
Here, 'Y is chosen at the beginning, usually 95% or 99%. We denote such an interval 
by CONF y {8l ~ 8 ~ 82 }. 

In a test for a parameter we test a h)pothesis 8 = 80 against an alte171ative 8 = 81 

and then, on the basis of a sample, accept the hypothesis. or we reject it in favor of 
the alternative (Sec. 25.4). Like any conclusion about X from samples, this may 
involve en-ors leading to a false decision. There is a small probability a (which we 
can choose, 5% or 1 %, for instance) that we reject a true hypothesis, and there is a 
probability f3 (which we can compute and decrease by taking Larger samples) that 
we accept a false hypothesis. a is called the significance level and I - f3 the power 
of the test. Among many other engineeIing applications, testing is used in quality 
control (Sec. 25.5) and acceptance sampling (Sec. 25.6). 

If not merely a parameter but the kind of distribution of X is unknown, we can 
use the chi-square test (Sec. 25.7) for testing the hypothesis that some function 
F(x) is the unknown distribution function of X. This is done by determining the 
discrepancy between F(x) and the distribution function F(x) of a given sample. 

"Distribution-free" or nonparametric tests are tests that apply to any distribution, 
since they are based on combinatorial ideas. These tests are usually very simple. 
Two of them are discussed in Sec. 25.8. 

The last section deals with samples of pairs of values, which arise in an 
experiment when we simultaneously observe two quantities. In regression analysis, 
one of the quantities, x, is an ordinary variable and the other, Y, is a random variable 
whose mean /-L depends on x, say, /-L(x) = Ko + KIX, In correlation analysis the 
relation between X and Yin a two-dimensional random variable (X, Y) is investigated. 
notably in terms of the correlation coefficient p. 
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Answers to 
Odd-Numbered Problems 

Problem Set 1.1, page 8 

1. (cos 7T.X)/7T + C 5. First order 

7. Second order 9. Third order 

11. y = ~ tan ('2x + n7T), n = 0, ±I, ±2, ... 
13. y = e-:L:l 15. (A) No. (B) No. Only y = O. 

17. )''' = g, y' = gt, Y = gt2/2 

19. )''' = k, y' = kt + 6, y = ~kt2 + 6t, y(60) = 1800k + 360 = 3000, k = 1.47, 
y' (60) = 1.47·60 + 6 = 94 [rnlsec] = 210 [mph] 

21. ekH = ~,H = (1n ~)/k = (1011 In 2)/1.4 = 1570 [yearsl 

Problem Set 1.2, page 11 

11. y = -(2/7T) cos ~7TX I- c 15. y = x(l - In x) + c 

17. Verify the general solution y2 + t2 = c. Circle of radius 3Vz 

19. 111V ' = 111g - bv2 , v' = 9.8 - v2
, v(O) = 10. v' = 0 gives the limit 

V9.8 = 3.1 [meter/sec]. 

Problem Set 1.3, page 18 

3. cos 2y dy = '2 dx, y = ~ arcsin (4x + c) 
7. dy/y = cot 77X dx, )' = c(sin 7TX)lhT 

11. r = roe- t2 

15.y=ex/~ 

19. y = Vln (X
2 

- 2x + e) 
21. y' = (y - b)/(x - a), y - b = c(x - a) 

5. )'2 + 36x2 = c, ellipses 

9. y = tan (c - e-7rx/7T) 

13. I = Ioe-RtiL 

17. y = 4ln x 

23. yoek = 2yo, ek = 2 (l week), e2k = 22 (2 weeks), e4k = 24 
25. y = yoekt = yoe-0,OO01213t = )'oe-O.OO01213.4000 = 0.62yo; 62%; cf. Example 2. 

27. y' = -ky, y = Yoe-1<t, e-5k 
= 0.5, k = -(1n 0.5)/5 = 0.139, 

f = -(1n 0.05)/0.139 = 22 [min] 

29. T(O) = 10. T = 23 - 13ek t, T(2) = 23 - 13e2k = 18. k = -0.478, T = 22.8 
gives t = [In (-0.2/-13)]/(-0.478) = 8.73 [min]. 

31. h = gt2/2, t = Y2h/g, v = gt = gY2h/g = V2ih 
33. y' = 0 - (2/800)y, y = 200e-0,0025t, f = 300 [min], y(300) = 94.5 [lb] 

35. (A) is related to the enor function and (C) concerns the Fresnel integral C(x); see 
App.3.1. (D) y' = '2.\y + I, yeO) = 0 
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Problem Set 1.4, page 25 

1. Exact. x4 + y4 = e 

3. Exact. u = cos TTX sinh Y + key), u y = cos TTX cosh y + k', k' = O. 
Ans. cos TTX sinh y = e 

5. Exact. 9x2 + 4y2 = e 

7. Exact, Mil = NT = -2e-2f1, u = re-2
(J + k«(}), Ue = -2re-2f1 + k', k' = O. 

Ans. re-21i = e, r = ee2fJ 

9. Exact. u = ylx + sin 2x + key). lIy = lIx ...!.. k' = IIx - 2 sin 2y. 
AlIS. ylx + sin 2x + cos 2y = e 

11. Not exact. F = 1/x2 by Theorem I. -ylx2 dx + IIx dy = d(ylx) = O. Ails. Y = ex 

13. - 3y2/x4 dx + 2ylx3 dy = d(\,2/x3) = O. Y = e).2./2 (semicubical parabolas) 

15. Exact, U = e2x cos Y + key), lly = _e2x sin y + k', k' = O. AlIS. e2x cos y = e, 

e = 1 
17. Not exact. Try R. F = e-x, e-X(cos wx + w sin wx) dx + dy = 0, U = Y + [(x), 

Ux = [' = e-X(cos wx + w sin wx), U = Y + [ = Y - e-x cos wx = c, c = 0 
19. U = eX + key), uy = k' = -1 + eY , k = -y + eY • Ans. eX - y + eY = e 

21. B = C, !Ax2 + Cxy + !Dy2 = e 

Problem Set 1.5, page 32 

3. y = Cf;,-3.5x + 0.8 5. y = 2.6e-1.25x + 4 

7. y = x + c (if k = 0). y = ee-kx + e2/(x13k if k =1= 0 
9. Separate. y - 2.5 = c cosh4 1.5x 11. y = 2xecos 2x 

13. y = sin 2x + c/sin2 2x, e = 1 15. Y = ellX(x2 + c), c = 4.1 
17. y = (c + ! cosh lOx)/x3

• Note (X3y)' = 5 sinh lOx. 

57 6.5 19. )' = l/u 1I = ce- . x - -
, 5.7 

21. u = y-2 = ecc\l + ce2x), c = 3, u(O) = 4 
23. Separate variables. y2 = 1 - cecos x, e = - 1/e 

25 • .v' = Ry + k. y = ceRt 
- klR. c = Yo + /.JR. Yo = 1000, R = 0.06. 

t = 65 - 25 = 40, k = 1000. Y = $178076.12. StaJt at 45 gives 
Yo[(I + 1I0.06)eo.o6.20 - 110.06] = 41.988732yo = 178076.12, Yo = k = $4241.05. 

27. y' = 175(0.0001 - y/450), yeO) = 450· 0.0004 = 0.18, 
y = 0.135e-O.3889t + 0.045 = 0.1812, 
e-O.3889t = (0.09 - 0.045)/0.135 = 1/3. 
t = (In 3)/0.3889 = 2.82. AilS. About 3 years 

29. y' = A - ky, yeO) = o. y = A(l - e-kt)/k 

31. y' = By2 - Ay = By(y - AlB), A> 0, B > O. Constant solutions y = 0, y = AlB. 
y' > 0 if y > AlB (unlimited growth),.v' < 0 if 0 < y < AlB (extinction). 
y = AI(ceAt + B), yeO) > AlB if c < 0, yeo) < AlB if e > O. 

33. y' = y - y2 - 0.2y, Y = 11(1.25 - 0.75e-O
.
8t ), limit 0.8, limit 1 

35. y' = y - 0.25y2 - O.ly = 0.25y(3.6 - y). Equilibrium harvest 3.6, 
y = 18/(5 + ce-O.9t) 

37. (YI + )'2)' + P(YI + Y2) = c.v/ + PYI) + (1'2' + Ph) = 0 + 0 = 0 
39. (YI + .\"2)' + P(YI + Y2) = (YI' + PYI) + (Y2' + PY2) = r + 0 = r 
41. Solution of eyt' + PQ'l = e(y/ + PYl) = cr 
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43. CAS Experiment (a) y = x sin (lIx) + c\. c = 0 if y(2/rr) = 2/rr. y is undefined at 
x = 0, the point at which the "waves" of sin (11x) accumulate; the factor x 
makes them smaller and smaller. Experiment with various x-intervals. 
(b) )' = x"Lsin (llx) + c]. y(2/rr) = (2/rr)n. n need not be an integer. Try n = ~. 
Try n = - 1 and see how the "waves" near 0 become larger and larger. 

45. y = uy*, y' + py = u'y* + uy*' + puy* = u'y* + u(y*' + py*) = u'y* + U' 0 
= r, u' = r/y* = reJp da', U = I eJp d.e r dx + c. Thus, y = UYh gives (4). We shall 
see that this method extends to higher-order ODEs (Secs. 2.10 and 3.3). 

Problem Set 1.6, page 36 

1. y' = 4, .v' = -1/4, Y = -x/4 + c* 
3. y/x = c, y'lx = Y/X2, y' = ylx,)" = -X/y,)'2 + x 2 

= c*, circles 

5.2xy + x\" = 0, y' = -2y/x, y' = x/(2y), y2 - x2/2 = c*. hyperbolas 
7. ye-.l:2/2 = c, y' = xy, y' = -1I(xy), yy' = -l/x, y2/2 = -In Ixl + c**, 

x = c*e-y2/2
, bell-shaped curves (with x and y interchanged) 

9. y' = -4x/y. y' = )il4x, 4 In l}il = In Ixl + c':'*. x = C*J4. parabolas 
11. xe-yl4 = c, y' = 4/x,}i' = -x/4, y = -x2/8 + c* 

13. Use dy/d\ = I/(dx/dy). (y - 2x)e'" = c, tv' - 2 + Y - 2x)e" = 0, 
y' = 2 - Y + 2x, dxld"y = -2 + v - 2:r is linear, 
dx/dy + 2x = Y - 2, x = c*e-2y + y/2 - 5/4 

15. II = c, uxdx + uydy = 0, y' = -u,Juy. TrajectOlies y' = uy/ux- Now v = c*. 
v,rdx + vydy = 0, y' = -v:r/Vy. This agrees with the trajectory ODE in u if 
U.l , = uy (equal denominators) and uy = -v.~ (equal numerators). But these are just 
the Cauchy-Riemann equations. 

17.2r + 2y.v' = o. y' = -x/yo Trajectories y' = 5h. In IJI = In Ixl + c**, y = c*x. 

19. y' = -4.\19)'. Trajectories}i' = 9}'14x. y = c*x9/4 (c* > 0). Sketch or graph these 
curves. 

Problem Set 1.7, page 41 

1. In Ix - xol < a; just take b in ex = b/K large. namely, b = aK. 

3. No. At a common point (Xl> .vI) they would both satisfy the "initial condition"" 
.v(Xl) = Yl, violating uniqueness. 

5.)" = f(x. y) = rex) - pCr))': hence af/ay = -p(x) is continuous and i~ thus 
bounded in the closed interval Ix - xol ~ iI. 

7. R has sides 2a and 2b and center (1, 1) since y(l) = 1. In R, 
f = 2y2 ~ 2(b + 1)2 = K, a = b/K = b/(2(b + 1)2). da/db = 0 gives b = 1, and 
a opt = b/K = 1/8. Solution by dy/)'2 = 2 dx, etc., y = 11(3 - 2x). 

9. 11 + .v2 1 ~ K = I + b 2
, a = b/K. da/db = O. b = 1. a = 1/2. 

Chapter 1 Review Questions and Problems, page 42 

11. dy/(y2 + ~) = 4 dx. 2 arctan 2y = 4x + c*. y = ! tan (21' + c) 
13. Logistic ODE. y = l/u, y' = -u' /u 2 = 4/u - 1/112, 1/ = c*e-4.r + ~ 
15. dy/(y2 + 1) = x 2 dx, arctan y = x 3/3 + c, y = tan (x3/3 + c) 

17. Bernoulli.),' + xy = x/y, u = )'2, II' = 2)y' = 2x - 2ru linear, 
-:t:2 J X2") Z --\. I 

U = e' (e' ~X dr + c) = 1 + ce-x , l' = V u. Or write 
, (2 1 . )y = -x y - ) and separate. 
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19. Linear, y = eCos xU e-cos x sin x dx + c) = cecos x + 1. Or by separation. 

21. Not exact. Use Theorem 1, Sec. 1.4: R = 2/x, F = x2
: the resulting exact ODE is 

3x2 sin 2y dx + 2x3 cos 2y dy = d(x3 sin 2y), x 3 sin 2y = c. Or by separation, 
cot 2y dy = - 3/(2x) d.r. etc., sin 2y = n·-3

. 

23. Exact. /I = I M dx = sin xy - x 2 + k, lIy = X cos xy + k' = N, k = y2, 
sin .l)" - x 2 + y2 = c. 

25. Not exact. R* = 1 in Theorem 2, Sec. 1.4, F* = eY • Exact is 
eY sin (y - x) dx + eY[cos (y - x) - sin (y - x)J dy = O. 
II = I M dx = eY cos (y - x) + k, lIy = eY(cos (y - x) - sin (y - x» + k' = N, 
eY cos (y - x) = c. 

27. Separation. )'2 + x 2 = 25 

29. Separation. )' = tan (x + c), c = -!7T 
31. Exact. u = X\2 + cos X + 2-" = c, c = 1I(0, 1) = 3 

33. y' = x/yo Trajectories y' = -Yfx. y = c*/x by separation. Hyperbolas. 

35. Y = Yoekt, e4k = 0.9, k = ! In 0.9, ekt = 0.5, 
f = (In 0.5)/k = (In 0.5)/[(ln 0.9)/4] = 26.3 [daysl 

37. ekt = 0.01, t = On O.OI)/k = 175 [days] 

39. y' = -4x/)'. Trajectories y = CIX
1l4 or X = C2y4 

41. Logistic ODE y' = Ay - By2, Y = 1/1/, U' + All = +B, 1I = ce-At + B/A 

43. A = amount of incident light. A thin layer of thicknes!> ,lx absorbs M = -kALh 
(-k = constant of proportionality). Thus ,lA/b.x = -kA. Let b.x ~ O. Then 
A' = -kA. A = Aoe-kl: = amount of light in a thick layer at depth x from the 
surface of incidence. 

Problem Set 2.1, page 52 

1. \" = 2.5e4x + 0.5e-4x 3. y = e-x cos x 5. Y = 4x2 + 7/x2 

11. No 7. Yes 9. Yes if a 1= 0 

13. No 15. F(x, z, z') = 0 
19 . .'" dddy = 4:::, y = (CIX + C2)-1I3 

21. (dddy)~ = _.::3 sin y, -11.:: = -dx/dy = cos y + CI. X = -sin y + ClY + C2 

23. y"y' = 2. y = ~(t + 1)3/2 - i. ),(3) = 3l, /(3) = 4 

25. y" = ky',.::' = k.:: . .:: = clekx = y', Cl = 1, Y = (ekx 
- l)/k 

Problem Set 2.2, page 59 

1. Y = cle7X + C2 e- x 

5. y = cleO.9X + C2e-L1X 

9. y = cle3.5X + C2e-1.5X 

13. y = Cle12,- + C2e-12X 

" '[;;3' 3 17. -" - 2 v.J y + Y = 0 
21. Y = 4e3x - 2e-X 

25. \" = 2 + e- 7TX 

29. y = e-o.1:r(3.2 cos 0.2x + 1.6 sin 0.2x) 

33')"1 = e-x '.'"2 = O.OOlex + e-x 

3. Y = (ci + c2x )e2.5x 

7. y = eO.5X(A cos I.5x + B sin 1.5.\) 

11. y = A cos 3rr.r + B sin 3rr.r 
15. y" - 3y' + 2y = 0 
19. y" - 16y = 0 
23. Y = e-2x(2 cos x - sin x) 

27. y = (2 - 4x)e-O.25x 

31. \" = 4e5X - 4e-5
J; 

35 W · E -a:"C/2 • , 1 , . nte = e , c = cos wx, s = S1l1 wx. Note that £ = -"2a£, C = -ws, 
s' = we. Substitute, drop £, collect c-terms, then s-terms, and use w2 = b - !a2 , 

to get c(b - !a2 + !02 - w2) + s( -ow + !aw + ~aw) = 0 + 0 = O. 
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Problem Set 2.3, page 61 

1. O. 0, -2 cos x 3. -0.8X 3 + 6x2 + 0.4, O. eO.4x 

S. -12x3 + 9x2 + 8x - 2. -28 sin 4x - 4 cos 4x. 0 
7. Y = (Cl + c2x )e-2X 

11. y = Cle-3.1X + C2e-x 

Problem Set 2.4, page 68 

9. y = e-3X(A cos 2x + B sin 2x) 

13. y = A cos 4.2wx + B sin 4.2wx 

1. Y = Yo cos wof + (uo/wo) sin wof. At integer f (if Wo = 7T), because of periodicity. 
3. lIlLe" = -lIlg sin e = -mge (tangential component of W = lIlg). e" + w02e = O. 

WO/(27T) = \/i/i/(27T). 

5. No. because the frequency depends only on kIm. 

7. (i) Greater by a factor vi (ii) Lower 
9. w* = [w02 - c2/(41112)1112 = wo[1 - c2/(411lk)]112 = wo(l - c2/8111k) = 2.9583 

11. 27T/W* since Eq. (10) and y' = 0 give tan (w';'f - 8) = -a/w*; tan is periodic 
with period 7T/W"'. 

13. Case (II) of (5) with c = "\, '417lk = V 4· 500' 4500 = 3000 [kg/secJ. where 500 kg 
is the mass per wheel. 

15. y = [Yo + (uo + aYo)f1e-at
, Y = [1 + (uo + l)t]e- t

; (ii) uo = -2. -3/2, -4/3, 
-5/4, -6/5 

17. Y = 0 gives Cl = -C2e-2{Jt, which has one or no positive zero, depending on the 
initial conditions. 

Problem Set 2.5, page 72 

1. CIX3 + C2X-2 

5. xlA cos (In Ixl) + B sin (In Ixl)] 
9. CIXO.1 + C2XO.9 

13. x-o.5 [2 cos (10 In Ixl) - sin (10 In Ixl)] 

Problem Set 2.6, page 77 

3. (Cl + C2 In Ixl )x4 

7. CIX1.4 + C2X1.6 

11.3x2 
- 2x3 

15.2.\"-3 + 10 

1. y" - 0.25.'" = 0, W = -1 3. y" - 21..;/ + k2y = 0, W = e2kx 

5. x 2/' + 0.5x/ + 0.0625), = 0, W = x-O.5 7. x2y" + xy' + 4y = 0, W = 2/x 

9. x2y" 0.75.'" = O. W = -2 11. y" - 6.25." = O. W = 2.5 
13. y" + 2/ + 1.64." = O. W = 0.8e-2x 15. y" + 5/ + 6.34y = 0, W = 0.3e-5X 

17. y" + 7.67Ty' + 14.44~\" = 0, W = e-7 .6rr:,. 

Problem Set 2.7, page 83 

1. cIe-x + c2e-2x + 2.5e2x 3. cIe4X + C2e- 4X + 2.4xe4.'t - 4ex 

5. Cle2X + C2e-3X - x 3 - 3x - 0.5 

7. e-3X(A cos 8x + B sin 8x) + eX(cos 4x + ! sin 4x) 
9. c1e-O.4x + C2eo.4.'t + 20xeo.4.'t - 2Q,e-O.4x 

11. Cl cos 1.2x + C2 sin 1.2x + lOx sin 1.2x 

13. e-2T(A cos x + B sin x) + 5x2 
- 8x + 4.4 - 1.6 cos 2x + 0.2 sin 2x 

15. 4x sin 2x 
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17. e-O. IX( 1.5 cos 0.5.t - sin 0.5.\:) + 2eO.5x 

19. 2e-3X + 3e4x 
- 12.\"3 + 3x2 - 6.5x 

Problem Set 2.S, page 90 

1. -0.4 cos 3t + 7.2 sin 3t 3. -12.8 cos 4.5t + 3.6 sin 4.5t 

5.0.16 cos 2t + 0.12 sin 2t 7. 4
7
5 cos 3t - 4

1
5 sin 3t 

9 c e- t/2 + C e-3tJ2 - 32 cos t - 1 sin t • 1 2 5 5 

11. (ci + c2t)e-3t/2 - ~ cos 31 - sin 3t 

13. e-1.5t(A cos t + B sin t) + 4 + 0.8 cos 2t - 6.4 sin 2t 

15. 0.32e- t cos 5t + 0.68 cos 3t + 0.24 sin 3t 

17. 5e- 41 
- 4e- 2t - 0.3 cos 2t + 0.1 sin 2t 

19. e-1.5t (O.2 cos t - 1.1 sin t) + 0.8 cos t + 0.4 sin t 

Problem Set 2.9, page 97 

1. LI' + Rl = E,1 = (E/R) + ce- RtJL = 2.4 + ce- 50t 

3. Rl' + lIC = O. I = ce-tJ(RC) 

5. I = 5(cus t - cos 1Ot)/99 

7.10 is maximum when S = 0; thus C = 1/(w2L). 

9. R > Rcrit = 2VLIC is Case I. etc. 

11.0 

13. c l e- 20t + C2e-lOt + 16.5 sin lOt + 5.5 cos lOt 

15. £' = -e-4t(7.605 cos ~t + 1.95 sin ~t), I = e-o.lt(A cos ~t + B sin ~t) 
- e-4t cos ~t 

A9 

17. £(0) = 600. I' (0) = 600, 1 = e-3t( - 100 cos 4t + 75 sin 4t) + 100 co'> t 

19. (b) R = 2 fl, L = 1 H, C = 1112 F, £ = 4.4 sin lOt V 

Problem Set 2.10, page 101 

1. A cos x + B sin x - x cos x + (sin x) In Isin xl 
3. CIX + C2X2 - X cos x 

5. (cos X)(ci + sin .\" - In Isec x + tan xl) + (sin X)(C2 - cos x) 

= (cl - In Isec x + tan xl) cos x + C2 sin x 

7. (CI + ~x) sin x + (C2 + In Icos xl) cos x 

9. (Cl + c2x)ex + x 2 + 4x + 6 - eXOn Ixl + I) 

11. c] cos 2x + C2 sin 2x + ~.\: cosh 2x 

13. CIX + C2X2 - x sin x 

15. A cos x + B sin r + Ypi + Yp 2. Ypi as .\"p in Example 1, .\"p2 = ~~ sin 5x 

17. lI" + 1I = 0 by substitution of Y = lIX-
I/2 . YI = x- 1I2 cos x . .\"2 = x- 1I2 

sin x. Yp = _~x1l2 cos X + ix- 1I2 sin x from (2) with the ODE in standard 
form. 

Chapter 2 Review Questions and Problems, page 102 

9. cle
4

." + C2e-2X - 1.1 cos 6x - 0.3 sin 6x 

11. e-4X(A cos 3r + B sin 3x) - ~ cos 3x + ~ sin 3x 
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13. Y1 = x 3, Y2 = x-4, r = x-5, W = -7x-2, Yp = - 412X-3 - ~X-3 = -*x-3 

15. )'1 = eX, Y2 = xex, W = e2.T, Yp = e X I(2x) 

17. -'"1 = eX cos X')'2 = eX sin x, W = e2x, yp = -xex cos x + eX(sin x) In Isin xl 
19. y = 4e2x + 2e-7x 21. Y = 9x-4 + 6x6 

23. Y = e-2.1' - 2e-3x + 18x2 - 30t" + 19 25. Y = ~X3 + 4x2 - 5x-2 

27. Y = -16 cos 2t + 12 sin 2t + 16(cos 0.5t - sin 1.5t). 
Resonance for wl(27T) = 2/(27T) = 1/7T 

29. w = 3.1 is close to Wo = -vkj;, = 3, Y = 25(cos 3t - cos 3.1t). 
31. R = 9,0, L = 0.5 H. C = 0.025 F, E = 17 sin 6t V, hence 0.5/" + 91' + 401 

= 102 cos 6t, 1= -8.16e-8t + 7.5e- lOt + 0.66 cos 6t + 1.62 sin 61 
33. E' = 220·314 cos 314t, I = e-50t(A cos 150t + B sin 150r) + 0.847001 sin 3141 

- 1.985219 cos 314t 

Problem Set 3.1, page 111 

7. Linearly independent 
11. xlxl = x2 if x > 0, linearly dependent 
13. Linearly independent 
17. Linearly independent 

Problem Set 3.2, page 115 

1. Y'" - 6y" + 11y' - 6-," = 0 

9. Linearly dependent 

15. Linearly independent 
19. Linearly dependent 

3. yiv - Y = 0 

5. /v + 4-,"" = 0 7. C1 + C2 cos x -I:=. C3 sin x 
9. C1ex + (c2 + c3x)e-·" 11. C1ex + c2il+v7lX + c3e(1-\ 7)x 

13. eO.25x + 4.3e-O.7X + 12.1 cos O. Lt - 0.6 sin O.Ix 
15. 2.4 + e-1.6x(cos 1.5x - :2 sin 1.5x) 

17. y = cosh 5x - cos 4x 

19. y = c1x-2 + C2X + C3X2. W = 121x2 

Problem Set 3.3, page 122 

1. (Cl + c2x)e2x + C3e-2.T - 0.04e-3x + x 2 + X + 
3. c] cos ~x + C2 sin ~x + X(C3 cos ~x + C4 sin ~x) - ~e-x sin !x 
5. C1XO.5 + C2X + C3X1.5 + 0.1.\.5·5 

7. C] cos X + C2 sin x + C3 cos 3x + C4 sin 3x + 0.2 cosh 2x 
9. Y = (4 - x 2)e3X - 0.5 cos 3x + 0.5 sin 3x 

11. x-2 - x 2 + 5x4 + x(In x + I) 

13. 3 + ge-2x cos 9x - (1.6 - 1.5x)eX 

Chapter 3 Review Questions and Problems, page 122 

7. Cl + C2x1/2 + C3X-1/2 9. cle-O.5x + C2eO.5X + C3e-L5x 

11. Clx2(i In x - ~) + C2X2 + c3.,· + C4 + tx7 

13. C1e-x + eX
/
2(c2 cos (~V'3x) + C3 sin (~v'3x» + 8ext2 

15. (c1 + c2x)eX + C3e-x + 0.25x2e x 17. -0.5x-1 + 1.5x-5 

19. cos 7x + e3x - 0.02 cosh x 
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Problem Set 4.1, page 135 

1. Yes 5. y~ = 0.02(-)'1 + )'2), y~ = 0.02(\'1 - 2)'2 + )'3)')'~ = 0.02(.1'2 - )'3) 

7. Cl = 1, C2 = -5 
9.3 and 0 

11. )'~ = )'2, y~ = 4Yb .1'1 = c 1e-
2t + C2e2t = y, Y2 = v~ 

13. y~ = Y2' y~ = )'2, eigenvalues 0, 1')'1 = Cl + C2 et, Y2 = y~ = y' 
IS.)'~ = )'2, )'~ = 0.109375.1'1 + 0.75)'2 (divide by 64). Yl = cle-O.125t + c2eO.875t 

Problem Set 4.3, page 146 

1. )"1 = c 1e-6t + C2e6t , )'2 = -2Cle-6t + 2c2e6t 

3')'1 = Cle2t + C2, )'2 = Cle2t - C2 

5. Yl = Cle4it + C2e-4it = (Cl + C2) cos 41 + i(CI - C2) sin 41 
= A cos 4t + B sin 4t, Y2 = iC1e4it - iC2e-4it 

= (iCI - iC2) cos 4t + i(iCI + iC2) sin 4t = B cos 4t - A sin 4t, A = Cl + C2. 

B = i(CI - C2) 

7. )'1 = 2e1 + C2e-6t • .1'2 = -Cl + C3e-6t, )'3 = -Cl + 2(C2 + c3)e-6t 

9. )"1 = c1e1.8t + 2c2e-O.9f + 2c3e-1.8t, )'2 = 2Cle1.8t + c2e-O.9t - 2C3e-1.8t, 

)'3 = 2Cle1.8t - 2C2e-O.9t + C3 e -1.8t 

11')'1 = 10 + 6e
2t

, )'2 = -5 + 3e
2t 

13. )"1 = 2.4e-t - 2e2.5t, .1'2 = 1.8e-t + 2e2.5t 

15')'1 = 2e14.5t + 10, Y2 = 5e14.5t - 4 

An 

17. )'2 = .1'~ + Yb Y~ = )'~ + )'~ = -)'1 - Y2 = -Yl - ()'~ + .1'1), y~ + 2y~ + 2Y1 = 0, 
Y1 = e-t(A cos 1 + B sin t), )'2 = y~ + )'1 = e-t(B cos t - A sin t). Note that 
r2 = Y12 + .1'22 = e-2t(A 2 + B2). 

19.11 = 4c1e-200t + C2 e - 50t, 12 = -Cle-200t - 4C2e-50t 

Problem Set 4.4, page 150 

1. Saddle point, unstable, .1'1 = Cle-4t + c2e 4t, )'2 = -2c1e-4t + 2c2e 4t 

3. Unstable node . .1'1 = Clet + C2e3t, )'2 = -Clet + C2e3t 

5. Stable and attractive node, .'11 = Cle-3t + C2e-5t, .'12 = c 1e-3t - c2e-5t 

7. Center, stable'.\'1 = A cos 41 + B sin 4t, .1'2 = -2B cos 4t + 2A sin 4t 

9. Saddle point, unstable, .1'1 = Cle3t + C2e-t, .1'2 = C1e3t - C2e-t 

11.)\ = Y = c 1ekt + c2e-kt')'2 = y', hyperbolas k2.'112 - Y22 = const 

13. )' = e-2t(A cos t + B sin t), stable and attractive spirals 
17. For instance, (a) -2, (b) -1, (c) -~, (d) 1, (e) 4. 

Problem Set 4.5, page 158 

1. (9, 0), y~ = )'2, Y~ = 3.1'1, saddle poim; (0, -1)')'1 = 5\')'2 = -1 + Y2, y~ = -Y2, 
)1 = 35\. center 

3. (0, 0), Y~ = 4.1'2. Y~ = 2Yl, saddle point; (2, 0), Yl = 2 + )lb )'2 = )12' Y~ = 4Y2, 
y~ = -2Yl' center 

5. (0, 0), Y~ = -Yl + )'2, y~ = - Yl - .1'2' stable and attractive spiral point; (-2, 2), 
)'1 = -2 + )11> Y2 = 2 + Y2, Y~ = -.h - 3.V2, y~ = -j\ - )12, saddle point 
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7 • .\'~ = .\"2' Y~ = -.\"10 - 4)'1), (0, O),)'~ = .\"2, .,.~ = -."1, center; 
(!, 0)'.\'1 = ! + Yb )'2 = 5'2, Y~ = 5'2, Y~ = (-! - 5'1)( -4Yl)' y~ = Yl' saddle 

9. (~7T ::!: 2117T, 0) saddle points; (-~7T ::!: 2117T, 0) centers. 
Use -cos (::!:~7T + :VI) = sin (::!:5'1) = ::!:Yl' 

11 . .\"~ = .\'2, y~ = -)'1(2 + )'1)(2 - .\"1)' (0, 0), y; = -4.\"1' center; (-2, 0), y~ = 85'1' 
saddle point; (2, 0), y~ = 85'1 saddle point 

13. )'''/y' + 2y' /)' = 0, In y' + 2 In Y = c, y' y2 = Y2Y] 2 = const 

15.), = A cos t + B sin t, radius YA2 + B2 

Problem Set 4.f page 162 

3. Yt = A cos 4t + B sin 41 + ~~, )'2 = B cos 4t - A sin 4t - ~t 
5. )'1 = Cle4t + C2e-3t + 4, Y2 = c1e

4t - 2.5c2e-3t - 10 
7. Y1 = 2cle-9t + C2e-4t - 90t + 28'.\"2 = Cle-9t + C2e-4t - J26t + 14 

9')'1 = Clet + 4c2e2t - 3t - 4 - 2e-t')'2 = -Clet - 5C2e2! + 5t + 7.5 + e-t 

11')'1 = 3 cos 2t - sin 2t + t + 1,)'2 = cos 2t + 3 sin 2t + 2t - ~ 
13'."1 = 4e-t - 4et + e 2t'."2 = -4e-t + t 

15'."1 = 7 - 2e2t + e3t - 4e-3t, )'2 = _e2t + 3e-3t 

17. I~ + 2.5(ft - 12) = 845 sin t, 2.5(1~ - I~) + 2512 = 0, 
11 = (95 + 162.5t)C5t - 95 cos t + 312.5 sin t, 
12 = (-30 - 162.5t)e-5t + 30 cos t + 12.5 sin t 

19. I~ + 2(11 - 12) = 200, 2(12 - It) + 812 + 2 I 12 dt = O. 
II = 2cleA,t + 2C2e"~2t + 100, 
12 = (1.1 + Vo:4T)cleA,t + 0.1 - \"0.41)C2eAzt, Al = -0.9 + \,'0.41, 

A2 = -0.9 - v'6AT 

Chapter 4 Review Questions and Problems, page 163 

11')'1 = Cle8t + C2e-8t, )'2 = 2c1e8t - 2c2e-8t. Saddle point 

13 . ."1 = Clet + C2e-6t, ."2 = Clet - 6c2e-6t. Saddle point 
15. )'1 = Cle7.5t + C2e-3t, Y2 = -Cle7.5t + 0.75c2e-3t. Saddle point 

17 . ."1 = Cle5t + C2et, .\'2 = Cle5t - c2et. Unstable node 
19. Yl = e-t(A cos 2t + B sin 2t), )'2 = e-t(B cos 2t - A sin 2t). Stable and 

attractive spiral point 
21. )'1 = Clet + C2e-t + e2t + e-2t, )'2 = -C2e-t - 1.5e-2t 

23')'1 = Clet + C2e-2t - 6e-t - 5. Y2 = -Clet - 2c2e-21- + 10e-t + 6 
25 • .\"1 = Cle3t + C2e-t + t2 - 2t + 2, )'2 = c1e3t - C2e-t - t2 + 2t - 2 

27. A saddle point at (0, 0) 

29. I] = 4e-40t - e- lOt, 12 = _e-40t + 4e- lOt 

31. (117T, 0) center for even 11 and saddle point for odd n 

33. Saddle points at (0, 0) and (~, ~), centers at (0, ~) and (~, 0) 

(oblem Set 5.1 page 170 

1. aoO + x + ~X2 + ... ) = aoex 

3. aoO - 2X2 + ~X4 - + ... ) + al(x - ~x3 + I~X5 - + ... ) 
= ao cos 2,r + ~al sin 2x 



App. 2 Answers to Odd-Numbered Problems AU 

5. ao(1 + ~x) 
7. ao + aox + (~ao + ~)x2 + ... = aoex + eX - x-I = cex 

- x-I, c = ao + 1 
9. ao + a1x + ~alx2 + ... = ao - a l + alex 

11. s = ~ - 4x + 8x2 - 3ix3 + 3ix4 - I;:X5, s(O.2) = 0.69900 

13. s = ~ + ~x - 1sx3 + ~OX5, sCI) = 0.73125 
15. s = I + x - x 2 - ~X3 + ~X4 + ~!X5, s@ = ~~~ 

Problem Set 5.2, page 176 

1. lei 
5.0 

3. 2 (as function of t = lx - 3)2). Ans. V2 
7. 2 

9. 1 11. 7T 

(_1)S-l 
13. L xS'R = 1 

5(s - 2) , 

(s - 4)2 
15. L xS

' R = Cf) 

(s-3)! ' 
s~3 s~5 

17. ao(l - l2X4 _lo-\:5 - ... ) + a1(x + ~x2 + tx3 + 2~X4 - :14x5 - ... ) 

19. ao + aI(x - ~X3 + ~X5 - 2ix7 + 227X9 - I~5Xll + - ... ) 
21. lIo(l - ~X2 - :14x4 + 7I~ox6 + ... ) + aI(x - tx3 - 214X5 + 1O~SX7 + ... ) 
23. ao(1 + x 2 + x3 + X4 + x 5 + x6 + ... ) + alx 

Problem Set 5.3, page 180 

3. P6lx) = I~l231x6 - 315x4 + 105x2 
- 5), 

P7lx) = I~(429x7 - 693x5 + 315x3 - 35x) 

7. Set x = az.. y = cIPn(x/a) + C2Qn(x/a) 

15. P l
1 =~. P2

1 = 3x~, P22 = 3(1 - x 2), 
P 4

2 = (l - x 2)(105x2 - 15)/2 

Problem Set 5.4, page 187 

x2 X4 sinh x x x 3 cosh x 
1. VI = 1 + ~ + ~ + ... = Y2 = + 

3! 5! x x 2! 
+ ~ + .,. = 

4! x 
~ I 1M 

3 •. "1 = 1 - + ~-.r4 - . .. v = 9" In x -
36 x 2 25x4 

12 384 ' . 2 . 1 X4 -+ 
x2 2 1024 

5. r(r - 1) + 4r + 2 = 0, rl = -1, r2 = -2; Y1 = + + ... , 
6 120 

1 

2 
+ 

24 

x 

+ - ... 
720 

7. Euler-Cauchy equation with t = x + 3, h = (x + 3)5, Y2 = ."1 In (x + 3) 
9. ho = 1, Co = 0, r2 = 0, Yl = e-x , ."2 = e-x In x 

11'."1 = 1I(x + 1), .1'2 = 1Ix 

13. ho = ~, Co = 0, rl = ~, r2 = 0'."1 = x I/2(1 + 2x + 2X2 + ~X3 + ... ), 
Y2=I +2x+2x2 + ... 

15'."1 = (x - 4)7, .1'2 = (x - 4)-5 (Euler-Cauchy with t = x - 4) 

17'."1 = X + x 3 - I~X4 + I~X5 - 2~X6 + .. " Y2 = 1 + 3x2 - tx3 + ~X4 - ~x5 
+ ~~x6 -+ ... 

+ ... 
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19. Y = c1F(~, ~, ~; x) + C2 -yt;:F(l, 1,~; x) 

21. y = A(l - 4x + ~X2) + B-yt;:F( -~, ~, ~: x) 

23. y = c1F(2, -2, -~; t - 2) + C2(t - 2)3/2F(~, -~,~; t - 2) 

Problem Set 5.5, page 197 

1. Use (7b) in Sec. 5.2. 
3.0.77958 (exact 0.76520), 0.19674 (0.22389). -0.27651 (-0.26005). 

-0.39788 (-0.39715), -0.17038 (-0.17760), 0.15680 (0.15065), 0.30086 
(0.30008),0.16833 (0.17165) 

5. Y = C1I,,(Ax) + c2L,,(Ax:), v*" 0, ± I, .. . 
7. Y = C1I,,(-yt;:) + C2LvC-yt;:), v *' O. ± L .. . 
9. Y = C1xI1(2x), II, I_I linearly dependent 

11. y = X-"lC1I,,(X) + C2I_,,(X)], v*' 0, ±1, .. . 

