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PREFACE

See also http: //www.wiley.com/college/kreyszig/

Goal of the Book. Arrangement of Material

This new edition continues the tradition of providing instructors and students with a
comprehensive and up-to-date resource for teaching and learning engineering
mathematics, that is, applied mathematics for engineers and physicists, mathematicians
and computer scientists, as well as members of other disciplines. A course in elementary
calculus is the sole prerequisite.

The subject matter is arranged into seven parts A-G:

A Ordinary Differential Equations {ODEs) (Chaps. 1-6)

B Linear Algebra. Vector Calculus (Chaps. 7-9)

C Fourier Analysis. Partial Differential Equations (PDEs) (Chaps. 11-12)
D Complex Analysis (Chaps. 13—18)

E Numeric Analysis (Chaps. 19-21)

F Optimization, Graphs (Chaps. 22-23)

G Probability, Statistics (Chaps. 24-25).

This is followed by five appendices:

App. 1 References (ordered by parts)

App. 2 Answers to Odd-Numbered Problems
App. 3 Auxiliary Material (see also inside covers)
App. 4 Additional Proofs

App. 5 Tables of Functions.

This book has helped to pave the way for the present development of engineering
mathematics. By a modern approach to those areas A-G, this new edition will prepare
the student for the tasks of the present and of the future. The latter can be predicted to
some extent by a judicious look at the present trend. Among other features, this trend
shows the appearance of more complex production processes, more extreme physical
conditions (in space travel, high-speed communication, etc.), and new tasks in robotics
and communication systems (e.g., fiber optics and scan statistics on random graphs) and
elsewhere. This requires the refinement of existing methods and the creation of new ones.

It follows that students need solid knowledge of basic principles. methods, and results,
and a clear view of what engineering mathematics is all about, and that it requires
proficiency in all three phases of problem solving:

* Modeling, that is, translating a physical or other problem into a mathematical form,
into a mathematical model; this can be an algebraic equation, a differential equation,
a graph, or some other mathematical expression.

* Solving the model by selecting and applying a suitable mathematical method, often
requiring numeric work on a computer.

* Interpreting the mathematical result in physical or other terms to see what it
practically means and implies.

It would make no sense to overload students with all kinds of little things that might be of
occasional use. Instead they should recognize that mathematics rests on relatively few basic
concepts and involves powerful unifying principles. This should give them a firm grasp on
the interrelations among theory, computing, and (physical or other) experimentation.
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General Features of the Book Include:

« Simplicity of examples, to make the book teachable—why choose complicated
examples when simple ones are as instructive or even better?

» Independence of chapters, to provide flexibility in tailoring courses to special needs.

* Self-contained presentation, except for a few clearly marked places where a proof
would exceed the level of the book and a reference is given instead.

* Modern standard noetation, to help students with other courses, modern books, and
mathematical and engineering journals.

Many sections were rewritten in a more detailed fashion. to make it a simpler book. This
also resulted in a better balance between theory and applications.

Use of Computers

The presentation is adaptable to various levels of technology and use of a computer or
graphing calculator: very little or no use, medium use, or intensive use of a graphing
calculator or of an unspecified CAS (Computer Algebra System, Maple, Mathematica,
or Matlab being popular examples). In either case texts and problem sets form an entity
without gaps or jumps. And many problems can be solved by hand or with a computer
or both ways. (For software, see the beginnings of Part E on Numeric Analysis and Part G
on Probability and Statistics.)

More specifically, this new edition on the one hand gives more prominence to tasks
the computer cannof do, notably, modeling and interpreting results. On the other hand, it
includes CAS projects, CAS problems, and CAS experiments, which do require a
computer and show its power in solving problems that are difficult or impossible to access
otherwise. Here our goal is the combination of intelligens computer use with high-quality
mathematics. This has resulted in a change from a formula-centered teaching and learning
of engineering mathematics to a more quantitative, project-oriented, and visual approach.
CAS experiments also exhibit the computer as an instrument for observations and
experimentations that may become the beginnings of new research, for “proving™ or
disproving conjectures, or for formalizing empirical relationships that are often quite useful
to the engineer as working guidelines. These changes will also help the student in
discovering the experimental aspect of modern applied mathematics.

Some routine and drill work is retained as a necessity for keeping firm contact with
the subject matter. In some of it the computer can (but must not) give the student a hand,
but there are plenty of problems that are more suitable for pencil-and-paper work.

Major Changes

1. New Problem Sets. Modern engineering mathematics is mostly feamwork. It usually
combines analytic work in the process of modeling and the use of computer algebra and
numerics in the process of solution, followed by critical evaluation of results. Our
problems—some straightforward. some more challenging, some “thinking problems” not
accessible by a CAS, some open-ended—reflect this modern situation with its increased
emphasis on qualitative methods and applications, and the problem sets take care of this
novel situation by including team projects, CAS projects, and writing projects. The latter
will also help the student in writing general reports, as they are required in engineering
work quite frequently.

2. Computer Experiments, using the computer as an instrument of “experimental
mathematics” for exploration and research (see also above). These are mostly open-ended
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experiments, demonstrating the use of computers in experimentally finding results, which
may be provable afterward or may be valuable heuristic qualitative guidelines to the
engineer, in particular in complicated problems.

3. More on modeling and selecting methods, tasks that usually cannot be automated.

4. Student Solutions Manual and Study Guide enlarged, upon explicit requests
of the users. This Manual contains worked-out solutions to carefully selected odd-numbered
problems (to which App. 1 gives only the final answers) as well as general comments
and hints on studying the text and working further problems, including explanations on
the significance and character of concepts and methods in the various sections of the
book.