13. Y = C1I,,(x3) + C2L,,(x3), v =1= 0, ± 1. .. . 
15. Y = c]-yt;:11(2-yt;:), I]. I_I linearly dependent 
17. Y = Xl/4ft(~Xl/4), II' L1 linearly dependent 
19. y = .~/\C1I8/5(4xl/4) + c2I_s/5(4x l/4» 

21. Use (24b) with v = 0, (24a) with v = I, (24d) with v = 2, respectively. 
23. I n(X1) = I,,(x2) = 0 implies x1- n1,,(X1) = X2 -71 I,,(x2) = 0 and [x-n1n(x)]' = 0 

somewhere between Xl and X2 by Rolle's theorem. Now use (24b) to get 
1n +l (x) = 0 there. Conversely, 1,,+ 1 (X3) = 1,,+I(X4) = 0, thus 
X3n-lIn+I(X3) = X4n+11n+1(X4) = 0 implies 1n(x) = 0 in between by Rolle's 
theorem and (24a) with v = 11 + L 

25. Integrate the formulas in (24). 
27. Use (24a) with JJ = 1, partial integration, (24b) with v = 0, partial integration. 
33. CAS Experiment. (b) Xo = I. Xl = 2.5, X2 = 20, approximately. It increases with n. 

(c) (14) is exact. (d) It oscillates. (e) Formula (24b) with v = 0 

Problem Set 5.6, page 202 

1. )' = C]15(X) + C2 Y5(X) 

5. Y = C112(X2) + C2 Y2(X2) 

9. Y = X3(c1I3(X3) + C2 Y3(X3» 

3. Y = C1I O(-yt;:) + C2 Yo(-yt;:) 

7. y = X-\CI15(X) + C2Y5(X» 

11. Set H(l) = kHc21, use (10). 

13. Set x = is in (l), Sec. 5.5, to get the present ODE (12) in terms of s. Use (20), 
Sec. 5.5. 

Problem Set 5.7, page 209 

3. Set x = ct + k. 5 .. \ = cos e. dx = -sin e de, etc. 
7. Am = (11lr./5)2, 111 = 1,2, ... ; Ym = sin tll1r.x/5) 

9. Am = [(2m + 1)r.12L]2, m = 0, 1. ... : Ym(x) = sin [(2m + l)m/2L] 

11. Am = 111
2

, m = 0, 1, ... ; Yo = 1, Ym = cos II1X, sin IIlX, III = 1,2, ... 

13. k = km from tan k = -k. Am = km
2

, III = 1,2, ... ; Ym = sin kmx 

15. Am = 1112, 111 = 1, 2, ... ; Ym = x sin (m In /x/) 
17 j'J - eSx q - 0 - Sx , 2 -4x . I 2 • - , - , r - e , Am = III ; Ym = e SIn IIIX, III = , ,... 
19. Am = (1Ilr.)2, Ym = X cos lIlr.x, X sin 111r.X, m = 0, 1, ... 
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Problem Set 5.8, page 216 

1. 1.6P4 (x) - 0.6Po(x) 3. ~P3(X) - ~P2(X) + ~Pl(X) - ~Po(.x) 
7. -0.4775Pl (x) - 0.6908P3(x) + 1.844P5(x) - 0.8234P7 (x) + 0.1544Pg(x) + ... , 

1110 = 9. Rounding seems to have considerable influence in Probs. 6-15. 
9. 0.3799P2(x) + 1.673P4 (x) - 1.397P6 (x) + 0.3968Ps(x) + ... . 1110 = 8 

11. 1.175Po(x) + 1.l04Pl (x) + 0.3575P2(x) + 0.0700P3(x) - .... 1Il0 = 3 or 4 
13. 0.7855Po(x) - 0.3550P2(x) + 0.0900P4 (x) - ... , 1110 = 4 
15. 0.1212Po(x) - 0.7955P2(x) + 0.9600P4(x) - 0.3360P6(x) + .... 1Il0 = 8 

17. (c) am = (2IJ1
2(aO;rn»(J1(aO.m )/ao,m) = 2/(ao.m ll(aO.m» 

Chapter 5 Review Questions and Problems, page 217 

11. e3x
, e-3x

, or cosh 3x, sinh 3x 13. eX, 1 + x 
15. e-X'-, xe-x2 17. e-x , e-x In x 

19. I/(l - x2), x/(l - x 2) or 1/(1 - x), 1/(1 + x) 

21. Y = ("11 V2(6x) + c21 _ v2(6x) 23. Y = Clit (x2) + C2 Yl (x
2) 

25. y = ~[clll/4(~kx2) + ['21 _l/4(!kx2)J 
27. Am = (21117Tl, Yo = I, Ym = cos nl17TX, sin 2m7Tx, 111 = I, 2, ... 
29. Y = cl l l (kx) + C2Yl(kx). C2 = O. y(l) = cl l l (k) = o. k = km = al,m (the positive 

zeros of 11), Ym = l l (a1.",x) 

31. 1.813Po(x) + 2.923Pl (x) + 1.759P2(x) + 0.663P3(x) + 0.185P4(x) + ... 
33. 0.693Po(x) - 0.285P2(x) + 0.144P4 (x) - 0.09IP6 (x) + ... 
35.0.25Po(x) + O.5P1(x) + 0.3 1 25P2(x) - 0.0938P4(x) + O.0508P6(x) + ... 

Problem Set 6.1, page 226 

2 2 
1."""3-"""2 

s s 

s cos () - w sin () 
7. ---;;2:------:2;:--­

S + w 

s 

9.--­
s + 2b 

s-2 
5. 2 

(s - 2) - 1 

1 
11.--

S2 + 4 

k 
13. - (1 - e-bs) 

s 

1 - (1 + 2s)e-2S 1 - e-bs be-bs 

(I - e-s )2 
19. ---­

s 

15. ----;;2---
2s 

17. ---;;:--- - -­
S2 s 

23. Set ct = p. Then :£(f(ct» = {'C e-stf(ct) dt = L= e-(s'C)Pf(p) dp/c = F(s/c)/c. 
o 0 

29. 4 cos 7Tt - 3 sin 7Tt 

35.2 - 2e-4t 

1 
39. Vs sin ,,1st - e-5t 

a(s + k) + b 
45. 2 

(s + k) + 1 

51. 3e-2t sin 5t 

37. (ev'3t - e-V5t)/(V3 + Vs) 
3.8 

41. 2 
(s - 2.4) 

5w 
43. 2 2 

(s + a) + w 

53. e-5 "1Tt sinh 7Tt 
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Problem Set 6.2, page 232 

1 
1. 2 

(s - k) 

7. (S2 + ~17"2)2 
9. Use shifting. Use cos2 0:' = ~ + ~ cos 20:'; use cos2 0:' + sin2 0:' = 1. 

Ans. (2S2 + 1) 1[2s( S2 + 1)] 

11. (s + ~)Y = -1 + 17· 21(s2 + 4), y = 7e-t{2 + 2 sin 2r - 8 cos 2t 

13. (S2 - ~)Y = 4s, y = 4 cosh ~t 
15. (S2 + 2s + 2)Y = s - 3 + 2 . 1. Y = (s + 1 - 2)/[(s + 1)2 + 11, 

y = e-t(cos t - 2 sin t) 

17. (S2 + 7s + 12)Y = 3.58 - 10 + 24.5 + 211(s - 3), Y = ~e3t + ~e-4t + ~e-3t 
19. (s + 1.5fY = s + 31.5 + 3 + 541s4 + 64ls, 

Y = lI(s + 1.5) + lI(s + 1.5)2 + 241s4 - 321s3 + 321s2, 
y = (1 + t)e-1.5t + 4t3 - 16t2 + 32t 

21. t = t + 2, l' = 4/(s - 6), ji = 4e6t, y = 4e6Ct - 2) 

23. t = t + 1, (s - l)(s + 4)1' = 4s + 17 + 6/(s - 2), Y = 3et - 1 + e2Ct - ll 

25. (b) In the proof, integrate from 0 to 1I and then from II to 0: and see what happens. 
(c) Find 3:;(f) and 3:;(f') by integration and substitute them into (1 *). 

t/2 1 kt t ~ r;:: 
27.2 - 2e- 29. ""k.2 (e - 1) - k 31. cosh v5t - 1 

33. t sinh 2t - ~t 

Problem Set 6.3, page 240 

3. (l - e2 - 2S) I(s - 1) 

5. (~ + ~ + ~) e-s - (~ + ~ 
S3 S2 S S3 S2 

s ( -s -4s) 7. -e - e 
S2 + 17"2 

-20s 
11. (e-3s + e-6s) 

S2 + 17"2 

15. 0 if t < 4, t - 4 if t > 4 
19. 0 if t < 2, (t - 2)4/24 if t > 2 

23. e-t sin t 

( 1 10) -lOs - + - e 
S2 s 

1 
13. -- (e-2s+ 27T _ e-4s+ 47T ) 

s - 17" 

17. sin t if 217" < r < 817", 0 elsewhere 

21. lI(t - 3) cosh (2r - 6) 

25. e-2t cos 3t + 9 cos 2t + 8 sin 2t 

27. sin 3t + sin r if 0 < t < 17" and ~ sin 3t if t > 17" 

29. t - sin t if 0 < t < 1, cos (t - 1) + sin (t - 1) - sin t if t > I 

31. et - sin t + u(t - 217")(sin t - ~ sin 2t) 

33. t = 1 + t, 'f" + 4ji = 8(1 + t)2(1 - lI({ - 4», cos 2t + 2r2 - I if t < 5, 
cos 2r + 49 cos (2r - 10) + 10 sin (2t - 10) if t > S 

35. Rq' + qlC = 0, Q = 3:;(q), q(O) = CVo, i = q' (r). R(sQ - CVo) + QIC = 0, 
q = CVoe- tlCRC) 

37. IO[ + -- [ = -- e-2s, [ = e-2s --100 100 ( 1 
s S2 S 

] ), i = 0 if t < 2 and 
s + 10 

1 - e- lOCt - 2) if t > 2 
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39. i = e-20t + 20t - 1 + lI(t - 2)[ - 20t + 1 + 3ge-20Ct-2J] 

41. O.Ii' + 25i = 490e-5t[l - lI(t - 1)], i = 20(e-5t - e-250t) + 20£1(1 - 1)[-e-5t 

+ e-250t+245] 

43. i = (10 sin lOt + 100 sin t)(lI(t - 7T) - u(t - 37T)) 
t 

45. i' + 2i + 2 f i(T) dT = 1 - 1I(t - 2), I = (1 - e-2S)/(s2 + 2s + 2), 

° i = e-t sin t - lI(t - 2) e-t+2 sin (t - 2) 

47. i = 27 cos t + 6 sin t - e-t(27 cos 3t + 11 sin 3t) 
+ lI(t - 27T) [-27 cos t - 6 sin t + e-(t-2TI"J(27 cos 3t + 11 sin 3t)1 

Problem Set 6.4, page 247 

1. Y = 10 cos t if 0 < t < 27T and 10 cos t + sin t if t > 27T 
3. Y = 5.5et + 4.5e-t + 5(et - 1I2 - e-t +1/2 )u(t - ~) - 50(et - 1 - e-t+l)lI(t - 1) 

5. Y = O.lfet + e-2t(-cos t + 7 sin t)] 
+ O.llI(t - lO)[-et + e-2t+30(cos (t - LO) - 7 sin (t - 10))] 

7. Y = 1 + le-t sin 3t + lI(t - 4)[-1 + e-t+4 (cos (3t - 12) + l sin (3t - 12))] 
- l~ lI(t - 5)e -t+5 sin (3t - 15) 

9. Y = 5t - 2 - 501l(t - 7T)e-t+7r sin 2t. Straight line. sharply deformed between 7T 
and about 8 

11. Y = (O.4t + 1.52)et + 0.48e-4t + 1.611(t - 2)[ -et + e-4t+1O
] 

Problem Set 6.5, page 253 

1. t 

1 
5. - sin wt 

w 

I L 
7. 2k (e

kt 
- e-

kt
) = k sinh kl 

9. ~(e3t - e-5t) ll. ~(~ - ! cos 2t) = ~ sin2 t 

13. t - sin t 15. t(cosh 3t - 1) 

19. Y = 3/((S2 + 4)(S2 + 9», y = 0.3 sin 2t - 0.2 sin 3t 

21. (S2 + 9)Y = 4 + 8(1 + e-=)/(s2 + 1), y = sin t + sin 3t if t < 7T, ~ sin 3t if t > 7T 
t 

23. 0 if 0 < t < 1, ~ f sin (2( T - 1)) dT = -~ cos (2t - 2) + ~ if t > 1 
1 

25. Y = 2e-2t - e-4t + (e- 2t+ 2 - e-4t+ 4)u(t - L) + (e- 2t+ 4 - e-4t+S )1I(t - 2) 

27. Y - 1 * y = 1, y = et 29. y - y * sin t = cos t, Y = lis, y = 1 
31. Y(1 + l/s2) = lis, y = cos t 33. Y(1 + 2/(s - 1) = (s - 1)-2, Y = sinh t 

Problem Set 6.6, page 257 

4 
1. 2 

(s - 1) 

2s + 4 
5. (S2 + 4s + 5)2 

2w(3s2 - w2) 

9. (S2 + W2)3 

2ws 

3. (S2 + w2)2 

24s2 + 128 
7. (S2 - 16y3 

2s cos k + (S2 - I) sin k 
11. 2 2 

(s + 1) 
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13.6te-t 

17. t2ekt 

Problem Set 6.7, page 262 

15. te-2t sin t 
19. In s - In (5 - 1); (et - l)/t 

1. .'"1 = -e-t sin t, )"2 = e-t cos t 3 .. '·1 = 2e-4t - 4e2t , )"2 = e-4t - 8e2t 

5'.'"1 = 2e-t + 4e-2t +!t -~, )"2 = -3e-t - 4e-2t -!t + ~ 
7. )"1 = e-t(2 cos 2t + 6 sin 2t) + t2• .'"2 = lOe-t sin '2t - t 2 

9 • .'"1 = 4 cos 5t + 6 sin 5t - 2 cos t - 25 sin t. .'"2 = 2 cos 5t - 10 sin 5t + 20 sin t 
11'.'"1 = -cos t + sin t + I + 1I(t - 1)1-1 + cos (t - I) - sin (t - 1)1 

)"2 = cos t + sin t -I + 1I(t - l)ll - cos (t - 1) - sin (t - 1)] 
13. Y1 = 2u(t - 2)(e4t - et+ 6), Y2 = e 2t + ll(t - 2)(e4t - 3e2t+ 4 + 2et + 6) 

15. Yl = _e-2t + et + ~llU - I)(-e-2t+ 3 + et ), Y2 = _e-2t + 4et 

+ ~lllt - l)l-e-2t+ 3 + et
) 

17')"1 = 3 sin 2t + 8e-3t, )'2 = -3 sin 21 + 5e-3t 

19')'1 = et - e-t, Y2 = et , Y3 = e-t 

25.4i1 + 8(il - i2) + 2i~ = 390 cos t, 8i2 + 8(i2 - i1 ) + 4i~ = 0, il = - 26e-2t 

- 16e-8t + 42 cos t + 15 sin t, i2 = -26e-2t + 8e-8t + 18 cos t + 12 sin t 

Chapter 6 Review Questions and Problems, page 267 

2 
15. e-m ( 7T s12 ) 11. 

(s - 3)2 
13. 

S(S2 + 4) 
+ 

5 

S 2S2 a-b 
17. 21. 

(s - 1)(52 + 4) 
19. -4--

5 - I (5 - (1)(5 - b) 

23. 10 cos tV2 25. 3e-2t sin 4t 27. lI(t - 2)(5 + 4(t - 2» 

29. te-2t sin t 31. (t2 - l)u(t -
7T 

1) 33. ---:3 (wt - sin wt) 
w 

35.20 sin t + li(1 - 1)[1 - cos (t - I)] 
37. 10 cos 21 - ~ sin 2t + 4u(t - 5) sin (2t - 10) 39. e-t(7 cos 3t + 2 sin 3t) 

41. e-t + u(t - 7T)[1.2 cos t - 3.6 sin t + 2e-t+7T - 0.8e2t - 2"] 

43. u(t - l)(t - l)e2t - 2 + 4u(t - 2)(2 - t)e2t - 4 

45. Y1 = et + ~e-t - ~ cos t - ~ sin t, )'2 = -et + ~e-t + ~ cos t + ~ sin t 

47. Y1 = ~e-t sin 2t, )"2 = e-t(cos 2t - ~ sin 2t) 

49. )'1 = e2t, )'2 = e2t + et 

51. I = (l - e-2S)/[s(s + 10)], i = 0.1 (I - e- lOt) + O.lu(t - 2)[-1 + e- lOt+ 20 ] 

53. I = e-2t(76 cos 4t - 42 sin 4t) - 76 cos 20t + 16 sin 201 

55. i~ + IOUI - i2) = 100 t2• 30i~ + 1O(i~ - i~) + 100i2 = 0, 
;1 = (~ + 4t)e-5t + 10t2 -~, i2 = (~ + 2t)e-5t + 2t - ~ 

Problem Set 7.1, page 277 
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[-0 -:l[-: -1] 
3. Undef., 6 ~ , undef. 

9 o -9 

[-48 -2] [ 3(, 

0 48] [-03 
5. 38 -44 . -12 24 24 . same. -4.9 

67 -15 72 60 -48 -3.6 

7. [ 6~], [ :.2]' smne, [_~::] 
-33 -4.2 -2.2 

9. -5X2 = -3 
-5Xl + 2X2 = 4 
-3Xl + 4X2 = 0 

Problem Set 7.2, page 286 

[ 230 -92 

-1:] -92 38 

-12 6 

[50S] 
5. [20 -3 -7], [-62 34 2], 525 ,same 

790 

0 170 

-5.0 

1.8 

3.5 

64 

110 

-114 

r
5 

~] [-310 10] 
7. : 

0 8 ,31, -62 34 ; ,same 

0 16 -124 68 

337 8 -100] [ 257 68 -188J 9. [ 252 49 -68 , same, 232 97 -96 

-308 52 233 -248 -16 265 

A19 

-34] 
3.8 

0.4 

-72] -114 , 

126 
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324 32 -320] [ 216 -104 

1M] [ 
7060 

11. [ 2M 38 -322. 280 -132 -68, 7548 

-244 -10 366 -280 140 76 -8140 

4324 1520 -4816] 
[ 3636 1242 -451!S 

-3700 -1046 5002 

13. 83, 166, 593, 0 
19. (d) AB = (AB)T = BTAT = BA; etc. (e) AilS. If AB = -BA. 

21. Triangular are U1 + U2, U1U2 , U1
2

, L1 + L 2, L 1L 2 , L12. 

23. [0.8 1.2]T, [0.76 1.24]T, [0.752 1.248]T 

27. P = [110 45 801T, v = [92000 863001T 

Problem Set 7.3, page 295 

1. x = 2.5, Y = -4.2 
5. x = 0, y = - 2, z = 9 

3. x = 0.2, y = 1.6 
7. x = 4, Y = 0, z = -2 

960 

1246 

-1090 

9. x = 3y + 2, y arb.,.: = -y + 6 11. Y = 2x + 3.: + I, x, .: arb. 
13. w = I, Y = 2.: - x, x, .: arb. 15. w = 3, x = 0, y = -2, ;;: = 8 

17. h = (R1 + R2)Eo/(R 1R2), 12 = Eo/R1' 13 = Eo/R2 [Amps] 

-5120] 
-5434 

6150 

19. 11 - 12 - 13 = O. (3 + 2 + 5)1t + 10/2 = 95 + 35, 10/2 - 5/3 = 35, 11 = 8, 
12 = 5. 13 = 3 Amps 

21. Xl + X4 = 500, Xl + X2 = 800. X2 + X3 = 1100, X3 + X4 = 800, Xl = 500 - X4, 

X2 = 300 + X4, X3 = 800 - X4, X4 arbitrary 

Problem Set 7.4, page 301 

1. L [I -2]; [1 0 -3]T 
3.3, [I 4 0 7], [0 -2 

[0 0 I]T 
I 3], rO 0 5 105]; r -2 -I- 5]T, [0 I 5]T, 

5. 2, [3 0 5], [0 3 
7.2, r8 0 4], [0 2 
9. 3, II 0 3 0], [0 

41; [3 0 5]T, [0 3 4]T 
OJ; [8 0 4 O]T, [0 2 0 41T 
5 8 -371, [0 0 -74 296]; same transposed 

11. 4, [I 0 0 0], [0 
13. No 
19. Yes 
29. No 
35. I, [5 

Problem Set 7.7, page 314 

5. 107 
9. -66.88 

13. 113 + v3 + w 3 - 311VW 

o 0], [0 0 1 0], [0 0 0 I]; same transposed 
15. No 17. Yes 
21. (c) I 27.2, [I -I OJ, lO 0 1] 
31. I, [-i l 1] 33. No 

7. cos (a + f3) 

11.0 
15.4 

19. x = -1.2, Y = 0.8, .: = 3.1 
23.3 

21. 1 
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Problem Set 7.8, page 322 

1. [ 1.80 - 2.32J 

-0.25 0.60 

3. [COS '28 -sin 28J 

sin 28 cos 28 

9. A-I = A 11. No inver~e 

15. (A'j-L (A-'j' ~ [I: -~ =] 
19. AA -1 = I, (AA -1)-1 = (A -l)-lA -1 = I. Multiply by A from the right. 

21. det A = - I. C 12 = C21 = C33 = - I, the other Cjk are zero. 
23. uet A = 1. Cll = I, C12 = -2, C22 = 1, C13 = 3. C23 = -4, C33 = I 

Problem Set 7.9, page 329 

1. Yes, 2, [3 5 OIT, [2 0 -51T 

5. Yes, 2, [0 0 0 1 OIT, [0 0 

7. Yes, 1, [_~ ~J 
11. Yes, 2, xe-:r , e-x 

3. No 
o 0 l]T 

9. No 

13. [I O]T, [0 I]T; [I I]T, [-1 I]T; [I O]T, [0 -l]T 

15. Xl = -0.6Yl + 0A.Y2 
X2 = -0.8y! + 0.2.'"2 

19. Xl = 5-"1 + 3.'"2 - 3)'3 

X2 = 3.'"1 + 2.1'2 - 2)"3 
X3 = 2.'"1 - )"2 + 2.'"3 

21. Vs6 
25. 2 

17. Xl = 2.1"1 + Y2 
x = 5\" + 3\" 2 . 1 .2 

23. 16Vs 

[3 15]T 29. 4V1 - 3V2 = 0, V = ± 5 

Chapter 7 Review Questions and Problems, page 330 

11. X = 4, Y = 7 

15. x = ~. Y = -~. z = ~ 
19. x = 22. Y = 4, 2 arbitrary 

23.638.0,0 

[

12 

27. 14, 14. 2; 

o 
o 

o 

13. x = v + 6, z = y, )" arbitrary 
17.x=7.)"= -3 

21. 0 

[ 

8.0 -3.6 

25. -3.6 2.6 

1.2 2.4 

1.2

J 
2.4 

9.0 

29. [-20 9 

r
-20

] 
-3], _: 

A2l 
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31.2,2 33.2.2 

37. 5\ [ 4 :] -5 
35.2,2 

72 -72 

-3:2 59 39. 4~ [~~ 1~ _ 5
42

] 

23 -10 

41. ,~ r 31 

-19 20 

132] 
-35 

43. It = 33 A, 12 = 11 A, 13 = 22 A 
45. II = 12 A, 12 = 18 A, 13 = 6 A 

Problem Set 8.1, page 338 

1. -2, [1 O]T; 0.4, [0 I]T 

3.4,2\"1 + (-4 - 4)X2 = 0, say, Xl = 4. X2 = 1; -4, [0 I]T 
5. -4, [2 9]T; 3, [1 I]T 7.0.8 + 0.6i, [1 _i]T; 0.8 - 0.6i, [l i]T 
9.5, [1 2]T; 0, [-2 I]T 11.4, [I 0 O]T; 0, [0 1 OlT; -I, [0 0 I]T 

13. -(A3 - I8A2 + 99A - I62)/(A - 3) = -(A2 - I5A + 54); 3. [2 -2 I]T; 
6, [l 2 2]T; 9, [2 I _2]T 

15. I, [-3 2 lO]T; 4, [0 1 2]T; 2, [0 0 I]T 
17. -(A3 - 7A2 - 5A + 75)/(A + 3) = -(A2 - lOA + 25); -3, [I 2 _I]T; 

5, [3 0 l]T, [-2 I O]T 

19. -(A - 9)3; 9, [2 -2 I]T; defect 2 
21. MA3 - 8A2 - 16A + I28)/(A - 4) = A(A2 

- 4A - 32); 4. [-1 3 1 l]T; 
-4,[1 1 -I -l]T;O.[I I L 1]T;8, [1 -3 1 -3]T 

23.2, [8 8 -16 l]T; 1, [0 7 0 4]T; 3, [0 0 9 2]T, -6, [0 0 0 l]T 
25. (A + IfcA2 + 2A - 15); -I, [I 0 0 O]T, [0 1 0 O]T; 

-5, [-3 -3 1 l]T, 3, [3 -3 I -I]T 
29. Use that real entries imply real coefficients of the characteristic polynomial. 

Problem Set 8.2, page 343 

1. [ - ~ ~] ; -1, [~] ; I, [~] ; any point (x, 0) on the x-axis is mapped onto 

(-x, 0), ~u that [l O]T is an eigenvector corresponding to A = -1. 

3. (x, y) maps onto (x, 0). [~ ~] ; 1, [~] ; 0, [~] . A point on the x-axis maps 

onto itself, a point on the y-axis maps onto the OI;gin. 
5. (x. y) maps onto (5x, 5)'). 2 X 2 diagonal matrix with entries 5. 
7. -2, [I -l]T, -45°; 8, [1 1]T,45° 
9.2, [3 -l]T, -18.4°; 7, [I 3]T.71.6° 

11. I. [-l/V6 1],112.2°; 8, [1 1IV6]. 22.2° 
13. 1. [l I]T, 45°; -5, [I _l]T, -45° 

15. c[l5 24 50lT
, c > 0 

17. x = (I - A)-ly = [0.73 0.59 1.04]T (rounded) 

19. [I I 1JT 21. 1.8 23. 2.1 
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Problem Set 8.3, page 348 

3. No 5. A-I = (_AT)-1 = _(A- 1)T 

7. No since det A = det (AT) = det (-A) = (-1)3 det A = -det A = O. 
9. Orthogonal, 0.96 ± 0.28i 13. Symmetric, 9, 18, 1 R 11. Neither, 2, 2, defect 1 

15.0rthugunal, 1, i, -i 17. Symmetric, 1I + 2b, a - b, 1I - b 

Problem Set 8.4, page 355 

-1]T:X= [~ 2J [7 
:J 

1.[1 2]T. [2 D= 
-1 0 

3. [1 - I]T, [1 I]T, D = [: 
:J 

5. [2 _l]T, [2 1]T, diag (-2, 4) 
7. [1 0 O]T, [1 -2 1]T, [0 1 O]T, diag (I, 2, 3) 
9. [0 3 2]T, [5 3 O]T, [1 0 2]T, diag (45. 9, -27) 

13. [~: -~:J: -5. [~J : 2. [~J : x = [-~J . [-~J 

[ 
-30 -72J. [9J. [12J. = [-3J [-3J 15. .2.. O. . x . 

4~ 32 -4 -5 3 6 

17'[-:: ~: -1::];4,[_:]:_2'[_:]:1'[ ~]; 
66 -12 100 -3 -4 -2 

F [=:] 1:] 1~] 
19. C = [ 1 

12 

12J [0.8 0.6J ' IOY12 
- 15yl = 5, x = y, hyperbola 

[ 

3 
21. C = 

-4 

23.C~ [~ 

25. C = [ 1 
-6 

[

12 
27. C = 

16 

-6 0.6 -0.8 

-4J [2tV5 ltv's] 
, 5Y12 

- 5.\"22 = 0, X = y, straight lines 
- 3 -ltv's 2tv's 

V3] [ 112 \' 2 + 5" 2 = 10 x = '.1 _2 , ~r:; 
2 - v 3/2 

V312] y, ellipse 
112 

-6J [ 1IV2 , 7y 2 - 5y 2 = 35 x = . 1 .2 , 
1 -l/V2 

lIV2J y, hyperbola 
lIV2 

' 28Y1
2 

- 4yl = 112, x = y, hyperbola 16J [lIV2 1 N2J 
12 ItV2 - lIV2 
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Problem Set 8.5, page 361 

3. (ABC)T = CTBTj\T = C-1(-B)A 

5. Hermitian, 3 + v'2. [-i I - v'2]T; 3 - 0. [-; I + v2T 
7. Hermitian. unitary, 1, [1 ; - iV2]T; -1, [1 i + ;"\,'2]T 
9. Skew-Hermitian. 5;. [I 0 O]T, [0 I I]T; -5i, [0 I -1]T 

11. Skew-Hermitian, unitary, ;, [I 0 IJT. [0 1 01T: -i. [l 0 _lIT 
13. Skew-Hennitian. -66i 15. Hermitian, 10 

Chapter 8 Review Questions and Problems, page 362 

[ 3 2J [3 2J [5 OJ 
9. -4 _ 3 A -4 - 3 = 0 -7 

11. [-1/3 2/3J A [1 
2/3 -1/3 2 ~J = [~ -~J 

oJ! ~ ;l A r ~ -2 -:l = r ~ -: ~l lo -9 -9 l-2 4 - I lo 0 0 

[

-1.0 
15. 

4.8 
OJ,s. -I 

5.0 

19. I.lY1 2 + yl = I. ellipse 

Problem Set 9.1, page 370 

17r~ 

1. 2, -4,0; V20; [ltv's, -2tv's, 0] 3. -1,0,5; V26: [-I/V26, 0, 5/V26] 
5. -8. -6.0; 10; [-0.8, -0.6,0] 7. (7. 5, 0); ViO 
9. ci, ~, £); V37/8 11. (0, 1, ~); V37/2 

13. [4, -2,0], [-2, 1,0], [-I,~, 0] 15. [10, -5, -15J 
17. [2!S, -14, -14] 19. [-2, 1,8], [6, -3, -24] 
23. (5.5, 5.5, 0), (t, ~, IS'» 25. [0,0,91; 9 
27. l-8, -2,4]; V84 29. v = [0. O. -9] 
31. [-9. 0, 0]. [0, -2, 0]. [0, 0, -11]. Yes. 33. Ip + q + ul ~ 6. Nothing 

35. [ ~ , ~ ] - [ - ~ , ~ ] = [ ~ , ~ ] 37. Iwl/(2 sin a) 

Problem Set 9.2, page 376 

1. 4 3. -v24T 
5. [12. -8.4], [-18. -9. -36] 7. 17 

9. -4.4 11. -24 IS. Use (I) and Icos yl ~ 1. 

17·la + bl
2 + la - bl

2 = aoa + 2aob + bob + (aoa - 2a°b + bob) = 2/a/2 + 2/b/2 

19.0 21. 15 23. Orthogonality. Yes 
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25.2,2,0, -2 
31. 54.74° 
37.3 

27. 79.11 ° 29. 82.45° 
33.54.79°,79.11°,46.10° 35.63.43°.116.57° 
39. 1.4 

41. If lal = Ibl or if a and bare OIthogonal 

Problem Set 9.3, page 383 

1. [0,0, -I OJ, [0, o. 10J 3. [-4, -8, 26J 5. [0. 0, - 60J 

A25 

7. -20, -20 9.240 11. [19, -21. 24], V1378 
13. [10, -5, -I] 15.2 17.30, -30 

19. -20. -20 25. [-2. 2. 0] x [4.4. OJ = -16k. 16 
27. [I, -1.2] x [1,2,3] = [-7, -1, 3J, v'59 
29. [0, 10, 0] x [4, 3, 0] = [0, 0, -40], speed 40 

31.1[7. O. OJ x [I. 1.0]1 = 7 33. ~V3 
35. [18,14,26]; 9x + 7.v + 13z = c, 9·4 + 7·8 + 13·0 = 92 = c 

37. 16 39. c = 2.5 

Problem Set 9.4, page 389 

1. Hyperholas 3. Hyperbolas 5. Circles 
7. Ellipses; 288, 100, 409; elliptic ring between the ellipses 

and 

9. Ellipsoids 11. Cones 13. Planes 
23. [8x. 0, .\''::], [0,0, x.::], LO, 18;:, xy]; [0, ;:, yl, [z, O. x], b', x, 0] 

Problem Set 9.5, page 398 

1. [4 + 3 cos t, 6 + 3 sin t] 

5. [3, -2 + 3 cos t. 3 sin f] 
9. [v'2 cos t, sin t. sin t] 

13. Circle (x - 2)2 + (y + 2)2 = 1, z = 5 

17. Hyperbola xy = 1 

3. L2 - t. 0, 4 + t] 

7. [a + 3t, b - 21, c + 5t1 
11. Helix on (x - 2)2 + (y - 6)2 = r2 

IS. X4 + .l = 1 

23. r' = [-5 sin 1. 5 cos t. 0], U = [-sin t. cos t. 0]. q = [4 - 3w. 3 + 4w. 0] 
25. r' = [sinh t. cosh f], U = (cosh 21)-112 [sinh t, cosh t]. q = Li + 4H'. ~ + 5wJ 

27. v;:r:;r = cosh t. l = sinh I = 1.175 
29. Stan from ret) = [t, f(t)]. 

33. v = r' = ll. 2t. O].lvl = VI + 4t2
• a = [0. 2. 0] 

35. v(O) = 2wRi, a(O) = -w2Rj 

37. I year = 365' 86400 sec, R = 30' 365' 86400121T = 151· 106 [km]. lal = w2R 
= Iv/2JR = 5.98· 10-6 [kmlsec2

] 

39. R = 3960 + 80 mi = 2.133' 107 ft. g = lal = w2R = IvI2/R, Ivl = ViR = 
V6.61· 108 = 25700 [ft/sec] = 17500 [mph] 

43. ret) = [t, yet), 0], r' = [1, y', 0], r' • r' = I + y'2, r" = [0, y", 0], etc. 
47. 3/(1 + 9t2 + 9t4) 



A26 App. 2 Answers to Odd-Numbered Problems 

Problem Set 9.6, page 403 

1. w' = 2V2(sinh 4t)/(cosh 4t)1I2 

3. w' = (cosh t)sinh t-\(cosh2 t) In (cosh t) + sinh2 t) 

5. w' = 3(2t4 + t 8 f(8t3 + 8t7
) 7. e4u sin2 2v, ~e4u sin 4v 

9. -2(u2 + V2)-3U, -2(u2 + V2)-3V 

Problem Set 9.7, page 409 

1. [2x, 2y1 3. [1Iy, - X/y2] 

9. [-1.25. 01 
15. [-18, 24] 
21. [-6, -12] 

7. [6. 4. 4] 
13. [-4, 2] 

19. [6. 4] 

23. [-0.0015. O. 
29. [8, 6. 0] 
35.7/3 

-0.0020] 

31. [108, 108, 108] 
37.2e2 /V13 
41. X4 + y3 - 3~2 

Problem Set 9.8, page 413 

5. Lv + 2. x - 2] 
11. [0. -e] 

17. [48, -36] 

27. [a, h. c] 

33.V2t3 

1. 3(x + y)2 3. 2(x + x~ + z) 5. (y + x + 1) cos xy 
7.9x2y2.::2 

9. [Vt, V2, V31 = r' = [x', y', ~'] = b', o. 0].::.' = 0, z = C3, y' = 0, y = C2, 

x' = Y = C2, X = C2t + Cl' Hence as t increases from 0 to 1, this "shear flow" 
transforms the cube into a parallelepiped of volume l. 

11. div (w x r) = 0 because Vb V2, V3 do not depend on x, y, z, respectively. 

13. (b) (fVl)x + (fV2)y + (fv3)z = ![lVI)x + (V2)y + (v3)z] + fxv] + fyV2 + !zV3, etc. 
(c) Use (b) with v = Vg. 

15. 4(x + )')/(y - x)3 17.0 19. e XY\v2z2 + X2.:2 + x2y2) 

Problem Set 9.9, page 416 

1. [0. 0, 4x - I] 3. [0, O. 2ex sin y1 5. [0, 0, -4y/(x2 + )'2)] 

9. curl v = [- 2~. 0, 01, incompressible, v = r' = [x'. y'. z'] = [0. .:2, 0]. 
x = CI, Z = C3, y' = Z2 = C3

2, Y = c3
2t + C2 

11. curl v = [0, 0, -2], incompressible. x' = y, y' = -x, z' = 0, Z = C3, 

)' dy + x dx = 0, x 2 + )'2 = C 

13. Irrotational, div v = 1, compressible, r = ['let, C2e-t. C3etJ 

17.0,0, [xy - .:x, yz - xy, ,:x' - yz] 

19. 0, 0, 0, - 2.\'Z2 - 2.:x2 - 2.\"y2 

Chapter 9 Review Questions and Problems, page 416 

11. [-1, 9, 24] 

15. [0, 0, -740], [0, 0, -740] 
19. -495, -495 

23. If u x v = 0. Always 
27.3.4 

13. 0, [-43, 54, 3], [43, -54, -3] 

17. [-24, 3, -398], [114, 95, -76] 

21.90°, 95.4° 

25. [VI, V2, -3] 

29. If 'Y > ~7T, ~7T 



App. 2 Answers to Odd-Numbered Problems 

33.45/6 35. No 
37. 0, 2y2 + (z + xl 

41. 0, 2X2 + 4y2 + 2z2 + 4xz 

39. l-l, 1, - l], [-2z, -2x, -2y] 

43.4881"\13323 45.0 

Problem Set 10.1, page 425 

1. F(r(t» = 1125t6 , t3
, 0], 1644817 = 2350 3.0 + 160 

5. F(r(t» = [cosh t sinh2 t. cosh2 t sinh tl, 93.09 
7. F(r(t» = It, cos t, sin t], 67T 

9. F(r(t» = lcosh ~t, sinh !t, ett8], 0.6857 
11. F(r(t» = let, et2, e

t2
], e 2 + 2e4 

- 3 
15. 17/3 17. [367T. ~(87Tl, 367T] 

Problem Set 10.2, page 432 

1. sin xy, 1 3 _1 -cx2+y2) 0 
• 2 e , 5. eXz + y, -2 

13. No 7. x2
)' + cosh z, 392 

15. cea - aeb 

11. sinh ae 
17.~a2bc2 

Problem Set 10.3, page 438 

1 

3. f Ix - x 3 
- (x2 - x 5

)] dx = l2 
o 

19. No 

5. ~ cosh 6 - cosh 3 + ~ 

A27 

4 ~ 

7. f ~(e3x - e-X
) dx = !e 12 + !e-4 - i 9. f (eSin y cos y - cos y) dy = e - 2 

o 0 
1 1 x 

11. I (2x2 + i) dx = ~ 13. f f ~ d)' dx = ~ 
-1 0 0 

15. x = ib, Y = ~h 17. Ix = bh3/l2. Iy = b3h/4 

19. Ix = (a + b)h3124, Iy = h(a4 
- b4 )/(48(a - b» 

Problem Set 10.4, page 444 

1. 2x3
), - 2.\}"3, 81 - 36 = 45 3. 3x2 + 3y2, 18757T/2 = 2945 

5. e'C-Y - eX + Y, -~e3 + !e2 + e-1 - ! 7. 2x - 2v, -56/15 

9. 0 (why?) 11. Integrand 4. Ans. 407T 
13. Y from 0 to ~x. x from 0 to 2. Ans. cosh 2 - ! sinh 2 
15. Y from 1 to 5 - x2

• Ans. 56 19. 4e4 
- 4 

Problem Set 10.5, page 448 

1. Straight lines, k 
3. x 2/a 2 + y2/b2 = 1, ellipses. straight lines, [-b CllS v, a sin v, 0] 

5. z = (cla)Y r + y2, circles. straight lines, [-aeu cos v, -aeu sm v, a2u] 

7. x2/9 + ."2116 = z, ellipses, parabolas. [-8112 cos V, -6112 sin v, 12u] 

9. x 2/4 + )'2/9 + z2/]6 = I, ellipses, [12 cos2 v cos u, 8 cos2 v sin u, 6 cos v sin v] 

13. [lOu, IOv, 1.6 - 4u + 2v], [40, -20, LOO] 
15. [-2 + cos v cos u, cos v sin £I, 2 + sin v], 

[cos2 
V cos u, cos2 v sin u, cus v sin v] 
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17. [Lt, v, 3v2
], [0, -6v, II 

19. [u cos V, 311 sin v, 3111, [-911 cos v, -3u sin v. 311] 

21. Because r1< and rl" are tangent to the coordinate curves v = COllsT and 1I = COIlST, 

respectively. 
23. [iT. v, li2 + v 2

]. N = [-2u, -2v, 1] 

Problem Set 10.6, page 456 

1.-64 
7.27r 

15. 140V6/3 

3. -18 
9. ~a3 

17. 1287TV213 = 189.6 
19. i6 7T2(373/2 - 53/2) = 22.00 

27. 7Th4/V2 29. 7Th + 27Th3/3 

Problem Set 10.7, page 463 

1. 8a3b3c3127 

7. 2347T 
13.7Th5/lO 
21. 0 

3.6 
9.2a5 /3 

17. 1087T 
23.8 

Problem Set 10.8, page 468 

5. -1287T 

11. 17h14 

25. 27Th 

5. 42~7T 
11. ha4 rr12 

19. 2167T 
25. 3847T 

1. Integrab ..j.. I . 1 (x = 1) . ..j.· 1 . 1 (y = 1), -8' 1 . I (z = 1).0 (x = v = z = 0) 
3. 2 (volume integral of 6y2), 2 (surface integral over x = 1). Others 0 
5. Volume integral of 6)'2 - 6x2 is O. 2 (x = 1), -2 (v = 1), others O. 
7. F = [x. y. z], div F = 3. In (2). Sec. 10.7. Fon = IFllnl cos cp 

= V x2 + y2 + Z2 cos cp = r cos cp. 
9. F = [x, 0, 0], div F = 1, use (2*), Sec. 10.7, etc. 

Problem Set 10.9, page 473 

1. [0, 8z, 16]0[0, -1, 1], :::':12 
3. r -ez, -ex. eY ] 0 [-1. -1. 1], ±(e2 - 1) 

5. S: [u, v, v 2 1, (curl F)oN = _4ve2v2
, ±(4 - 4e 2

) 

7. (curl F)on = 312, :::':3a2/2 9. The sides contribute a, 3a 212, -a, O. 
11. curl F = [0, o. 6],247T 13. (curl F)on = 2x - 2y, 1/3 

15. -7T/4 17. (curl F)oN = 7T(COS TTX + sin -n:v), 2 
19. For = [-sin e, cos eJo[ -sin e, cos e) = I. 27T, 0 

Chapter 10 Review Questions and Problems, page 473 

11. Exact. -542/3 

17. By Stokes, ± 18rr 
23. 0, 4a137T 

29. By Gauss, 1007T 
35. Direct, 5(e 2 - 1) 

13. Not exact, e4 - 7 
19. By Stokes, :::': 127T 
25. 817. 118/49 

31. By Gauss, 40abc 

15. By Green, 1152rr 
21. 4/5, 8/15 

27. Direct. 5 
33. Direct, rrh 
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Problem Set 11.1, page 485 

3. 2mn, 27T11l. k, k, kill, kin 

13. ± + ! (COS x - + cos 3x + + cos 5x - + ... ) 

15 7T + 4 (cos x + ..!.. cos 3x + _1_ cos 5x + ... ) 
'2 7T 9 25 

7T 
17. -

4 
2 (cos x + ..!.. cos 3x + _1_ cos 5x + ... ) 
7T 9 25 

I I 
+ sin y - - sin 2x + - sin 3x - + ... 

2 3 

19. - - cos x + - cos 3x + - cos 5x + ... 4 ( 1 I ) 
7T 9 25 

+ 2 (sin x + + sin 3x + + sin 5x + ... ) 

I ( I 1 ) 21. "3 7T
2 

- 4 cos x - "4 cos LX + 9" cos 3x - + ... 

I 4 I 4 1 
23. - 7T2 - - cos x - - cos 2x + -- cos 3x + - cos 4x - ... 

6 7T 2 277T 8 

A29 

29. t' = 2x, f" = 2,jl = O,j~ = -47T,j~ = 0, an = _1_ (- ..!..) (-47T) cos 117T, etc. 
n7T 11 

Problem Set 11.2, page 490 

1. : (sin ~x + i sin 3~X + + sin 5~X + ... ) 

3 . ..!.. - ~ (cos TTX - ..!.. cos 27TX + ..!.. cos 37TX - + ... ) 
3 7T

2 4 9 

24(1 I 1 ) 5. Rectifier, - - - -- cos 27TX + -- cos 47TX + -- cos 67TX + ... 
7T 7T 1·3 3·5 5·7 

1 4 ( 1 1 ) 7. Rectifier, - - 2 co:> TTX + - cos 37TX + - cos 57TX + ... 
2 7T 9 25 

24( 1 1 I ) 9. "3 + 7T2 cos TTX - "4 cos 27TX + 9" cos 37TX - 16 cos 47Tt" + - ... 

3 4 ( TTX 1 1 37TX I 57TX 1 
11. - cos - + - cos TTX + - cos -- + - cos -- + - cos 37lX 

4 7T
2 2 2 9 2 25 2 18 

+ .. -) 

3 1 1 
13. - + - cus 2r + -8 cos 4x 

8 2 

15. Translate by!. 17. Setx = O. 
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Problem Set 11.3, page 496 

1. Even, odd, neither, even, neither, odd 

3. Odd 

5. Neither 

7. Odd 

9. Odd 

11 7r + ~ (cos x + ~ cos 3x + _1_ cos 5x + ... ) 
. 2 7r 9 ~ 

13. ~ (Sin x - ~ sin 3x + _1_ sin 5x - + ... ) 
7r 9 25 

4 ( 71X 1 37rx 1 57T.X ) 
15. 1 - --:;; sin ""2 + "3 sin -2- + 5 sin -2- + ... 

4 ( 71X 1 37rx 1 5nr ) 
17. (a) 1. (b) 7r sin ""2 + "3 sin -2- + 5 sin -2- + ... 

8 ( 7T.X 1 37rx 1 571X ) 
19. (a) 1 + 7r2 cos ""2 + 9 cos -2- + 25 cos -2- + ... 

4 ( n"( 1 1 37rx I ) 
(b) - sin - + - sin 7rX + - sin -- + - sin 27rx + ... 

7r 2 2 3 2 4 

3 2 ( 7rX 1 371X I 57rx 1 77rx ) 
21. (a) "2 - 7r cos ""2 - "3 cos -2- + 5 cos 2 - --:; cos -2- + - ... 

6 ( 7H 1 1 37rx 1 57rx I 
(b) 7r sin ""2 - "3 sin 71X + "3 sin -2- + 5 sin -2- - "9 sin 371X 

L 4L ( 7rX 1 3m:- 1 571X ) 
23. (a) "2 - 7r2 cos L + 9 cos L + 25 cos L + ... 

2L ( 71X 1 27rx 1 37rx ) 
(b) --;; sin L - "2 sin L + "3 sin L - + ... 

7r 4 ( I I ) 25. (a) - + - cos x + - cos 3x + - cos 5x + ... 
2 7r 9 25 

(b) 2 ( sin x + ~ sin 2x + + sin 3x + . . .) 

Problem Set 11.4, page 499 

3. Use (5). 

00 (-1)n 
9 ·" inx .1 L... --e' 

n n=-oo 

co 

13. 7r + i ~ 
n=-x 

2i 
7.-- ~ 

7r n=-oo 

___ e(2n+ 1)ix 

2n + 1 

2 00 ( 1)n 
11. ~ + 2 ~ ---- einx 

3 n2 
n=-(X: 

n*O 

+ ... ) 
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Problem Set 11.5, page 501 

3. (0.0511)2 in Dn changes to (0.02n)2. which gives C5 = 0.5100. leaving the other 
coefficients almost unaffected. 

A3l 

5. Y = Cl cos wt + C2 sin wt + A{w) cos t, A(w) = 1/(w2 
- L) < 0 if w2 < I (phase 

shift!) and> 0 if w2 > I 
N 

7. y = Cl cos wt + C2 sin wt + L 
n=l 

an 
2 2 cos nt 

w - n 

9. )' = c cos wt + c sin wt + -- + - -----0;--- cos t + cos 3t 
7T 4 ( 1 1/9 

.+ .. ) , 26" ~ 'u'-I 6i'-9 

1 
11. Y = Cl cos wt + C2 sin wl + 2w2 - cos 2t 

1· 3(w2 
- 4) 

1 
- cos4t- oo

• 

3· 5(w2 - 16) 

13. The situation is the same as in Fig. 53 in Sec. 2.8. 

3c 8 
15. y = - 2 cos 3t - 2 sin 3t 

64 + 9c 64 + 9c 

Problem Set 11.6, page 505 

1. F = 2 ( sin x - ± sin Ir + ... + 
{_l)N+l ) 

N sin Nx , E* = 8.1,5.0,3.6,2.8,2.3 

7T 4 ( 1 1 ) 3. F = - - - cos x + - cos 3x + - cos 5x + . .. E* = 00748 00748 2 7T 9 25 ...., 

0.01 19, 0.01 19. 0.0037 

24(1 1 1 ) 5. F = - - - -- cos 2x + -- cos 4x + -- cos 6x + . .. , 
7T IT 1·3 3·5 5·7 

E* = 0.5951, 0.0292. 0.0292, 0.0066, 0.0066 

4 ( 1 1 ) 7. F = - sin x + - sin 3x + - sin 5.1' + . .. . E* = 1.1902, 1.1902, 0.6243, 
7T 3 5 

0.6243. 0.4206 (0.1272 when N = 20) 

8 ( 1 9. - sin x + - sin 3x + 
7T 27 1~5 sin 5x + .. J E* = 0.0295, 0.0295, 0.0015, 

0.0015, 0.00023 
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Problem Set 11.7, page 512 

1. f(x) = 7Te-x (x > 0) gives A = LX e-V cos wv dv = , B = __ t_v----=-
+ w 2 1 + tr

2 

(see Example 3), etc. 0 

3.I(x) = !7Te-X gives A = 1/(1 + w 2
). 

5. Use f = (7TI2) cos v and (11) in App. 3.1 to get A = (cos (ml'!2»/(1 - w 2
). 

2 Icc sin (ltv cos XW 
7. - --dw 

7T 0 W 

2 LX cos TTW + I 
11. - 2 cos xw dw 

7To l-w 

2 LX 7TH' - sin 7TW 
17. - 2 sin XIV dw 

7T 0 IV 

Problem Set 11.8, page 517 

1. {2 ( sin 2w - 2 sin w ) 

V --;; w 

2 I"" cos w + tv sin w -
9 - -----,,----- cos HI' dw 

• 7T 0 w 2 

2 LX sin mv 
15. - 2 sin xw dw 

7To l-w 

2 Lcc 
wa - sin wa 

19. - 2 sin xw dw 
rr 0 IV 

5. v:;;n e-x (x> 0) 

7. v:;;n cos w if 0 < tv < 7T12 and 0 if w > 7T12 

11. V(2/7T) w/(w2 + 7T2
) 

9. Yes, no 

19. In (5) for f(ax) set a.>.: = v. 

Problem Set 11.9, page 528 

3. ik(e-ibw - l)/(v'2;w) 

7. [(I + iw)e-iw - 1]/(v'2;w2 ) 

11 1 -w2/2 
·2 e 

5. V(2/7T)k (sin w)/w 

9. V(21'7T)i(cos w - 1)/w 

13. (eibw - e-ibw)/(i}vv'2;) = v'2/;-(sin bw)/w 

Chapter 11 Review Questions and Problems, page 532 

11. 4k (sin TTX + ! sin 31TX + ! sin 57TX + ... ) 
7T 3 5 

(
xI 1 3x 1 1 5x ) 

13. 4 sin "2 - "2 sin x + '3 sin 2 - 4" sin 4x + "5 sin 2 - + ... 

8 ( nt I 3nt I 5nr ) 
15. 7T2 sin 2 - '9 sin -2- + 25 sin -2- - + ... 

17. - - - -- cos 16rrx + -- cos 327TX + -- cos 481TX + ... 24(1 1 1 ) 
7T 7T 1·3 3·5 5·7 
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7r2 IlL 
19. 12 - cos 2x + "4 cos 4x - 9 cos 6x + 16 cos 8 \" - + ... 

21. rr/4 by Prob. 11 23. 7r2/8 by Prob. 15 

1 1 
25. "2 [f(x) + f(-x)1, "2 Lt(x) - fe-x)] 

8 ( x I 3x 1 5x ) 27. rr - - cos - + - cos - + - cos - + ... 
7r 2 9 2 25 2 

29.8.105,4.963,3.567,2.781,2.279, 1.929. 1.673, 1.477 

7? (cos I 1 cos 2t 
31. y = C] cos wI + C2 sin wt + --2 - 4 2 - - • w2 _ 4 + 

3w w - 1 4 
__ 1_. cos 41 + _ ... ) 

16 w2 
- 16 

1 L"" (cos W + w sin w - 1) cos tVx + (sin w - w cos w) sin tVX 
33. - dH' 

7r 0 w 2 

2 LX tV - sin H' cos W . • • • 
35. - 2 Sin tU d~~ 

7r 0 W 

1 

9 

4 LX sin 2w - 2w cos 2w 
37. - cos wx dl\' 

7r 0, w 3 
39. ~.----::---

,,-; I\,2 + 4 

t' , 

Problem Set 12.1, page 537 

1. 1I = Cl(X) cos 4)' + C2(X) sin 4)' 

5. 1I = c(x)e-Y + eXY/(x + 1) 

9. 1I = Cl(X»)' + C2(.1'»),-2 

15. C = 1/4 

19. 7r/4 

27. 1I = 110 - (lIO/in 100) In (X2 + )'2) 

Problem Set 12.3, page 546 

1. k cos 2m sin 2m; 

3. 1I = Cl(X) + C2(X)y 

7. 1I = c(x) exp (h2 cosh x) 

11. u = c(x)eY + h(y) 

17. Any C 

21. Any C and w 

29. 1I = ClX + C2(Y) 

A33 

cos 3t 

w2 
- 9 

8k ( 3. '3 cos 7r1 sin 7rX + - cos 37r1 sin 37rx + 
7r 27 

1~5 cos 57rISin57r,+ ... ) 

4 ( 1 5. --2 COS 7r1 sin 7rX - - cos 37rf sin 37rx + 
57r 9 

_1_ cos 57rf sin 57rx - + ... ) 
25 

2 ( 1 7. 7r2 cv'2 - 1) cos m sin 7rX + "2 cos 2m sin 27rx 

+ ~ Cv'2 + 1) cos 3m sin 31TX - .• -) 
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9. 2 (2 - V2) cos m sin = - - (2 + v'2) cos 3m sin 3= + 2 ( I 
~ 9 

_1_ (2 + V2) cos 5m sin 5= + ... ) 
25 

8L
2 

( [(~)2J 7TX 1 [(3~)2J 371:\ ) 17. it = ~3 cos C L t sin L + 33 cos C L t sin L + ... 

19. (a) u(O, t) = 0, (b) lI(L, t) = 0, (c) 1l:t"(0. t) = 0, (d) uxCL, t) = O. C = -A, 
D = -B from (a), (b). Insert this. The coefficient determinant resulting b'om (c), 
(d) must be zero to have a nontrivial solution. This gives (22). 

Problem Set 12.4, page 552 

3. c2 = 300/[0.9/(2·9.80)] = 80.832 [m2/sec2
] 

11. Hyperbolic. u = fl(X) + f2(X + y) 

13. Elliptic, U = fl(Y + 3ix) + f2(Y - 3ix) 

15. Parabolic, 1I = Xfl(X - Y) + f2(x - y) 

17. Parabolic. 1I = Xfl(2x + y) + f2(2x + y) 

19. Hyperbolic, u = (l/y)fl(XY) + f2(Y) 

Problem Set 12.5, page 560 

5. It = sin OAnt e-1.752.167T2t/lOO 

7. II = ! (~ sin O.lnt e-O.017527T2t + ~ sin 0.27TX e-O.01752(2m2t - ... ) 

9. u = 2:~ (sin 0.17T.t e-O.017527T2t + ~ sin 0.3n\" e-O.01752(37T)2t - - ... ) 

11. II = til + Un. where Un = II - UI satisfies the boundary conditions of the text. so 

oc 117T.t 2 2 fL l1~l 
that u = ~ B sin -- e-lCn7TIL) t B = - [f(x) - II (x)] sin -- dx 

II L... n' L . II L . I- L' 
n~1 0 

13. F = A cospx + B sinpx, F'(O) = Bp = O. B = 0, F'(L) = -Ap sinpL = 0, 
p = n~/L, etc. 

15. u = 1 

17. II = 2;2 + 4 (cos x e-t - ~ cos 2x e-4t + i cos 3x e-9t - + ... ) 

~2 I I 
19. u = - + cos 2,' e-4t + - cos 4x e- 16t + - cos 6x e-36t + ... 

12 . 4 9 

K~ LOC 

2 23 - - nB e-A" t . L II 

1I~1 

25. w = e-{3t 

27. v t - c 2v xx = 0, w" = -Ne-ux/c2, w = C~2 [_e-ux 
- ~ (J - e-uL)x + 1] ' 

so that w(O) = n'(L) = O. 

29. 1I = (sin i~x sinh ~~y)/sinh 1T 

80 ~ (2n - 1)= (211 - 1)7TV 
31. II = - L... Sll1 sinh -----

~ n~l (211 - 1) sinh (211 - l)~ 24 24 
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sinh (I171:T/24) 117TY 
33. II = Aox + L An ----- cos -24 ' 

sinh 117T 

I 24 I f24 117TV 
Ao = -2 f fey) dy, An = - f( \") cos --' dv 

24 0 12 0 - 24-

oc 117TX 117T(b - y) 2 fa 117TX 
35. ~ An sin -- sinh , An = f(x) sin -- dx 

a a a sinh (l17Tb/a) 0 a 
n~l 

Problem Set 12.6, page 568 

2 sin ap 2 fX sin ap 2 2 

1. A = , B = 0, II = - --- cos px e-c p t dp 
~ rr 0 p 

3. A = e-P , B = 0, u = Loo 

cos px e-p-cZp2t dp 
o 

5. Set TTV = s. A = I if 0 < p/7T < I, B = 0, u = {T cos px e-c2p2t dp 
o 

7. A ~ 2[cos P + P sin p - 1)/(~2)]. B = O. u = f" A cos px e-c2p2t dp 
o 

Problem Set 12.8, page 578 

1. (a), (b) It is multiplied by v'2. (c) Half 
3. Bmn = 16/(ml17T2) if 111. 11 odd. 0 otherwise 
5. Bmn = (-l)n+18/(mn7T2) if 111 odd, 0 if m even 
7. Bmn = (_l)m+n4/(mn7T2) 

11. k cos v'29 1 sin 2x sin 5y 
6.4 "" "" I 

13. -2 ~ ~ -----:33 cos (1 V 117
2 + /1

2
) sin l/IX sin 11)" 

7T m~l n~l 117 II 

111, n odd 

17. C7TY'260 (colTesponding eigenfunctions F4,16 and F1614), etc. 
19. Bmn = 0 (m or 11 even). Bmn = 16k/(l1l1l7T2

) (m, 11 odd) 
21. Bmn = (-l)m+nI44a3 b 3/(m3

113 1fl) 

( 
9 16) 37TX 47TV 

23. cos 7Tt 2 + 2 sin -- sin --' 
a b a b 

Problem Set 12.9, page 585 

7. 30r cos 8 + 10,-3 cos 38 

9.55 + -- r cos 8 - - ,.3 cos 38 + - r5 cos 58 - + ... 220 ( 1 1 ) 
7T 3 5 

11. 7T _ ~ (r cos 8 + ~ ,.3 cos 38 + _1_ ,.5 cos 58 + ... ) 
2 7T 9 25 

A35 

15. Solve the problem in the disk,. < a :-.ubject to Uo (given) on the upper semicircle 
and -lio on the lower semicircle. 

u = 4uo (!.. sin 8 + ~ r3 sin 38 + ~ r 5 sin 58 + ... ) 
7T a 3a 5a 

17. Increase by a factor v'2 19. T = 6.826pR2 f1 2 
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21. No 
23. Differentiation brings in a factor lIAm = RI(eCim ). 

Problem Set 12.10, page 593 

11. v = F(r)C(t), F" + k2F = 0, G + e2k2C = 0, Fn = sin (I1'mfR), 

2 fR WITT 
C n = Bn exp (-e2

1l
2

7T
2tIR2), Bn = - rf(r) sin -- dr 

R 0 R 
13. u = 100 15. u = ~r3P3(CoS 1;) - ~rPl(cos 1;) 
17. 64r4P4(COS 1;) 
21. Analog of Example 1 in the text with 55 replaced by 50 
23. v = r(cos ())lr2 = r/(x2 + )"2), V = xyl(x2 + )"2)2 

Problem Set 12.11, page 596 

e(s) x 
5. W = - + , W(O, s) = 0, e(s) = 0, w(x, t) = x(t - 1 + e-t ) 

X
S S2(S + 1) 

7. w = f(x)g(t), xI' g + fi = xt, take f(x) = x to get g = ce-t + t - 1 and 
e = 1 from w(x, 0) = x(e - L) = o. 

9. Set x 2/(4c 27) = Z2. Use z as a new variable of integration. Use erf(x) = I. 

Chapter 12 Review Questions and Problems, page 597 

19. u = el(y)eX + c2(y)e-2X 

23. u = cos t sin x - ~ cos 21 sin 2x 
27. l/ = sin (0.02'i1:\") e-0.0045721 

21. u = g(x)(1 - e-Y ) + f(x) 

25. u = ~ cos 1 sin x - -! cos 3t sin 3x 

29 u = -- sin - e-0.004572t - - sin -- e-0.04115t + ... 200 (7TX 1 37T.\" ) 
• 7T2 · 50 9 50 

31. u = 100 cos 4x e-16t 

33. u = - - - - cos 2x e-4t + - cos 6.1: e-36t + -- cos lOx e- lOOt 7T 16 (1 1 I 

2 7T 4 36 100 

+ ... ) 

37. u = fl(Y) + f2(X + y) 39. II = fl(Y - 2ix) + f2(Y + 2ix) 

41. l/ = Xfl(Y - x) + f2(Y - x) 

49. II = (111 - 1l0l(1n r)lIn (rl/ro) + (110 In rl - Ul In ro)lIn (rl/rO) 

Problem Set 13.1, page 606 

5. x - iy = -(x + iy), x = 0 
9. -5/169 11. -7/13 -(22/l3)i 

15. -7/17 - (l1117)i 17.xl(x2 + y2) 

Problem Set 13.2, page 611 

1. 3V2(cos (--!7T) + i sin (-!7T)) 

3. 5 (cos 7T + i sin 7T) = 5 cos 7T 

7.484 
13. - 273 + 136i 
19. (x2 - y2)/(x2 + y2)2 

5 1 .. 1 
• cos "27T + I sm "27T 



App. 2 Answers to Odd-Numbered Problems 

7. ~v'6I (cos arctan ~ + i sin arctan ~) 
11. arctan (±3/4) 13. ±7r/4 

17.2.94020 + 0.59601i 19.0.54030 - 0.84147i 
21. cos (-~7r) + i sin (-~7r), cos ~7r + i sin ~7r 

9. -37r/4 

15. 37r/4 

23. ±O ±i)rV2 25. -I, cos!7r ::!: i sin !7r, cos ~7r ± i sin ~7r 
27. 4 + 3i, 4 - 8i 29. ~ - i, 2 + ~i 
35. 1<:1 + z212 = (:1 + Z2)(Zl + Z2) = (:1 + z'2)(':1 + ':2)' Multiply out and use 

Re <:1':2 ~ IZ1z21 (Prob. 32): 
:1':1 + :1':2 + :2':1 + ::2':2 = hl2 + 2 Re :1':2 + IZ212 ~ 1:112 + 2blk:21 + IZ212 
= (1:11 + IZ21)2. 
Take the square root to get (6). 

Problem Set 13.3, page 617 

1. Circle of radius ~, center 3 + 2i 
3. Set obtained from an open disk of radius I by omitting its center z = 1 
5. Hyperbola xy = 1 7 . .v-axis 
9. The region above y = x 

13. f = I - 11(::; + 1) = 1 - (x + 1 - iy)/l(x + 1)2 + y21; 0.9 - O.li 
15. (x2 - y2 - 2.ixr)/(x2 + y2)2, -i/2 17. Yes since r2(sin 2e1/r ~ 0 
19. Yes 21. 6;::2(;::3 + i) 
23. 2i (1 - Z)-3 

Problem Set 13.4, page 623 

1. Yes 3. No 5. Yes 
7. No 9.Yesforz*0 

11. rx = x/r = cos e"y = sin e, ex = -(sin e)/r, ey = (cos e)/r, 

(a) 0 = Ux - Vy = It,. cos e + tllI(-sin e)/r - Vr sin e - vo(cos e)/r. 

(b) 0 = lty + Vx = 1I,. sin e + lle(COS e)/r + Vr cos e + v e ( -sin e)/r. 
Multiply (a) by cos e, (b) by sin e, and add. Etc. 

13. z2/2 15. In Izl + i Arg : 17. Z3 

19. No 21. No 23. c = I, cos x sinh y 
27. Use (4), (5), and (1). 

Problem Set 13.5, page 626 

3. -1.13120 + 2.47173i, e = 2.71828 5. -i, 1 
7. eO.s(cos 5 - i sin 5), 2.22554 9. e-2x cos 2.y, _e-2T sin 2.y 

11. exp (x2 - )"2) cos 2xy. exp (x2 - y2) sin 2.\)" 
13. e

i7r/4
, e5m/4 

15. Vr exp [ice + 2k7r)/Il], k = 0," ',11 - 1 

A37 

17. gem 19. z = In 2. + tri + 21l7ri (11 = 0, ±l,"') 
21.: = In 5 - arctan ~i ± 21l7ri (11 = 0,1,"') 

Problem Set 13.6, page 629 

3. Use (II), then (5) for e
iy

, and simplify. 5. Use (II) and simplify. 
7. cos 1 cosh 1 - i sin 1 sinh 1 = 0.83373 - 0.98890i 
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9.74.203, 74.210 
13. -1 

11. -3.7245 - 0.51182i 
15. cosh 4 = 27.308 

17. z = :::':::(211 + 1)7Ti/2 19. z = ~(21l + 1)7T - (-l)n1.4436i 
21. ::: = :::':::lI7Ti 

25. Insert the definitions on the left, multiply out, simplify. 

Problem Set 13.7, page 633 

1. In 10 + 7Ti 3. ~ In 8 - ~7Ti 
5. In 5 + (arctan ~ - 7T)i = 1.609 - 2.214i 

7. 0.9273i 9. ~ In 2 - ~7Ti 
11. :::':::(211 + I )7Ti. 11 = 0, I. . . . 13. In 6 :::'::: (21Z + 117Ti, 11 = O. 1. ... 
15. (7T - I :::'::: 2117T)i, Il = 0, 1, ... 
17. In (;2) = (:::':::211 + i)7Ti. 21n i = :::':::(411 + l)'ITi. n = O. 1. ... 
19. eO.

3(cos 0.7 + i sin 0.7) = 1.032 + 0.870i 
21. e2(l + i)/V2 23. 64(cos (In 4) + i sin (In 4» 
25. 2.8079 + 1.3179i 27. (I + ;)/,\0. 

Chapter 13 Review Questions and Problems, page 634 

17. -32 - 24i 

23. 6V2e37ri/4 

29. (:::':::1 :::'::: i)/V2 

35. f(:::) = ez2 

41.0 

19. -~ - ~i 
25. 12e-77i/2 

31. fez) = liz 
37. (-x2 + )"2)/2 

43.0.6435i 

Problem Set 14.1, page 645 

21.5 - 3i 
27. :::':::(2 + 2i) 
33. fez) = (l + i):::2 

39. No 
45. -1.5431 

1. Straight segment from I + 3i to 4 + 12i 
3. Circle of radius 3, center 4 + i 5. Semicircle. radius 1. center 0 
7. Ellipse, half-axes 6 and 5 
9. Parabola)' = ¥3 from - 1 - ~i to 2 + 4i 

11. e-it (0 ~ t ~ 27T) 

13. t + ilt (1 ~ t ~ 4) 

17. -Q - ib + re-it (0 ~ t ~ 27T) 

21. 0 
25. il2 

29.2 sinh ~ 

Problem Set 14.2, page 653 

1. 7Ti. no 
7. O. yes 

3.0, yes 
9.0, no 

15. Yes, by the deformation principle 
21. 7Ti 23.27Ti 
27. (a) 0, (b) 7T 29.0 

15. t + (4 - 4t2 )i (-1 ~ t ~ I) 

19.~ + ~i 
23. 7Ti + ~i sinh 27T 
27. -I + i tanh ~7T = -I + 0.6558i 

5.0, yes 
11. O. yes 
19. 7Ti by path deformation 
25. 0 



App. 2 Answers to Odd-Numbered Problems 

Problem Set 14.3, page 657 

1.-4~ 3.4~ 

7.0 9. -~i 

13. ~ 15. 2m Ln 4 = 8.710i 
17. ~i cosh2(l + i) = ~(-0.2828 + 1.6489i) 

Problem Set 14.4, page 661 

5.8m 
11.m 

1. 27~i/4 3. -2~ierr/2 5. ma3/3 

7. 2~i if lal < 2.0 if lal > 2 9. m(cos i-sin ~) 
11. 2~2i 13. ~iea/2124 if la - 2 - il < 3 0 if la - 2 - il > 3 

Chapter 14 Review Questions and Problems, page 662 

17. -6~i 

23. ~i sin 8 

19.0 
25.0 

Problem Set 15.1, page 672 

21. -~i 
27. ~ 29.0 

1. Bounded, divergent, ± J 3. Bounded, convergent, 0 

5. Unbounded 
7. Bounded. divergent, ±llV'2" ± i, O. I, -2 

9. Convergent, 0 

A39 

13. IZn - II < ~E, Iz~ - [*1 < ~E (n > N(E)), hence IZn + z~ - (l + [*)1 < ~E + ~E 
17. Convergent 19. Divergent 

21. Conditionally convergent 23. Divergent by Theorem 3 
27.11= 1100 + 75il = 125 (why?); 1100 + 75iI 125/125! = 125125/[\h50~ (l251el25J 

= e125tV250~ = 6.91 . 1052 

Problem Set 15.2, page 677 

1. ~ anz2n = ~ an(z2)n, Iz21 < R = lim lanlan+ll, hence Izl <\'R. 
3. -i, I 5. -1, e by (6) and (1 + I1n)n ~ e. 

7.0, Iblal 9. O. 1 11.0, 1 
13. 3 - 2i. 1 15. i, 1IV2 17. 0, V2 

Problem Set 15.3, page 682 

1. 3 3. V2 5. V5i3 
7. 1/\/7 9. ] 

Problem Set 15.4, page 690 

1. 1 - 2z + 2z 2 
- ~Z3 + ~Z4 - + .. ', R = 00 

3. e-2i(1 + (z + 2i) + hz + 2i)2 + t(z + 2i)3 + l4(Z + 2i)4 + ... , R = 00 

5. I - ~(z - ~~)2 + l4(Z - !~)4 - 7~O(Z - !~)6 + - ... , R = oc 

7. ~ + ~i + !i(z - i) + (-~ + ~O(Z - ;)2 - ~(z - ;)3 + - ... , R = V2 
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9. 1 - !::2 + t::4 - .i8::.6 + 3~4<.8 - + .. " R = x 

11.4(:: - 1) + \O(z - 1)2 + 16(:: - 1)3 + 14(:: - \)4 + 6(:: - 1)5 + (z - 1)6 

13. (2/v;.)(:: - z3/3 + ::5(2!5) - z7/(3!7) + ... ), R = GC 

15. ;:3/(l!3) - ::7/(3!7) + ;:1l/(5!1l) - + . ". R = x 

19.:: + ~Z3 + 1~::5 + i{5::7 + . ", R = !7T 

Problem Set 15.5, page 697 

1. Use Theorem 1. 3. R = \[\1'; > 0.56 

5. Iz nl ~ 1 and ~ 1//12 converges. 

9. Iz + L - 2il ~ r < R = 4 

7. Itanhn Izll ~ I, 1/(/12 + \) < \//12 

11. Izl ~ 2 - 8 (8 > 0) 

13. Nowhere 15.lzl ~ \,'5 - 8 (8) 0) 

Chapter 15 Review Questions and Problems, page 698 

11. x, e3 -

15. GC 

19. 1/3 

13. 1. ! Ln[(1 + z)/(1 - .:)] 

17. 1/v;., [l - 7T(Z - 2i)2r 1 

21. -1 - (::. - 7Ti) - (:: - 7Ti)2/2! - .. " R = x 

23.! + ~(:: + I) + t(z + 1)2 + 1
1
6(Z + 1)3 + . ", R = 2 

25. \ + 3;: + 6;:2 + 10;:3 + .. '. R = I. Differentiate the geometric series. 

27. i + (:: + i) - i(z + i)2 - (z + i)3 + .. " R = 1 

1 \ 13 1 15 29. -(:: - 2 7T) + 3! (:: - 27T) - 5! (;: - 27T) + - .. '. R = ex; 

Problem Set 16.1, page 707 

\ 1 1 1 
1. - + - + - + - + 1 + z + Z2 + .. '. R = \ 

.:4 ::3 Z2 z 

1111 I 12 
3. -3 - - + - - - + - - - - - + - ... R = x 

Z Z2 2;:: 6 24 .(. 120 ~ , 

\ 1 1 1 
5. -_3 + - + - + - + ... R = ox 

::5 2::7 6;:9 ' 

7. -- = e 2: = e -- + 1 + --
ez-1e oc (::: - I)n-l [1 z - \ 

Z - \ n~O /1! Z - \ 2! 
+"'],R=X 

x (i In -l-l il2 \; 1 
9. - 2:"2 (.: - i)n-l = - --=-=-=- + "4 + -8 (:: - i) - 16 (:: - ;)2 - .. " 

n~O <. I 

R=2 
x 1 

11. - 2: (.: + ;)n-l = - ~ - \ - (.: + ;) - .. " R = 1 
n~O Z I 

3 
13. - -- + 2 + (z - \) 

z - 1 
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15. L ~3n, 1::1 < I. 
Xl 1 

- L _3n+3' Izl > 1 
n~O ~ 

:x; 

17. L ;::4n+2, 1:::1 < I, 
x l 

- L 4n+2' Izl > 1 
'11=0 Z '>1=0 

i I 
19. + -- + i + (;:: - i) 

(::: - i)2 ~ - i 

x (4 I) x I 
21. (I - 4:::) L ~4n, Izl < 1, 3 - 'I L 4n' Izl > I 

n=O Z Z n~O Z 

Problem Set 16.2, page 711 

1. :::,:::~. :::':::~, ... (poles of 2nd order), :x (essential singularity) 

3.0, :::,:::v:;.;.. :::,:::\12; . ... (simple poles), :x (essential singularity) 

5. :x (essential singularity) 

7. :::'::: I, :::':::i (fourth-order poles), :x (essential singularity) 

9. :::':::i (essential singularities) 13. -16i (fourth order) 

15. :::'::: 1, :::':::2, ... (third order) 17. :::':::irV3 (simple) 

19. :::':::2i (simple), 0, ::':.2 m, :!::4'ITi, ... (second order) 
21. O. :::':::271. :::':::471 • ... (fourth order) 

23. f(~) = (~ - ~o)ng(:::), g(zo) "* 0, hence p(:~) = (::: - ;::0)
2nl(z). 

Problem Set 16.3, page 717 

1. i. 4i 
5. 1/5! (at::: = 0) 
9. -! (at ~ = I), ~ (at z = -1) 

15. el/z = 1 + 1/;:: + ... , AilS. 2m 

19. -4'ITi sinh ~7I 
23.0 

Problem Set 16.4, page 725 

1. 271/\;TI 3.271/35 

7.0 9. 1f 

13.71"/16 15.0 

19.0 21. 0 

25.0 27. -71"/2 

3. -~i (at ~ = 2i), ~i (at - 2i) 

7. I (at :::':::ll'1T) 

11. -1 (at z = :::':::~71", :::':::~71", ... ) 
17. Simple poles at :!::~. Am. -4i 

21. -4i sinh ~ 
25. ~ (at ~ = ~), 2 (at ~ = ~). Ans. 5m 

5. 271/3 

11. 271/3 
17.71"12 
23.71" 

Chapter 16 Review Questions and Problems, page 726 

17. 271"i/3 

23. m/4 
27.6m 
33.0 

19. 571" 21. ~'IT cos 10 
25.0 (11 even), (_I)<n-1)/2 271"i/(/1 - I)! (/1 odd) 

29. 271/7 31. 4'IT/V3 
35. 71/2 

A41 
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Problem Set 17.1, page 733 

3. Only the size 

5. x = e, W = -y + ie, y = k. w = -k + ix 

7. -371"/4 < Arg w < 31714, Iwl < 1/8 9.lwl > 3 
11.lwl ~ 16, v ~ 0 13. Annulus 3 < Iwl < 5 
15. In 2 ~ II ~ In 3, 71"/4 ~ v ~ 17/2 17. ±1, ±i 
19.0, ±1, ±2, . . . 21. -a/2 

23. (/ and 0, ~ 25. M = eX = 1 when x = o. J = e2x 

27. M = 1IIzi = 1 on the unit circle, J = 111<:12 

Problem Set 17.2, page 737 

_ _ _ -nv 
~.~. -

-2w + 3 

9. z = 0 
13. z = ±i 
17. (/ - d = 0, ble = 1 by (5) 

Problem Set 17.3, page 741 

5i 
7.;::= ---

4w - 2 

n. <: = ~ + i ± Vi + i 
15. w = 4/z, etc. 

19. w = add (a *- 0, d *- 0) 

5. Apply the inverse g of f on both sides of Zl = f(zl) to get g(Zl) = g(f(zl» = Zl· 

7. w = (<: + 2i)/(z - 2i) 9. w = z - 4 

11. w = liz 13. w = (3iz + 1)lz 

15. w = (z + 1)/(-3z + I) 17. w = (2z - i)/(-iz - 2) 
19. w = (Z4 - i)/(-i:4 + 1) 

Problem Set 17.4, page 745 

1. Annulus 1 ~ Iwl ~ e2 

3. liVe < Iwl < Ye, 371"/4 < arg w < 571"/4 

5. 1 < Iwl < e. u > 0 
7. w-plane without 0 
9. u2/cosh2 1 + v 2/sinh2 1 ~ 1, u ~ 0 

11. Elliptic annulus bounded by u2/cosh2 I + v 2/sinh2 1 = I and 
u2/cosh2 5 + v 2/sinh2 5 = \ 

13. ::!:(211 + 1)17/2, II = 0, \, ... 