Further Changes, New Features

* FElectric circuits moved entirely to Chap. 2, to avoid duplication and repetition

* Second-order ODEs and Higher Order ODEs placed into two separate chapters
(2 and 3)

* In Chap. 2, applications presented before variation of parameters
* Series solutions somewhat shortened, without changing the order of sections

* Material on Laplace transforms brought into a better logical order: partial fractions
used earlier in a more practical approach, unit step and Dirac’s delta put into separate
subsequent sections, differentiation and integration of transforms (not of functions!)
moved to a later section in favor of practically more important topics

¢ Second- and third-order determinants made into a separate section for reference
throughout the book

» Complex matrices made optional

¢ Three sections on curves and their application in mechanics combined in a single section
« First two sections on Fourier series combined to provide a better, more direct start
* Discrete and Fast Fourier Transforms included

» Conformal mapping presented in a separate chapter and enlarged

* Numeric analysis updated

» Backward Euler method included

» Stiffness of ODEs and systems discussed

« List of software (in Part E) updated; another list for statistics software added (in Part G)

* References updated, now including about 75 books published or reprinted after 1990

Suggestions for Courses: A Four-Semester Sequence

The material, when taken in sequence, is suitable for four consecutive semester courses,
meeting 3—4 hours a week:

1st Semester. ODEs (Chaps. 1-5 or 6)
2nd Semester. Linear Algebra. Vector Analysis (Chaps. 7-10)
3rd Semester. Complex Analysis (Chaps. 13—18)

4th Semester. Numeric Methods (Chaps. 19-21)
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Suggestions for Independent One-Semester Courses

The book is also suitable for various independent one-semester courses meeting 3 hours
a week. For instance:

Introduction to ODEs (Chaps. 1-2, Sec. 21.1)
Laplace Transforms (Chap. 6)

Matrices and Linear Systems (Chaps. 7-8)

Vector Algebra and Calculus (Chaps. 9-10)
Fourier Series and PDEs (Chaps. 11-12, Secs. 21.4-21.7)
Introduction to Complex Analysis (Chaps. 13-17)
Numeric Analysis (Chaps. 19, 21)

Numeric Linear Algebra (Chap. 20)

Optimization (Chaps. 22-23)

Graphs and Combinatorial Optimization (Chap. 23)
Probability and Statistics (Chaps. 24-25)
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.. = Ordinary

- STLN. g . .
. Differential
} Ya, . .
s, Equations (ODEs)
. :::.3 : .
1 First-Order ODEs
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4 Systems of ODEs. Phase Plane. Qualitative Methods
5 Series Solutions of ODEs. Special Functions
6 Laplace Transforms

Differential equations are of basic importance in engineering mathematics because many
physical laws and relations appear mathematically in the form of a differential equation.
In Part A we shall consider various physical and geometric problems that lead to
differential equations, with emphasis on modeling, that is, the transition from the physical
situation to a “mathematical model.” In this chapter the model will be a differential
equation, and as we proceed we shall explain the most important standard methods for
solving such equations.

Part A concerns ordinary differential equations (ODEs), whose unknown functions
depend on a single variable. Partial differential equations (PDEs), involving unknown
functions of several variables, follow in Part C.

ODE:s are very well suited for computers. Numeric methods for ODEs can be studied
directly after Chaps. 1 or 2. See Secs. 21.1-21.3, which are independent of the other
sections on numerics.
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1.1 Basic

CHAPTER-I

First-Order ODEs

In this chapter we begin our program of studying ordinary differential equations (ODEs)
by deriving them from physical or other problems (modeling), solving them by standard
methods, and interpreting solutions and their graphs in terms of a given problem. Questions
of existence and uniqueness of solutions will also be discussed (in Sec. 1.7).

We begin with the simplest ODEs, called ODE:s of the first order because they involve
only the first derivative of the unknown function, no higher derivatives. Our usual
notation for the unknown function will be y(x). or ¥(¢) if the independent variable is
time .

If you wish, use your computer algebra system (CAS) for checking solutions, but make
sure that you gain a conceptual understanding of the basic terms, such as ODE, direction
field, and initial value problem.

COMMENT. Numerics for first-order ODEs can be studied immediately after this
chapter. See Secs. 21.1-21.2, which are independent of other sections on numerics.

Prerequisite: Integral calculus.
Sections that may be omitted in a shorter course: 1.6, 1.7.
References and Answers to Problems: App. | Part A, and App. 2

Concepts. Modeling

If we want to solve an engineering problem (usually of a physical nature). we first have
to formulate the problem as a mathematical expression in terms of variables, functions,
equations, and so forth. Such an expression is known as a mathematical model of the
given problem. The process of setting up a model, solving it mathematically, and
interpreting the result in physical or other terms is called mathematical modeling or, briefly,
modeling. We shall illustrate this process by various examples and problems because
modeling requires experience. (Your computer may help you in solving but hardly in
setting up models.)