15.0 < [m t < 71" is the image of R under t = Z2. AilS. e t = e z2 

17. O. ±i, ±2i, ... 

19. 112/cosh2 1 + v2/sinh2 1 ~ \, v < 0 

21. v < 0 
23. -I ~ l/ ~ I. v = 0 (c = 0). u2/cosh2 e + u2/sinh2 e = I (e *- 0) 
25. In 2 ~ l/ ~ In 3, 71"/4 ~ v ~ 7[/2 

Problem Set 17.5, page 747 

1. w moves once around the unit circle. 
7. - i/2, 3 sheets 

5. - 5/3, 2 sheets 

9. 0, 2 sheets 
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Chapter 17 Review Questions and Problems, page 747 

11. 1I = ~V2 - I, ~V2 - I 13.lwl = 20.25, larg wi < n12 

15. The domain between II = ~ - v2 and It = 1 - ~V2 

17. Iw + ~I = ~ 19. 1I = 1 21.larg wi < 7T/4 
23. 0, (:::'::: 1 :::'::: i)/V2 25. n/8 :::'::: 117T/2. 11 = O. I, ... 

27. 0, :::':::i/V2 29. tV = iz 31. w = liz 
33. tV = zi(z + 2) 35. ::!:V2 37. 2 :::'::: v'6 
39. I + i :::'::: v'1+2i 41. w = e3z 43. z212k 
45. iz3 + 1 

Problem Set 18.1, page 753 

1. 20x + 200, 20z + 200 
5. F = (1lO/ln 2)Ln z 

3. 110 - SOx)" 110 + 25iz2 

7. F = 200 - (lOOlln 2) Ln z 
13. Use Fig. 388 in Sec. 17.4 with the z- and w-planes interchanged, and 

cos z = sin (z + !7T). 
15. <1> = 220 - 110xy 

Problem Set 18.2, page 757 

A43 

1 1I2 - v 2 = e2X(cos2 \' - sin2 )') c]:> = 4e2X(cos2 )' - sin2 v) = -c]:> V2c]:> = 0 • ], xx . YY' 

3. Straightforward calculation, involving the chain rule and the Cauchy-Riemann 
equations 

5. See Fig. 389 in Sec. 17.4. c]:> = sin2 x cosh2 J - cos2 x sinh2 y. 

9. (i) c]:> = U1(l - "\y). (ii) w = iz2 maps R onto -2 ~ 1I ~ O. thus 
<1>* = U1(l + !1I) = U1(l + i( -2x),». 

11. By Theorem 1 in Sec. 17.2 
13. <1> = 10[1 - (lin) Arg (z - 4)J, F = lOll + (i/n) Ln (z - 4)1 

15. Corresponding rays in the w-plane make equal angles, and the mapping is 
conformal. 

Problem Set 18.3, page 760 

3. (lOO/d»'. Rotate through 7T12. 5. 100 - 2408/7T 

7. Re F(z) = 100 + (200/n) Re (arcsin z) 9. (240/n) Arg z 

11. To + (2/7T)(TI - To) Arg z 13.50 + (400/7T) Arg z 

Problem Set 18.4, page 766 

1. V = iV2 = iK, 'It = - Kx = canst, c]:> = Ky = canST 
3. F(z) = Kz (K positive real) 
5. V = (I + 2i)K. F = (l - 2i)K::. 
7. F(z) = Z3 

9. Hyperbolas (x + I)y = COllst. Flow around a corner formed by x = -} and the 
x-axis. 

11. Y/(X2 + .1'2) = C or X2 + (y - k)2 = k 2 

13. F(z) = ::.Iro + rolz 
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15. Use that w = arccos Z is w = cos z with the roles of the z- and w-planes 
interchanged. 

Problem Set 18.5, page 771 

5. I - ,.2 cos 28 
7. 2(r sin 8 - !r2 sin 28 + ~,.3 sin 38 - + ... ) 
9. ~r2 sin 28 - ~r6 sin 68 

11. ~7T2 - 4(,. cos 8 - ~r2 cos 28 + ~r3 cos 38 - + ... ) 

13. - r sin 8 - - ,.3 sin 38 + - r 5 sin 58 - + ... 4 ( I 1 ) 
7T 9 ~ 

Problem Set 18.6, page 774 

1. No; Izl2 is not analytic. 3. Use (2). F(~) = 2i 5. cJ:>(4, -4) = -12 
7. Use (3). cJ:>(L 1) = -2 11. IF(ei 1)12 = 2 - 2 cos 'lA, e = 7T12, Max = 2 

13. IF(z) I = [cos2 2x + sinh2 2y]1I2, z = ±i, Max = [1 + sinh2 2]112 = cosh 'l = 3.7622 
15. No 

Chapter 18 Review Questions and Problems, page 775 

11. cJ:> = 10(1 - x + y), F = 10 - 10(1 + i)z. 

13. (201ln 10) Ln ;:: 15. (101In 1O)(ln 100 - In r) 

17. Arg z = const 19. (-i/7T) Ln z 
23. T(x. y) = x(2y + I) = const 25. Circles (x - C)2 + )'2 = c2 

c 
27. F(;::) = - Ln (;:: - 5), Arg (;:: - 5) = C 

27T 

29.20 + - r sin e + - ,.3 sin 3fJ + - ,.5 sin 5fJ + ... 80 ( I I ) 
7T 3 5 

Problem Set 19.1, page 786 

1. 0.9817' 102, -0.1010' 103 ,0.5787' 10-2, -0.1360' 105 

3.0.36443/(17.862 - 17.798) = 0.36443/0.064 = 5.6942, 0.3644/(17.86 - 17.80) = 

0.3644/0.06 = 6.073, 0.364/(17.9 - 17.8) = 3.64, impossible 

0.36443(17.862 + 17.798) 0.36443' 35.660 12.996 
5. 17.8622 _ 17.7982 = 319.05 _ 316.77 = ~ = 5.7000, 

13.00 13.0 13 10 
-22 = 5.702, ~2 = 5.70. - = 5.7. - = 5 

. 8 _. 8 2.3 2 

7. 19.95,0.049,0.05013: 20, 0, 0.05 
9. In the present calculation, (b) is more accurate than (a). 

11. -0.126' 10-2, -0.402' 10-3 ; -0.267' 10-6 , -0.847' 10-7 

13. Add first, then round. 

15. ~ = ~I + EI = al
: EI (1 _ ~2 + ~2: _ + ... ) = ~I + ~l _ ~2 . ~1 , 

Q2 Q2 + 102 a2 a2 a2 a2 a2 a 2 Q2 
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I( al al)/I all lEI E21 hence - - -:::::- - = - - - ~ IErll + IEr21 ~ {3rl + {3r2 
{/2 a2 a2 al a2 

19. (a) 19121 = 0.904761905, Echop = Eround = 0.1905.10-5
, 

E,·.chop = Er.round = 0.2106.10-5
, etc. 

Problem Set 19_2, page 796 

1. g = 1.4 sin x, 1.37263 (= X5) 5. g = X4 + 0.2, 0.20165 (= x 3) 

7. 2.403 (= X5' exact to 3S) 9.0.904557 (= x3 ) 

11. 1.834243 (= X4) 13. Xo = 4.5, X4 = 4.73004 (6S exact) 
15. (a) 0.5, 0.375, 0.377968, 0.377964; (b) IIV7 = 0.377964 473 
17. Xn+l = (2xn + 7/xn2 )/3, 1.912931 (= X3) 

19. (a) Algorithm Bisect (f. ao_ bo, N) Bisection Method 

A45 

This algorithm computes an interval [an, b1J containing a solution of f(x) = 0 
(f continuous) or it computes a solution Cn' given an initial interval lao, bol such 
that f(ao)f(bo) < O. Here N is determined by (b - a)I2N ~ {3, {3 the required 
accuracy. 

INPUT: Initial interval lao, boL maximum number of iterations N. 

OUTPUT: Interval LaN, bNl containing a solution, or a solution Cn. 

For 11 = 0, I, .. " N - I do: 

End 

Compute Cn = ~(an + b,J. 
If f(cn ) = 0 then OUTPUT Cn. Stop. [Procedure completed] 

Else continue. 

If f(an)f(cn) < 0 then an+l = an and bn+l = cn. 

Else set {/n+l = Cn and bn + 1 = bn . 

OUTPUT LUN' bN ]. Stop. 
[Procedure completed] 

End BISECT 

Note that [aN' bNl gives (aN + bN)!2 as an approximation of the zero and (bN - aN)!2 
as a cOlTesponding elTor bound. 

(b) 0.739085; (c) 1.30980, 0.429494 
21. 1.834243 23.0.904557 

Problem Set 19.3, page 808 

1. Lo(x) = -2.r + 19, L1(x) = 2x - 18, Pl(X) = 0.1082x + 1.2234, 
Pl(9.4) = 2.2405 

3.0.9971,0.9943.0.9915 (0.9916 4D), 0.9861 (0.9862 4D), 0.9835, 0.9809 
5. P2(X) = -0.44304x2 + 1.30906x - 0.02322, P2(0.75) = 0.70929 
7. P2(X) = -0.1434x2 + 1.0895x, P2(0.5) = 0.5089, P2(1.5) = 1.3116 
9. La = -t(x - I)(x - 2)(x - 3), Ll = !x(x - 2)(x - 3), ~ = -~x(x - 1)(x - 3), 
~ = tx(x - I)(x - 2); P3(X) = 1 + 0.039740x - 0.335187x2 + 0.060645x3; 
P3(O·5) = 0.943654 (6S-exact 0.938470), P3(1.5) = 0.510116 (0.511828), 
P3(2.5) = -0.047993 (-0.048384) 
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13. P2(X) = 0.9461x - 0.2868x(x - 1)/2 = -0.1434x2 + 1.0895x 

15.0.722,0.786 
17. 8f1/2 = 0.057839, 8f3/2 = 0.069704. etc. 

Problem Set 19.4, page 815 

9. [-1.39(x - 5)2 + 0.58(x - 5)3]" = 0.004 at x = 5.8 (due to roundoff; should be 0). 
11. 1 - ~X2 + ~X4 
13.4 - 12x2 

- 8x3 ,4 - 12x2 + 8x3
. Yes 

15. I - x 2 , -2(x - l) - (x - 1)2 + 2(x - 1)3, 
-1 + 2(x - 2) + 5(x - 2)2 - 6(x - 2)3 

17. Curvature f"/(I + j'2)3/2 = f" if If'l is small 
19. Use that the third derivative of a cubic polynomial is constant, so that gill is 

piecewise constant, hence constant throughout under the present assumption. Now 
integrate three times. 

Problem Set 19.5, page 828 

1. 0.747131 3. 0.69377 (5S-exact 0.69315) 
5. 1.566 (4S-exact 1.557) 7.0.894 (3S-exact 0.908) 
9.1h/2 + Eh/2 = 1.55963 - 0.00221 = 1.55742 (6S-exact 1.55741) 

11. Jh/2 + Eh/2 = 0.90491 + 0.00349 = 0.90840 (5S-exact 0.90842) 
13. 0.94508, 0.94583 (5S-exact 0.94608) 
15.0.94614588, 0.94608693 (8S-exact 0.94608307) 
17. 0.946083 (6S-exact) 
19. 0.9774586 (7S-exact 0.9774377) 
21. x - 2 = t, 1.098609 (7S-exact 1.098612) 
23. x = !U + 1),0.7468241268 (lOS-exact 0.7468241330) 
25. (a) M2 = 2. M2* = ~, IKM21 = 2/(J2n2). 11 = 183. (b) r iv

) = 24/x5
, 2m = 14 

27. 0.08, 0.32, 0.176, 0.256 (exact) 
29.5(0.1040 - !. 0.1760 + i· 0.1344 - ~. 0.0384) = 0.256 

Chapter 19 Review Questions and Problems, page 830 

17.4.266,4.38, 6.0, impossible 19.49.980,0.020; 49.980, 0.020008 
21. 17.5565 ~ s ~ 17.5675 23. The same as that of a. 
25. -0.2, -0.20032, -0.200323 
27.3,2.822785,2.801665,2.801386, VlOI386 
29.2.95647.2.96087 
31. 0.26, M2 = 6, M2* = 0, -0.02 ~ E ~ 0, 0.24 ~ a ~ 0.26 
33. 1.001005, -0.001476 ~ E ~ 0 

Problem Set 20.1, page 839 

1. Xl = -2.4, X2 = 5.3 
5. Xl = 2, X2 = 1 

3. No solutlOn 

7. Xl = 6.78, x2 = -11.3, X3 = 15.82 
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9. Xl = 0, x2 = T1 arbitrary, X3 = 5f1 + 10 
11. Xl = fl , x2 = t2, both arbitrary, X3 = 1.25fl - 2.25t2 

13. Xl = 1.5, X2 = -3.5, X3 = 4.5, X4 = -2.5 

Problem Set 20.3, page 850 

3. Exact 21.5, 0, -13.8 5. Exact 2, I, 4 7. Exact 0.5, 0.5, 0.5 

A47 

9. (a) X
(3

)T = [0.49982 0.50001 0.50002], (b) X
(3

)T = [0.50333 0.49985 0.49968] 
11. 6, 15, 46, 96 steps; spectral radius 0.09, 0.35, 0.72, 0.85, approximately 

13. [1.99934 1.00043 3.99684]T (Jacobi, step 5): [2.00004 0.998059 4.00072jT 
(Gauss-Seidel) 

17. v'306 = 17.49, 12, 12 19. V 18k2 = 4.24Ikl, 41kl, 41kl 
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Problem Set 20.4, page 858 

1. 12, v'62 = 7.87,6, [t -] ~] 
5. 1.9, V1.35 = 1.16, 1. lO.3 -0.1 

3.14, V56 = 7.07,4, [-1 I ~ -~] 
0.5 1.0] 

7. 6, \''6, 1. [1 1 1] 
13. K = 100· 100 

11. II AliI = 17, II A-I 111 = 17, K = 289 
15. K = 1.2' 1~~ = 1.469 

17. 46 ~ 6· 17 or 7 . 17 
21. [-0.6 2.8]T 

19. [0 11T, [1 -OAIT,289 

23.27,748,28375,943656,29070279 

Problem Set 20.5, page 862 

1. -11.4 + 5Ax 3. 8.95 - 0.388x 
5. s = -675 + 901, Vav = 90 kmlh 9.4 - 0.75x - 0.125x2 

11. 5.248 + 1.543x, 3.900 + 0.5321x + 2.021x2 
13. -2.448 + 16.23x, -9.114 + 13.73x + 2.500x2, 

-2.270 + 1.466x -1.778x2 + 2.852x3 

Problem Set 20.7, page 871 

1. 5 ~ A ~ 9 3.5,0, 7; radii 4, 6, 6 

5.IA - 4il ~ v'2 + 0.1. IAI ~ 0.1, IA - 9il ~ v'2 
7.111 = 100,122 = 133 = I 
9. They lie in the intervals with endpoints ajj :::t::: (11 - 1)10-6

. (Why?) 
11. 0 lies in no Gerschgorin disk, by (3) with >; hence det A = Al ... An =1= O. 

13. peA) ~ Row sum norm II A IIx = max L lajkl = max (Iaiil + GerschgOlin radius) 
J k J 

15. Vi53 = 12.37 17. Vl22 = 11.05 19. 6 ~ A ~ 10. 8 ~ A ~ 8 

Problem Set 20.S, page 875 

1. q = 4,4.493.4.4999: lEI ~ 1.5.0.1849,0.0206 
3. q = 8,8.1846,8.2252; lEI ~ L 0.4769, 0.2200 
5. q = 4,4.786,4.917; lEI ~ 1.63,0.619,0.399 
7. q = 5.5,5.5738.5.6018: lEI ~ 0.5. 0.3115, 0.1899: eigenvallle~ (4S) 1.697,3.382, 

5.303.5.618 
9. )' = Ax = Ax, yTx = AxTx, yTy = A2xTx, 

E2 ~ '~/Y/XTX - (yTX/XTl\.)2 = A2 - A2 = 0 

11. q = 1. ... , - 2.8993 approximates - 3 (0 of the given matrix), 
lEI ~ 1.633, .. ',0.7024 (Step 8) 

Problem Set 20.9, page 882 

[ 3~ -UlO1776 

L~61~1 ~[ 
0.9g0000 -0.-1--1-1814 

1. - ~.!lO2776 6.730769 -O.-1-·HS1-1- 0.H70l64 

l.H-l6154 1.769230 0 0.371803 

U37iOO:] 
0.4H9H36 
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5. Eigenvalues 8, 3, 1 

r 5.M516 -2.50867 01 r 7.45139 -1.56325 

00983071 -2.5086~ 5.307219 0.374953 , -1.56325 3.544142 

0.374953 1.04762 0 0.0983071 1.00446 

r 7.91494 -0.646602 

: 03124691 -~.646602 3.08458 

0.0312469 1.000482 

r 18.3171 0.881767 

o 1 r
IB3786 0.396511 

:O6~241· 7. ~.881767 8.29042 0.360275 , 0.396511 8.24727 

0.360275 1.39250 0 0.0600924 1.37414 

r 18.3910 0.177669 

:01lm141 ~.177669 8.23540 

0.0100214 1.37363 

r

7an24 0.0571287 
o 1 r7~n98 0.0326363 

:=21221 9. ~.0571287 4.00088 0.0249333 , 0.0326363 4.U0034 

0.0249333 0.996875 0 0.00621221 0.996681 

r

7OO322 0.0186419 

:.001547821 ~.0186419 4.00011 

U.00154782 0.Y96669 

Chapter 20 Review Questions and Problems, page 883 

17. r4 -I 2{ 19. L6 -3 I{ 

21. All nonzero entries of the factors are 1. 

-1.5904 

23. -1.5904 
[ 

2.8193 

1.2048 =~:::~l (4D-values) 25. Exact [-2 1 

-0.0482 

27. 15, ,189, 8 

-0.0241 0.1205 

31. 14, ,178, 7 

33. 6 

29.7, ,/21, 4 

35.9 37. 11.5 . 4.4578 = 51.2651 

39. Y = 1.98 + 0.98x 

41. Centers 1. 1, 1. radii 2.5. 1. 2.5 (A = 2.944.0.028 ::':: 0.290i, 3D) 

43. Centers 5, 6, 8: radii 2,1, I, (A = 4.1864. 6.4707, 8.3429. 5S) 

[ 15 
-2.23607 

o J [ 9.M913 
-1.06216 

45. -~.23607 5.8 -3.1 ,Step3: -1.06216 4.28682 

-3.1 6.7 0 -0.00308 

-:00308J 
0.26345 
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Problem Set 21.1, page 897 

1. Y = eX, 0.0382, 0.1245 (elTor of X5, .\"10) 

3. Y = x - tanh x (set y - x = til, 0.009292, 0.0188465 (elTor of .\"5, XIO) 

5. y = eX, 0.001275, 0.004200 (elTor of X5' XIO) 

7. Y = 11(1 - x 2 /2), 0.00029, 0.01187 (elTor of X5' xw) 

9. y = 11(1 - x212), 0.03547. 0.28715 (elTor of X5' XIO) 

11. Y = 11(1 - x 2/2); error -10-8 , -4' 10-8 , .. " -6' 10-7 , + 10-5; 
about 1.3' 10-5 by (10) 

13.y = xex ; eITor'l~ (for x = L"" 3) 19,46,85,139,213,315,454,640,889,1219 
15. Y = 3 cos x - 2 cos2 x; error' 107

: 0.18, 0.74, 1.73,3.28,5.59,9.04, 14.33,22.77, 
36.80, 61.42 

17. Y = 1I(x5 + 1), 0.000307, -0.000259 (error of X5' XIO) 

19. The elTors are for E.-c. 0.02000, 0.06287. 0.05076. for Improved E.-C. -0.000455, 
0.012086,0.009601, for RK 0.0000012,0.000016,0.000536. 

Problem Set 21.2, page 901 

3. y = e-O.
1x2

; elTors 10-6 to 6· 10-6 

5. y = tan x; .\'4' .. " )'10 (error' 105): 0.422798 (-0.48),0.546315 (-1.2),0.684161 
(-2.4),0.842332 (-4.4),1.029714 (-7.5),1.260288 (-13),1.557626 (-22) 

7. RK-elTor smaller. elTor' 105 = 0.4, 0.3, 0.2. 5.6 (for x = 0.-1-, 0.6, 0.8, 1.0) 
9 • .\'4 = 4.229690, Y5 = 4.556 859, )'6 = 5.360657. Y7 = 8.082 563 

11. ElTors between -6 . 10-7 and + 3 . 10-7 . Solution eX - x-I 

13. Errors' 105 from x = 0.3 to 0.7: -5, -II, -19, -31, -47 

15. (a) 0, 0.02, 0.0884, 0.215 848,)'4 = 0.417818'.\'5 = 0.708887 (poor). 
(b) By 30-50% 

Problem Set 21.3, page 908 

3. )'1 = eX, )'2 = -ex. elTors range from ±0.02 to ±0.23, monotone. 

5. )'~ = Y2, )'~ = -4)'1' )' = Yl = I, 0.84, 0.52, 0.0656, -0.4720; y = cos 2x 
7')'1 = 4e-x sin x')'2 = 4e-x cos x; elTors from 0 to about ±O.I 
9. ElTors smaller by about a factor 104 

11. Y = 0.198669,0.389494,0.565220,0.719632,0.847790; 
y' = 0.980132,0.922062,0.830020,0.709991,0.568572 

13. Y1 = e-3.1: - e-5:r')'2 = e-3.1: + e-5.1:;)'1 = 0.1341. 0.1807, 0.1832, 0.1657, 
0.1409;)'2 = 1.348,0.9170.0.6300,0.4368.0.3054 

17. You gel the exact solution, except for a roundoff elTor [e.g., Yl = 2.761 608, 
y(0.2) = 2.7616 (exact), etc.]. Why? 

19. Y = 0.198669,0.389494,0.565220,0.719631. 0.847789; 
y' = 0.980132,0.922061. 0.830019, 0.709988, 0.568568 

Problem Set 21.4, page 916 

3. 105, 155, 105, 115; Step 5: 104.94, 154.97, 104.97, 114.98 
5.0.108253, 0.108253,0.324760,0.324760; Step 10: 0.108538, 0.108396, 0.324902, 

0.324831 
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7. 0, O. O. O. All equipotentia11ines meet at the comers (why?). Step 5: 0.29298. 
0.14649,0.14649.0.073245 

9. - 3un + U12 = -200, Un - 3U12 = -100 
11. U12 = U32 = 31.25, U21 = U23 = 18.75, ujk = 25 at the others 
13. U21 = U23 = 0.25, U12 = U32 = -0.25, Ujk = 0 else 
15. (a) Un = -U12 = -66. (b) Reduce to 4 equations by symmetry. 

Un = U31 = -U15 = - 1I35 = -92.92, U21 = -U25 = -87.45, 
U12 = U32 = -U14 = -U34 = -64.22, U 22 = -U24 = -53.98, 
U13 = U23 = U33 = 0 

17. \13, Un = U21 = 0.0849, U12 = U22 = 0.3170. (0.1083, 0.3248 are 4S-values of 
the solution of the linear system of the problem.) 

Problem Set 21.5, page 921 

5. Un = 0.766. U21 = 1.109. U12 = 1.957. U22 = 3.293 
7. A as in Example I, right sides -2, -2, -2, -2. Solution Un = U21 = 1.14286, 

U 12 = U22 = 1.42857 
11. -4un + U21 + U12 = - 3. Un - 4U21 + U22 = -12, Un - 4U12 + U22 = 0, 

2U21 + 2U12 - 12u22 = - 14. Un = U22 = 2, U21 = 4. U12 = 1. Here 
-14/3 = -~(1 + 2.5) with 4/3 from the stencil. 

13. b = [-380 -190, -190, O]T; Un = 140, U21 = U 12 = 90, U22 = 30 

Problem Set 21.6, page 927 

A51 

5.0.1636.0.2545 (t = 0.04. x = 0.2,0.4).0.1074.0.1752 (t = 0.08),0.0735.0.1187 
(t = 0.12),0.0498,0.0807 (t = 0.16),0.0339,0.0548 (t = 0.2; exact 0.0331,0.0535) 

7. Substantially less accurate, 0.15, 0.25 (1 = 0.04),0.100,0.163 (t = 0.08) 
9. Step 5 gives 0,0.06279,0.09336,0.08364,0.04707, O. 

11. Step 2: 0 (exact 0),0.0453 (0.0422),0.0672 (0.0658), 0.0671 (0.0628),0.0394 
(0.0373), 0 (0) 

13.0.1018,0.1673,0.1673,0.1018 (t = 0.04),0.0219,0.0355, ... (t = 0.20) 
15.0.3301,0.5706.0.4522.0.2380 (t = 0.04).0.06538.0.10604,0.10565.0.6543 

(t = 0.20) 

Problem Set 21.7, page 930 

1. For x = 0.2, 0.4 we obtain 0.012, 0.02 (t = 0.2), 0.004, 0.008 (t = 0.4), -0.004, 
-0.008 (t = 0.6). etc. 

3. u(x, 1) = 0, -0.05, -0.10, -0.15, -0.075,0 
5.0.190,0.308,0.308,0.190 (0.178, 0.288, 0.288, 0.178 exact to 3D) 
7.0,0.354.0.766, 1.271, 1.679. 1.834 .... (t = 0.1); 0.0.575.0.935, 1.135, 1.296. 

1.357, ... (t = 0.2) 

Chapter 21 Review Questions and Problems, page 930 

17. y = tan x; 0 (0),0.10050 (-0.00017). 0.20304 (-0.00033), 0.30981 (-0.00047), 
0.42341 (-0.00062), 0.54702 (-0.00072) 



ASl App. 2 Answers to Odd-Numbered Problems 

19. 0.1 003349 (0.8 . 10-7 ) 0.2027099 (I.6 . 10-7), 0.3093360 (2.1 . 10-7). 0.4227930 
(2.3· 10-7 ),0.5463023 (1.8' 10-7

) 

25.y(0.4) = 1.822798,.\'(0.5) = 2.046315,)'(0.6) = 2.284161,)'(0.7) = 2.542332, 
y(0.8) = 2.829714, y(0.9) = 3.160288, .v(1.0) = 3.557626 

27'.\"1 = 3e-9x
,.I"2 = -5e-9

:r, [1.23251 -2.05419J, [0.506362 -0.843937],···, 
[0.035113 -0.058522] 

29. 1.96, 7.86, 29.46 
31. II(Pll ) = 1I(P31) = 270. U(P21 ) = U(P13) = U(P23) = U(P33) = 30, 

U(P12) = U(P32) = 90, 1I(P22) = 60 
35.0.06279,0.09336,0.08364,0.04707 
37.0, -0.352, -0.153,0.153,0.352,0 if t = 0.12 and 0,0.344,0.166, -0.166, 

-0.344, 0 if t = 0.24 
39.0.010956.0.017720.0.017747,0.010964 if t = 0.2 

Problem Set 22.1, page 939 

3. f = 3(-"1 - 2)2 + 2(X2 + 4)2 - 44. Step 3: [2.0055 - 3.9Y75]T 
5. f = 0.5(x1 - 1)2 + 0.7(X2 + 3)2 - 5.8, Step 3: rO.99406 -3.0015]T 
7. f = 0.2(X1 - 0.2)2 + X22 - 0.008. Step 3: [0.493 -O.Oll]T, 

Step 6: [0.203 0.004]T 

Problem Set 22.2, page 943 

1. X3, X4 unused time on MI' M2. respectively 

11. fmax = f(O. 5) = 10 
15. fmin = f(3.5, 2.5) = - 30 
17. X1/3 + x2/2 ~ 100, x1/3 + -"2/6 ~ 80, f = 150X1 + 

fmax = f(210, 60) = 37500 

3. No 
13. f max = f(9, 6) = 36 

19. 0.5X1 + 0.75x2 ~ 45 (copper), 0.5X1 + 0.25x2 ~ 30, f = 120x1 + 100x2, 

fmax = f(45, 30) = 8400 

Problem Set 22.3, page 946 

(
2100 200) 

1. f(12011 I, flOIl 1) = 48011 I 3. f -3-' 2/3 = 78000 

5. Matrices with Rows 2 and 3 and Columns 4 and 5 interchanged 
7. f(O, [0) = -10 9. f(5, 4, 6) = 478 

Problem Set 22.4, page 952 

1. f(-l-. -1-) = 72 
7. f(l, 1, 0) = 12 

3. f(10, 30) = 50 
9. f(!, 0, ~) = 3 

5. f(lO, 5) = 5500 

Chapter 22 Review Questions and Problems, page 952 

n. Step 5: [0.353 -0.028]T. Slower 
13. Of course! Step 5: [-1.003 1.897]T 

21. f(2, -1-) = 100 23. f(3, 6) = -54 25. /(50, 100) = 150 
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Problem Set 23.1, page 958 

9. 

o 0 

o 
1 

o 
o 

15. CD-------® 

o 
o o 

o 0 

Edge 

11. f: 
1 

0 

15'm 
3 4 

o 

] 

1 

21. >< 2 
~ 

0 0 
>< 
<ll 

23. E 2 
<ll 

3 > 0 0 
> 

3 

4 0 

25. Vertex Incident Edges 
1 -eh -e2, e3, -e4 

2 el 

3 e2, -e3 

4 e4 

Problem Set 23.2, page 962 

1.4 3.5 

A53 

0 

0 0 0 0 
13. 

0 0 0 

0 0 0 0 

5.4 
9. The idea is to go backward. There is a VIc-I adjacent to Vk and labeled k - 1, etc. 

Now the only vertex labeled 0 is s. Hence A(vo) = 0 implies Vo = s, so that 
Vo - VI - ... - Vk-l - Vic is a path s ~ Vic that has length k. 

15. No; there is no way of traveling along (3, 4) only once. 
21. From Tn to 100m, 10m, 2.5m, 111 + 4.6 

Problem Set 23.3, page 966 

1. (1. 2). (2,4). (4, 3); L2 = 6. L3 = 18. L4 = 14 
3. (1, 2), (I, 4), (2, 3); L2 = 2, L3 = 5, L4 = 5 
5. (1,4), (2, 4), (3, 4), (3, 5); L2 = 4, L3 = 3, L4 = 2, L5 = 8 
7. (1, 5), (2. 3), (2. 6), (3. 4), (3, 5); ~ = 9, ~ = 7, L4 = 8, L5 = 4, L6 = 14 

Problem Set 23.4, page 969 

2 I 
/ 

3. 4 ,\""2 1. 1 : 3 L = 12 , / 

4"\ 
5 

3 - 5 
L = 10 

8 
/ 

5. 1 - 2"\ 5 L = 28 
3~ 6 - 4 

"\ 
7 
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2 
/ 

9. I - 3 - 4 '\. L = 38 11. Yes 
5-6, 

15. G is connected. If G were not a tree, it would have a cycle, but this cycle would 
provide two paths between any pair of its vertices, contradicting the uniqueness. 

19. If we add an edge (u, u) to T, then since T is connected, there is a path U ~ u in T 
which. together with (II, u), forms a cycle. 

Problem Set 23.5, page 972 

1. (I, 2), (1.4), (3, 4), (4,5). L = 12 

3. (I. 2). (2, 8), (8, 7), (8. 6), (6, 5), (2, 4), (4, 3), L = 40 

5. (1,4), (3,4). (2,4). (3,5), L = 20 

7. (I, 2), (I, 3), (I, 4), (2, 6), (3, 5), L = 32 

11. If G is a tree 
13. A shortest spanning tree of the largest connected graph that contains vertex 1 

Problem Set 23.6, page 978 

1. I - 2 - 5, Ilf = 2; 1 - 4 - 2 - 5, Ilf = 2, etc. 

3. I - 2 - 4 - 6 . .1f = 2; I - 2 - 3 - 5 - 6. Ilf = I, etc. 

5. f12 = 4, f13 = 1. f14 = 4. f42 = 4. f43 = 0,125 = 8, f35 = 1, f = 9 
7. f12 = 4. f13 = 3, f24 = 4, f35 = 3, f54 = 2, f4fj = 6, f56 = 1, f = 7 
~ {~5,6},28 11. {2,~ 6},50 

13. I - 2 - 3 - 7, lJ.f = 2; I - 4 - 5 - 6 - 7, Ilf = 1; 
1 - 2 - 3 - 6 - 7, Ilf = 1; fmax = 14 

15. {3, 5, 7}. 22 17. S = {I, 41. cap (S. n = 6 + 8 = 14 

19. If fii < Cij as well as fii > 0 

Problem Set 23.7, page 982 

3. (2, 3) and (5. 6) 
5. 1 - 2 - 5, .:It = 2; 1 - 4 - 2 - 5, ~t = I; f = 6 + 2 + 1 = 9 
7. 1 - 2 - 4 - 6, .:It = 2: 1 - 3 - 5 - 6. Ilt = 1; f = 4 + 2 + I = 7 

9. By considering only edges with one labeled end and one unlabeled end 

17. S = {I, 2,4, 51. T = {3, 6}, cap (S, n = 14 

Problem Set 23.8, page 986 

1. No 3. No 5. Yes, S = { I, 4, 5, 8} 
7. Yes; a graph is not bipartite if it has a nonbipartite subgraph. 
9.1 - 2 - 3 - 5 

11. (1, 5), (2, 3) by inspection. The augmenting path I - 2 - 3 - 5 
gives I - 2 - 3 - 5, that is, (\, 2), (3, 5). 

13. (1,4), (2. 3). (5, 7) by inspection. Or (1, 2), (3, 4), (5, 7) by the use of the path 
1 - 2 - 3 - 4. 

15. 3 19. 3 23. No; K5 is not planar. 
25. K3 
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Chapter 23 Review Questions and Problems, page 987 

13. r~ 

17. 

o 

o 

o 

1 

0 

0 

1 

o 

o 
o 

21. Ve11ex 

25.4 

2 

3 

] 
o 

o 

o 

15. 

o 

o 

Incident Edges 

e2, -e3 

-eb e3 

'eb -e2 

29. I - 4 - 3 - 2, L = 16 

Problem Set 24.1, page 996 

1. qL = 19, qM = 20, qu = 20.5 

0 

0 

5. qL = 69.7, qM = 70.5, qu = 71.2 
9. qL = 399, qM = 401, qu = 401 

13 .. r = 70.49, s = 1.047,IQR = 1.5 
17. 0 0 300 

Problem Set 24.2, page 999 

0 

0 

0 

0 

0 

0 

CD---0 

19.\ / 

CD 

23.4 

27. L2 = 10. L3 = 15, L4 = 13 

33. f = 7 

3.qL = 38,QM = 44,Qu = 54 

7. qL = 2.3, qM = 2.4, qu = 2.45 
11. x = 19.875, s = 0.835, IQR = 1.5 
15. x = 400.4, s = 1.618, IQR = 2 

19. 3.54, 1.29 

1. 4 outcomes: HH, HT, TH, TT (H = Head, T = Tail) 
3.62 = 36 outcomes (1, 1), (1, 2), .. " (6, 6) 
5. Infinitely many outcomes S, SCS, ScScS, ... (S = "Six") 

7. The space of ordered triples of nonnegative numbers 
9. The space of ordered pairs of numbers 

11. Yes 
13. E = IS, scs, SCSCS}, E" = {SCSCSCS, ScScScScS, ... } (S = "Six") 

Problem Set 24.3, page 1005 

1. (a) 0.93 = 72.9%, (b) 190~ • ~~. ~~ = 72.65% 
3 490. 489 • 488 • 487 • 486 - 90 3501. 

• 500 499 498 497 496 - . /0 

5. 1 - 2~ = 0.96 7. I - 0.752 = 0.4375 < 0.5 

9. P(MMM) + P(MMFM) + P(MFMM) + P(FMMM) = ~ + 3 . 1~ = 1~ 

ASS 
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11. 3~ + ~~ - 3~ = ~~ by Theorem 3, or by counting outcomes 
13. 0.08 + 0.04 - 0.08 . 0.04 = 11.68% 
15.0.954 = 81.5% 

Problem Set 24.4, page 1010 

3. In 40320 ways 
7.210,70. 112.28 

11. (~~) = 635013559600 
15.676000 

Problem Set 24.5, page 1015 

1. k = 1/55 by (6) 
5. No because of (6) 

17. 1 - 0.974 = 11.5% 

5. (2~) = 1140 

9. 9!/(2!3!4!) = 1260. AIlS. 111260 
13. 1184, 5121 

3. k = II8 by (10) 
7. 1 - P(X ~ 3) = 0.5 

2 

9. P(X > 1200) = f 6[0.25 - (x - 1.5)2] dx = 0.896. AilS. 0.8963 = 72% 
1.2 

11. k = 2.5; 50% 13. k = 1.1565; 26.9% 
17. X > b, X ~ b. X < c. X ~ c. etc. 

Problem Set 24.6, page 1019 

1. 2/3, 1118 
5.4, 16/3 
9. JL = lie = 25; P = 20.2% 

13. 750, 1, 0.002 

Problem Set 24.7, page 1025 

1. 0.0625, 0.25, 0.9375, 0.9375 
5.0.265 

3.3.5.2.917 
7. $643.50 

11.~, 2~' (X - ~)V20 
15. 15c - 500c3 = 0.97. c = O.ms55 

3.64% 

7. f(x) = OS"e-o.5 /x!, f(O) + f(l) = e-O
.
5

( 1.0 + 0.5) = 0.91. Am. 9% 
9. I - e-O.2 = 18% 11. 0.99100 = 36.6% 

13. ~~~, ~~~, 2~~' :di6 

Problem Set 24.8, page 1031 

1. 0.1587, 0.6306, 0.5, 0.4950 
5.16% 
9. About 23 

13. t = 1084 hours 

Problem Set 24.9, page 1040 

3. 17.29, 10.71, 19.152 
7. 31.1 %, 95.5% 

11. About 58st 

1. 1/8, 3/16, 3/8 3. 2/9, 2/9, 1/2 
5. f2(Y) = 11(/32 - ll'2) if ll'2 < Y < /32 and 0 elsewhere 
7. 27.45 mm, 0.38 mm 9. 25.26 cm, 0.0078 cm 
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13. lndependent, .f1(X) = O.le-O
.
lx if X> 0, f2(Y) = O.le-Oly if Y > 0, 36.8% 

15. 50lJf 17. No 

Chapter 24 Review Questions and Problems, page 1041 

21. QL = 22.3, QM = 23.3, Qu = 23.5 23. x = 22.89, s = 1.028. S2 = 1.056 

25. H, TH, TTH, etc. 
27. f(O) = 0.80816. f(l) = 0.18367. f(2) = 0.00816 

29. Always B !: A U B. If also A !: B, then B = A U B, etc. 
31. 7/3, 8/9 33. 118.019, 1.98, 1.65% 
35.0, 2 37. JL = 100/30 
39. 16%, 2.3% (see Fig. 520 in Sec. 24.8) 

Problem Set 25.2, page 1048 

3. 1 = pk(1 - p)n-k, p = kin, k = number of Sllccesses in n trials 

5. 11120 
7. 1 = f(x), aOn l)/ap = lip - (x - 1)10 - p) = 0, p = 1/x 

9. it = x 11. e = nl'i. Xj = l!x 

A57 

13. e = 1 15. Variability larger than perhaps expected 

Problem Set 25.3, page 1057 

1. CONFo.95 [37.47 ~ JL ~ 43.87} 3. Shorter by a factor v'2 
5.4, 16 7. Cf. Example 2. n = 166 

9. CONFo.99 [20.07 ~ JL ~ 20.33} 11. CONFo.99[63.71 ::::; JL ~ 66.29} 
13. c = 1.96, x = 87, S2 = 87' 413/500 = 71.86, k = cslVn = 0.743, 

CONFo.95 {86 ~ JL ~ 88}, CONF095 (0.17 ~ p ~ 0.18} 
15. CONFo.95 (0.00045 ~ a 2 ~ 0.00l31} 17. CONFO.95 [0.73 ::::; a 2 ~ 5.19} 
19. CONFO.95 [23 ~ a 2 ~ 548}. Hence a larger sample would be desirable. 
21. Normal distributions, means -27,81, 133, variances 16, 144,400 

23. Z = X + Y is normal with mean 105 and variance 1.25. 
Ans. P(l04 ~ Z ~ 106) = 63% 

Problem Set 25.4, page 1067 

1. t = V7(0.286 - 0)/4.31 = 0.18 < c = 1.94; do not reject the hypothesis. 
3. c = 6090 > 6019; do nol reject the hypothesis. 
5. ifln = I, c = 28.36: do not reject the hypothesis. 

7. JL < 28.76 or JL > 31.24 
9. Alternative JL =1= 1000, t = v'2O (996 - 1000)/5 = -3.58 < c = - 2.09 (Table 

A9, 19 degrees of freedom). Reject the hypothesis JL = 1000 g. 

11. Test JL = 0 against JL =1= O. t = 2.11 < c = 2.36 (7 degrees of freedom). Do not 
reject the hypothesis. 

13. ll' = 5%, c = 16.92 > 9.0.52/0.42 = 14.06; do not reject hypothesis. 
15. to = \1'10' 9·17119 (21.8 - 20.2)1\1'9.0.62 + 8.0.52 = 6.3 > c = 1.74 

(17 degrees of freedom). Reject the hypothesis and assert that B is better. 
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17. Vo = 50/30 = 1.67 < c = 2.59 [(9, 15) degrees of freedom]: do not reject the 
hypothesis. 

Problem Set 25.5, page 1071 

1. LCL = I - 2.58 . 0.03/v6 = 0.968, VCL = 1.032 

3.11 = 10 
5. Choose 4 times the original sample size (why?). 

7. 2.58VO.024/\12 = 0.283. VCL = 27.783, LCL = 27.217 
11. In 30% (5%) of the cases, approximately 
13. VCL = Ill' + 3Vllp(\ - p), CL = Ill', LCL = "l' - 3Vl1p(1 - p) 

15. CL = JL = 2.5, VCL = JL + 3~ = 7.2, LCL = JL - 3~ is negative in (b) and 
we set LCL = O. 

Problem Set 25.6, page 1076 

1. 0.9825, 0.9384, 0.4060 3.0.8187,0.6703.0.1353 
5. peA; e) = e-30H(1 + 308) 
7. P(A; 8) = e-50

(J 9. 19.5%, 14.7% 
11. (l - 8)5, (l - 8)5 + 5e(l - 8)4 13. Because /I is finite 

15. <1>«9 - 12 + ~)/V12(1 - 0.12)) = 0.22 (if c = 9) 
17. (l - ~)3 + 3 . ~(l - ~)2 = ~ 

Problem Set 25.7, page 1079 

1. X02 = (30 - 50)2/50 + (70 - 50)2150 = 16 > c = 3.84: no 

3.41 
5. X02 = 2.33 < c = 11.07. Yes 
7. ej = I1Pj = 370/5 = 74. X02 = 984174 = 13.3. c = 9.49. Reject the hypothesis. 
9. X02 = I < 3.84; yes 

13. Combining the results for x = lo, II, 12, we have K - r - 1 = 9 (r = I since we 
estimated the mean. 1~ci:f = 3.87). Xo 2 = 12.98 < c = 16.92. Do not reject. 

15. X02 = 49/20 + 49/60 = 3.27 < c = 3.84 (1 degree of freedom, a = 5%), which 
supports the claim. 

17. 42 even digits, accept. 

Problem Set 25.8, page 1082 

3. (~l8(l + 18 + 153 + 816) = 0.0038 
5. Hypothesis: A and B are equally good. Then the probability of at least 7 trials 

favorable to A is ~8 + 8 . ~8 = 3.5%. Reject the hypothesis. 

7. Hypothesis JL = O. Alternative JL > 0, .r = 1.58, 
t = \liD. 1.58/1.23 = 4.06 > c = 1.83 (a = 5%). Hypothesis rejected. 

9. x = 9.67, s = 11.87, to = 9.67/(11.871'\115) = 3.15 > c = 1.76 (a = 5%). 
Hypothesis rejected. 

11. Consider .'J = Xj - Po. 
13. peT ~ 2) = 0.1% from Table A12. Reject. 
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15. P(T ~ 15) = 10.8%. Do not reject. 

17. P{T ~ 2) = 2.8%. Reject. 

Problem Set 25.9, page 1091 

1. Y = 1.9 + x 3. y = 6.7407 + 3.068x 5. y = 4 + 4.8x. 172 ft 
7. y = -1146 + 4.32x 9. y = 0.5932 + 0.1l38x, R = 1/0.1138 

11. qo = 76, K = 2.36V76/(7· 944) = 0.253, CONFo.95 { -1.58 ~ Kl ~ -1.06} 
13. 3sx

2 = 500, 3sxy = 33.5, kl = 0.067, 3sy2 = 2.268. qo = 0.023. K = 0.02] 
CONFo.95{0.046 ~ Kl ~ 0.088} 

Chapter 25 Review Questions and Problems, page 1092 

21. fl = 5.33. i/ = 1.722 23. It will double. 

25. CONFo.99{ 19.1 ~ J.L ~ 33.7} 27. CONFo.95{0.726 ~ J.L ~ 0.75]} 
29. CONFo.95 { 1.373 ~ J.L ~ 1.4511 31. CONFo.99{0.05 ~ u 2 ~ 10} 

( 
14.74 - 14.40) 

33. c = 14.74 > 14.5; reject J.Lo. 35. cD • ~ = 0.9842 
v 0.025 

37.30.14/3.8 = 7.93 < 8.25. Reject. 
39. Vo = 2.5 < 6.0 [(9.4) degrees of freedom]; accept the hypothesis. 
41. Decrease by a factor v'2. By a factor 2.58/1.96 = 1.32. 
43.0.9953,0.9825,0.9384, etc. 45. y = 1.70 + 0.55x 

A59 
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A3.1 Formulas for Special Functions 

A60 

For tables of IlUllleric values. see Appelldix 5. 

Exponential function eX (Fig. 544) 

e = 2.71828 1828459045235360287471353 

(1) 

Natural logarithm (Fig. 545) 

(2) In (xy) = In x + In y. In (xly) = Inx - 1ny. 

In x is the inverse of eX, and eln x = x, e-ln x = e1n nIx) = IIx. 

Logarithm of base ten 10glOx or simply log x 

(3) log x = M In x, 

I 
(4) In x = loa X M b" 

M = log e = 0.434294481903251 82765 11289 18917 

I 
M = In 10 = 2.30258509299404568401 7991454684 

log x is the inverse of lOT, and I Olog x = x, I O-log X = IIx. 

Sine and cosine functions (Figs. 546.547). In calculus, angles are measured in radians, 
so that sin x and cos x have period 27['. 

sin .1' is odd. sin (-x) = - sin x, and cos x is even. cos (-x) = cos x. 

y 

I y 

5 

2 

o I x 

x 
-2, 

Fig. 544. Exponential function eX Fig. 545. Natural logarithm In x 



SEC. A3.1 Formulas for Special Functions 

y 

/ 

~l 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(1 L) 

(12) 

(13) 

(14) 

y 

x / 

Fig. 546. sin x Fig. 547. cos x 

1° = 0.01745 32925 19943 radian 

radian = 57° 17' 44.80625" 

= 57.29577 95131 ° 

sin2 x + cos2 
X = 1 

sin (x + y) = sin x cos y + cus x sin y 

sin (x - y) = sin x cos y - cos x sin y 

cos (x + y) = cos x cos y - sin x sin y 

cos (x - y) = cos x cos y + sin x sin y 

sin 2x = 2 sin x cos x, cos 2x = cos2 
X - sin2 x 

{ 
sin x = cos (x - ;) = cos (; - x) 

cos x = sin (x + ;) = sin (; - x) 
sin (7T - x) = sinx. cos (7T - x) = -cosx 

sin2 x = ~(l - cos 2x) cos2 
X = ~(1 + cos 2x), 

{ 
sin x sin y = ~[-cos (x + y) + cos (x - y)] 

cos x cos y = ~[cos (x + y) + em (x - y)] 

sin x cos y = Msin (x + y) + sin (x - y)] 

u+v u-v 
sin u + sin v = 2 sin --- cos ---

2 2 

u+v u-v 
cos u + cos v = 2 cos --2- cos --2-

u+v u-v 
cos v - cos u = 2 sin --- sin ---

2 2 

A cos x + B sin x = VA 2 + B2 cos (x ± 0), 
sin 8 

tan 8 = 
cos 8 

sin 8 
A cos x + B sin x = VA 2 + B2 sin (x ± 8), tan 8 = 

eas 8 

B 
+-

A 

A = -T-

B 

A61 

\. X 



A62 APP. 3 Auxiliary Material 

y y 

5 5 

) ) / 
-Tr Tr -Tr 

( ( \ 

\ 
-5 -5 

Fig. 548. tan x Fig. 549. cot x 

Tangent, cotangent, secant, cosecant (Figs. 548, 549) 

sinx cosx 
(15) tanx = cot x = sec x = cscx = 

cosx sinx cos x sin x 

tan x + tany tan x - tan y 
(16) tan (x + y) = 

1 - tanxtany 
tan (x - y) = 

1 + tan x tan v 

Hyperbolic functions (hyperbolic sine sinh x, etc.; Figs. 550, 551) 

(17) 

(18) 

(19) 

(20) 

(21) 

sinh x cosh x 
tanh x = 

coshx ' 
coth x = 

sinh x 

cosh x + sinh x = eX, cosh x - sinh x = e-x 

COSh2 X - sinh2 x = I 

-2 

sinh2 x = i(cosh 2x - 1), 

y 

4 

/ 

-2 

-4 

2 x 

g. 550. sinh x (dashed) and cosh x 

COSh2 X = i(cosh 2x + l) 

-2 

y 

4 

2 \ 

;-2 

-4 

2 x 

Fig. 551. tanh x (dashed) and coth x 

x 



SEC A3.1 Formulas for Special Functions A63 

(22) { 
(23) 

sinh (x ± y) = sinh x cosh y ± cosh x sinh y 

cosh (x ± y) = cosh x cosh y ± sinh x sinh y 

tanh x ± tanh y 
tanh (x ± y) = ------­

I ± tanh x tanh y 

Gamma function (Fig. 552 and Table A2 in App. 5). The gamma function f(a) is defined 
by the integral 

(24) (a> 0) 

which is meaningful only if a> 0 (or, if we consider complex a, for those a whose real 
part is positive). Integration by parts gives the importantfullctional relatio1l of the gamma 
function, 

(25) f(a + 1) = af(a). 

From (24) we readily have r(l) = I: hence if a is a positive integer. say k. then by 
repeated application of (25) we obtain 

(26) r(k + 1) = k! (k = 0, 1, .. '). 

This shows that the ga11l111afunction can be regarded as a generalization of the elementary 
factorial jilllction. [Sometimes the notation (a - L)! is used for rea), even for noninteger 
values of a, and the gamma function is also known as the factorial function.] 

By repeated application of (25) we obtain 

rea + 1) 
f(a)= 

f(a + 2) 

a(a + 1) 

nw 

I 
I 
I 
I 
I 
I 
I 
I 

in 
-2 

-4 

f(a + k + 1) 
----'--

a(a + I )(a + 2) ... (a + k) 

4 ex 

Fig. 552. Gamma function 
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and we may use this relation 

(27) 
rea + k + I) rea) = -------­

a(a + I) ... (a + k) 
(a oF 0, -1, -2,· .. ) 

for defining the gamma function for negative a (oF -1, -2, " .), choosing for k the 
smallest integer such that a + k + I > O. Together with (24), this then gives a definition 
of rca) for all a not equal to zero or a negative integer (Fig. 552). 

It can be shown that the gamma function may also be represented as the limit of a 
product namely. by the formula 

n! nl> 
(28) rea) = lim ( 

n~!XJ a a + I )(a + 2) ... (a + 11) 
(a oF 0, - 1, .. '). 

From (27) or (28) we see that, for complex a, the gamma function r( a) is a meromurphic 
function with simple poles at a = 0, - 1, - 2, .... 

An approximation of the gamma function for large positive a is given by the Stirling 
formula 

(29) 

where e is the base of the natural logarithm. We finally mention the special value 

(30) 

Incomplete gamma functions 

(31) 

(32) 

Beta function 

(33) 

Q(a. x) = f=e-tt U
-

1 dt 

rca) = pea, x) + Q(a. x) 

1 

B(x. y) = I t X - 1(] - t)y-l dt 
o 

x 

Representation in terms of gan1ma functions: 

(34) 
f(x)f()') 

B(x. y) = . . rex + y) 

Error function (Fig. 553 and Table A4 in App. 5) 

(35) 

(36) 

2 IX erf x = -- e- t2 dt 
v:;;: 0 

x
7 

+ _ ... ) 
3!7 

(a> 0) 

(x> 0, y > 0) 
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-2 

erfx 

1 

0.5 

/ 

/0.5 
~ -1 

Fig. 553. Error function 

erf (x) = 1, C017lple171CllTal}, error jill1ction 

(37) 2 I"" t
2 

erfc x = I - erf x = ~ I e - dt 
V'Tr x 

Fresnel integrals! (Fig. 554) 

(38) C(x) = {cos (t 2
) dt, 

o 

x 

Set) = J sin (t2) dt 
o 

C(x) = -v:;;;s, S(X) = vi'Tr/S, co171plemelllary fimctiollS 

(39) 

c(x) = !¥ -C(x) = LX cos (t2
) dt 

s(x) = r; -S(x) = to sin (12) dt 
\ S x 

Sine integral (Fig. 555 and Table A4 in App. 5) 

(40) 

y 

1 
C(x) 

Jx sin t 
Sitx) = -~ dt 

o t 

x 

/ 

~
--' '- _/_' ~----4'~ 

'-_/ ~.//--
/ 

o 
Fig. 554, Fresnel integrals 
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lAUGUSTIN FRESNEL (1788-1827), French physicist and mathematician. For tables ~ee Ref. [GRI]. 
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,,/2 -

1 

Si(X~l 

O~'--~I---L--~--L-~5~-L--~--~~L-~1~~~~x 

Fig. 555. Sine integral 

Si(:x:) = 7T/2. ("(}17lplemento ry jimction 

x . 

(41) 7T f SIll t si(x) = - - Si(x) = -- dt 
2 x t 

Cosine integral (Table A4 in App. 5) 

(42) f
cc cos t 

citx} = -- dt 
x t 

Exponential integral 

(43) 
x -t 

Ei(x) = f ~ dt 
x t 

Logarithmic integral 

(44) I
x dt 

lie\") = -
o In t 

(x> 0) 

(x> 0) 

A3.2 Partial Derivatives 
For differentiation formulas, see inside of front cover. 

Let ~ = f(x, y) be a real function of two independent real variables, x and y. If we keep 
y constant. say, y = )'1' and think of x as a variable, then f(x, )'1) depends on x alone. If 
the derivative of f(x, Yl) with respect to x for a value x = Xl exists. then the value of this 
derivative is called the partial derivative of f(x. \") u'ith respect to x at tbe point (Xl' .'"1) 

and is denoted by 

or by 

Other notations are 

and 

these may be used when subscripts are not used for another purpose and there is no danger 
of confusion. 
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We thus have, by the definition of the derivative, 

(1) 

The partial delivative of.: = f(x. y) with respect to y is defined similarly; we now keep 
x constant, say, equal to Xl, and differentiate f(XI, y) with respect to y. Thus 

(2) 

Other notations are fy(x}. YI) and ~y(XI' )'1)' 

It is clear that the values of those two partial derivatives will in general depend on the 
point (Xl, YI)' Hence the partial delivatives a~/ax and iJz/iJ.v at a variable point (x, y) are 
functions of x and y. The function az/iJx is obtained as in ordinary calculus by 
differentiating z = f(x, y) with respect to x. treating y as a constant, and Bz/By is obtained 
by differentiating z with respect to y, treating x as a constant. 

E X AMP L E 1 Let::: = I(x. y) = x 2y + x sin y. Then 

iiI 
~ = 2n + ~in'·. 
ilx . 

ilj 2 
~ = x + \. COS Y. 
ily . • 

The partial derivatives iJ:;:/i)x and a~/ay of a function;: = f(x, y) have a very simple 
geometric interpretation. The function ;:: = f(x, y) can be represented by a surface in 
space. The equation y = Yl then represents a vertical plane intersecting the surface in a 
curve. and the partial derivative a::Ji)x at a point (Xl' Yl) is the slope of the tangent (that 
is, tan a where a is the angle shown in Fig. 556) to the curve. Similarly. the partial 
derivative iJ;:/ay at (Xl, Yl) is the slope of the tangent to the curve X = Xl on the surface 
z = f(x, y) at (Xl' YI)' 

Fig. 556. Geometrical interpretation of first partial derivatives 
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The partial derivatives azlax and a-::.My are called first partial derivatives or partial 
derivatives of first order. By differentiating these derivatives once more, we obtain the 
four second partial derivatives (or partial derivatives of second order)2 

a2 f a (:~ ) ax2 ax 
= fxx 

a2f a ( ::.) ax ay ax 
= fyx 

(3) 
a2f a 

(a
f

) 
ayax ay ax 

= fxy 

a2 f a 
(a

f
) ay2 

- =f 
aI' ay yy' 

It can be shown that if all the derivatives concerned are continuous, then the two mixed 
partial derivatives are equal, so that the order of differentiation does not matter (see Ref. 
[GR4] in App. 1), that is, 

(4) 

E X AMP L E 2 For the function in Example I. 

fxx = 2y, f xy = 2x + cos Y = f yx, fyy = -x siny. • 
By differentiating the second partial derivatives again with respect to x and y, 
respectively, we obtain the third partial derivatives or partial derivatives of the third 
order of f, etc. 

If we consider a function f(x, y, z) of three independent varutbles, then we have the 
three first partial derivatives fAx, y, z), fy{x, y, z), and fz(x, y, z). Here Ix is obtained by 
differentiating f with respect to x, treating both y and z as constallts. Thus, analogous to 
(I), we now have 

etc. By differentiating f.p f y, fz again in this fashion we obtain the second partial 
derivatives of f, etc. 

E X AMP L E 3 Let f(x, y, z) = x 2 + y2 + Z2 + xy eZ
• Then 

f" = 2x + )' eZ
, 

fxx = 2, 

fyy = 2. 

fy = 2y + x eZ
, 

fxy = f y,' = e
Z

• 

fyz = fzy = xez, 

fz = 2z + xy eZ
, 

• 
2 LAUTIO]'l In the subscript notation the subscripts are written in the order in which we differentiate whereas 

in the "iY' notation the order is opposite. ' 
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A3.3 Sequences and Series 
See also Chap. 15. 

Monotone Real Sequences 
We call a real sequence xl, X2, .•• ,Xn , .•• a monotone sequence if it is either monotone 
increasing, that is, 

or monotone decreasing, that is, 

We call Xl, X2, ••• a bounded sequence if there is a positive constant K such that IXnl < K 
for all n. 

THE 0 REM 1 (f a real sequence is bounded and monOTOne, it converges. 

PROOF Let Xl> X2' .•• be a bounded monotone increasing sequence. Then its terms are smaller 
than some number B and, since Xl ~ Xn for all n. they lie in the interval Xl ~ X." ~ B. 
which will be denoted by 1o, We bisect 1o; that is, we subdivide it into two parts of equal 
length. If the right half (together with its endpoints) contains terms of the sequence, we 
denote it by 11' If it does not contain terms of the sequence, then the left half of 10 (together 
with its endpoints) is called 11 , This is the first step. 

In the second step we bisect h, select one half by the same rule, and call it 12 , and so 
on (see Fig. 557 on p. A 70). 

In this way we obtain shorter and shorter intervals 1o, 11 , 12 , ••. with the following 
prope11ies. Each 1m contains all In for n > 111. No term of the sequence lies to the right 
of 1m , and, since the sequence is monotone increasing. all Xn with Il greater than some 
number N lie in 1m; of course, N will depend on 111. in general. The lengths of the 1m 
approach zero as 111 approaches infinity. Hence there is precisely one number, call it L, 
that lies in all those intervals,3 and we may now easily prove that the sequence is 
convergent with the limit L. 

In fact, given an E > 0, we choose an I1l such that the length of 1m is less than E. Then 
L and all the Xn with n > N(m) lie in 1m' and. therefore, IXn - LI < E for all those n. 
This completes the proof for an increasing sequence. For a decreasing sequence the proof 
is the same, except for a suitable interchange of "left" and "right" in the construction of 
those intervals. • 

3This statement seems to be obvious, but actually it is not; it may be regarded as an axiom of the real number 
system in the following form. Let h. 12, .•• be closed intervals such that each 1m contains all 1n with 11 > m. 
and the lengths of the 1m approach zero as III approaches intinity. Then there is precisely one real number that 
is contained in all those intervals. This is the so-called Cantor-Dedekind axiom, named after the German 
mathematicians GEORG CANTOR (1845-1918). the creamr of set theory, and RICHARD DEDEKIND 
(1831-1916), known for his fundamental work in nwnber theory. For further details see Ref. [GR2] in App. I. 
(An interval 1 is said to be closed if its two endpoints are regarded as points belonging to J. It is said to be open 
if the endpoints are not regarded as points of I.) 
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10 ---------1 

I ~<~--I---:: I I '~"III. :1 

Fig. 557. Proof of Theorem 1 

Real Series 

Leibniz Test for Real Series 

Let Xl' X2, ••• be real and monotone decreasing to zero, that is, 

(1) (b) lim Xm = O. 
1U----+X 

Then the series witll terms of altematillg signs 

B 
I 

converges, and for the remainder Rn after the nth term we have the estimate 

(2) 

PROOF Let Sn be the 11th partial sum of the series. Then, because of (1 a), 

so that S2 ~ S3 ~ Sl' Proceeding in this fashion, we conclude that (Fig. 558) 

(3) 

which shows that the odd partial sums form a bounded monotone sequence, and so do the 
even partial sums. Hence. by Theorem L both sequences converge, say, 

lim S2n+l = S, lim S2n = s*. 
n_x n_x 

IE 
-X

2 

I C-" =:j 
8 2 8

4 8
3 8 1 

Fig. 558. Proof of the Leibniz test 
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Now. since S271+1 - S2n = X2n+1' we readily see that Ob) implies 

s - s* = lim S271+1 - lim S2n = lim (S271+1 - S2") = lim '2n+1 = o. 
n~x n~x n_x n_x 

Hence s* = s. and the series converges with the sum s. 

We prove the estimate (2) for the remainder. Since s" - s, it follows from (3) that 

and also 

By subtracting S2n and S2n-1' respectively, we obtain 

In these inequalities, the first expression is equal to X2,,+1' the last is equal to -X2m and 
the expressions between the inequality signs are the remainders R2n and R 2n- 1 . Thus the 
inequalities may be written 

and we see that they imply (2). This completes the proof. • 
A3.4 Grad, Div, Curl, V 2 

in Curvilinear Coordinates 
To simplify formulas we write Cartesian coordinates -' = Xl' Y = -'2' Z = -'3' We denote 
curvilinear coordinates by qb q2, q3' Through each point P there pass three coordinate 
surfaces q1 = const, q2 = COllSt. q3 = COllSt. They intersect along coordinate curves. We 
assume the three coordinate curves through P to be orthogonal (perpendicular to each 
other). We write coordinate transformations as 

(I) 

Corresponding transformations of grad, div, curl, and V2 can all be written by using 

(2) 

Next to Cartesian coordinates. most important are cylindrical coordinates q1 = r, q2 = e. 
lJ3 = ;: (Fig. 559a on p. A 72) defined by 

(3) Xl = q1 cos q2 = r cos e, X2 = q1 sin q2 = r sin e, 

and spherical coordinates tiI = r, q2 = e, q3 = 4> (Fig. 559b) defined by4 

(4) 
Xl = q1 cos q2 sin q3 = r cos e sin 4>, -'2 = q1 sin q2 sin q3 = r sin e sin 4> 

-'3 = q1 cos q3 = r cos 4>. 

4This is the notation used in calculus and in many other books. It is logical since in it. 8 play, the ,arne role 
as in polar coordinates. C-\L'TIOM Some books interchange the roles of IJ and <p. 
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z 

h~ e. z) 

z --e Y 
r 

x 

z 

-­Y 

(a) Cylindrical coordinates (b) Spherical coordinates 

Fig. 559. Special curvilinear coordinates 

In addition to the general formulas for any orthogonal coordinates qh q2, Q3, we shall give 
additional formulas for these important special cases. 

Linear Element ds. In Cartesian coordinates, 

(Sec. 9.5). 

For the q-coordinates, 

(5) 

(5') (Cylindrical coordinates). 

For polar coordinates set d-;,2 = o. 

(5") (Spherical coordinates). 

Gradient. grad f = v f = [f Xl' f X2' f X) (partial derivatives; Sec. 9.7). In the 
q-system, with u, v, w denoting unit vectors in the positive directions of the Ql, Q2, Q3 

coordinate curves, respectively, 

(6) 

(6') 
ilf 1 af iiI 

grad! = Vf = -u + - --'--v +-w 
ar r aR iJz 

(Cylindrical coordinates) 

(6") 
af 1 af 1 a! 

!!fad! =""f = -u + -- -y + --w 
<0 a,. rsin <I> i/O ,. 0<1> 

(Spherical coordinates). 

(7') 
1 a I iJF aF 

divF = V.F = - -:-{rF
1

) + _ ~ + __ 3 
r ilr r iJO az (Cylindrical coordinates) 
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(7") 
I iJ I iJF2 I iJ 

div F = v· F = 2 -;- (,.2F1 ) + -.- --:;-;- + -.- -. - (sin </J F3 ) 
r "r rsm </J UV rsm </J rJ</J 

(Spherical coordinates). 

(8') (Cylindrical coordinates) 

(8") (Spherical coordinates). 

Curl (Sec. 9.9): 

hlu h2v h3W 

] a a a 
(9) curlF=,xF=---

lz]h2h3 aq1 aq2 aq3 

hlFI h2F2 h3F3 

For cylindrical coordinates we have in (9) (as in the previous formulas) 

and for spherical coordinates we have 

hI = h,. = I, 1z2 = h" = qI sin q3 = r sin </J, 
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Section 2.6, page 73 

PROOF OF THEOREM 1 Uniqueness 1 

A74 

Assuming that the problem consisting of the ODE 

(1) )''' + p(x)y' + q(x)y = 0 

and the two initial conditions 

(3) 

has two solutions Yllx) and Y2(X) on the interval 1 in the theorem, we show that their 
difference 

is identically zero on 1: then Yl == )'2 on 1, which implies uniqueness. 
Since (I) is homogeneous and linear. y is a solution of that ODE on 1. and since VI and 

)"2 satisfy the !>ame initial conditions, y satisfies the conditions 

(10) ylxo) = 0, y' (xo) = O. 

We consider the function 

z(x) = y(x)2 + y' (X)2 

and its derivative 

z' = 2yy' + 2)"')"". 

From the ODE we have 

" , y = -py - q)'. 

By substituting this in the expression for z.' we obtain 

(11) 

Now, since y and y' are real. 

IThis proof was suggested by my colleague. Prof. A. D. Ziebur. In this proof we use formula numbers that 
have not yet been used in Sec. 2.6. 
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From this and the definition of :: we obtain the two inequalities 

(12) (a) 2yy' ~ )'2 + y'2 = ;::, (b) -2y)"' ~ y2 + y'2 = z. 

From (l2b) we have 2)')" ~ -z. Together, 12)')"] ~ z. For the last term in (II) we now 
obtain 

-2qyy' ~ 1-2qyy'l = Iq112y/1 ~ Iqlz. 

Using this result a" well as -p ~ Ipl and applying (I2a) to the term 2yy' in (11), we find 

Since /2 ~ )'2 + )"2 = .<;, from this we obtain 

z' ~ (l + 21pl + Iql)z 

or, denoting the function in parentheses by 11, 

(l3a) z' ~ 11:: for all x on 1 

Similarly. from (11) and (12) it follows that 

(l3b) 
~ Z + 2Ip!;:: + Iq\::: = 11;::. 

The inequalities (I3a) and (13b) are equivalent to the inequalities 

(14) .<;' - h:: ~ 0, z' + h.<; ~ o . 

Integrating factors for the two expressions on the left are 

and 

The integrals in the exponents exist because Iz is continuous. Since Fl and F2 are positive. 
we thus have from (14) 

and 

This means that F1z is non increasing and F2 z is nondecreasing on I. Since ::(xo) = 0 by 
(10). when x ~ Xo we thus obtain 

and similarly, when x ~ Xo, 

Dividing by Fl and F2 and noting that these functions are positive. we altogether have 

z ~ o. z~o for all x on I. 

Thi · 1· h 2'2 sImp IeS t at;:: = y + l' "'" 0 on I. Hence y "'" 0 or YI "'" Y2 on I. • 
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Section 5.4, pages 184 

PROOF 0 F THE 0 REM 2 Frobenius Method. Basis of Solutions. Three Cases 
The formula numbers in this proof are the same as in the text of Sec. 5.4. An additional 
formula not appearing in Sec. 5.4 will be called (A) (see below). 

The ODE in Theorem 2 is 

(1) 
b(x), c(x) 

)''' + -- \' + -- )' = 0 x· x 2 • 

where b(,) and c(x) are analytic functions. We can write it 

(1') x 2y" + xb(x)),' + dx)), = O. 

The indicial equation of (l) is 

(4) r(r - 1) + bor + Co = O. 

The roots 1"1' 1"2 of this quadratic equation determine the general form of a basis of solutions 
of 0). and there are three possible cases as follows. 

Case 1. Distinct Roots not Differing by an Integer. A first solution of 0) is of the 
form 

(5) 

and can be determined as in the power series method. For a proof that in this case, the 
ODE (1) has a second independent solution of the form 

(6) 

see Ref. [All] listed in App. 1. 

Case 2. Double Root. The indicial equation (4) has a double root r if and only if 
(bo - 1)2 - 4co = 0, and then r = !( I - bo). A first solution 

(7) r = !(l - boY, 

can be determined as in Case I. We show that a second independent solution is of the 
form 

(8) (x> 0). 

We use the method of reduction of order (see Sec. 2.1), that is, we determine ll(X) such 
that )'2(X) = U(X)Yl(X) is a solution of (I). By inserting this and the derivatives 

"" I , II 
)'2 = II )'1 + 2u Yl + UYI 

into the ODE (I') we obtain 

2(" +')" " , , x U)'1 _U .'"1 + UYI) + xb(ll )'1 + UYI) + cUYI = O. 
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Since )'1 is a solution of (I r), the sum of the terms involving u is zero, and this equation 
reduces to 

By dividing by X
2

)'1 and inserting the power series for b we obtain 

( , ) " )'1 bo , u + 2 - + - + . .. u = o. 
Yt x 

Here and in the following the dots designate terms that are constant or involve positive 
powers of x. Now from (7) if follows that 

y~ xT
-

1 ll"ao + (I" + l)alx + ... ] 
Yt xT [aO+alX +···] 

I" 
+ 

x 

Hence the previous equation can be written 

(A) U rr + (21": bo + ... ) U r = o. 

Since r = (l - bo)/2, the term (21" + bo)/x equals I/x, and by dividing by u' we thus 
have 

" u 
, 

u 
+ 

x 

By integration we obtain In u' = -In x + ... , hence u' = (Ilx)e<·· .J. Expanding the 
exponential function in powers of x and integrating once more, we see that u is of the 
form 

Inserting this into)'2 = UY1, we obtain for )'2 a representation of the form (8). 

Case 3. Roots Differing by an Integer. We write 1"1 = I" and 1"2 = I" - P where p is a 
positive integer. A first solution 

(9) 

can be determined as in Cases 1 and 2. We show that a second independent solution is 
of the form 

(10) 

where we may have k -=I=- 0 or k = O. As in Case 2 we set)'2 = 1t)'1. The first steps are 
literally as in Case 2 and give Eq. (A), 

u" + (21": bo + .. -) u' = O. 
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Now by elementary algebra. the coefficient bo - I of r in (4) equals minus the sum of 
the roots, 

bo - I = -(r1 + r2) = -(r + r - p) = -2r + p. 

Hence 2r + bo = p + L and division by u' gives 

The further ')teps are as in Case 2. Integrating, we find 

In u' = -(p + 1) In x + ... , thus 
I -(p+ll ( ... J 

u = x e 

where dots stand for some series of nonnegative integer powers of x. By expanding the 
exponential function as before we obtain a series of the form 

I 
U 

We integrate once more. Writing the resulting logarithmic term first, we get 

u = k Inx + (- _1_ - ... - kp- 1 + kp+IX + ... ) 
p pxP x 

Hence. by (9) we get for Y2 = UYI the formula 

But this is of the form (10) with k = kp since rl - P = r2 and the product of the two 
series involves nonnegative integer powers of x only. • 

Section 5.7, page 205 

THEOREM Reality of Eigenvalues 

If p, q, r, alld p' ill the Sturm-Liouville equation (I) of Sec. 5.7 are real-valued and 
continuous on the interval a ~ x ~ band rex) > 0 throughout that interval (or 
rex) < 0 throughout that interval). then all the eigenvalues of the Stunl1-Liouville 
problem (1). (2). Sec. 5.7. are real. 

PROOF Let A = 0' + i{3 be an eigenvalue of the problem and let 

y(x) = u(x) + iu(x) 

be a corresponding eigenfunction: here 0', {3. u. and u are real. Substituting this into (1), 
Sec. 5.7, we have 

( I +. ')' pu lpU + (q + O'r + i{3r)(u + iu) = o. 
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This complex equation is equivalent to the following pair of equations for the real and 
the imaginary parts: 

(pu')' + (q + ar)u - {3rv = 0 

(pU')' + (q + ar)u + 13m = O. 

Multiplying the first equation by u, the second by -ll and adding, we get 

-(3(1I2 + u2)r = u(pu')' - u(pu')' 

= [(pu')lI - (pu')uJ'. 

The expression in brackets is continuous on a ~ x ~ b. for reasons similar to those in 
the proof of Theorem I, Sec. 5.7. Integrating over x from a to b. we thus obtain 

Because of the boundary conditions the right side is zero; this is as in that proof. Since y 
is an eigenfunction, u2 + u2 *' O. Since y and r are continuous and r > 0 (or r < 0) on 
the interval a ~ x ~ b, the integral on the left is not zero. Hence, (3 = 0, which means 
that A = a is reaL This completes the proof. • 

Section 7.7, page 308 

THEOREM Determinants 

The definition of a detennillant 

(7) D = detA = 

as given in Sec. 7.7 is unambiguous, that is, it yields the same value of D no matter 
which rows or columns we choose in developings. 

PROOF In this proof we shall use fonnula numbers not yet used in Sec. 7.7. 
We shall prove first that the same value is obtained no matter which row is chosen. 
The proof is by induction. The statement is true for a second-order determinant. for 

which the developments by the first row aU{/22 + a 12( -(21) and by the second row 
a21(-a12) + {/22all give the same value alla22 - a12a21' Assuming the statement to be 
true for an (n - l)st-order determinant, we prove that it is true for an nth-order 
determinant. 
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For this purpose we expand D in terms of each of two arbitrary rows, say, the ith and 
the jth, and compare the results. Without loss of generality let us assume i < j. 

First Expansioll. We expand D by the ith row. A typical term in this expansion i~ 

The minor Mik of aik in D is an (11 - 1 )st-order determinant. By the induction hypothesis 
we may expand it by any row. We expand it by the row corresponding to the jth row of 
D. This row contains the entries ajl (/ =1= k). It is the (j - I )st row of M ik• because Mik 

does not contain entries of the ith row of D. and i < j. We have to distinguish between 
two ca<;es as follows. 

Case I. If I < k, then the entry ajl belongs to the lth column of Mik (see Fig. 560). Hence 
the term involving ajl in this expansion is 

(20) 

where Mikj / is the minor of (ljl in M ik. Since this minor is obtained from Mik by deleting 
the row and column of ajl, it is obtained from D by deleting the ith and jth rows and the 
kth and lth columns of D. We insert the expansions of the Mik into that of D. Then it 
follows from (19) and (20) that the terms of the resulting representation of D are of the 
form 

(2Ia) (l < k) 

where 

b=i+k+j+l-l. 

Case 11. If I > k, the only difference is that then ajl belongs to the (l - I )st column of 
M ik, because Mik does not contain entries of the kth column of D, and k < I. This causes 
an additional minus sign in (20). and. instead of (21 a). we therefore obtain 

(2Ib) 

where b is the same as before. 

lth 
col. 

kth 
col. 

--~------@----
I I 

--6}-----~----
I I 
I I 
I I 

Case I 

kth 
col. 

lth 
col. 

I I 
I I 

ith row - -&-----~---
I I 

jth row ---+------@---
I I 
I I 
I I 

Case II 

Fig. 560. Cases I and II of the two expansions of D 

(l > k) 
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Second Expansion. We now expand D at first by the jth row. A typical term in this 
expansion is 

(22) 

By the induction hypothesis we may expand the minor Mjl of ajl in D by its ith row, which 
corresponds to the ith row of D. since j > i. 

Case T. If k > I, the entry 0ik in that row belongs to the (k - I )st column of Mjl' because 
Mjl does not contain entIies of the Ith column of D. and I < k (see Fig. 560). Hence the 
term involving aik in this expansion is 

(23) f f · M ( l)i+(k- DM aik· (co actor 0 aik In jl) = llik· - ikjZ, 

where the minor M ikjl of aik in Mjl is obtained by deleting the ith and jth rows and the 
kth and Ith columns of D [and is, therefore, identical with Mikj /, in (20), so that our notation 
is consistentJ. We insert the expansions of the Mjl into that of D. It follows from (22) and 
(23) that this yields a representation whose terms are identical with those given by (21 a) 
when I < k. 

Case 1I. If k < I, then 0ik belongs to the kth column of Mjl' we obtain an additional minus 
sign, and the result agrees with that characterized by (21 b). 

We have shown that the two expansions of D consist of the same terms, and this proves 
our statement concerning rows. 

The proof of the statement concerning colu11l1ls is quite similar; if we expand D in 
terms of two arbitrary columns, say, the kth and the !th. we find that the general term 
involving 0jlaik is exactly the same as before. This proves that not only all column 
expansions of D yield the same value, but also that their common value is equal to the 
common value of the row expansion), of D. 

This completes the proof and shows that ollr definitioll of all mil-order detel7ninalll is 

unambiguolls. • 

Section 9.3, page 377 

PROOF OF FORMULA (2) 

We prove that in right-handed Carte~ian coordinates. the vector product 

has the components 

(2) 

We need only consider the case v =1= O. Since v is perpendicular to both a and b, Theorem 
1 in Sec. 9.2 gives a • v = 0 and b • v = 0; in components [see (2), Sec. 9.2], 

(3) 
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Multiplying the first equation by b3, the last by a3. and subtracting, we obtain 

Multiplying the first equation by bl , the last by ill' and subtracting, we obtain 

We can ea~ily verify that these two equations are ~atisfied by 

(4) 

where c is a constant. The reader may verify by inserting that (4) also satisfies (3). Now 
each of the equations in (3) represents a plane thruugh the origin in VIV2v3-space. The 
vectors a and b are normal vectors of these planes (see Example 6 in Sec. 9.2). Since 
v =1= 0, these vectors are not parallel and the two planes do not coincide. Hence their 
intersection is a straight line L through the origin. Since (4) is a solution of (3) and, for 
varying c, represents a straight line, we conclude that (4) represents L, and every solution 
of (3) must be of the form (4). Tn particular, the components of v must be of this form, 
where c is to be determined. From (4) we obtain 

This can be written 

as can be verified by performing the indicated multiplications in both formulas and 
comparing. Using (2) in Sec. 9.2, we thus have 

By comparing this with formula (12) in Team Project 24 of Problem Set 9.3 we conclude 
that c = ±1. 

We show that c = + 1. This can be done a" follows. 
If we change the lengths and directions of a and b continuously and so that at the end 

a = i and b = j (Fig. l86a in Sec. 9.3), then v will change its length and direction 
continuously, and at the end, v = i X j = k. Obviously we may effect the change so that 
both a and b remain different from the zero vector and are not parallel at any instant. 
Then v is never equal to the zero vector, and since the change is continuous and c can 
only assume the values + 1 or -I, it follows that at the end c must have the same value 
as before. Now at the end a = i, b = j. v = k and, therefore, al = 1. b2 = I, V3 = L 
and the other components in (4) are zero. Hence from (4) we see that V3 = c = + 1. This 
proves Theorem I. 