Since many physical concepts, such as velocity and acceleration, are derivatives, a
model is very often an equation containing derivatives of an unknown function. Such
a model is called a differential equation. Of course, we then want to find a solution
(a function that satisfies the equation), explore its properties, graph it, find values of it,
and interpret it in physical terms so that we can understand the behavior of the physical
system in our given problem. However, before we can tum to methods of solution we
must first define basic concepts needed throughout this chapter.
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Some applications of differential equations



CHAP.1 First-Order ODEs

An ordinary differential equation (ODE) is an equation that contains one or several
derivatives of an unknown function, which we usually call v(x) (or sometimes v(?) if the
independent variable is time 7). The equation may also contain y itself, known functions
of x (or 1), and constants. For example,

(D) y' = coS x,
2 ¥+ =0,
3) 2y 4 26t = (2 + 2p?

are ordinary differential equations (ODEs). The term ordinary distinguishes them from
partial differential equations (PDEs), which involve partial derivatives of an unknown
function of rwo or more variables. For instance, a PDE with unknown function « of two
variables x and y is
& u u
ax2 ay* 0.
PDEs are more complicated than ODEs; they will be considered in Chap. 12.

An ODE is said to be of order # if the nth derivative of the unknown function v is the
highest derivative of v in the equation. The concept of order gives a useful classification
into ODEs of first order, second order, and so on. Thus, (1) is of first order. (2) of second
order, and (3) of third order.

In this chapter we shall consider first-order ODEs. Such equations contain only the
first derivative ¥’ and may contain y and any given functions of x. Hence we can write
them as

@ Flx.y,v)=0

or often in the form

¥ o= flx v

This 1s called the explicir form, in contrast with the implicit form (4). For instance, the
implicit ODE x~3y' — 4y® = ( (where x # 0) can be written explicitly as y' = 4x3y2,

Concept of Solution

A function
y = h(x)

is called a solution of a given ODE (4) on some open interval a < x < b if h(x) is defined
and differentiable throughout the interval and is such that the equation becomes an identity
if y and y" are replaced with / and h’, respectively. The curve (the graph) of 4 is called
a solution curve,

Here, open interval a < x < b means that the endpoints ¢ and b are not regarded as
points belonging to the interval. Also, a < x < b includes infinite intervals —o < x < b,
a <x <, = < x < % (the real line) as special cases.
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

Basic Concepts. Modeling 5

Verification of Solution

¥ = h(x) = c/x (¢ an arbitrary constant, x # 0) is a solution of xy' = —y. To verify this. differentiate,
y =h@= —clx2, and multiply by x to get xv' = —c/x = —y. Thus, xy' = —y, the given ODE. u

Solution Curves

The ODE y' = dvldx = cos x can be solved directly by integration on both sides. Indeed. using calculus, we
obtain y = f cos x dx = sinx + ¢, where c is an arbitrary constant. This is a family of solutions. Each value
of ¢, for instance. 2.75 or 0 or —8. gives one of these curves. Figure 2 shows some of them, for c = —3, -2,
—-1,0,1,.2.3.4. |

Fig. 2. Solutions y = sin x + ¢ of the ODE y' = cos x

Exponential Growth, Exponential Decay

From calculus we know that y = ce® (¢ any constant) has the derivative (chain rule!)

R dy

v = E = 3ce™ = 3y.

This shows that v is a solution of _v' = 3v. Hence this ODE can model exponential growth, for instance. of
animal populations or colonies of bacteria. It also applies to humans for small populations in a large country
(e.g.. the United States in early times) and is then known as Malthus’s law.! We shall say more about this topic
in Sec. 1.5.

Similarly, y' = —0.2y (with a minus on the right!) has the solution y = ce %2 Hence this ODE models
exponential decay, for instance. of a radioactive substance (see Example 5). Figure 3 shows solutions for some
positive ¢. Can you find what the solutions look like for negative ¢? |

2

2;\\
1.5k L

N

Fig. 3. Solutions of y' = —0.2y in Example 3

INamed after the English pioneer in classic economics, THOMAS ROBERT MALTHUS (1766-1834)
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We see that each ODE in these examples has a solution that contains an arbitrary constant
¢. Such a solution containing an arbitrary constant c¢ is called a general solution of the
ODE.

(We shall see that ¢ is sometimes not completely arbitrary but must be restricted to
some interval to avoid complex expressions in the solution.)

We shall develop methods that will give general solutions uniguely (perhaps except for
notation). Hence we shall say the general solution of a given ODE (instead of a general
solution).

Geometrically, the general solution of an ODE is a family of infinitely many solution
curves, one for each value of the constant ¢. If we choose a specific ¢ (e.g., ¢ = 6.45 or
0 or —2.01) we obtain what is called a particular solution of the ODE. A particular
solution does not contain any arbitrary constants.

In most cases, general solutions exist, and every solution not containing an arbitrary constant
is obtained as a particular solution by assigning a suitable value to ¢. Exceptions to these
rules occur but are of minor interest in applications: see Prob. 16 in Problem Set 1.1.

Initial Value Problem

In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition yv(xy) = vy, with given values
X and v, that is used to determine a value of the arbitrary constant ¢c. Geometrically
this condition means that the solution curve should pass through the point (xg, v¢) in
the xy-plane. An ODE together with an initial condition is called an initial value
problem. Thus, if the ODE is explicit, v’ = f(x, y), the initial value problem is of the
form

) ¥ = fox, ), ¥(x0) = Yo.

Initial Value Problem

Solve the initial value problem

,_dy
y = — =13 ¥0) =57
dx

Solution. The general solution is y(x) = ce™%; see Example 3. From this solution and the imtial condition
we obtain ¥(0) = ce® = ¢ = 5.7. Hence the initial value problem has the solution v(x) = 5.7¢3. This is a
particular solution. u

Modeling

The general importance of modeling to the engineer and physicist was emphasized at the
beginning of this section. We shall now consider a basic physical problem that will show
the typical steps of modeling in detail: Step 1 the transition from the physical situation
(the physical system) to its mathematical formulation (its mathematical model); Step 2
the solution by a mathematical method; and Step 3 the physical interpretation of the result.
This may be the easiest way to obtain a first idea of the nature and purpose of differential
equations and their applications. Realize at the outset that your computer (your CAS) may
perhaps give you a hand in Step 2, but Steps 1 and 3 are basically your work. And Step 2
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EXAMPLE 5

requires a solid knowledge and good understanding of solution methods available to you—
you have to choose the method for your work by hand or by the computer. Keep this in
mind, and always check computer results for errors (which may result, for instance, from
false inputs).

Radioactivity. Exponential Decay

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time.
Physical Information. Experiments show that at each instant a radioactive substance decomposes at a rate
proportional to the the amount present.

Step 1. Setting up a mathematical model (a differential equation) of the physical process. Denote by y(f) the
amount of substance still present at any time . By the physical law, the time rate of change v'(1) = dv/dt is
proportional to ¥(f). Denote the constant of proportionality by k. Then

© Dy
a
The value of k is known from experiments for various radioactive substances (e.g.. k = —1.4- 107 sec™,

approximately, for radium 88Ra226). k is negative because v(t) decreases with time. The given initial amount is
0.5 g. Denote the corresponding time by ¢ = 0. Then the initial condition is y(0) = 0.5. This is the instant at
which the process begins; this motivates the term initial condition (which, however, is also used more generally
when the independent variable is not time or when you choose a ¢ other than ¢ = 0). Hence the model of the
process is the initial value problem

dv

@) a ky, ¥0) = 0.5.

Step 2. Mathematical solution. As in Example 3 we conclude that the ODE (6) models exponential decay and
has the general solution (with arbitrary constant ¢ but definite given k)

®) YO = ¢,

‘We now use the initial condition to determine c. Since ¥(0) = ¢ from (8), this gives y(0) = ¢ = 0.5. Hence the
particular solution governing this process is

)] W) = 0.5 (Fig. 4).

Always check your result—it may involve human or computer errors! Verify by differentiation (chain rule!)
that your solution (9) satisfies (7) as well as y(0) = 0.5:

d
7': = 0.5ke" = k-0.5¢" = ky. +(0) = 0.5¢° = 0.5.

Step 3. Interpretation of result. Formula (9) gives the amount of radioactive substance at time . It starts from
the correct given initial amount and decreases with time because k (the constant of proportionality, depending
on the kind of substance) is negative. The limit of y as t —> < is zero.

0.5
0.4
0.3
0.2
0.1

0 | I | |
0 0.5 1 1.5 2 2.5 3 t

Fig. 4. Radioactivity (Exponential decay,
y = 05 ", with k = —1.5 as an example)
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First-Order ODEs

EXAMPLE 6 A Geometric Application

Geometric problems may also lead to initial value problems. For instance, find the curve through the point
(1. 1) in the xy-plane having at cach of its points the slope —y/x.

Solution. The slope y' should equal —y/x. This gives the ODE y' = —y/x. Its general solution is y = c/x
(see Example 1). This is a family of hyperbolas with the coordinate axes as asymptotes.

Now, for the curve to pass through (1, 1), we must have y = 1 when x = 1. Hence the initial condition is
¥(1) = 1. From this condition and y = ¢/x we get y(1) = ¢/1 = 1; that is, ¢ = 1. This gives the particular
solution y = 1/x (drawn somewhat thicker in Fig. 5). |

¥ ¥
3 —
2 -
1 —

CALCULUS

Solve the ODE by integration.
2. ¥ = g3

4, y'

Ly = —sin 7x

2
x52 cosh 4x

3.y =xe

VERIFICATION OF SOLUTION
State the order of the ODE. Verity that the given function
is a solution. (a, b, c¢ are arbitrary constants.)
5 v =1+ 2
6. v + w3y =0,
7. y" + 2v' + 10y = 0,
8.y +2y=4@x+ 12 y=5*+20u%+ 2+ 1
—sinx + axZ + bx + ¢

y = tan (x + ¢)
y = a cos mx + b sin mx

y = 4¢~% sin 3x

9. y" =cosx, y=

10-14 INITIAL VALUE PROBLEMS

Verify that y is a solution of the ODE. Determine from y
the particular solution satisfying the given initial condition.
Sketch or graph this solution.

10. ' = 05y, v =ce®™, y2)=2

1. y' =1 + 42, y=1tan 2x + c), y©0) =0
12. v =y —x, y=ce®+x + 1, y0) =3
13y +2xy =0, y=ce™, wl) = le

14. y' = ytanx, y = ¢ sec x, ¥0) = iz

Solutions of y' = —y/x {(hyperbolas)

Particular solutions and singular
solution in Problem 16

Fig. 6.

15. (Existence) (A) Does the ODE y'2 = —1 have a (real)
solution?

(B) Does the ODE |y + |y] = O have a general
solution?

16. (Singular solution) An ODE may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular solution.
The ODE y'2 — av' + y = 0 is of the kind. Show by
differentiation and substitution that it has the general
solution y = ex — ¢ and the singular solution y = x%/4.
Explain Fig. 6.

17-22, MODELING, APPLICATIONS

The following problems will give you a first impression of
modeling. Many more problems on modeling follow
throughout this chapter.