For a left -handed coordinate system, i X j = -k (see Fig. 186b in Sec. 9.3), resulting 
in c = -1. This proves the statement right after formula (2). • 
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Section 9.9, page 416 

PROOF OF THE INVARIANCE OF THE CURL 

THEOREM A 

This proof will follow from two theorems (A and B), which we prove first. 

Transformation Law for Vector Components 

For any vector v the componenTs VI, V2 , V3 and Vl*' V2*' V3* in allY two systems 
of Cartesian coordinates Xl> x3, X3 and Xl*' X2*' x3*' respectively, are related by 

0) 

and conversely 

(2) 

with coefficients 

(3) 

C31 = k*·i 

satisfying 

(4) 

C32 = k*· j 

3 

L CkjCmj = i5km 
j~1 

C13 = i*·k 

c = k*·k 33 

(k,1I/ = 1, 2, 3), 

where the Kronecker delta2 is given by 

(k * m) 

(k = 11/) 

and i, j, k and i*, j*, k* denote the unit vectors ill the positive Xl-, X2-, X3- and 
Xl*-' X2*-' x3*-directions, respectively. 

2LEOPOLD KRONECKER (l823-18YI), German mathematician at Berlin, who made important 
contributions to algebra. group theory. and number theory. 

We shall keep our discussion completely independent of Chap. 7, but readers familiar with matrices should 
rccognize that we are dealing with orthogonal transformations and matrices and that our present theorem 
follows from Theorem 2 in Sec. 8.3. 
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PROOF The representation of v in the two systems are 

THEOREM B 

(5) 

Since i* • i* = L i* • j* = 0, i* • k* = 0, we get from (5b) simply i* • v = Vl* and 
from this and (Sa) 

Because of (3), this is the first formula in (1), and the other two fommlas are obtained 
similarly. by considering j* • v and then k* • v. Formula (2) follows by the same idea. 
taking i • v = VI from (Sa) and then from (5b) and (3) 

and similarly for the other two components. 
We prove (4). We can write (1) and (2) briefly as 

3 3 

(6) (a) Vj = ~ cl1lJ vm *, 
m=1 

(b) Vk * = ~ CkjVj. 

j=1 

Substituting Vj into Vk *, we get 

333 

Vk* = ~ Ckj ~ CmjVn .* = ~ V m * 

j=1 m=1 m=l 

where k = 1, 2, 3. Taking k = 1, we have 

For this to hold for eve1), vector v, the first sum must be I and the other two sums O. This 
proves (4) with k = 1 for m = 1, 2, 3. Taking k = 2 and then k = 3. we obtain (4) with 
k = 2 and 3, form = 1,2,3. • 

Transformation Law for Cartesian Coordinates 

The trclllc~f01111{{tioll of allY Cartesian XIX2x3-coordinate system into any other 
Cartesian XI * X2 * X3 *-coordillate system is of the fonn 

(7) 

3 

Xm* = ~ CnljXj + bm , 111 = 1.2.3, 
j=1 

with coefficients (3) and COllstants bI> b2, b3; cOllversely, 

3 

(8) Xk = :L CnkXn * + bk , 

1£=1 

k = 1.2,3. 
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Theorem B follows from Theorem A by noting that the most general transformation of a 
Cartesian coordinate system into another such system may be decomposed into a 
tranSf0I111ation of the type just considered and a translation; and under a translation, 
cOlTesponding coordinates differ merely by a constant. 

PROOF OF THE INVARIANCE OF THE CURL 
We write again Xl, X2, X3 instead of x, y,~, and similarly Xl*' X2*' X3i< for other Cartesian 
coordinates. assuming that both systems are right-handed. Let al. a 2• 03 denote the 
components of curl v in the xIx2x3-coordinates. as given by (l), Sec. 9.9. with 

v=X . 2, 

Similarly, let al*' a2*' a3* denote the components of curl v in the xl*x2*x3*-coordinate 
system. We prove that the length and direction of curl v are independent of the particular 
choice of Cartesian coordinates. as asserted. We do this by showing that the components 
of curl v satisfy the transformation law (2), which is characteristic of vector components. 
We consider {[I' We use (6a), and then the chain rule for functions of several variables 
(Sec. 9.6). This gives 

3 3 ( aV.,/ 
= L L cm3 (Jx/' 

m=I j=l 

From this and (7) we obtain 

Note what we did. The double sum had 3 X 3 = 9 terms, 3 of which were zero (when 
111 = j). and the remaining 6 terms we combined in pairs as we needed them in getting 
aI*, a2*' {/3* 

We now use (3), Lagrange's identity (see Team Project 24 in Problem Set 93) and 
k* x j* = -i* and k X j = -i. Then 

= (k* x j*) • (k x j) = i* • i = Cn. etc. 
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Hence a] = clla]* + c2]a2* + c3]a3*' This is of the form of the first formula in (2) in 
Theorem A, and the other two formulas of the form (2) are obtained similarly. This proves 
the theorem for right-handed systems. If the .\"lx2'\·3-coordinates are left-handed, then 
k X j = +i, but then there is a minus sign in front of the determinant in (1), Sec. 9.9. • 

Section 10.2, pages 426-427 

PROOF 0 F THE 0 REM 1, PA R T (b) We prove that if 

(1) f F(r) • dr = f (Fl dx + F2 dy + F3 dz) 
C c 

with continuous F I , F2, F3 in a domain D is independent of path in D, then F = grad f 
in D for some f; in components 

(2' ) 

We choose any fixed A: (xo, Yo, zo) in D and any B: (x, )" z) in D and define f by 

(3) 
B 

f(x, y, z) = fo + I (F] dx* + F2 dy* + F3 dz*) 
A 

with any constant fo and any path from A to BinD. Since A is fixed and we have 
independence of path. the integral depends only on the coordinates x. y. z. so that (3) 

defines a function f(x, y. z) in D. We show that F = grad f with this f, beginning with 
the first of the three relations (2'). Because of independence of path we may integrate 
from A to B]: (x], y, z) and then parallel to the x-axis along the segment B]B in Fig. 561 
with B] chosen so that the whole segment lies in D. Then 

Bl B 

f(x, y, z) = fo + I (FI d.x:* + F2 dy* + F3 dz*) + f (FI dx* + F2 dy* + F3 dz*). 
A ~ 

We now take the partial derivative with respect to x on both sides. On the left we get 
iJf/iJx. We show that on the right we get F]. The derivative of the first integral is zero 
because A: (xo, Yo, zo) and B1 : (x], y, z) do not depend on x. We consider the second 
integral. Since on the segment B]B, both y and z are constant, the terms F2 dy* and 

z 

y 
x 

Fig. 561. Proof of Theorem 1 
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F3 d::.* do not contribute to the detivative of the integral. The remaining part can be written 
as a definite integral. 

Hence its partial derivative with respect to x is Fl(X, y, ::.), and the first of the relations 
(2') is proved. The other two formulas in (2') follow by the same argument. • 

Section 13.4, page 620 

PROOF 0 F THE 0 REM 1 Cauch~-Riemann Equations 
We prove that Cauchy-Riemann equations 

(1) 

are sufficient for a complex function fez) = u(x, y) + iv(x, y) to be analytic; precisely. (f 
the real parI u and the inzaginaJ~v part v of f(z.) satisfy (I) ill a domain D ill the complex 
plane and if the ponied derivatives i11 (I) are COlltillllOUS in D, then fez) is analytic in D. 

In this proof we write D.::. = .lx + iD.y and D.f = fez. + D.z.) - f(z.). The idea of proof 
is as follows. 

(a) We express .If in terms of first partial derivatives of II and v. by applying the mean 
value theorem of Sec. 9.6. 

(b) We get rid of partial derivatives with respect to y by applying the Cauchy-Riemann 
equations. 

(c) We let .l.:: approach zero and show that then D.fl.l::. as obtained approaches a limit 
which is equal to Ux + ivx , the right side of (4) in Sec. 13.4. regardless of the way of 
approach to zero. 

(a) Let P: (x, y) be any fixed point in D. Since D is a domain, it contains a neighborhood 
of P. We can choose a point Q: (x + D.x, y + D.)') in this neighborhood such that the 
straight-line segment PQ is in D. Because of our continuity a~sumptions we may apply 
the mean value theorem in Sec. 9.6. This yields 

u(x + D.x, y + .ly) - lI(X, y) = (.lx)ux(M1) + (D.y)uyCM1) 

v(x + D.x, y + .ly) - vex, y) = (D.x)vx (M2) + (D.y)vyCM2) 

where Ml and M2 (01= Ml in general!) are suitable points on that segment. The first line 
is Re D.f and the second is 1m .If, so that 

(b) u y = -vx and Vy = IIx by the Cauchy-Riemann equations, so that 
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Also 11::. = ~x + il1.\', so that we can write I1x = ~::. - il1."'" in the first term and 
11.\' = 0::. - ~x)li = -i(.1.:: - .1x) in the second term. This gives 

By performing the multiplications and reordering we obtain 

111 = (.1::')lIx (Ml ) - iI1Y{lIx (Ml) - lIx (M2 )} 

+ i[(~::.Wr(Ml) - ..lx{ux(Ml ) - ux(M2 )}]· 

Division by 11::. now yields 

i.1y i:lx 
.1~ {lIx(Ml) - tlx(M2 )} - ~- {ux(Ml ) - ux(M2 )}· 

. -
(e) We finally let 11::. approach zero and note that 111-,,111::.1 ~ I and Il1xll1zl ~ I in (A). 

Then Q: (x + ~x, y + ~y) approaches P: (x, y), so that Ml and M2 must approach P. 
Also, since the partial derivatives in (A) are assumed to be continuous, they approach 
their value at P. In particular, the differences in the braces { ... } in (A) approach zero. 
Hence the limit of the right side of (A) exists and is independent of the path along which 
11::. ---7 O. We see that this limit equals the right side of (4) in Sec. 13.4. This means that 
1(::.) is analytic at every point.:: in D, and the proof is complete. • 

Section 14.2, pages 647-648 

GOURSAT'S PROOF OF CAUCHY'S INTEGRAL THEOREM Goursat proved Cauchy's 
integml theorem without assuming that f' (.::) is continuous, as follows. 

We start with the case when C is the boundary of a triangle. We orient C 
counterclockwise. By joining the midpoints of the sides we subdivide the triangle into 
four congruent triangles (Fig. 562). Let CI . Cn . Cm . CIV denote their boundaries. We 
claim that (see Fig. 562). 

(I) f I d.:: = f I d.:: + f I dz + f I d.:: + f I d::.. 
G G, Gn GIll G,v 

Indeed, on the right we integrate along each of the three segments of subdivision in both 
possible directions (Fig. 562), so that the corresponding integrals cancel out in pairs, and 
the sum of the integrals on the right equals the integral on the left. We now pick an integral 
on the right that is biggest in absolute value and call its path Cl' Then. by the triangle 
inequality (Sec. 13.2), 

Fig. 562. Proof of Cauchy's integral theorem 
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We now subdivide the triangle bounded by C1 as before and select a triangle of 
subdivil>ion with boundary C2 for which 

Then 

Continuing in this fashion, we obtain a sequence of triangles T1 , T2 , ••• with boundaries 
Cl> C2 , .•• that are similar and such that Tn lies in Tm when 11 > Ill, and 

(2) n = 1,2, .. '. 

Let ':::0 be the point that belongs to all these triangles. Since f is differentiable at :.:: = :'::0, 

the derivative J' (':::0) exists. Let 

(3) 
fez) - f(zo) 

h(.:::) = - J' (zo)· 
z -:'::0 

Solving this algebraically for f(:.::) we have 

fez) = f(:.::o) + (z - zo)J' (:'::0) + 11(:::)(:.:: - ':::0)· 

Integrating this over the boundary Cn of the triangle Tn gives 

Since f(.:::o) and J' (zo) are constants and Cn is a dosed path. the first two integrals on the 
right are zero, as follows from Cauchy's proof, which is applicable because the integrands 
do have continuous derivatives (0 and const, respectively). We thus have 

f fez) d::: = f h(z)(z - :'::0) d:.::. 
en en 

Since J' (:'::0) is the limit of the difference quotient in (3), for given E > 0 we can find a 
8 > 0 such that 

(4) Ih(z)1 < e when Iz - :'::01 < 8. 

We may now take 11 so large that the tliangle Tn lies in the disk Iz - :::01 < 8. Let Ln be 
the length of Cn' Then I::: - zol < Ln for all :: on Cn and::o in Tn. From this and (4) we 
have 111(.:::)(z - :(0)1 < eLn . The ML-inequality in Sec. 14.1 now gives 

(5) 

Now denote the length of C by L. Then the path C1 has the length Ll = Ll2, the path C2 

has the length ~ = Ll/'2 = Ll4, etc., and Cn has the length L" = Ll2n. Hence 
Ln2 

= L2/4n. From (2) and (5) we thus obtain 
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By choosing E (> 0) sufficiently small we can make the expression on the right as small 
as we please, while the expression on the left is the definite value of an integral. 
Consequently. this value must be zero, and the proof is complete. 

The proof for the case ill which C is the boundary of a polygon follows from the 
previous proof by subdividing the polygon into triangles (Fig. 563). The integral 
corresponding to each such triangle is zero. The sum of these integrals is equal to the 
integral over C, because we integrate along each segment of subdivision in both 
directions, the corresponding integrals cancel out in pairs, and we are left with the integral 
over C. 

The case of a general simple closed path C can be reduced to the preceding one by 
inscribing in C a closed polygon P of chords, which approximates C "sufficiently 
accurately," and it can be shown that there is a polygon P such that the integral over P 
differs from that over C by less than any preassigned positive real number E, no matter 
how small. The details of this proof are somewhat involved and can be found in Ref. [D6] 
listed in App. 1. • 

Fig. 563. Proof of Cauchy's integral theorem for a polygon 

Section 15.1, page 667 

PROOF 0 F THE 0 REM 4 Cauchy's Convergence Principle for Series 

(a) [n this proof we need two concepts and a theorem, which we list first. 

1. A bounded sequence SI' S2, ••. is a sequence whose terms all lie in a disk of 
(sufficiently large, finite) radius K with center at the origin; thus ISnl < K for alln. 

2. A limit point a of a sequence Sb S2, .•• is a point such that, given an E> 0, there 
are infinitely many terms satisfying ISn - al < E. (Note that this does not imply 
convergence, since there may still be infinitely many tenns that do not lie within that 
circle of radius E and center a.) 

Example: ~. ~, ~. ~, 1~' ~~ •... has the limit points 0 and 1 and diverges. 

3. A bounded sequence in the complex plane has at least one limit point. 
(Bolzano-Weierstrass theorem: proof below. Recall that "sequence" always mean infinite 
sequence.) 

(b) We now turn to the actual proof that ZI + ~2 + ... converges if and only if for 
every E > 0 we can find an N such that 

(1) Izn+l + ... + zn+pl < E for every n > Nandp = 1,2, . ". 

Here, by the definition of partial sums, 

Sn+p - Sn = 2n+l + ... + zn+p' 
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THEOREM 

Writing II + P = r, we see from this that (1) is equivalent to 

(1*) for all r > Nand n > N. 

Suppose that SI' S2, ... converges. Denote its limit by s. Then for a given E> 0 we can 
find an N such that 

for every n > N. 

Hence, if r > Nand n > N, then by the triangle inequality (Sec. 13.2), 

that is, (I *) holds. 

(c) Conversely, assume that SI, S2, •.. satisfies (1 *). We first prove that then the 
sequence must be bounded. Indeed, choose a fixed E and a fixed n = no > N in (1 *). 
Then (1 *) implies that all s,. with r > N lie in the disk of radius E and center s"o and only 
fillitely many tel7l1S SI, ... , SN may not lie in this disk. Clearly, we can now find a circle 
so large that this disk and these finitely many terms all lie within this new circle. Hence 
the sequence is bounded. By the Bolzano-Weierstrass theorem, it has at least one limit 
point, call it s. 

We now show that the sequence is convergent with the limit s. Let E > 0 be given. 
Then there is an N* such that 1ST - snl < E/2 for all r > N* and 11 > N*, by (1 *). Also, 
by the definition of a limit point, ISn - sl < E/2 for infinitely lI1allY n, so that we can find 
and fix an Il > N* such that ISn - sl < El2. Together, for e\'el)' r > N*, 

E E 
1ST - sl = I(ST - S.,} + (Sn - s)1 ~ Is,. - snl + ISn - sl < 2 + 2 = E; 

that is. the sequence SI, S2' ... is convergent with the limit s. • 

Bolzano-Weierstrass Theorem3 

A bounded infillite sequellce Z1> Z2, 23, ..• in the complex plane has at least one 
limit point. 

PROOF It is obvious that we need both conditions: a finite sequence cannot have a limit point. 
and the sequence I, 2, 3 .... , which is infinite but not bounded. has no limit point. To 
prove the theorem, consider a bounded infinite sequence ZI. Z2 • ... and let K be such that 
Iznl < K for all n. If only finitely many values of the Zn are different, then. since the 
sequence is infinite, some number z must occur infinitely many times in the sequence, 
and, by definition, this number is a limit point of the sequence. 

We may now tum to the case when the sequence contains infinitely many differem 
terms. We draw a large square Qo that contains all Zw We subdivide Qo into four congruent 
squares, which we number 1, 2. 3, 4. Clearly, at least one of these squares (each taken 

3BERNARD BOLZANO (1781-1848). Austrian mathematician and professor of religious studies, was a 
pioneer in the study of point sets, the foundation of analysis, and mathematical logic. 

For Weierstrass. see Sec. 15.5. 
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with its complete boundary) must contain infinitely many terms of the sequence. The 
square of this type with the lowest number (1. 2, 3, or 4) will be denoted by Q1' This is 
the first step. In the next step we subdivide Q1 into four congruent squares and select a 
square Q2 by the same rule, and so on. This yields an infinite sequence of squares Qo. 
Q1, Q2, ... , Qn, ... with the property that the side of Qn approaches zero as 11 approaches 
infinity, and Qm contains all Qn with 11 > m. It is not difficult to see that the number 
which belongs to all these squares,4 call it:::: = a, is a limit point of the sequence. In fact, 
given an E > O. we can choose an N so large that the side of the square QN is less than 
€ and, since QN contains infinitely many Zn. we have Izn - aJ < E for infinitely many 11. 

This completes the proof. • 

Section 15.3, pages 681-682 

T (b) OF THE PROOF OF THEOREM 5 
We have to show that 

= L an LlZ[(Z + LlZ)",-2 + 2z(z + uz)n-3 + ... + (11 - 1)zn-2], 

thus, 
11.=2 

(z + LlZ)n - zn 

Llz 

= LlZ[(Z + Llz)n-2 + 2z(z + LlZ)n-3 + ... + (n - l)z11.-2]. 

If we set Z + .1z = band z = a, thuf, ,lz = h - a, this becomes simply 

(7a) (11 = 2,3, ... ), 

where An is the expression in the brackets on the right, 

(7b) 

thus, A2 = 1, A3 = b + 2a. etc. We prove (7) by induction. When n = 2. then (7) holds. 
since then 

(b + a)(b - a) 
- 2a = - 2a = b - a = (b - a)A2 . 

b-a 

Assuming that (7) holds for 11 = k, we show that it holds for n = k + 1. By adding and 
subtracting a term in the numerator and then dividing we first obtain 

b-a 

bk + 1 - bak + bak - ak + 1 

b-a 

4The fact that such a unique number;:; = a exists seems [0 be obvious, but it actually follows from an axiom 
of the real number system, the so-called CantOl~Dedekind axiom: see footnote 3 in App. A3.3. 
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By the induction hypothesis, the right side equals b[(b - a)Ak + kak - 1
] + ak. Direct 

calculation shows that this is equal to 

From (7b) with Il = k we see that the expression in the braces { ... } equals 

bk - 1 + 2abk - 2 + ... + (k - l)bak - 2 + kak - 1 = Ak+ 1• 

Hence our result is 

bk + 1 _ ak + 1 

= (b - a)Ak + 1 + (k + l)ak
. 

b-a 

Taking the last term to the left, we obtain (7) with n = k + I. This proves (7) for any 
integer n ~ 2 and completes the proof • 

Section 18.2, page 754 

A NOT HER PROOF 0 F THE 0 REM 1 without the use of a harmonic conjugate 
We show that if w = u + iu = i(z) is analytic and maps a domain D conformally onto 
a domain D* and <I>*(u, u) is harmonic in D*, then 

(1) <I>(x, y) = <I>*(u(x, y), u(x, y)) 

is harmonic in D. that is, y2<1> = 0 in D. We make no use of a hmmonic conjugate of 
<1>*, but use straightforward differentiation. By the chain rule, 

We apply the chain rule again. underscoring the terms that will drop out when we form 
,2<1>: 

<l>yy is the same with each x replaced by y. We form the sum y2<1>. In it, <I>~u = <I>~v is 
multiplied by 

which is 0 by the Cauchy-Riemann equations. Also y 2
U = 0 and y 2

U = O. There remains 

By the Cauchy-Riemann equations this becomes 

and is 0 since <1>* is harmonic. • 
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Tables 

A94 

For Tables of Laplace transforms see Secs. 6.8 and 6.9. 
For Tables of Fourier transforms see Sec. 11.10. 
If you have a Computer Algebra System (CAS), you may not need the present tables, 
but you may still find them convenient from time to time. 

Table Al Bessel Functions 

For more extensive tables see Ref. [GRll in App. I. 

x 10(x) 11(x) x 10(:0:) hex) x 10(x) 1 1(x) 
-

0.0 1.0000 0.0000 3.0 -0.2601 0.3391 6.0 0.1506 -0.2767 
0.1 0.9975 0.0499 3.1 -0.2921 0.3009 6.1 0.1773 -0.2559 
0.2 0.9900 0.0995 3.2 -0.3202 0.2613 6.2 0.2017 -0.2329 
0.3 0.9776 0.1483 3.3 -0.3443 0.2207 6.3 0.2238 -0.2081 
0.4 0.9604 0.1960 3.4 -0.3643 0.1792 6.4 0.2433 -0.1816 

0.5 0.9385 0.2423 3.5 -0.3801 0.1374 6.5 0.2601 -0.1538 
0.6 0.9120 0.2867 3.6 -0.3918 0.0955 6.6 0.2740 -0.1250 

0.7 0.8812 0.3290 3.7 -0.3992 0.0538 6.7 0.2851 -0.0953 
0.8 0.8-1-63 0.3688 3.8 -0.4026 0.0118 6.8 0.2931 -0.0652 
0.9 0.8075 0.4059 3.9 -0.4018 -0.0272 6.9 0.2981 -0.0349 

1.0 0.7652 0 . ..\401 -l.0 -0.3971 -0.0660 7.0 0.3001 -0.0047 
1.1 0.7196 0.4709 4.1 -0.3887 -0.1033 7.1 0.2991 0.0152 
1.2 0.6711 OA983 4.2 -0.3766 -0.1386 7.2 0.2951 0.0543 
1.3 0.6201 0.5220 4.3 -0.3610 -0.1719 7.3 0.2882 0.0826 
1.4 0.5669 0.5419 4.4 -0.3423 -0.2028 7.4 0.2786 0.1096 

1.5 0.5118 0.5579 4.5 -0.3205 I -0.2311 7.5 0.2663 0.1352 
1.6 0.4554 0.5699 -l.6 -0.1961 -0.2566 7.6 0.2516 0.1592 
1.7 0.3980 0.5778 4.7 -0.1693 -0.2791 7.7 0.2346 0.1813 
1.8 0.3400 0.5815 4.8 -0.2404 -0.2985 7.8 0.2154 0.2014 
1.9 0.2818 0.5812 4.9 -0.2097 -0.3147 7.9 0.1944 0.2192 

2.0 0.2239 0.5767 5.0 -0.1776 -0.3276 8.0 0.1717 0.2346 
2.1 0.1666 0.5683 5.1 -0.1443 -0.3371 8.1 0.1475 0.2476 
2.2 0.1104 0.5560 5.2 -0.1103 -0.3431 8.2 0.1222 0.2580 
2.3 0.0555 0.5399 5.3 -0.0758 -0.3460 8.3 0.0960 0.2657 
2.4 0.0025 0.5202 5.4 -0.0412 -0.3453 8.4 0.0692 0.2708 

2.5 -0.0484 0.4971 5.5 -0.0068 -0.3414 8.5 0.0419 0.2731 
2.6 -0.0968 0.-1-708 5.6 0.0270 -0.3343 8.6 0.0146 0.2728 
2.7 -0.1424 0.4416 5.7 0.0599 -0.3241 8.7 -0.0125 0.2697 
2.8 -0.1850 0.4097 5.8 0.0917 -0.3110 8.8 -0.0392 0.2641 
2.9 -0.2143 0.3754 5.9 0.1220 -0.2951 8.9 -0.0653 0.2559 

I 

fo(x) ~ 0 for x = 2.40483. 5.52008, 8.65373, 11.7915, 14.9309, 1~.0711, 21.2116, 24.3525. 27.4935, 30.6346 

11(x) = 0 for x = 3.83171, 7.01559,10.1735, 13.3237. 16.4706. 19.6159,22.7601,25.9037,29.0468.32.1897 
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Table A1 (continued) 
-

x : YolX} Y1(xj x Yo\.l:) Yl~\') x YoIX) Yl~\") I -
I I I I 0.0 I (-x) (-x) 2.5 0.498 0.146 5.0 -0.309 0.148 

0.5 -0.445 -1.471 3.0 0.377 0.325 5.5 -0.339 -0.024 

:~ I 
0.088 -0.781 3.5 0.189 0.410 6.0 -0.288 -0.175 

I 
0.382 -0.412 4.0 -0.017 0.398 6.5 -0.173 -0.274 

2.0 0.510 -0.107 4.5 -0.195 0.301 7.0 -0.026 -0.303 

Table Al Gamma Function [see (24) in App. A3.1] 

a f(a) a na) a r(a) a na) Q' f(a) 
: 

1.00 1.000000 1.20 0.911l169 1.40 0.1l1l7264 1.60 0.1l93515 1.1l0 0.93131l4 I 

1.02 0.988844 1.22 0.913106 1.42 0.886356 1.62 0.895924 1.82 0.936845 
1.04 0.978438 1.24 0.908521 1.44 0.885805 1.64 0.898642 1.84 0.942612 
1.06 0.968744 1.26 0.904397 1.46 0.885604 1.66 0.901668 1.86 0.948687 
LOll 0.959725 1.28 0.900718 1048 0.885747 1.68 0.905001 1.88 0.955071 

I 
1.10 0.951351 1.30 0.897471 1.50 0.886227 1.70 0.908639 1.90 0.961766 

1.12 0.943590 1.32 0.894640 1.52 0.887039 1.72 0.912581 1.92 

I 
0.968774 

1.14 0.936416 1.34 0.892216 1.54 0.888178 1.74 0.916826 1.94 0.976099 
1.16 0.929803 1.36 0.890185 1.56 0.889639 1.76 0.921375 1.96 0.983743 
1.18 0.923728 1.38 0.888537 1.58 0.891420 1.78 0.926227 1.98 0.991 708 

I 1.20 0.918 169 1.40 0.887264 1.60 0.893515 1.80 0.931 384 2.00 11.000 000 
'-

Table Al Factorial Function and Its Logarithm with Base 10 
-

I 
I II 11! log (II!) 11 11! log (II!) 11 11' log VI!) 

1 1 u.uuuOOO 6 72u 2.857332 11 39916800 7.6Ul 156 
I 2 2 0.301 030 7 5040 3.702431 12 479001 600 8.680337 

3 6 0.778 151 8 4032u 4.605521 13 6227 u2u IlUO 9.794280 
4 24 1.380211 9 362880 5.559763 14 87178291200 10.940408 
5 I 120 2.079 181 10 3628800 6.559763 15 1 307674368000 12.116500 

Table A4 Error Function, Sine and Cosine Integrals [see (35), (40), (42) in App. A3.1] 

l: erfx Silxj CIIXI x erfx Si(xi ci(x) I 
U.U u.uuuu u.uuuu :JO 2.u 0.9953 1.6054 -0.4230 I 

0.2 0.2227 0.1996 1.0422 2.2 0.9981 1.6876 -0.3751 
0.4 0.4284 0.3965 0.3788 2.4 0.9993 1.7525 -0.3173 
0.6 0.6039 0.5881 0.0223 2.6 0.9998 1.8004 -0.2533 

I 
0.8 0.7421 0.7721 -0.1983 2.8 0.9999 1.8321 -0.1865 
1.0 0.8427 0.9461 -0.3374 3.0 1.0000 1.8487 -0.1196 

1.2 0.9103 1.1080 -0.4205 3.2 1.0000 1.8514 -0.0553 
104 0.9523 1.2562 -0.4620 3.4 1.0000 1.8419 0.0045 

I 1.6 0.9763 1.3892 -0.4717 3.6 1.0000 1.8219 0.0580 

I 1.8 0.9891 1.5058 -0.4568 3.8 1.0000 1.7934 0.1038 
I 2.0 0.9953 1.6054 -0.4230 4.0 1.0000 1.7582 0.1410 
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Table AS Binomial Distribution 

Probability function f(x) [see (2), Sec. 24.7] and distribution function F(x) 

p = 0.1 p = 0.2 P = 0.3 p = 0.4 P = 0.5 

" x I(~F(X)_ J(x) F(x) I(x) F(x) I(x) F(x) I(x) I F(x) 
- - - r-- - ---I--

o. o. o. o. o. 

I' 
0 9000 0.9000 8000 0.8000 7000 0.7000 6000 0.6000 5000 0.5000 
I 1000 1.0000 2000 1.0000 3000 1.0000 4000 1.0000 5000 1.0000 

0 !HOO OJHOO 6400 0.6400 4'J00 OA'JOO 3600 0.3600 2500 0.2500 
'1 I 1800 0.9900 3200 0.9600 4200 0.9100 4800 0.8400 5000 0.7500 

2 0100 1.0000 0400 1.0000 0900 1.0000 1600 1.0000 2500 1.0000 
-

0 7290 0.7290 5120 0.5120 3430 0.3430 2160 0.2160 1250 0.1250 I 
3 

1 2430 0.9720 3840 0.8Y60 4410 0.7840 4320 0.6480 3750 0.5000 
2 0270 0.9990 0960 0.9920 I!NO 0.9730 2880 0.9360 3750 0.8750 
3 0010 1.0000 0080 1.0000 0270 1.0000 0640 1.0000 1250 1.0000 

0 6561 0.6561 40Y6 0.4096 2401 0.2401 12'J6 0.12'J6 0625 0.0625 
I 2916 0.9477 4096 0.8192 4116 0.6517 3456 0.4752 2500 0.3125 

4 2 0486 0.9963 1536 0.9728 2646 0.9163 3456 0.8208 3750 0.6875 
3 0036 0.9999 0256 0.9984 0756 0.9919 1536 0.9744 2500 0.9375 
4 0001 1.0000 0016 1.0000 0081 1.0000 0256 1.0000 0625 1.0000 

-

I 0 5'}u5 u.5905 3277 u.3277 Ib81 u.lb81 lJ778 (J.l)778 lJ313 0.u313 
I 3281 0.9185 40Y6 0.7373 3602 0.5282 25Y2 0.3370 1563 0.1875 

5 
2 072'J 0.9'J14 2048 0.9421 3087 0.8369 3456 0.6826 3125 0.5000 
3 0081 0.9995 0512 0.9933 1323 0.9692 2304 0.9130 3125 0.8125 
4 0005 1.0000 0064 0.9997 0284 0.9976 0768 0.9898 1563 0.9688 
5 0000 1.0000 0003 1.0000 0024 1.0000 0102 1.0000 0313 1.0000 

-

0 5314 0.5314 2621 0.2621 1176 0.1176 0467 0.0467 0156 0.0156 
I 3543 0.8857 3932 0.6554 3025 0.4202 1866 0.2333 0938 0.1094 
2 0984 0.9841 2458 0.9011 3241 0.7443 3110 0.5443 2344 0.3438 

6 3 0146 0.9987 0819 0.'J830 1852 0.92'J5 2765 0.8208 3125 0.6563 

I 4 0012 0.99'J'J 0154 0.9984 0595 0.9891 1382 0.9590 2344 0.8906 

I 
5 0001 1.0000 0015 0.9999 0102 0.9993 0369 0.9959 0938 0.9844 
6 0000 1.0000 0001 1.0000 0007 1.0000 0041 1.0000 0156 1.0000 

0 4783 0.4783 2097 0.2097 0824 0.0824 0280 0.0280 0078 0.0078 
I 3720 0.8503 3670 0.5767 2471 0.3294 1306 0.1586 0547 0.0625 
2 1240 0.9743 2753 0.8520 3177 0.6471 2613 0.4199 1641 0.2266 

7 
3 0230 0.9973 1147 0.'J667 2269 0.8740 2903 0.7102 2734 0.5000 
4 0026 0.9998 0287 0.9'J53 0972 0.9712 1'J35 0.9037 2734 0.7734 
5 0002 1.0000 0043 0.9996 0250 0.9962 0774 0.9812 1641 0.9375 
6 0000 1.0000 0004 I.oooo 0036 0.9998 0172 0.9984 0547 0.9922 
7 0000 1.0000 0000 1.0000 0002 1.0000 0016 1.0000 0078 1.0000 

U 4305 U.4305 1678 0.1678 0576 U.0576 0168 U.0168 om'J o.um'J 
I 3826 0.8131 3355 0.5033 1977 0.2553 0896 0.1064 0313 0.0352 
2 1488 0.9619 2'J36 0.7Y69 2965 0.5518 2090 0.3154 1094 0.1445 
3 0331 0.'J'J50 1468 0.9437 2541 0.8059 2787 0.5941 2188 0.3633 

8 4 0046 0.9996 0459 0.98'J6 1361 0.9420 2322 0.8263 2734 0.6367 
:; 0004 1.0000 0092 0.9988 0467 0.9887 1239 0.'J502 2188 0.8555 
6 0000 1.0000 0011 0.9999 0100 0.9987 0413 0.9915 1O'J4 0.9648 
7 0000 1.0000 0001 1.0OOO 0012 0.9999 0079 0.9'J93 0313 0.9961 
8 0000 1.0000 0000 1.0000 0001 1.0000 0007 1.0000 0039 1.0000 
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Table A6 Poisson Distribution 

Probability function f(x) [see (5), Sec. 24.7] and distribution function F(x) 

i f.L = 0.1 f.L = 0.2 f.L = 0.3 f.L = 0.4 f.L = 0.5 I x I(x) F(x) I(x) F(x) I(x) F(x) I(x) F(x) I(x) F(x) 

o. O. o. O. O. 
0 9048 0.9048 8187 O.ll 1 117 7408 0.74011 6703 0.6703 6065 0.6065 

1 0905 0.9953 1637 0.9825 2222 0.9631 2681 0.9384 3033 0.9098 

2 0045 0.9998 0164 0.9989 0333 0.9964 0536 0.9921 0758 0.9856 
3 0002 1.0000 0011 0.9999 0033 0.9997 oon 0.9992 0126 0.9982 
4 0000 1.0000 0001 1.0000 0003 1.0000 0007 0.9999 0016 0.9998 I 
5 0001 1.0000 0002 1.0000 

f.L = 0.6 f.L = 0.7 f.L = 0.8 f.L = 0.9 f.L=1 

x I(~) F(x) J(x) F(x) I(x) F(x) I(x) F(x) I(x} F(x) 

o. O. O. o. o. 
0 5488 0.5488 4966 0.4966 4493 0.4493 4066 0.4066 3679 0.3679 

I 3293 0.8781 3476 0.1l442 3595 0.8088 3659 0.7725 3679 0.7358 
2 0988 0.9769 1217 0.9659 1438 0.9526 1647 0.9371 1839 0.9197 
3 0198 0.9966 0284 0.9942 0383 0.9909 0494 0.9865 0613 0.9810 
4 0030 0.9996 0050 0.9992 0077 0.9986 0111 0.9977 0153 0.9963 
5 0004 1.0000 0007 0.9999 0012 0.9998 0020 0.9997 0031 0.9994 

6 0001 1.0000 0002 1.0000 0003 1.0000 0005 0.9999 
7 0001 1.0000 

f.L = 1.5 f.L=2 f.L=3 f.L=4 f.L=5 

x I(r) F(x) I(x) F(x) I(x) F(x) I(x} F(x) I(x) F(x) 

II. II. II. o. II. 

0 2231 0.2231 1353 0.1353 0498 0.0498 0183 0.0183 0067 0.0067 

I 3347 0.5578 2707 0.4060 1494 0.1991 0733 0.0916 0337 0.0404 
2 2510 0.8088 2707 0.6767 2240 0.4232 1465 0.2381 0842 0.1247 
3 1255 0.9344 1804 0.8571 2240 0.6472 1954 0.4335 1404 0.2650 
4 0471 0.9814 0902 0.9473 1680 0.8153 1954 0.6288 1755 0.4405 
5 0141 0.9955 0361 0.9834 1O01l 0.9161 1563 0.7851 1755 0.6160 

6 0035 0.9991 0120 0.9955 0504 0.9665 1042 0.8893 1462 0.7622 
7 0008 0.9998 0034 0.9989 0216 0.9881 0595 0.9489 1044 0.8666 
8 0001 1.0000 0009 0.9998 0081 0.9962 0298 0.9786 0653 0.9319 
9 0002 1.0000 0027 0.9989 0132 0.9919 0363 0.9682 

10 0008 0.9997 0053 0.9972 0181 0.9863 

II 0002 0.9999 0019 0.9991 0082 0.9945 
12 0001 1.0000 0006 0.9997 0034 0.9980 
13 0002 0.9999 0013 0.9993 
14 0001 1.0000 0005 0.9998 
15 0002 0.9999 

16 0000 1.0000 I 
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Table A7 Normal Distribution 

Values of the distribution function <1>(.::) [see (3). Sec. 24.81. <1>( -~) = 1 - <1>(z) 

z <1>(~) z <1>(;:) z <1>(~) ~ <P(~) <. <1>(~) z <1>(~) 

u. u. u. u. u. u. 
0.01 5040 0.51 6950 loOI 8438 1.51 9345 2.01 9778 2.51 9940 
0.02 5080 0.52 6985 lo02 8461 1.52 9357 2.02 9783 2.52 9941 
0.03 5120 0.53 7019 1.03 8485 1.53 9370 2.03 9788 2.53 9943 
0.04 5160 0.54 7054 1.04 8508 1.54 9382 2.04 9793 2.54 9945 
0.05 5199 0.55 7088 1.05 8531 1.55 9394 2.05 9798 2.55 9946 

0.06 5239 0.56 7123 1.06 8554 1.56 9406 2.06 9R03 2.5ti 9948 
0.07 5279 0.57 7157 1.07 8577 1.57 9418 2.07 9808 2.57 9949 
0.08 5319 0.58 7190 1.08 8599 1.58 9429 2.08 9812 2.58 9951 
0.09 5359 0.59 7224 1.09 8621 1.59 9441 2.09 9817 2.59 9952 
0.10 5398 0.60 7257 1.10 8643 1.60 9452 2.10 9821 2.60 9953 

0.11 5438 0.61 7291 1.11 8665 1.61 94ti3 HI 982ti 2.61 9955 
0.12 5478 0.62 7324 1.12 8686 1.62 9474 2.12 9830 2.62 9956 
0.13 5517 0.63 7357 1.13 8708 1.63 9484 2.13 9834 2.63 9957 
0.14 5557 0.64 7389 1.14 8729 1.64 9495 2.14 9838 2.64 9959 
0.15 5596 0.65 7422 1.15 8749 1.65 9505 2.15 9842 2.65 9960 

0.16 5636 0.66 7454 1.16 8770 1.66 9515 2.16 9846 2.66 9961 
0.17 5675 0.67 7486 1.17 8790 1.67 9525 2.17 9850 2.67 9962 
0.18 5714 0.68 7517 1.18 8810 1.68 9535 2.18 9854 2.68 9963 
0.19 5753 0.69 7549 1.19 8830 1.69 9545 2.19 9857 2.69 9964 
0.20 5793 0.70 7580 1.20 8849 1.70 9554 2.20 9861 2.70 9965 

0.21 5832 0.71 7611 1.21 8869 1.71 9564 2.21 9864 2.71 9966 
0.22 5871 0.72 7642 1.22 8888 1.72 9573 2.22 9868 2.72 9967 
0.23 5910 0.73 7ti73 1.23 8907 1.73 9582 2.23 9871 2.73 9968 
0.24 5948 0.74 7704 1.24 8925 1.74 9591 2.24 9875 2.74 9969 
0.25 5987 0.75 7734 1.25 8944 1.75 9599 2.25 9878 2.75 9<)70 

0.26 6026 0.76 7764 1.26 8962 1.76 9608 2.26 9RRI 2.76 9971 
0.27 6064 0.77 7794 1.27 8980 1.77 9616 2.27 9884 2.77 9972 
0.28 6103 0.78 7823 1.28 8997 1.78 9625 2.28 9887 2.78 9973 
0.29 6141 0.79 7852 1.29 9015 1.79 9633 2.29 98<)0 2.79 9974 
0.30 6179 0.80 7881 1.30 9032 1.80 I 9641 2.30 9893 2.80 9974 

0.31 6217 0.81 7910 1.31 9049 1.81 9649 2.31 9896 2.81 9975 
0.32 6255 0.82 7939 1.32 9066 1.82 9656 2.32 9898 2.82 9976 
0.33 6293 0.83 7967 1.33 9082 lo83 9664 2.33 9901 2.83 9977 
0.34 6331 0.84 7995 1.34 9099 1.84 9671 2.34 9904 2.84 9977 
0.35 ti3tiR 0.85 8023 1.35 9115 1.85 9678 2.35 9906 2.85 9<)78 

0.36 6406 0.86 8051 1.36 9131 1.86 9686 2.36 9909 2.86 9979 
0.37 6443 0.87 8078 1.37 <)147 1.87 9693 2.37 9911 2.87 9979 
0.38 6480 0.88 8106 1.38 9162 1.88 9699 2.38 9913 2.88 9980 
0.39 6517 0.89 8133 1.39 9177 1.89 9706 2.39 9916 2.89 9981 
0.40 6554 0.90 8159 lAO 9192 1.90 9713 2AO 9918 2.90 9981 

OAI 6591 0.91 8186 1.41 9207 1.91 9719 2.41 9920 2.91 9982 
OA2 6628 0.92 8212 1.42 9222 1.92 9726 2A2 9922 2.92 9982 
OA3 6664 0.93 8238 1.43 9236 1.93 9732 2.43 9925 2.93 9983 
0.44 6700 0.94 8264 1.44 9251 1.94 9738 2.-14 9927 2.94 9984 
OA5 6736 0.95 8289 lA5 9265 1.95 9744 2A5 <)929 2.95 9984 

OA6 6772 0.96 8315 1.46 9279 1.96 9750 2A6 9931 2.96 9985 
OA7 6808 0.97 8340 1.47 <)292 1.97 9756 2A7 9932 2.97 9<)85 
0.48 6844 0.98 8365 1.48 9306 1.98 9761 2A8 9934 2.98 9986 
OA9 6879 0.99 8389 1.49 9319 1.99 9767 2.49 9936 2.99 9986 

I 0.50 6915 1.00 8413 1.50 9332 2.00 9772 2.50 9938 3.00 9987 
-
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Table AS Normal Distribution 

Values of z for given values of cI>(z) [see (3). Sec. 24.8] and D(-;.) 