17. (Falling body) If we drop a stone, we can assume air
resistance (“drag”) to be negligible. Experiments show
that under that assumption the acceleration y” = d2yidr?
of this motion is constant (equal to the so-called
acceleration of gravity g = 9.80 m/sec® = 32 fi/sec?).
State this as an ODE for y(z), the distance fallen as a
function of time #. Solve the ODE to get the familiar
law of free fall, v = gr%/2.
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18.

19.

20.

21.

(Falling body) If in Prob. 17 the stone starts at t = ()
from initial position y, with initial velocity v = vy,
show that the solution is v = gr%/2 + vyt + ¥o. How
long does a tall of 100 m take if the body falls from
rest? A fall of 200 m? (Guess first.)

(Airplane takeoff) If an airplane has a run of 3 km,
starts with a speed 6 m/sec, moves with constant
acceleration, and makes the run in 1 min, with what
speed does it take off?

(Subsonic flight) The efficiency of the engines of
subsonic airplunes depends on air pressure and usually
is maximum near about 36 000 ft. Find the air pressure
y(x) at this height without calculation. Physical
information. The rate of change v'(x) is proportional
to the pressure, and at 18000 ft the pressure has
decreased to half its value y, at sea level.

(Half-life) The half-life of a radioactive substance is
the time in which half of the given amount disappears.
Hence it measures the rapidity of the decay. What

22,

is the half-life of radium ggRa?2® (in years) in
Example 5?7

(Interest rates) Show by algebra that the investment y(r)
from a deposit y, after + years at an interest rate r is

Yalf) = Yoll + 1!

valt) = ¥oll + (11363
(Interest compounded daily).

(Interest compounded annually)

Recall from calculus that
[1+ (/)" — e as n— x;
hence [1 + (r/m)]™ — €™ thus

Yo(D = voe (Interest compounded continuously).

What ODE does the last function satisfy? Let the
initial investment be $1000 and r = 6%. Compute the
value of the investment after 1 year and after 5 years
using each of the three formulas. Is there much
difference?

1.2 Geometric Meaning of y' = f(x, y).

Direction Fields

A first-order ODE

@

3

Jo— f(x’ ).)

has a simple geometric interpretation. From calculus you know that the derivative y'(x)
of ¥(x) is the slope of v(x). Hence a solution curve of (1) that passes through a point
(%o, Yo) must have at that point the slope ¥'(xo) equal to the value of f at that point; that is,

y’(xo) = f(xo, ¥o).

Read this paragraph again before you go on, and think about it.

It follows that you can indicate directions of solution curves of (1) by drawing short
straight-line segments (lineal elements) in the xy-plane (as in Fig. 7a) and then fitting
(approximate) solution curves through the direction field (or slope field) thus obtained.
This method is important for two reasons.

1. You need not solve (1). This is essential because many ODEs have complicated
solution formulas or none at all.

2. The method shows, in graphical form, the whole family of solutions and their typical
properties. The accuracy is somewhat limited, but in most cases this does not matter.

Let us illustrate this method for the ODE

@

¥ o=x
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Direction Fields by a CAS (Computer Algebra System). A CAS plots lineal elements
at the points of a square grid, as in Fig. 7a for (2), into which you can fit solution curves.
Decrease the mesh size of the grid in regions where f(x, y) varies rapidly.

Direction Fields by Using Isoclines (the Older Method). Graph the curves
fx, ¥) = k = const, called isoclines (meaning curves of equal inclination). For (2) these
are the hyperbolas f(x, y) = xy = k = const (and the coordinate axes) in Fig. 7b. By (1),
these are the curves along which the derivative v’ is constant. These are not yet solution
curves—don’t get confused. Along each isocline draw many parallel line elements of the
corresponding slope k. This gives the direction field. into which you can now graph
approximate solution curves.

We mention that for the ODE (2) in Fig. 7 we would not need the method, because we
shall see in the next section that ODEs such as (2) can easily be solved exactly. For the
time being, let us verify by substitution that (2) has the general solution

y(x) = ce® P (c arbitrary).

Indeed, by differentiation (chain rule!) we get v’ = x(ce"zlz) = xy. Of course, knowing
the solution, we now have the advantage of obtaining a feel for the accuracy of the
method by comparing with the exact solution. The particular solution in Fig. 7 through
(x, ¥) = (1, 2) must satisfy y(1) = 2. Thus. 2 = ce'?, ¢ = 2Ve = 1.213, and the particular
solution is y(x) = 1.213¢%72,

A famous ODE for which we do need direction fields is

3) Vo= 000 - x?) - >
¥

(It is related to the van der Pol equation of electronics. which we shall discuss in Sec. 4.5.)
The direction field in Fig. 8 shows lineal elements generated by the computer. We have
also added the isoclines for k = —5, —3, %, | as well as three typical solution curves, one
that is (almost) a circle and two spirals approaching it from inside and outside.

¥y

Vo \ ! !
(R MR W . / } i \\
v AN Y |
\ ! 20
\ AN
\ \ ~ s 17 1
\ ~ s 7 7

! 1 1
/7t s Lo 1 d N 1 *
117 P o IR AR |
I/ M a 1' ~ AR
I A 4 YAl \ A
[ /7 7 7/ T N \ \
| AV 1 R /x/
[ A Y A 4 /7 T AN v

(a) By a CAS (b) By isoclines

Fig. 7. Direction field of y’ = xy
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Fig. 8. Direction field of y' = 0.1(1 — x?) — —

On Numerics

Direction fields give “all” solutions, but with limited accuracy. If we need accurate numeric
values of a solution (or of several solutions) for which we have no formula, we can use
a numeric method. If you want to get an idea of how these methods work, go to Sec.
21.1 and study the first two pages on the Euler—Cauchy method, which is typical of
more accurate methods later in that section, notably of the classical Runge—Kutta method.
It would make little sense to interrupt the present flow of ideas by including such methods
here; indeed, it would be a duplication of the material in Sec. 21.1. For an excursion to
that section you need no extra prerequisites; Sec. 1.1 just discussed is sufficient.