Example: -;. = 0.279 if cI>(-;.) = 61 %; z = 0.860 if D(-;.) = 61 %. 

% ~(<1» z(D) % z(<1» ~(D) % 

1 -2.326 0.013 41 -0.22S 0.539 SI 
2 -2.054 0.025 42 -0.202 0.553 82 
3 -1.881 0.038 43 -0.176 0.568 83 
4 -1.751 0.050 44 -0.151 0.583 84 
5 -1.645 0.063 45 -0.126 0.598 85 

6 -1.555 0.075 46 -0.100 0.613 86 
7 -1.476 0.088 47 -0.075 0.628 S7 
8 -1.405 0.100 48 -0.050 0.643 88 
9 -1.341 0.113 49 -0.025 0.659 89 

10 -1.282 0.126 50 0.000 0.674 90 

11 -1.227 0.138 51 0.025 0.690 91 
12 -1.175 0.151 52 0.050 0.706 92 
13 -1.126 0.164 53 0.075 0.722 93 
14 -1.080 0.176 54 0.100 0.739 94 
15 -1.036 0.IS9 55 0.126 0.755 95 

16 -0.994 0.202 56 0.151 0.772 96 
17 -0.954 0.215 57 0.176 0.789 97 
18 -0.915 0.228 58 0.202 0.806 97.5 
19 -0.878 0.240 59 0.228 0.824 98 
20 -0.842 0.253 60 0.253 0.842 99 

21 -0.806 0.266 61 0.279 0.860 99.1 
22 -0.772 0.279 62 0.305 0.878 99.2 
23 -0.739 0.292 63 0.332 0.896 99.3 
24 -0.706 0.305 64 0.358 0.915 99.4 
25 -0.674 0.319 65 0.385 0.935 99.5 

26 - 0.643 0.332 66 0.412 0.954 99.6 
27 - 0.613 0.345 67 0.-140 0.974 99.7 
2R -0.5S3 0.358 68 0.468 0.994 99.8 
29 -0.553 0.372 69 0.496 1.015 99.9 
30 -0.524 0.385 70 0.524 1.036 

--
31 -0.496 0.399 71 0.553 1.058 99.91 
32 -0.468 0.412 72 0.583 1.080 99.92 
33 -0.-140 0.-1-26 73 0.613 1.103 99.93 
34 -0.412 0.440 74 0.643 1.126 99.94 
35 -0.385 0.454 75 0.674 1.150 99.95 

36 -0.358 0.468 76 0.706 1.175 99.96 
37 -0.332 0.482 77 0.739 1.200 99.97 
38 -0.305 0.496 78 0.772 1.227 99.98 
39 -0.279 0.510 79 O.S06 1.254 99.99 
40 -0.253 0.524 80 0.842 1.282 

, 

A99 

cI>(-;.) - cI>( - z) 

:(<1» :(D) 

0.S7S 1.311 
0.915 1.341 
0.954 1.372 
0.994 1.405 
1.036 1.440 

1.080 1.476 
1.126 1.514 
1.175 1.555 
1.227 1.598 
1.282 1.645 

1.341 1.695 
1.405 1.751 
1.476 1.812 
1.555 1.881 
1.645 1.960 

1.751 2.054 
1.881 2.170 
1.9{)() 2.241 
2.054 2.326 
2.326 2.576 

2.366 2.612 
2.409 2.652 
2.457 2.697 
2.512 2.748 
2.576 2.807 

2.652 2.878 
2.748 2.968 
2.878 3.090 
3.090 3.291 

-
3.121 3.320 
3.156 3.353 
3.195 3.390 
3.239 3.432 
3.291 3.481 

3.353 3.540 
3.432 3.615 
3.540 3.719 
3.719 3.891 
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Table A9 t-Distribution 

Values of z for given values of the distribution function F(z) (see (8) in Sec. 25.3). 
Example: For 9 degrees of freedom, z = 1.83 when F(z) = 0.95. 

Number of Degrees of Freedom 
F(:) 

L 2 3 4 5 6 7 8 9 10 

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.6 0.32 0.29 0.28 0.27 0.27 0.26 0.26 0.26 0.26 0.26 
0.7 0.73 0.62 0.58 0.57 0.56 0.55 0.55 0.55 0.54 0.54 
0.8 1.38 1.06 0.98 0.94 0.92 0.91 0.90 0.89 0.88 0.88 
0.9 3.08 1.89 1.64 1.53 1.48 1.44 1.41 1.40 1.38 1.37 

0.95 6.31 2.92 2.35 2.13 2.02 1.94 1.89 1.86 1.83 1.81 

I 
0.975 12.7 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.23 
0.99 31.8 6.96 4.54 3.75 3.36 3.14 3.00 2.90 2.82 2.76 

l 0.995 63.7 9.92 5.84 4.60 4.03 3.71 3.50 3.36 3.25 3.17 
0.999 318.3 22.3 10.2 7.17 5.89 5.21 4.79 4.50 4.30 4.14 

Number of Degrees of Freedom 
F(~) 

I II 12 13 14 15 16 17 18 19 20 

U.S 0.00 U.OO U.OO U.OO !l.OO O.UU U.OU 0.00 
I 

U.OO U.UU 

0.6 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 
0.7 0.54 0.54 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53 
0.8 0.88 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.86 0.86 
0.9 1.36 1.36 1.35 1.35 1.34 1.34 1.33 1.33 1.33 1.33 

0.95 1.80 1.78 1.77 1.76 1.75 1.75 1.74 1.73 1.73 1.72 
0.975 2.20 2.18 2.16 2.14 2.13 2.12 2.11 2.10 2.09 2.09 
0.99 2.72 2.68 2.65 2.62 2.60 2.58 2.57 2.55 2.54 2.53 
0.995 3.11 3.05 3.01 2.98 2.95 2.92 2.90 2.88 2.86 2.85 

I 0.999 4.02 3.93 3.85 3.79 3.73 3.69 3.65 3.61 3.58 I 3.55 

Number of Degrees of Freedom 
F(:) 

22 24 26 28 30 40 50 100 200 ex: 

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.6 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25 
0.7 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.52 
0.8 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.84 0.84 
0.9 1.32 1.32 1.31 1.31 1.31 1.30 1.30 1.29 1.29 1.28 

0.95 1.72 1.71 1.71 1.70 1.70 1.68 1.68 1.66 1.65 1.65 
0.975 2.07 2.06 2.06 2.05 2.04 2.02 2.01 1.98 1.97 1.96 
0.99 2.51 2.49 2.48 2.47 2.46 2.42 2.40 2.36 2.35 2.33 

I 0.995 2.82 2.80 2.78 2.76 2.75 2.70 2.68 2.63 2.60 2.58 
0.999 3.50 3.47 3.43 3.41 3.39 3.31 3.26 3.17 3.13 3.09 

I 
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Table A10 Chi-square Distribution 

Values of x for given values of the distribution function F(z) (see Sec. 25.3 before (17)). 
Example: For 3 degrees of freedom, z = 1l.34 when F(z.) = 0.99. 

Number of Degrees of Freedom 
F(z) 

1 2 3 4 5 6 7 8 9 10 
- -

0.005 0.00 0.01 0.07 0.21 0.41 0.68 0.99 1.34 1.73 2.16 
0.01 0.00 0.02 0.11 0.30 0.55 0.87 1.24 1.65 2.09 2.56 
0.025 0.00 0.05 0.22 0.48 0.83 1.24 1.69 2.18 2.70 3.25 
0.05 0.00 0.10 0.35 0.71 US 1.64 2.17 "2.73 3.33 3.94 

0.95 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31 
0.975 5.02 7.38 9.35 11.14 12.83 14.45 16.01 17.53 19.02 20.48 
0.99 6.63 9.21 11.34 13.28 15.09 16.81 18A8 20.09 21.67 23.21 
0.995 7.88 10.60 12.84 14.86 16.75 18.55 20.28 21.95 23.59 25.19 

-

Number of Degrees of Freedom 
F(z) 

11 12 13 14 IS 16 17 18 19 20 

0.005 2.60 3.07 3.57 4.07 4.60 5.14 5.70 6.26 6.84 7.43 
0.01 3.05 3.57 4.11 4.66 5.23 5.81 6.41 7.01 7.63 8.26 
0.025 3.82 4.40 5.01 5.63 6.26 6.91 7.56 8.23 8.91 9.59 
0.05 4.57 5.23 5.89 6.57 7.26 7.96 8.67 9.39 10.12 10.85 

0.95 19.68 21.03 22.36 23.68 25.00 26.30 27.59 28.87 30.14 31.41 
0.975 21.92 23.34 24.74 26.12 27.49 28.85 30.19 31.53 32.85 34.17 
0.99 24.72 26.22 27.69 29.14 30.58 32.00 33.41 34.81 36.19 37.57 
0.995 26.76 28.30 29.82 31.32 32.80 34.27 35.72 37.16 38.58 40.00 

~ -'-- -- -~ -- -~ 

Number of Degrees of Freedom 
F(::J 

21 22 23 24 25 26 27 28 29 30 

0.005 8.0 8.6 9.3 9.9 10.5 11.2 11.8 12.5 13.1 13.8 
0.01 8.9 9.5 10.2 10.9 11.5 12.2 12.9 13.6 14.3 15.0 
0.0"25 10.3 11.0 11.7 12.4 13.1 13.8 14.6 15.3 16.0 16.8 
0.05 11.6 12.3 13.1 13.8 14.6 15.4 16.2 16.9 17.7 18.5 

0.95 32.7 33.9 35.2 36.4 37.7 38.9 40.1 41.3 42.6 43.8 
0.975 35.5 36.8 38.1 39.4 40.6 41.9 43.2 44.5 45.7 47.0 
0.99 38.9 40.3 41.6 43.0 44.3 45.6 47.0 48.3 49.6 50.9 
0.995 41..1- 42.8 44.2 45.6 46.9 48.3 49.6 51.0 52.3 53.7 

Number of Degrees of Freedom 
F(z) 

40 50 60 70 80 90 100 > 100 (Approximation) 

0.005 20.7 28.0 35.5 43.3 51."2 59."2 67.3 !(h - 2.58)2 
0.01 22.2 29.7 37.5 45.4 53.5 61.8 70.1 !(h - 2.33)2 
0.025 24.4 32.4 40.5 48.8 57.2 65.6 74.2 !(h - 1.96)2 
0.05 26.5 34.8 43.2 51.7 60.4 69.1 77.9 !(h - 1.64)2 

0.95 55.8 67.5 79.1 90.5 101.9 113.1 124.3 !(h + 1.(4)2 
0.975 59.3 71.4 83.3 95.0 106.6 118.1 129.6 !(h + 1.96)2 
0.99 63.7 76.2 88.4 100.4 112.3 124.1 135.8 ~(h + "2.33)2 

L 0.995 66.8 79.5 92.0 104.2 116.3 1"28.3 140.2 WI + 2.58)2 
--

In the last column, h = ~, where III IS the nUlllbel of degree~ of freedom. 



Al02 APP.5 Tables 

Table All F-Distribution with (m, n) Degrees of Freedom 

Values of z for which the distribution function F(z) [see (13), Sec. 25.4] has the value 0.95 
Example: For (7, 4) d.f., .::: = 6.09 if F(.:::) = 0.95. 

II 111=1 111=2 111=3 111=4 III = 5 111=6 111 = 7 111=8 111=9 
-

I 161 200 216 225 I 230 234 237 239 241 
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 
3 10.1 9.55 9.2S 9.12 9.01 S.94 8.89 8.85 8.81 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 
8 5.32 4.46 4.07 3.84 3.69 3.5S 3.50 3.44 3.39 
9 5.12 4.26 3.86 3.63 3A8 3.37 3.29 3.23 3.18 

10 4.% 4.10 3.71 3.4R 3.33 3.22 3.14 3.07 3.02 

II 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 
13 4.67 3.SI 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.5S 2.51 2.46 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 
30 4.17 3.32 2.92 2.69 2.53 2A2 2.33 2.27 2.21 

32 4.15 3.29 2.90 2.67 2.51 2.40 2.31 2.24 2.19 
34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17 
36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.15 
38 4.10 3.24 2.85 2.62 2.46 2.35 2.26 2.19 2.14 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 
150 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00 1.94 
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 

IOUO 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 
:x: 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 
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Table All F-Distribution with (m, n) Degrees of Freedom (continued) 

Values of z for which the distribution function F(z) [see (13), Sec. 25.4] has the value 0.95 
n 111=10 111 = 15 III = 20 111 = 30 111 = 40 III = 50 III = 100 00 

I 242 246 248 250 251 252 253 254 
2 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 
3 8.79 8.70 8.66 8.62 8.59 8.58 8.55 8.53 
4 5.96 5.86 5.80 5.75 5.72 5.70 5.66 5.63 
5 4.74 4.62 4.56 4.50 4.46 4.44 4.41 4.37 

6 4.06 3.94 3.87 3.81 3.77 3.75 3.71 3.67 
7 3.64 3.51 3A4 3.38 3.34 3.32 3.27 3.23 
8 3.35 3.22 3.15 3.08 3.04 3.02 2.97 2.93 
9 3.14 3.01 2.94 2.86 2.83 2.80 2.76 2.71 

10 2.98 2.85 2.77 2.70 2.66 2.64 2.59 2.54 

11 2.85 2.72 2.65 2.57 2.53 2.51 2.46 2.40 
12 2.75 2.62 2.54 2.47 2.43 2.40 2.35 2.30 
13 2.67 2.53 2.46 2.38 2.34 2.31 2.26 2.21 
14 2.60 2.46 2.39 2.31 2.27 2.24 2.19 2.13 
15 2.54 2.40 2.33 2.25 2.20 2.18 2.12 2.07 

16 2.49 2.35 2.28 2.19 2.15 2.12 2.07 2.01 
17 2.45 2.31 2.23 2.15 2.10 2.08 2.02 1.96 
18 2.41 2.27 2.19 2.11 2.06 2.04 1.98 1.92 
19 2.38 2.23 2.16 2.07 2.03 2.00 1.94 1.88 
20 2.35 2.20 2.12 2.04 1.99 1.97 1.91 1.84 

22 2.30 2.15 2.07 1.98 1.94 1.91 1.85 1.78 
24 2.25 2.11 2.03 1.94 1.89 1.86 1.80 1.73 
26 2.22 2.07 1.99 1.90 1.85 1.82 1.76 1.69 
28 2.19 2.04 1.96 1.87 1.82 1.79 1.73 1.65 
30 2.16 2.01 1.93 1.84 1.79 1.76 1.70 1.62 

32 2.14 1.99 1.91 1.82 1.77 1.74 1.67 1.59 
34 2.12 1.97 1.89 1.80 1.75 1.71 1.65 1.57 
36 2.11 1.95 1.87 1.78 1.73 1.69 1.62 1.55 
38 2.09 1.94 1.85 1.76 1.71 1.68 1.61 1.53 
40 2.08 1.92 1.84 1.74 1.69 1.66 1.59 1.51 

50 2.03 un 1.78 1.69 1.63 1.60 1.52 1.44 
60 1.99 1.84 1.75 1.65 1.59 1.56 1.48 1.39 
70 1.97 1.81 1.72 1.62 1.57 1.53 1.45 1.35 
80 1.95 1.79 1.70 1.60 1.54 1.51 1.43 1.32 
90 1.94 1.78 1.69 1.59 1.53 1.49 1.41 1.30 

100 1.93 1.77 1.68 1.57 1.52 1.48 1.39 1.28 
150 1.89 1.73 1.64 1.54 1.48 1.44 1.34 1.22 
200 1.88 1.72 1.62 1.52 1.46 1.41 1.32 1.19 

1000 1.84 1.68 1.58 1.47 1.41 1.36 1.26 1.08 
cc 1.83 1.67 1.57 1.46 1.39 1.35 1.24 1.00 

I 
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Table All F-Distribution with (m, n) Degrees of Freedom (continued) 
Values of:z for which the distribution function F(::.) [see (13), Sec. 25.4] has the value 0.99 

n m=1 111=2 m=3 111=4 111=5 111=6 111=7 111=8 111=9 

1 4052 4999 5403 5625 5764 5859 5928 5981 6022 
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.511 3.46 

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 

32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13 3.02 
34 7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.98 
36 7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.05 2.95 
38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.92 
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 
70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67 
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 
90 6.93 4.85 4.01 3.54 3.23 3.01 2.84 2.72 2.61 

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 
150 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.63 2.53 
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 

1000 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 

'" 6.63 4.61 3.78 3.32 3.m 2.80 2.64 2.51 2.41 
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Table All F-Distribution with (m, n) Degrees of Freedom (continued) 

Values of ~ for which the distribution function F(;:) [see (13), Sec. 25.4] has the value 0.99 
11 III = 10 III = 15 III = 20 111 = 30 111 = 40 III = 50 III = 100 co 

I 6056 6157 6209 6261 6287 6303 6334 6366 
2 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 

I 

3 27.2 26.9 26.7 26.5 26.4 26.4 26.2 26.1 
4 14.5 14.2 14.0 13.8 13.7 13.7 13.6 13.5 
5 10.1 9.72 9.55 9.38 9.29 9.24 9.13 9.G:! 

6 7.87 7.56 7.40 7.23 7.14 7.09 6.99 6.88 
7 6.62 6.31 6.16 5.99 5.91 5.86 5.75 5.65

1 
8 5.81 5.52 5.36 5.20 5.12 5.07 4.96 4.86 
9 5.26 4.96 4.81 4.65 4.57 4.52 4.42 4.31 

10 4.85 4.56 4.41 4.25 4.17 4.12 4.01 3.91 

11 4.54 4.25 4.10 3.94 3.86 3.81 3.71 3.60 
12 4.30 4.01 3.86 3.70 3.62 3.57 3.47 3.36 
13 4.10 HZ 3.66 3.51 3.43 3.38 3.27 3.17 
14 3.94 3.66 3.51 3.35 3.27 3.22 3.11 3.00 
15 3.80 3.52 3.37 3.21 3.13 3.08 2.98 2.87 

16 3.69 3.-l1 3.26 3.10 3.02 2.97 2.86 2.75 

171 3.59 3.31 3.16 3.00 2.92 2.87 2.76 2.65 
18 3.51 3.23 3.08 2.92 2.84 2.78 2.68 2.57 
19 3.43 3.15 3.00 2.84 2.76 2.71 2.60 2.49 
20 3.37 3.09 2.94 2.78 2.69 2.64 2.54 2.42 

I 

22 3.26 2.98 2.83 2.67 2.58 2.53 2.42 2.31 
24 3.17 2.89 2.74 2.58 2.49 2.44 2.33 2.21 
26 3.09 2.81 2.66 2.50 2.42 2.36 2.25 2.13 
28 3.03 2.75 2.60 2.44 2.35 2.30 2.19 2.06 

:~ I 
2.98 2.70 2.55 2.39 2.30 2.25 2.13 2.01 

2.93 2.65 2.50 2.34 2.25 2.20 2.08 1.96 
34 2.89 2.61 2.46 2.30 2.21 2.16 2.04 1.91 
36 2.86 2.58 2.43 2.26 2.18 2.12 2.00 1.87 
38 2.83 2.55 2.40 2.23 2.14 2.09 1.97 1.84 
40 2.80 2.52 2.37 2.20 2.11 2.06 1.94 1.80 

50 2.70 2.42 2.27 2.10 2.01 1.95 1.82 1.68 

I 60 2.63 2.35 2.20 2.03 1.94 1.88 1.75 1.60 
70 2.59 2.31 2.15 1.98 1.89 1.83 1.70 1.54 

I 80 2.55 2.27 2.12 1.94 1.85 1.79 1.65 1.49 
90 2.52 2.24 2.09 1.92 1.82 1.76 1.62 1.46 

100 2.50 2.22 2.07 1.89 1.80 1.74 1.60 1.43 
150 2.44 2.16 2.00 1.83 1.73 1.66 1.52 1.33 
200 2.-l1 2.13 1.97 1.79 1.69 1.63 1.48 1.28 

1000 2.34 2.06 1.90 1.72 1.61 1.54 1.38 1.11 
JC 2.32 2.04 1.88 1.70 1.59 1.52 1.36 1.00 

I I I I I 
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Table All Distribution Function F(x) = P(T ~ x) of the Random Variable T 
in Section 25.8 

~
I 

x =3 

o. 
o 167 

~ 
~ 
x 1=20

1 o. 
50 001 
51 002 
52 002 
53 003 
54 004 
55 005 
56 006 
57 007 
58 008 
59 010 

I 11 

£ I =4 

1 O. 

o 0421 
1 167 
2 , 375 

~ 
x =19 

O. 
43 001 
44 002 
45 002 
46 003' 
47 003 , 
48 004, 
49 005 
50 006 

60 012 51 008 
61 014 52 010 
62 017 53 012

1 63 020 54 014 

64 023
1 

155 017 
65 027 56 021 I 
66 032 57 025 

I 67 037 58 029 I 
68 043 59 034 
69 049 I 60 040' 
70 056 61 0471 
71 064 62 054 
72 073 163 062: 
73 082 64 072 I 
74 093 65 082 

1

75 104 66 I 093 : 
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Page numbers AI, A2, A3, ... refer to App. I to App. 5 at the end of the book. 

A 

Abel 78 
Absolute 

convergence 667,697 
frequency 994. 1000 
value 607 

Absolutely integrable 508 
Acceleration 395, 995 
Acceptance sampling 1073 
Adams-Bashforth methods 899 
Adams-Moulton methods 900 
Adaptive 824 
Addition of 

complex numbers 603 
matrices 275 
means 1038 
normal random variables 1050 
power series 174. 680 
variances 1039 
vectors 276, 324, 367 

Addition rule 1002 
Adiabatic 561 
ADI method 915 
Adjacency matrix 956 
Adjacent vertices 955 
Airfoil 732 
Airy's equation 552. 904 
Algebraic multiplicity 337, 865 
Algorithm 777, 783 

Dijkstra 964 
efficient 962 
Ford-Fulkerson 979 
Gauss 837 
Gauss-Seidel 848 
Greedy 967 
Kruskal967 
Moore 960 
polynomially bounded 962 
Prim 971 
Runge-Kutta 892,904 
stable, unstable 783 

Aliasing 526 

Allowable number of defectives 1073 
Alternating 

direction implicit method 915 
path 983 

Alternative hypothesis 1058 
Ampere 92 
Amplification 89 
Amplitude spectrum 506 
Analytic function 175,617,681 
Analytic at infinity 711 
Angle 

between curves 35 
between vectors 372 

Angular speed 38 L 765 
Annulus 613 
Anticommutative 379 
AOQ, AOQL 1075-1076 
Approximate solution of 

differential equations 9, 886-934 
eigenvalue problems 863-882 
equations 787-796 
systems of equations 833-858 

Approximation 
least squares 860 
polynomial 797 
trigonometric 502 

A priori estimate 794 
AQL 1074 
Arc of a curve 391 
Archimedian principle 68 
Arc length 393 
Arctan 634 
Area 435, 442, 454 
Argand diagram 605 
Argument 607 
Artificial variable 949 
Assignment problem 982 
Associated Legendre functions 182 
Asymptotically 

equal 191, 1009 
normal 1057 
stable 148 

n 



12 Index 

Attractive 148 
Augmented matrix 288, 833 
Augmenting path 975, 983 

theorem 977, 984 
Autonomous 31, 151 
Average (see Mean value) 
Average outgoing quality 1075 
Axioms of probability 100 I 

B 

Back substitution 289, 834 
Backward 

differences 807 
edge 974, 976 
Euler method 896, 907 

Band matrix 914 
Bashforth method 899 
Basic 

feasible solution 942. 944 
variable~ 945 

Basis 49, 106. 113, 138, 300, 325, 360 
Beam 120,547 
Beats 87 
Bellman optimality principle 963 
Bell-shaped curve 1026 
Bernoulli 30 

distribution 1020 
equation 30 
law of large numbers 1032 
numbers 690 

Bessel 189 
equation 189, 204 
functions 191, 198, 202, 207, A94 
functions, tables A94 
inequality 215, 504 

Beta function A64 
Bezier curves 816 
BFS 960 
Bijective mapping 729 
Binary 782 
Binomial 

coefficients 1009 
distribution 1020, A96 
series 689 
theorem 1010 

Binormal (Fig. 210) 397 
Bipartite graph 982, 985 
Birthday problem 1010 

Bisection method 796 
Bolzano-Weierstrass theorem A91 
Bonnet 181 
Boundary 433 

conditions 203, 540, 558, 571, 587 
point 433, 613 
value problem 203, 558 

Bounded 
domain 646 
function 38 
region 433 
sequence A69 

Boxplot 995 
Branch 

cut 632 
point 746 

Breadth first search 960 
Buoyance force 68 

C 

Cable 52, 198, 593 
CAD (Computer aided design) 810 
Cancellation law 321 
Cantor-Dedekind axiom A69 
Capacitance 92 
Capacitor 92 
Capacity 

of a cut set 976 
of an edge 973 

Cardano 602 
Cardioid 443 
Cm1esian coordinates 366, 604 
CAS (Computer algebra system) vii, 777 
Catenary 399 
Cauchy 69 

convergence principle 667, A90 
determinant 112 
-Goursat theorem 647 
-Hadamard formula 676 
inequality 660 
integral formula 654 
integral theorem 647, 652 
method of steepest descent 938 
principal value 719, 722 
product 680 
-Riemann equations 37, 618, 621 
-Schwarz inequality 326, 859 

Cayley transformation 739 



Index 

Center 143 
of a graph 973 
of gravity 436, 457 
of a power series 171 

Central 
differences 808 
limit theorem 1057 
moments 1019 

Centrifugal, centripetal 396 
Cgs system: Front cover 
Chain rule 401 
Characteristic 

determinant 336. 864 
equation 59, Ill, 336, 551, 864 
function 542, 574 
of a partial differential equation 551 
polynomial 336, 864 
value 324, 864 
vector 324, 864 

Chebyshev polynomials 209 
Chinese postman problem 963 
Chi-square 1055, 1077, AlOl 
Cholesky's method 843 
Chopping 782 
Chromatic number 987 
Circle 391 

of convergence 675 
Circuit 95 
Circular 

disk 613 
helix 391, 394 
membrane 580 

Circulation 764 
Cissoid 399 
Clairaut equation 34 
Class intervals 994 
Closed 

disk 613 
integration formula 822, 827 
interval A69 
path 959 
point set 613 
region 433 

Coefficient matrix 288. 833 
Coefficients of a 

differential equation 46 
power series 171 
system of equations 287, 833 

Cofactor 309 
Collatz's theorem 870 

Column 275 
space 300 
sum norm 849 
vector 275 

Combination 1007 
Combinatorial optimization 954-986 
Comparison test 668 
Complement 613, 988 
Complementary 

enor function A64 
Fresnel integrals A65 
sine integral A66 

Complementation rule 1002 
Complete 

bipartite graph 987 
graph 958 
matching 983 
orthonormal set 214 

Complex 
conjugate numbers 605 
exponential function 57, 623 
Fourier integral 519 
Fourier series 497 
function 614 
hyperbolic functions 628, 743 
impedance 98 
indefinite integral 637 
integration 637~663, 7l2~725 
line integral 633 
logarithm 630, 688 
matrices 356 
number 602 
plane 605 
plane. extended 710 
potential 761 
sequence 664 
series 666 
sphere 710 
trigonometric functions 626. 688 
trigonometric polynomial 524 
variable 614 
vector space 324. 359 

Complexity 961 
Component 366,374 
Composite transformation 281 
Compound interest 9 
Compressible fluid 412 
Computer 

aided design (CAD) 810 
algebra system (CAS) vii, 777 
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Computer (Com.) 

graphics 287 
software (see Software) 

Conchoid 399 
Condition number 855 
Conditionally convergent 667 
Conditional probability 1003 
Conduction of heat 465, 552, 757 
Cone 406, 448 
CONF 1049 
Confidence 

intervals 1049-1058 
level L049 
limits 1049 

Conformal mapping 730. 754 
Conic sections 355 
Conjugate 

complex numbers 605 
harmonic function 622 

Connected 
graph 960 
set 613 

Conservative 415. 428 
Consistent equations 292. 303 
Constraints 937 
Consumer's risk 1075 
Continuity 

of a complex function 615 
equation 413 
of a vector function 387 

Continuous 
distribution 1011 
random variable 101 L. 1034 

Contour integral 647 
Contraction 789 
Control 

chart 1068 
limit 1068 
variables 936 

Convergence 
absolute 667 
circle of 675 
conditional 667 
interval 172. 676 
of an iterative process 793, 848 
mean 214 
mean-square 214 
in norm 214 
principle 667 
radius 172 

Convergence (Cont.) 

of a sequence 386, 664 
of a series ] 71, 666 
superlinear 795 
tests 667-672 
uniform 691 

Conversion of an ODE to a system 134 
Convolution 248. 523 
Cooling 14 
Coordinate transformations A 71. A84 
Coordinates 

Cartesian 366, 604 
curvilinear A71 
cylindrical 587, A71 
polar 137. 443, 580, 607 
spherical 588, A71 

Coriolis acceleration 396 
COlTector 890, 900 
COlTelation analysis 1089 
Cosecant 627, A62 
Cosine 

of a complex variable 627, 688, 743 
hyperbolic 688 
integral A66. A95 
of a real variable A60 

Cotangent 627. A62 
Coulomb 92 

law 409 
Covariance 1039, 1085 
Cramer's rule 306-307, 312 
Crank-Nicolson method 924 
Critical 

damping 65 
point 31, 142,730 
region 1060 

Cross product 377 
Crout's method 841 
Cubic spline 811 
Cumulative 

distribution function 1011 
frequency 994 

Curl 414.430,472, A71 
Curvature 397 
Curve 389 

arc length of 393 
fitting 859 
orientation of 390 
piecewise smooth 421 
rectifiable 393 
simple 391 



Index 

Curve (Cont.) 

smooth 421, 638 
twisted 391 

Curvilinear coordinates A 71 
Cut set 976 
Cycle 959 
Cycloid 399 
Cylinder 446 

flow around 763, 767 
Cylindrical coordinates 587, A71 

o 
D' Alembert's solution 549, 551 
Damping 64, 88 
Dantzig 944 
DATA DESK 991 
Decay 5 
Decreasing sequence A69 
Decrement 69 
Dedekind A69 
Defect 337 
Defective item 1073 
Definite complex integral 639 
Definiteness 356 
Deformation of path 649 
Degenerate feasible solution 947 
Degree of 

precision 822 
a vertex 955 

Degrees of freedom 1052, 1055, 1066 
Deleted neighborhood 712 
Delta 

Dirac 242 
Kronecker 210, A83 

De Moi vre 610 
formula 610 
limit theorem 1031 

De Morgan's laws 999 
Density 1014 
Dependent 

linearly 49, 74, 106,21.)7, 300, 325 
random variables 1036 

Depth first search 960 
Derivative 

of a complex function 616, 658 
directional 404 
left-hand 484 
right-hand 484 
of a vector function 387 

DERIVE 778 
Descartes 366 
Determinant 306, 308 

Cauchy 112 
characteristic 336. 864 
of a matrix 305 
of a matrix product 321 
Vandermonde 112 

DFS 960 
Diagonalization 351 
Diagonal matrix 284 
Diagonally dominant matrix 868 
Diameter of a graph 973 
Differences 802, 804. 807-808 
Difference table 803 
Differentiable complex function 616 
Differential 19, 429 

form 20, 429 
geometry 389 
operator 59 

Differential equation (ODE and PDE) 
Airy 552, 904 
Bernoulli 30 
Bessel 189. 204 
Cauchy-Riemann 37, 618. 621 
with constant coefficients 53, III 
elliptic 551, 909 
Euler-Cauchy 69, 185 
exact 20 
homogeneous 27, 46, 105, 535 
hyperbolic 551,928 
hypergeometric 188 
Laguerre 257 
Laplace 407. 465. 536. 579. 587. 910 
Legendre 177, 204. 590 
linear 26, 45, 105, 535 
nonhomogeneous 27, 46, 105, 535 
nonlinear 45, 151,535 
numeric methods for 886-934 
ordinary 4 
parabolic 551, 909, 922 
partial 535 
Poisson 910. 918 
separable 12 
Sturm-Liouville 203 
of vibrating beam 547, 552 
of vibrating mass 61,86, 135, 150,243,261, 

342,499 
of vibrating membrane 569-586 
of vibrating string 538 

15 
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Differentiation 
analytic functions 691 
complex functions 616 
Laplace transforms 254 
numeric 827 
power series 174, 680 
series 696 
vector functions 387 

Diffusion equation 464. 552 
Diffusivity 552 
Digraph 955 
Dijkstra's algorithm 964 
Dimension of vector space 300, 325. 369 
Diodes 399 
Dirac's delta 242 
Directed 

graph 955 
line segment 364 
path 982 

Directional derivative 404 
Direction field 10 
Direct method 845 
Dirichlet 467 

discontinuous factor 509 
problem 467, 558, 587,915 

Discharge of a source 767 
Discrete 

Fourier transform 525 
random variable 1011. 1033 
spectrum 507, 524 

Disjoint events 998 
Disk 613 
Dissipative 429 
Distribution 1010 

Bernoulli 1020 
binomial 1020, A96 
chi-square 1055. AIOI 
continuous 1011 
discrete 1011.1033 
Fisher's F- 1066, AI02 
-free test 1080 
function 1011. 1032 
Gauss 1026 
hypergeometric 1024 
marginal 1035 
multinomial 1025 
normal 1026. 1047-1057, 1062-1067, A98 
Poisson 1022, 1073. A97 
Student's t- 1053. AIOO 
two-dimensional 1032 

Distribution (COli f.) 

uniform 1015, 1017,1034 
Divergence 

theorem of Gauss 459 
of vector fields 410, A 72 

Divergent 
sequence 665 
series 171, 667 

Di vided differences 802 
Division of complex numbers 604, 609 
Domain 401,613,646 
Doolittle's method 841 
Dot product 325, 371 
Double 

Fourier series 576 
integral 433 
labeling 968 
precision 782 

Driving force 84 
Drumhead 569 
Duffing equation 159 
Duhamel's formula 597 

E 

Eccentricity of a vertex 973 
Echelon form 294 
Edge 955 

coloring 987 
incidence list 957 

Efficient algorithm 962 
Eigenbasis 349 
Eigenfunction 204, 542, 559, 574 

expansion 210 
Eigenspace 336, 865 
Eigenvalue problems for 

matrices (Chap. 8) 333-363 
matrices, numerics 863-882 
ODEs (Sturm-Liouville problems) 203-216 
PDEs 540-593 
systems of ODEs 130-165 

Eigenvector 334, 864 
EISPACK 778 
Elastic membrane 340 
Electrical network (see Networks) 
Electric circuit (see Circuit) 
Electromechanical analogies 96 
Electromoti ve force 91 
Electrostatic 

field 750 



Index 

Electrostatic (COllt.) 

potential 588-592, 750 
Element of matrix 273 
Elementary 

matrix 296 
operations 292 

Elimination of first derivative 197 
Ellipse 390 
Ellipsoid 449 
Elliptic 

cylinder 448 
paraboloid 448 
partial differential equation 551, 909 

Empty set 998 
Engineering system: Front cover 
Entire function 624,661, 711 
Entry 273, 309 
Equality of 

complex numbers 602 
matrices 275 
vectors 365 

Equally likely 1000 
Equipotential 

lines 750, 762 
surfaces 750 

Equivalence relation 296 
Equivalent linear systems 292 
Erf 568, 690. A64, A95 
Error 783 

bound 784 
estimation 785 
function 568, 690. A64. A95 
propagation 784 
Type I, Type II 1060 

Essential singularity 708 
Estimation of parameters 1046-1057 
Euclidean 

norm 327 
space 327 

Euler 69 
backward methods for ODEs 896, 907 
beta function A64 
-Cauchy equation 69, 108. 116. 185. 589 
-Cauchy method 887, 890, 903 
constant 200 
formula 58, 496, 624, 627, 687 
formulas for Fourier coefficients 480, 487 
graph 963 
numbers 690 
method for systems 903 

Euler (Cont.) 

trail 963 
Evaporation L8 
Even function 490 
Event 997 
Everett interpolation formula 809 
Exact 

differential equation 20 
differential form 20, 429 

Existence theorem 
differential equations 37, 73, 107, 109, 137, 

175 
Fourier integral 508 
Fourier series 484 
Laplace transforms 226 
Linear equations 302 

Expectation 10 16 
Experiment 997 
Explicit solution 4 
Exponential 

decay 5 
function, complex 57, 623 
fUnction, real A60 
growth 5, 31 
integral A66 