B foaipm Y — woaye—p —
DIRECTION FIELDS, SOLUTION CURVES ACCURACY

Graph a direction field (by a CAS or by hand). In the field Direction fields are very useful because you can see
graph approximate solution curves through the given point solutions (as many as you want) without solving the ODE,
or points (x, v) by hand. which may be difficult or impossible in terms of a formula.
1. v = e® — v. (0. 0), (0. 1) To get a feel for the accuracy of the method, graph a field,
2. 4’ = —9x, (2, 2) sketch solution curves in it, and compare them with the

y =1+y%, Gm )

exact solutions.

11. y' = sin 37 12. 3" = 1/x%
v =y — 2y% (0. 0). (0, 0.25). (0, 0.5). (0. 1) 13. v/ = —2y (Sol. v = ce2%)
! — . ) r i i
y =x* =1y, (1, -2) 14. y' = 3v/x (Sol. y = cx®)
=1+siny, (—1,0), (1, -4) 5.y = —Inx

=33+ x% (0,1
y, y x2, (0, 1) 16-18| MOTIONS

S 2xy 1, (—1, 2 —~

Y X - (=1, 2), (0, 0), (1, =2) A body moves on a straight line, with velocity as given,
¥ =ytanhx — 2, (-1, =2), (1, 0), (1, 2) and y(?) is its distance from a fixed point 0 and ¢ time. Find
10. y' = e¥* (1, 1), (2, 2), (3, 3) a model of the motion (an ODE). Graph a direction field.

R N
S~
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it sketch a solution curve corresponding to the given

initial condition.

16. Velocity equal to the reciprocal of the distance, v(1) = 1

17. Product of velocity and distance equal to —t, ¥(3) = —3

18. Velocity plus distance equal to the square of time,

19.

»0) =6

(Skydiver) Two forces act on a parachutist, the
attraction by the earth mg (m = mass of person plus
equipment. g = 9.8 m/sec? the acceleration of gravity)
and the air resistance, assumed to be proportional to
the square of the velocity v(¢). Using Newton’s second
law of motion (mass X acceleration = resultant of the
forces), set up a model (an ODE for v(t)). Graph a
direction field (choosing m and the constant of
proportionality equal to 1). Assume that the parachute
opens when v = 10 m/sec. Graph the corresponding
solution in the field. What is the limiting velocity?

20. CAS PROJECT. Direction Fields. Discuss direction

fields as follows.

(a) Graph a direction field for the ODE y' =1-y
and in it the solution satisfying y(() = 5 showing
exponential approach. Can you see the limit of any
solution directly from the ODE? For what initial
condition will the solution be increasing? Constant?
Decreasing?

(b) What do the solution curves of _\" = —)(3/y3 look
like, as concluded from a direction field. How do they
seem to differ from circles? What are the isoclines?
‘What happens to those curves when you drop the minus
on the right? Do they look similar to familiar curves?
First. guess.

(¢) Compare. as best as you can, the old and the
computer methods, their advantages and disadvantages.
Write a short report.

1.3 Separable ODEs. Modeling

Many practically useful ODEs can be reduced to the form

@

gy’ = f)

by purely algebraic manipulations. Then we can integrate on both sides with respect to x,

obtaining

2) fg(y) v odx = ff(x) dv + ¢

On the left we can switch to y as the variable of integration. By calculus, ¥' dx = dy. so
that

® Je) dv = [fy ax + c.

If f and g are continuous functions, the integrals in (3) exist, and by evaluating them we
obtain a general solution of (1). This method of solving ODEs is called the method of
separating variables, and (1) is called a separable equation, because in (3) the variables
are now separated: x appears only on the right and y only on the left.

EXAMPLE 1 A Separable ODE

The ODEy' =1 + y2 is separable because it can be written

dy
1+ _\'2

= dx.

By integration,

arctany = x + ¢ or

et

= tan (x + ¢).
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EXAMPLE 2

EXAMPLE 3

It is very important to introduce the constant of integration immediately when the integration is performed.
If we wrote arctan v = x, then y = tan x. and then introduced c. we would have obtained y = tan x + ¢, which
is not a solution (when ¢ # 0). Verify this. |

Modeling

The importance of modeling was emphasized in Sec. 1.1, and separable equations yield
various useful models. Let us discuss this in terms of some typical examples.

Radiocarbon Dating?

In September 1991 the famous Iceman (Oetsi). a mummy from the Neolithic period of the Stone Age found in
the ice of the Oetstal Alps (hence the name “Oetzi™) in Southern Tyrolia near the Austrian—Italian border. caused
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon gC 14 10 carbon 6C12 in
this mummy is 52.5% of that of a living organism?

Physical Information. In the atmosphere and in living organisms, the ratio of radioactive carbon 6C14 (made
radioactive by cosmic rays) to ordinary carbon 6C12 is constant. When an orgamsm dics, its absorption of 6C14
by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive carbon
ratio in the fossil with that in the atmosphere. To do this. one needs to know the half-life of gC'%, which is 5715
years (CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press. 2002, page 11-52, line 9).

Solution. Modeling. Radioactive decay is governed by the ODE vy’ = ky (see Sec. 1.1. Example 5). By
separation and integration (where 1 is time and v is the initial ratio of 6C14 to 6C12)

v
— =kdr Inly] = kr + c. y= _\'oekt.
v

Next we use the half-life H = 5715 to determine A. When r = H. half of the original substance is still present.
Thus,
In0.5 0.693

lcH JcH
e =05 k= = = 0001213
Yo¢ V0. [4 . H 5715 0.0001213

Finally. we use the ratio 52.5% for determining the time f when Oetzi died (actually, was killed).

= In 0525 = 5312 A About 5300
YT L. Y - . 5 2 o :
g —0.0001213 nswer ou years ago.

&t = 00001213t _ ( 595
Other methods show that radiocarbon dating values are usually too small. According to recent research. this is
due 1o a variation in that carbon ratio becanse of industrial pollution and other factors. such as nuclear testing. M

Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 9 contains 1000 gal of water in which initially 100 1b of salt is dissolved.
Brine runs in at a rate of 10 gal/min, and each gallon contains 5 Ib of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time #.

Solution. Step 1. Setting up a model. Let v(1) denote the amount of salt in the tank at time z. Its time rate
of change is
_\" = Salt inflow rate — Salt outflow rate “Balance law™,

51b times 10 gal gives an inflow of 50 1b of salt. Now, the outflow is 10 gal of brine. This is 1(/1000 = 0.01
(= 1%) of the total brine content in the tank, hence 0.01 of the salt content ¥(#), that is. 0.01x{r). Thus the model
is the ODE

@ v' =50 — 0.01y = —0.01(y — 5000).

2Method by WILLARD FRANK LIBBY (1908-1980), American chemist, who was awarded for this work
the 1960 Nobel Prize in chemistry.



14

EXAMPLE 4

CHAP.1 First-Order ODEs

Step 2. Solution of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both
sides gives

dy

;_—'5@ = —0.01 d1. in |y — 5000] = —0.017 + ¢*, y = 5000 = ce 001,
Initially the tank contains 100 Ib of salt. Hence y(0) = 100 is the initial condition that will give the unique
solution. Substituting y = 100 and ¢ = 0 in the last equation gives 100 — 5000 = ce® = ¢. Hence ¢ = —4900.

Hence the amount of salt in the tank at time f is
(5) D) = 5000 — 490000,

This function shows an exponential approach to the limit 5000 Ib: see Fig. 9. Can you explain physically that
¥(t) should increase with time? That its limit is 5000 Ib? Can you see the limit directly from the ODE?

The model discussed becomes more realistic in problems on pollutants in lakes (sec Problem Set 1.5, Prob.
27) or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and
the flow rates (in and out) may be different and known only very roughly. |

4 100 Y | 1 | ]
0 100 200 300 400 500 ¢
Tank Salt content y(#)

Fig. 9. Mixing problem in Example 3

Heating an Office Building (Newton’s Law of Cooling’)

Suppose that in Winter the daytime temperature in a certain office building is maintained at 70°F. The heating
is shut off at 10 p.M. and turned on again at 6 A.M. On a certain day the temperature inside the building at
2 aM. was found to be 65°F. The outside temperature was 50°F at 10 p.M. and had dropped to 40°F by 6 A.M.
What was the temperature inside the building when the heat was turned on at 6 A.Mm.7

Physical information. Experiments show that the time rate of change of the temperature T of a body B (which
conducts heat well, as, for example, a copper ball does) is proportional to the difference hetween T and the
temperature of the surrounding medium (Newton’s law of cooling).

Solution. Step 1. Setting up a model. Let T(1) be the temperature inside the building and 74 the outside
ternperature (assumed to be constant in Newton's law). Then by Newton’s law,

6 E'I\'T T,
6) (Ili( A

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However. even if a
model seems to fit the reality only poorly (as in the present case). it may still give valuable qualitative information.
To see how good a model is, the engineer will collect experimental data and compare them with calculations
from the model.

3sir ISAAC NEWTON (1642-1727), great English physicist and mathematician, became a professor at
Cambridge in 1669 and Master of the Mint in 1699. He and the German mathematician and philosopher
GOTTFRIED WILHELM LEIBNIZ (1646-1716) invented (independently) the differential and integral calculus.
Newton discovered many basic physical laws and created the method of investigating physical problems by
means of calcvlus. His Philosophiae nawralis principia mathematica (Mathematical Principles of Natural
Philosophy. 1687) contains the development of classical mechanics. His work is of greatest importance to both
mathematics and physics.
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EXAMPLE 5

Step 2. General solution. We cannot solve (6) because we do not know T4, just that it varied between 50°F
and 40°F, so we follow the Golden Rule: If you cannot solve your problem, try to solve a simpler one. We
solve (6) with the unknown function 74 replaced with the average of the two known values, or 45°F. For physical
reasons we may expect that this will give us a reasonable approximate value of 7 in the building at 6 A.m.

For constant 74 = 45 (or any other constant value) the ODE (6) is separable. Separation, integration, and
taking exponents gives the general solution

In|T — 45| = kr + c*, T() = 45 + ¢ (c =)
Step 3. Particular solution. We choose 10 p.M. to be t = 0. Then the given initial condition is 7{0) = 70 and
yields a particular solution, call it 7;,. By substitution.