Exposed vertex 983 
Extended complex plane 710, 736 
Extension. periodic 494 
Extrapolation 797 
Extremum 937 

F 

Factorial function 192, 1008, A95 
Failure 1021 
Fair die 1000 
Falling body 8 
False position 796 
Family of curves 5, 35 
Faraday 92 
Fast Fourier transform 526 
F-distribution 1066. A 102 
Feasible solution 942 
Fehlberg 894 
Fibonacci numbers 683 
Field 

conservative 415. 428 
of force 385 
gravitational 385,407,411,587 
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Field (Cant.) 

irrotational 415, 765 
scalar 384 
vector 384 
velocity 385 

Finite complex plane 710 
First 

fundamental form 457 
Green's formula 466 
shifting theorem 224 

Fisher, R. A. 1047, 1066, 1077 
F -distribution I 066, A 102 

Fixed 
decimal point 781 
point 736, 781, 787 

Flat spring 68 
Floating point 781 
Flow augmenting path 975 
Flows in networks 973-981 
Fluid flow 412,463, 761 
Flux 412, 450 

integral 450 
Folium of Descarte" 399 
Forced oscillations 84, 499 
Ford-Fulkerson algorithm 979 
Forest 970 
Form 

Hermitian 361 
quadratic 353 
skew-Hermitian 361 

Forward 
differences 804 
edge 974. 976 

Four-color theorem 987 
Fourier 477 

-Bessel series 213, 583 
coefficients 480, 487 
coefficients, complex 497 
constants 210 
cosine integral 511 
cosine series 491 
cosine transform 514, 529 
double series 576 
half-range expansions 494 
integral 508, 563 
integral, complex 519 
-Legendre series 212, 590 
matrix 525 
series 211, 480. 487 
series, complex 497 

Fourier (Cant.) 
series, generalized 210 
sine integral 511 
sine series 491, 543 
sine transform 514.530 
transform 519. 531, 565 
transform, discrete 525 
transform, fast 526 

Fractional linear transformation 734 
Fraction defective J 073 
Fredholm 20 I 
Free 

fall 18 
oscillations 61 

Frene! formulas 400 
Frequency 63 

of values in samples 994 
Fresnel integrals 690, A65 
Friction 18-19 
Frobenius 182 

method 182 
norm 849 
theorem 869 

Fulkerson 979 
Full-wave rectifier 248 
Function 

analytic 175, 617 
Bessel 191, 198,202,207, A94 
beta A64 
bounded 38 
characteristic 542, 574 
complex 614 
conjugate harmonic 622 
entire 624, 661. 71 I 
error 568, 690, AM, A95 
even 490 
exponential 57, 623, A60 
factorial 192, 1008, A95 
gamma 192, A95 
Hankel 202 
harmonic 465, 622, 772 
holomorphic 617 
hyperbolic 628, 743. A62 
hypergeometric 188 
inverse hyperbolic 634 
inverse trigonometric 634 
Legendre 177 
logarithmic 630. A60 
meromorphic 711 
Neumann 201 



Index 

Function (Collt.) 

odd 490 
orthogonal 205, 482 
orthonormal 205, 210 
periodic 478 
probability 1012. 1033 
rational 617 
scalar 384 
space 382 
staircase 248 
step 234 
trigonometric 626, 688, A60 
unit step 234 
vector 384 

Function space 327 
Fundamental 

G 

form 457 
matrix 139 
mode 542 
period 485 
system -1-9, 106, 113, 138 
theorem of algebra 662 

Galilei 15 
Gamma function 192, A95 
GAMS 778 
Gau~s 188 

distribution 1026 
divergence theorem 459 
elimination method 289. 834 
hypergeometric equation 188 
integration formula 826 
-Jordan elimination 317, 844 
least squares 860, 1084 
quadrature 826 
-Seidel iteration 846, 913 

General 
powers 632 
solution 64. 106. 138, 159 

Generalized 
Fourier series 210 
function 242 
solution 545 
triangle inequality 608 

Generating function 181,216,258 
Geometric 

multiplicity 337 
series 167,668,673,687,692 

Gerschgorin's theorem 866 
Gibbs phenomenon 490, 510 
Global error 887 
Golden Rule 15,23 
Goodness of fit 1076 
Gosset 1066 
Goursat 648, A88 
Gradient 403, 415. 426, A72 

method 938 
Graph 955 

bipartite 982 
complete 958 
Euler 963 
planar 987 
sparse 957 
weighted 959 

Gravitation 385, 407, 411, 587 
Greedy algorithm 967 
Greek alphabet: Back cover 
Green 439 

formulas 466 
theorem 439, ..J.66 

Gregory-Newton formulas 805 
Growth restriction 225 
Guldin's theorem 458 

H 

Hadamard's formula 676 
Half-life time 9 
Half-plane 613 
Half-range Fourier series 494 
Half-wave rectifier 248, 489 
Halving 819, 824 
Hamiltonian cycle 960 
Hanging cable 198 
Hankel functions 202 
Hard spring 159 
Harmonic 

conjugate 622 
function 465, 622. 772 
oscillation 63 
series 670 

Heat 
equatiun 464, 536, 553, 757, 923 
potential 758 

Heaviside 221 
expansions 245 
formulas 247 
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Heaviside (Cont.) 

function 234 
Helicoid 449 

Index 

Helix 391, 394, 399 
Helmholtz equation 572 
Henry 92 
Hermite 

interpolation 816 
polynomials 216 

Hermitian 357, 361 
Hertz 63 
Hesse's normal form 375 
Heun's method 890 
High-frequency line equations 594 
Hilbert 201, 326 

matrix 858 
space 326 

Histogram 994 
Holomorphic 617 
Homogeneous 

differential equation 27, 46, 105. 535 
system of equations 288, 304, 833 

Hooke's law 62 
Householder's tridiagonalization 875 
Hyperbolic 

differential equation 551,909,928 
functions, complex 628, 743 
functions, real A62 
paraboloid 448 
partial differential equations 551, 928 
spiral 399 

Hypergeometric 
differential equation 188 
distribution 1024 
functions 188 
series 188 

Hypocycloid 399 
Hypothesis 1058 

Idempotent matrix 286 
Identity 

of Lagrange 383 
matrix (see Unit matrix) 
theorem for power ~eries 679 
transformation 736 
trick 351 

Ill-conditioned 851 
Image 327, 729 

Imaginary 
axis 604 
part 602 
unit 602 

Impedance 94, 98 
Implicit solution 20 
Improper integral 222. 719. 722 
Impulse 242 
IMSL 778 
Incidence 

list 957 
matrix 958 

Inclusion theorem ~68 
Incomplete gamma function A64 
Incompressible 765 
Inconsistent equations 292, 303 
Increasing sequence A69 
Indefinite 

integral 637, 650 
integration 640 

Independence of path 426, 648 
Independent 

events 1004 
random variables 1036 

Indicial equation 184 
Indirect method 845 
Inductance 92 
Inductor 92 
Inequality 

Bessel 215, 504 
Cauchy 660 
ML- 644 
Schur 869 
triangle 326. 372. 608 

Infinite 
dimensional 325 
population 1025, 1045 
sequence 664 
series (see Series) 

Infinity 710, 736 
Initial 

condition 6, 48, 137, 540 
value problem 6. 38.48. 107,886,902 

Injective mapping 729 
Inner product 325. 359, 371 

space 326 
lnput 26, 84. 230 
Instability (see Stability) 
Integral 

contour 647 



Index 

Integral (Cant.) 
definite 639 
double 433 
equation 252 
Fourier 508, 563 
improper 719. 722 
indefinite 637. 650 
line 421, 633 
surface 449 
theorems, complex 647, 654 
theorems, real 439, 453, 469 
transform 221, 513 
triple 458 

Integrating factor 23 
Integration 

complex functions 637-663, 701-727 
Laplace transforms255 
numeric 8l7-827 
power series 680 
series 695 

Integra-differential equation 92 
Interest 9, 33 
Interlacing of zeros 197 
Intermediate value theorem 796 
Interpolation 797-815 

Hermite 816 
Lagrange 798 
Newton 802, 805, 807 
spline 811 

Interquartile range 995 
Intersection of events 998 
Interval 

closed A69 
of convergence 172, 676 
estimate 1046 
open 4, A69 

Invariant subspace 865 
Inverse 

hyperbolic functions 634 
mapping plinciple 733 
of a matrix 315, 844 
trigonometric functions 634 

Inversion 735 
Investment 9, 33 
Irreducible 869 
Irregular boundary 919 
Irrotational415,765 
Isocline 10 
Isolated singularity 707 
Isotherms 758 

Iteration 

J 

for eigenvalues 872 
for equations 787-794 
Gauss-Seidel 846. 913 
Jacobi 850 
Picard 41 

Jacobian 436, 733 
Jacobi iteration 850 
Jerusalem, Shrine of the Book 814 
Jordan 316 
Joukowski airfoil 732 

K 

Kirchhoff's laws 92, 973 
Kronecker delta 210, A83 
Kruskal's algorithm 967 
Kutta 892 

L 

l10 l2, lex; 853 
L 2 863 
Labeling 968 
Lagrange 50 

identity of 383 
interpolation 798 

Laguerre polynomials 209, 257 
Lambert's law 43 
LAPACK 778 
Laplace 221 

equation 407, 465, 536, 579, 587, 910 
integrals 512 
limit theorem 1031 
operator 408 
transform 221, 594 

Laplacian 443, A 73 
Latent root 324 
Laurent series 701, 712 
Law of 

absorption 43 
cooling 14 
gravitation 385 
large numbers 1032 
mass action 43 
the mean (see Mean value theorem) 

LC-circuit 97 
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III Index 

LCL 1068 
Least squares 860, 1 084 
Lebesgue 863 
Left-hand 

derivative 484 
limit 484 

Left-handed 378 
Legendre 177 

differential equation 177, 204, 590 
functions 177 
polynomials 179, 207, 590, 826 

Leibniz 14 
convergence test A 70 

Length 
of a curve 393 
of a vector 365 

Leonardo of Pisa 638 
Leontief 344 
Leslie model 341 
Libby 13 
Liebmann's method 913 
Likelihood function 1047 
Limit 

of a complex function 615 
cycle 157 
left-hand 484 
point A90 
right-hand 484 
of a sequence 664 
vector 386 
of a vector function 387 

Lineal element 9 
Linear 

algebra 271-363 
combination 106, 325 
dependence 49, 74, 106, 108, 297, 325 
differential equation 26, 45, 105, 535 
element 394, A 72 
fractional transformation 734 
independence 49, 74, 106, 108, 297, 325 
interpolation 798 
operator 60 
optimization 939 
programming 939 
space (see Vector space) 
system of equations 287, 833 
transformation 281, 327 

Linearization of systems of ODEs 151 
Line integral 421, 633 
Lines of force 751 

UNPACK 779 
Liouville 203 

theorem 661 
Lipschitz condition 40 
List 957 
Ljapunov 148 
Local 

error 887 
minimum 937 

Logarithm 630, 688, A60 
Logarithmic 

decrement 69 
integral A66 
spiral 399 

Logistic population law 30 
Longest path 959 
Loss of significant digits 785 
Lotka-Volterra population model 154 
Lot tolerance per cent defective 1075 
Lower 

control limit 1068 
triangular matlix 283 

LTPD 1075 
LU-factorization 841 

M 

Maclaurin 683 
series 683 
trisectrix 399 

Magnitude of a vector (see Length) 
Main diagonal 274, 309 
Malthus's law 5, 31 
MAPLE 779 
Mapping 327, 729 
Marconi 63 
Marginal distributions 1035 
Markov process 285, 341 
Mass-sPling system 61, 86, 135, 150, 243, 252, 

261,342,499 
Matching 985 
MATHCAD 779 
MATHEMATICA 779 
Mathematical expectation 1019, 1038 
MATLAB 779 
Matlix 

addition 275 
augmented 288, 833 
band 914 



Index 

Matrix (COllt.) 

diagonal 284 
eigenvalue problem 333-363. 863-882 
Hermitian 357 
identity (see Unit matrix) 
inverse 315 
inversion 315, 844 
multiplication 278, 321 
nonsingular 315 
norm 849. 854 
normal 362. 869 
null (see Zero matrix) 
orthogonal 345 
polynomial 865 
scalar 284 
singular 315 
skew-Hermitian 357 
skew-symmetric 283, 345 
sparse 812, 912 
square 274 
stochastic 285 
symmetric 283, 345 
transpose 282 
triangular 283 
tridiagonal 812. 875, 914 
unit 284 
unitary 357 
zero 276 

Max-flow min-cut theorem 978 
Maximum 937 

flow 979 
likelihood method 1047 
matching 983 
modulus theorem 772 
principle 773 

Mean convergence 214 
Mean-square convergence 214 
Mean value of a (an) 

analytic function 771 
distribution IO 16 
function 764 
harmonic function 772 
sample 996 

Mean value theorem 402, 434, 454 
Median 994, 1081 
Membrane 569-586 
Meromorphic function 711 
Mesh incidence matrix 278 
Method of 

false position 796 

Method of (Com.) 

least squares 860. 1084 
moments 1046 
steepest descent 938 
undetermined coefficients 78, 117, 160 
variation of parameters 98, 118, 160 

Middle quartile 994 
Minimum 937, 942, 946 
MINITAB 991 
Minor 309 
Mixed 

boundary value problem 558. 587. 759. 917 
triple product 381 

Mixing problem 13, 130, ]46, 163,259 
Mks system: Front cover 
ML-inequality 644 
Mobius 453 

strip 453, 456 
transformation 734 

Mode 542. 582 

113 

Modeling 2. 6. 13. 61. 84. 130. 159. 222, 340, 499, 
538,569.750-767 

Modified Bessel functions 203 
Modulus 607 
Molecule 912 
Moivre's formula 610 
Moment 

central 1019 
of a distribution 1019 
of a force 380 
generating function 1026 
of inertia 436. 455. 457 
of a sample 1046 
vector 380 

Monotone sequence A69 
Moore's shortest path algorithm 960 
Morera's theorem 661 
Moulton 900 
Moving trihedron (see Trihedron) 
M-test for convergence 969 
Multinomial distribution 1025 
Multiple point 391 
Multiplication of 

complex numbers 603, 609 
determinants 322 
matrices 278, 321 
means ]038 
power series 174, 680 
vectors 2]9, 371, 377 

Multiplication rule for events 1003 



114 Index 

Multiplicity 337, 865 
Multiply connected domain 646 
Multistep method 898 
"Multivalued function" 615 
Mutually exclusive events 998 

N 

Nabla 403 
NAG 779 
Natural 

frequency 63 
logarithm 630, A60 
spline 812 

Neighborhood 387, 613 
Nested form 786 
NETLIB 779 
Networks 132, 146, 162,244,260.263.277,331 

in graph theory 973 
Neumann, C. 201 

functions 20 I 
problem 558, 587, 917 

Newton 14 
-Cotes formulas 822 
interpolation formulas 802, 805, 807 
law of cooling 14 
law of gravitation 385 
method 800 
-Raphson method 800 
second law 62 

Neyman 1049, 1058 
Nicolson 924 
Nicomedes 399 
Nilpotent matrix 286 
NIST 779 
Nodal 

incidence matrix 277 
line 574 

Node 142, 797 
Nonbasic variables 945 
Nonconservative 428 
Nonhomogeneous 

differential equation 27, 78, 116, 159, 305, 535 
system of equations 288. 304 

Nonlinear differential equations 45. 151 
Nonorientable smface 453 
Nonparametric test 1080 
Nonsingular matrix 315 
Nonn 205, 326, 346, 359, 365, 849 

Normal 
acceleration 395 
asymptotically 1057 
to a curve 398 
derivative 444, 465 
distribution 1026, 1047-1057, 1062-1067, A98 

two-dimensional 1090 
equations 860. 1086 
form of a PDE 551 
matrix 362, 869 

Null 

mode 542, 582 
plane 398 
to a plane 375 
random variable 1026 
to a surface 447 
vector 375, 447 

hypothesis 1058 
matrix (see Zero matlix) 
space 301 
vector (see Zero vector) 

Nullity 301 
Numeric methods 777-934 

differentiation 827 
eigenvalues 863-882 
equations 787-796 
integration 817-827 
interpolation 797-816 
linear equations 833-858 
matrix inversion 315, 844 
optimization 936-953 
ordinary differential equations (ODEs) 

886-908 
partial differential equations (PDEs) 909-930 

Nystrom method 906 

o 
0962 
Objective function 936 
OC curve 1062 
Odd function 490 
ODE 4 (see also Differential equations) 
Ohm's law 92 
One-dimensional 

heat equation 553 
wave equation 539 

One-sided 
derivative 484 
test 1060 



Index 

One-step method 898 
One-to-one mapping 729 
Open 

disk 613 
integration formula 827 
interval A69 
point set 613 

Operating characteristic 1062 
Operational calculus 59, 220 
Operation count 838 
Operator 59. 327 
Optimality principle. Bellman's 963 
Optimal solution 942 
Optimization 936-953, 959-990 
Orbit 141 
Order 887, 962 

of a determinant 308 
of a differential equation 4, 535 
of an iteration process 793 

Ordering 969 
Ordinary differential equations 2-269. 886-908 

(see also Differential equation) 
Orientable surface 452 
Orientation of a 

curve 638 
surface 452 

Orthogonal 
coordinates A 71 
curves 35 
eigenvectors 350 
expansion 210 
functions 205, 482 
matrix 345 
polynomials 209 
series 210 
trajectories 35 
transformation 346 
vectors 326, 371 

Orthonormal functions 205, 210 
Oscillations 

of a beam 547,552 
of a cable 198 
in circuits 9 I 
damped 64, 88 
forced 84 
free 61, 500, 547 
harmonic 63 
of a mass on a spring 61, 86, 135, 150, 243, 

252, 261, 342.499 
of a membrane 569-586 

Oscillations (Cont.) 

self-sustained 157 
of a string 204, 538. 929 
undamped 62, 

Osculating plane 398 
Outcome 997 
Outer product 377 
Outlier 995 
Output 26, 230 
Overdamping 65 
Overdetermined system 292 
Overflow 782 
Overrelaxation 851 
Overtone 542 

p 

Paired comparison 1065 
Pappus's theorem 458 
Parabolic differential equation 551, 922 
Paraboloid 448 
Parachutist 12 
Parallelepiped 382 
Parallel flow 766 
Parallelogram 

equality 326, 372, 612 
law 367 

Parameter of a distribution 1016 
Parametric representation 389, 446 
Parking problem 1023 
Parseval's equality 215. 504 
Partial 

derivative 388, A66 
differential equation 535, 909 
fractions 231, 245 
pivoting 291, 834 
sum 171,480, 666 

Particular solution 6, 48. 106, 159 
Pascal 399 
Path 

in a digraph 974 
in a graph 959 
of integration 421, 637 

PDE 535, 909 (see a/so Differential equation) 
Peaceman-Rachford method 915 
Pearson. E. S. 1058 
Pearson, K. 1066 
Pendulum 68, 152, 156 
Period 478 
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Periodic 
extension 494 
function 478 

Permutation 1006 
Perron-Frobenius theorem 344, 869 
Pfaffian form 429 
Phase 

angle 88 
of complex number (see Argument) 
lag 88 
plane 141, 147 
pOltrait 14 I, 147 

Picard 
iteration method 41 
theorem 709 

Piecewise 
continuous 226 
smooth 421, 448. 639 

Pivoting 291, 834 
Planar graph 987 
Plane 315, 375 
Plane curve 391 
Poincare 216 
Point 

estimate 1046 
at infinity 710. 736 
set 613 
source 765 
spectrum 507,524 

Poisson 769 
distribution 1022, 1073, A97 
equation 910, 918 
integral formula 769 

Polar 
coordinates 437, 443, 580, 607-608 
form of complex numbers 607 
moment on inertia 436 

Pole 708 
Polynomial 

approximation 797 
matrix 865 

Polynomially bounded 962 
Polynomials 617 

Chebyshev 209 
Hermite 216 
Laguerre 207, 257 
Legendre 179. 207. 590. 826 
trigonometric 502 

Population in statistics 1044 
Population models 31, 154. 341 

Position vector 366 
Positive definite 326. 372 
Possible values 1012 
Postman problem 963 
Potential 407, 427,590, 750, 762 

complex 763 
theory 465, 749 

Power 
method for eigenvalues 872 
of a test 1061 
series 167, 673 
series method 167 

Precision 782 
Predator-prey 154 
Predictor-corrector 890, 900 
Pre-Hilbert space 326 
Prim's algorithm 971 
Principal 

axes theorem 354 
branch 632 
diagonal (see main diagonal) 
directions 340 
normal (Fig. 210) 397 
part 708 
value 607. 630. 632. 719. 722 

Prior estimate 794 
Probability 1000, 10m 

conditional 1003 
density 1014. 1034 
distribution 10 10, 1032 
function 1012, 1033 

Producer's risk 1075 
Product (see Multiplication) 
Projection of a vector 374 
Pseudocode 783 
Pure imaginary number 603 

Q 

QR-factorization method 879 
Quadratic 

equation 785 
form 353 
interpolation 799 

Qualitative methods 124. 139-165 
Quality control 1068 
Quartile 995 
Quasilinear 551, 909 
Quotient of complex numbers 604 



Index 

R 

Rachford method 915 
Radiation 7, 561 
Radiocarbon dating 13 
Radius 

of convergence 172, 675, 686 
of a graph 973 

Random 
experiment 997 
numbers 1045 
variable 1010. 1032 

Range of a 
function 614 
sample 994 

Rank of a matrix 297, 299. 31 I 
Raphson 790 
Rational function 617 
Ratio test 669 
Rayleigh 159 

equation 159 
quotient 872 

RC-circuit 97, 237, 240 
Reactance 93 
Real 

axis 604 
part 602 
sequence 664 
vector space 324, 369 

Rectangular 
membrane 571 
pulse 238. 243 
rule 817 
wave 21 1, 480, 488, 492 

Rectifiable curve 393 
Rectification of a lot 1075 
Rectifier 248, 489, 492 
Rectifying plane 398 
Reduction of order 50, 116 
Region 433,614 
Regression 1083 

coefficient Im;5, L088 
line 1084 

Regula falsi 796 
Regular 

point of an ODE 183 
Sturm-Liouville problem 206 

Rejectable quality level 1075 
Rejection region 1060 
Relative 

class frequency 994 

Relati ve (Cont.) 
error 784 
frequency 1000 

Relaxation 850 
Remainder 171, 666 
Removable singularity 709 
Representation 328 
Residual 849, 852 
Residue 713 
Residue theorem 715 
Resistance 91 
Resonance 86 
Response 28, 84 
Restoring force 62 
Resultant of forces 367 
Riccati equation 34 
Riemann 618 

sphere 710 
surface 746 

Right-hand 
derivative 484 
limit 484 

Right-handed 377 
Risk 1095 
RL-circuit 97, 240 
RLC-circuit 95, 241, 244, 499 
Robin problem 558, 587 
Rodrigues's formula 181 
Romberg integration 829 
Root 610 
Root test 671 
Rotation 381, 3R5, 414, 734, 764 
Rounding 782 
Row 

echelon form 294 
-equivalent 292, 298 
operations 292 
scaling 838 
space 300 
sum norm 849 
vector 274 

Runge-Kutta-Fehlberg 893 
Runge-Kutta methods 892, 904 
Runge-Kutta-Nystrom 906 

s 
Saddle point 143 
Sample 997, 1045 

covariance 1085 
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Sample (Cont.) 
distribution function 1076 
mean 996, 1045 
moments 1046 
point 997 
range 994 
size 997, 1045 
space 997 
standard deviation 996, 1046 
variance 996, 1045 

Sampling 1004, 1023, 1073 
SAS 991 
Sawtooth wave 248, 493, 505 
Scalar 276, 364 

field 384 
function 384 
matIix 284 
multiplication 276, 368 
triple product 381 

Scaling 838 
Scheduling 987 
Schoenberg 810 
Scrnodinger 242 
Schur's inequality 869 
Schwartz 242 
Schwarz inequality 326 
Secant 627, A62 

method 794 
Second 

Green's formula 466 
shifting theorem 235 

Sectionally continuous 
(see Piecewise continuous) 

SeIdel 846 
Self-starting 898 
Self-sustained oscillations 157 
Separable differential equation 12 
Separation of variables 12, 540 
Sequence 664, A69 
Series 666, A69 

addition of 680 
of Bessel functions 213, 583 
binomial 689 
convergence of 171, 666 
differentiation of 174. 680 
double Fourier 576 
of eigenfunctions 210 
Fourier 211,480.487 
geometIic 167.668,673,687.692 
harmonic 670 

Series (Cont.) 
hypergeometric 188 
infinite 666, A 70 
integration of 680 
Laurent 701, 712 
MaclauIin 683 
multiplication of 174. 680 
of orthogonal functions 210 
partial sums of 17 L 666 
power 167, 673 
real A69 
remainder of 171, 666, 684 
sum of 171,666 
Taylor 683 
tligonometric 479 
value of 171, 666 

Serret-Frenet formulas 
(see Frenet formulas) 

Set of points 613 
Shifted data problem 232 
Shifting theorems 224, 235, 528 
Shortest 

path 959 
spanning tree 967 

Shrine of the Book 814 
Sifting 242 
Significance level 1059 
Significant 

digit 781 
in statistics 1059 

Sign test 1081 
Similar matrices 350 
Simple 

curve 391 
event 997 
graph 955 
pole 708 
zero 709 

Simplex 
method 944 
table 945 

Simply connected 640, 646 
Simpson's rule 821 
Simultaneous 

corrections 850 
differential equations 124 
linear equations (see Linear systems) 

Sine 
of a complex variable 627, 688, 742 
hyperbolic 688 



Index 

Sine (Cont.) 
integral 509, 690, A65, A95 
of a real variable A60 

Single precision 782 
Single-valued relation 615 
Singular 

at infinity 711 
matrix 315 
point 183, 686, 707 
solution 8, 50 
Sturm-Liouville problem 206 

Singularity 686, 707 
Sink 464, 765, 973 
SI system: Front cover 
Size of a sample 997. 1045 
Skew-Hermitian 357, 361 
Skewness L020 
Skew-symmetric matrix 283, 345 
Skydiver 12 
Slack variable 941 
Slope field 9 
Smooth 

curve 42 I, 638 
piecewise 421, 448, 639 
surface 448 

Sobolev 242 
Soft spring 159 
Software 778, 991 
Solution 

of a differential equation 4, 46, 105, 536 
general 6, 48, 106, 138 
particular 6, 48, 106 
singular 8, 50 
space 304 
steady-state 88 
of a system of differential equations 136 
of a system of equation~ 288 
vector 288 

SOR 851 
Sorting 969, 993 
Source 464. 765, 973 
Span 300 
Spanning tree 967 
Sparse 

graph 957 
matrix 812, 912 
system of equations 846 

Spectral 
density 520 
mapping theorem 344,865 

Spectral (Cont.) 
radius 848 
representation 520 
shift 344, 865, 874 

Spectrum 324, 542, 864 
Speed 394 
Sphere 446 
Spherical coordinates 588, A 71 
Spiral 399 

point 144 
Spline 81 I 
S-PLUS, SPSS 992 
Spring 62 
Square 

error 503 
matrix 274 
membrane 575 
root 792 
wave 211, 480, 488, 492 

Stability 3 I, 148, 783, 822, 922 
chart 148 

Stagnation point 763 
Staircase function 248 
Standard 

basis 328, 369 
deviation 10 I 6 
form of a linear ODE 26, 45, 105 

Standardized random variable 1018 
Stationary point 937 
Statistical 

inference 1044 
tables A96-A I 06 

Steady 413, 463 
state 88 

Steepest descent 938 
Steiner 399, 457 
Stem-and-leaf plot 994 
Stencil 912 
Step-by-step method 886 
Step function 234 
Step size control 889 
Stereo graphic projection 7 I I 
Stiff 

ODE 896 
system of ODEs 907 

Stirling formula 1008, A64 
Stochastic 

matrix 285 
variable 10 11 

Stokes's theorem 469 
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Straight line 375, 391 
Stream function 762 
Streamline 761 
Strength of a source 767 
Stlictly diagonally dominant 868 
String 204, 538, 594 
Student's (-distribution 1053, A I 00 
Sturm-Liouville problem 203 
Subgraph 956 
Submarine cable equations 594 
Submatrix 302 
Subsidiary equation 220, 230 
Subspace 300 

invariant 865 
Success [021 
Successive 

conections 850 
overrelaxation 851 

Sum (see Addition) 
Sum of a selies 171,666 
Superlinear convergence 795 
Superposition principle 106, 138 
Surface 445 

area 435, 442, 454 
integral 449 
normal 406 

Surjective mapping 729 
Symmetric matrix 283, 345 
System of 

T 

differential equations 124-165,258-263,902 
linear equations (see Linear system) 
units: Front cover 

Tables 
on differentiation: Front cover 
of Fourier transforms 529-531 
of functions A94-A 106 
of integrals: Front cover 
of Laplace transforms 265-267 
statistical A96-A106 

Tangent 627, A62 
to a curve 392, 397 
hyperbolic 629, A62 
plane 406, 447 
vector 392 

Tangential acceleration 395 
Target 973 
Tarjan 971 

Taylor 683 
formula 684 
series 683 

Tchebichef (see Chebyshev) 
(-distribution 1053, A100 
Telegraph equations 594 
Termination critelion 791 
Termwise 

Test 

differentiation 696 
integration 695 
multiplication 680 

chi-square 1077 
for convergence 667-672 
of hypothesis 1058-1 06R 
nonparametric 1080 

Tetrahedron 382 
Thermal 

conductivity 465, 552 
diffusivity 465, 552 

Three 
-eights rule 830 
-sigma limits 1028 

Time tabling 987 
Torricelli's law 15 
Torsion of a curve 397 
Torsional vibrations 68 
Torus 454 
Total differential 19 
Trace of a matrix 344, 355, !:I64 
Trail 959 
TrajectOlies 35, 133, 141 
Transfer function 230 
Transformation 

of Cartesian courdinates A84 
by a complex function 729 
of integrals 437, 439, 459, 469 
linear 281 
linear fractional 734 
orthogonal 346 
similarity 350 
unitary 359 
of vector components A83 

Transient state 88 
Translation 365, 734 
Transmission line equations 593 
Transpose of a matrix 282 
Transpositions 1081. AI06 
Trapezoidal rule 817 
Traveling salesman problem 960 



Index 

Tree 966 
Trend 1081 
Trial 997 
Triangle inequality 326, 372. 608 
Triangular matlix 283 
Tricomi equation 551. 55~ 
Tridiagonalization 875 
Tridiagonal matrix 812, 875. 914 
Trigonometric 

approximation 502 
form of complex numbers 607, 624 
functions, complex 626, 688 
functions, real A60 
polynomial 502 
series 479 
system 479. 482 

Trihedron 398 
Triple 

integral 458 
product 381 

Tlivial solution 27, 304 
Truncation error 783 
Tuning 543 
Twisted curve 391 
Two-dimensional 

distribution 1032 
normal distribution 1090 
random variable 1032 
wave equation 571 

Two-sided test 1060 
Type of a differential equation 551 
Type I and II errors 1060 

U 
UeL 1068 
Unconstrained optimization 937 
U ncorrelated I 090 
U mlamped system 62 
Underdamping 66 
Underdetemlined system 292 
Underflow 782 
Undetermined coefficients 79, 117, 160 
Uniform 

convergence 691 
distribution 1015, 1017. 1034 

Union of events 998 
Uniqueness 

differential equations 37, 73, 107, 137 
Dirichlet problem 774 

Uniqueness (Cont.) 
Laurent series 705 
linear equations 303 
power series 678 

Unit 
binormal vector 398 
circle 611 
impulse 242 
matrix 284 
normal vector 447 
principal normal vector 391:\ 
step function 234 
tangent vector 392. 398 
vector 326 

Unitary 
matrix 357 
system of vectors 359 
transformation 359 

Unstable (see Stability) 
Upper control limit 1068 

v 
Value of a series 171. 666 
Vandermonde determinant I 12 
Van der Pol equation 157 
Variable 

complex 614 
random 10 I 0, 1032 
standardized random 1018 
stochastic I 0 11 

Variance of a 
distribution 1016 
sample 996, 1045 

Variation of parameters 98. 118, 160 
Vector 274, 364 

addition 276. 327, 367 
field 384 
function 384 
moment 380 
norm 853 
product 377 
space 300, 323, 369 
subspace 300 

Velocity 394 
field 385 
potential 762 
vector 394 

Venn diagram 998 
Verhulst 31 

121 



122 Index 

Vertex 955 
coloring 987 
exposed 983 
incidence list 957 

Vibrations (see Oscillations) 
Violin string 538 
Vizing's theorem 987 
Volta 92 
Voltage drop 92 
Volterra 154,201, 253 
Volume 435 
Vortex 767 
Vorticity 764 

w 
Waiting time problem 10 13 
Walk 959 
Wave equation 536, 539, 569, 929 
Weber 217 

equation 217 . 

Weber (Cont.) 

functions 201 
Website see Preface 
Weierstrass 618. 696 

approximation theorem 797 
M-test 696 

Weighted graph 959 
Weight function 205 
Well-conditioned 852 
Wessel 605 
Wheatstone bridge 296 
Work 373, 423 

integral 422 
Wronskian 75, 108 

z 
Zero 

of analytic function 709 
matrix 276 
vector 367 



Systems of Units. Some Important Conversion Factors 

The most important systems of units are shown in the table below. The mks system is also known as 
the bztemational System of Units (abbreviated S/), and the abbreviations s (instead of sec), 
g (instead of gm), and N (instead of nt) are also used. 

System of units Length Mass Time Force 

cgs system centimeter (cm) gram (gm) second (sec) dyne 

mks system meter (m) kilogram (kg) second (sec) newton (nt) 

Engineering system foot (ft) slug second (sec) pound (lb) 

I inch (in.) = 2.540000 cm I foot (ft) = 12 in. = 30.480000 cm 

I yard (yd) = 3 ft = 91.440000 cm I statute mile (mi) = 5280 ft = 1.609344 km 

I nautical mile = 6080 ft = 1.853184 km 

I acre = 4840 yd2 = 4046.8564 m2 I mi2 = 640 acres = 2.5899881 km2 

I fluid ounce = IIl28 U.S. gallon = 2311128 in.3 = 29.573730 cm3 

I U.S. gallon = 4 quarts (liq) = 8 pints (liq) = 128 fl oz = 3785.4118 cm3 

I British Imperial and Canadian gallon = 1.200949 U.S. gallons = 4546.087 cm3 

I slug = 14.59390 kg 

I pound (lb) = 4.448444 nt I newton (nt) = 105 dynes 

I British thermal unit (Btu) = 1054.35 joules I joule = 107 ergs 

I calorie (cal) = 4.1840 joules 

I kilowatt-hour (kWh) = 3414.4 Btu = 3.6' 106 joules 

I horsepower (hp) = 2542.48 Btu/h = 178.298 cal/sec = 0.74570 kW 

I kilowatt (kW) = 1000 watts = 3414.43 Btu/h = 238.662 cal/sec 

OF = °C . 1.8 + 32 1 ° = 60' = 3600" = 0.01 7453293 radian 

For further details see, for example, D. Halliday, R. Resnick, and 1. Walker, FUl1damel1tals of Physics. 7th ed., New York: 
Wiley. 2005. See also AN American National Standard. ASTMIlEEE Standard Metric Practice. Institute of Electrical and 
Electronics Engineers, Inc., 445 Hoes L~ne. Piscataway, N. 1. 08854. 



Differentiation 

(eu)' = eu' (e constant) 

(u + v)' = u' + v' 

(uv)' = u'v + v'u 

, , 
(: )' uv-vu 

v2 

du du dy 
-=-.-
dx dy dx 

(sin x)' = cos x 

(cosx)' = -sinx 

(tan x)' = sec2 x 

(cotx), = -csc2 x 

(sinh x)' = cosh x 

(cosh x)' = sinh x 

, I 
(lnx) =­

x 

(arcsin x)' 

(arccos x)' 

(arctan x)' 

(arccotx)' 

x 

(Chain rule) 

Integration 

f uv' dx = ltV - f u'v dx 

f 
xn+l 

xndx = --- + e 
n + 1 

f ~ dx = In Ixl + e 

feaxdx=~eax+e 

f sin x dx = -cos x + e 

f cos x dx = sin x + e 

(n oF -I) 

f tan x dx = -In Icos xl + e 

f cotxdx = In Isinxl + e 

f sec x dx = In Isec x + tan xl + e 

f csc x dx = In Icsc x - cot \:1 + e 

f dx I x 
2 2 = - arctan - + e 

x + a a a 

f dx = arcsin'::' + e 
Ya2 - x2 a 

f dx = arcsinh .::. + e 
Yx2 + a 2 a 

f dx = arc cosh .::. + e 
Yx2 

- a2 a 

f sin2 x dx = 1 x - 1 sin 2x + e 2 4 

f cos2 
X dx = ! x + ~ sin 2x + e 

f tan2 x dx = tan x - x + e 

f cot2 xdx = -cotx - x + e 

f In x dx = x In x - x + e 

f eax sin bx dx 

eax 

= 2 2 (a sin bx - b cos bx) + e 
a + b 

f eax cos bx dx 

eax 
= 2 2 (a cos bx + b sin bx) + e 

a + b 



Some Constants 

e = 2.71828 182845904523536 

Ve = 1.64872 127070012814685 

e2 = 7.38905 60989 30650 22723 

7T = 3.14159265358979323846 

~ = 9.86960 440lO 89358 61883 

y:;;:- = 1.77245385090551602730 

lOglO 7T = 0.49714987269413385435 

In 7T = 1.14472 98858 4940017414 

IOglO e = 0.434294481903251 82765 

In 10 = 2.30258 50929 94045 68402 

v'2 = 1.41421 356237309504880 

-{Y2 = 1.25992 1049894873 16477 

v'3 = 1.73205 08075 68877 29353 

V'3 = 1.44224 95703 07408 38232 

In 2 = 0.69314718055994530942 

In 3 = 1.09861 228866810969140 

'Y = 0.57721566490153286061 

In 'Y = -0.549539312981644 82234 

(see Sec. 5.6) 

10 = 0.01745 32925 19943 29577 rad 

1 rad = 57.29577 95130 82320 876800 

= 57° 17' 44.806" 

Greek Alphabet 

0' Alpha IJ Nu 

p Beta g Xi 

'Y, r Gamma 0 Omicron 

0, !J. Delta 7T Pi 

€, e Epsilon p Rho 

~ Zeta cr, L Sigma 

T} Eta T Tau 

0, tt, e Theta v, Y Upsilon 

L Iota cP. cp,<I> Phi 

K Kappa X Chi 

A,A Lambda I/J, 'It Psi 

fL Mu w,n Omega 

Polar Coordinates 

x = rcos 0 y=rsinO 

y 
tanO=­

x 

dxdy = rdrdO 

Series 

I 00 

-- = ~ xm (Ixl < 1) 
1 - x 

m~O 

• 00 ( _l)mx 2m+ I 

Sill X = ~ (2m + l)! 
m~O 

00 (_I)mx2m 

cos x = ~ (2m)! 
m~O 

00 xm 
In (1 - x) = - ~ - (Ixl < 1) 

m 
m~l 

00 (_l)mx 2m+1 

arctan x = ~ (Ixl < 1) 
m=O 2m + I 

Vectors 

a-b = albl + a2b2 + a3b3 

i j k 

axb= al a2 a3 

bl b2 b3 

af af at 
gradf = Vf = -i + -j +-k 

ax ay az 

. aVl aV2 aV3 
diV v = V-v = - + - + -

ax ay az 

i j k 
a a a 

curl v = V x v = - - -
ax ay az 

VI V2 V3 
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