7(0) = 45 + ce® = 70, c=70—45=125, T(0) = 45 + 256,

Step 4. Determination of k. We use T(4) = 65, where t = 4 is 2 A.M. Solving algebraically for £ and inserting
k into T,(r) gives (Fig. 10

T4 = 45 + 25¢%F = 65, et =08, k=308 = —0.056, Ty = 45 + 2570076,
Step 5. Answer and interpretation. 6 AM. is t = 8 (namely, 8 hours after 10 pP.m.), and
T,(8) = 45 + 25¢7%0%6 "8 = 61[°F].

Hence the temperature in the building dropped 9°F, a result that looks reasonable. |

Fig. 10. Particular solution (temperature) in Example 4

Leaking Tank. Outflow of Water Through a Hole (Torricelli’s Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a
cylindrical tank with a hole at the bottom (Fig. 11). You are asked to find the height of the water in the tank at
any time if the tank has diameter 2 m, the hole has diameter 1 cm. and the initial height of the water when the
hole is opened is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity

Q) v{n) = 0.600V2gh(n (Torricelli’s law?),

where /(1) is the height of the water above the hole at time ¢, and ¢ = 980 cmfsec® = 32.17 fi/sec” is the
acceleration of gravity at the surface of the earth.

Solution. Step 1. Setting up the model. To get an cquation, we relate the decrease in water level A(f) to the
outflow. The volume AV of the outflow during a short time Ar is

AV= Av At (A = Area of hole).

“EVANGELISTA TORRICELLI (16081 647), Italian physicist, pupil and successor of GALILEO GALILEI
(1564-1642) at Florence. The “contraction factor” 0.600 was introduced by 1. C. BORDA in 1766 because the
stream has a smaller cross section than the area of the hole.
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AV must equal the change AV* of the volume of the water in the tank. Now
AV = —B Ah (B = Cross-sectional area of tank)

where Al (> 0) is the decrease of the height A(f) of the water. The minus sign appears because the volume of
the water in the tank decreases. Equating AV and AV* gives

—B Ah = Av At

We now express U according to Torricelli’s law and then let Ar (the length of the time interval considered)
approach O0—this s a standard way of obtaining an ODE as a model. That is. we have

A A
At BU

A
= — - 0.600V2gh(n,

and by letting At — 0 we obtain the ODE

dh A
— = 2656 — VI
. 26.56 — Vh,

where 26.56 = 0.600 V2 - 980. This is our model, a first-order ODE.

Step 2. General solution. Our ODE is separable. A/B is constant. Separation and integration gives

dh 2656 2 4 d Wi = c* — 2656 2
— = —26.56 — =c* — 2656 — 1.
\/1—1 B T an 1 C B
Dividing by 2 and squaring gives h = (¢ — 13.28A1/B)Z. Inserting 13.284/B = 13.28 - 0.525/100%7 = 0.000332
yields the general solution

h() = (¢ — 0.0003321)%.

Step 3. Particular solution. The initial height (the initial condition) is /1(0) = 225 cm. Substitution of t = 0
and h = 225 gives from the general solution ¢% =225, ¢ = 15.00 and thus the particular solution (Fig. 11D
hy(t) = (15.00 — 0.000332n)2.

Step 4. Tank empty. hp(®) = 0 if + = 15.00/0.000332 = 45 181 [sec] = 12.6 [hours].
Here you see distinctly the importance of the choice of units—we have been working with the Cgs system,
in which time is measured in seconds! We used g = 980 cm/sec?.

Step 5. Checking. Check the result. |
2.00m h
250
Water level N
at time ¢ 200 -
AN
150 |-
2.25m
10 100
{ 50 -
Outflowing 0 . ! .\ —
lz water 0 10000 30000 50000 ¢
Tank Water level A(¢) in tank

Fig. 1. Example 5. Outflow from a cylindrical tank (“leaking tank”). Torricelli’s law

Extended Method: Reduction to Separable Form

Certain nonseparable ODEs can be made separable by transformations that introduce for
¥ a new unknown function. We discuss this technique for a class of ODEs of practical
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importance, namely, for equations

, v
® y Zf(;)-

Here, f is any (differentiable) function of y/x, such as sin (¥/x), (3/x)*, and so on. (Such
an ODE is sometimes called a homogeneous ODE. a term we shall not use but reserve
for a more important purpose in Sec. 1.5.)

The form of such an ODE suggests that we set y/x = u; thus,

%) y = ux and by product differentiation y' =u'x + u.

Substitution into y' = f(y/x) then gives u'x +u= fworu'x = f(u) — u. We see that
this can be separated:

(10) - = —.

EXAMPLE 6 Reduction to Separable Form
Solve

2 2
2y’ =y — 2

Solution. To get the usual explicit form, divide the given equation by 2xy.

1

I
xtu=— — — x = _
uxTu 2u’ 2 2u 2u

| ®

You see that in the last equation you can now separate the variables,

2u du dx i . 5
2 == - By integration, In1 + )= —Injxl + c*=1n
1+u x

+ c*.

x
Take exponents on both sides to get 1 + W =chxor | + (Wx? = cix. Multiply the last equation by 1o
obtain (Fig. 12)

2 2 ey 2 c?
+y%=ex Th — o) 42—
x y cx. us (x 2) y 7

This general solution represents a family of circles passing through the origin with centers on the x-axis [l

)
2

b
@
§

Fig. 12.  General solution {family of circles) in Example 6
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"ok V- ET 13- — ———

1. (Constant of integration) An arbitrary constant of
integration must be introduced immediately when the
integration is performed. Why is this important? Give
an example of your own.

29| GENERAL SOLUTION
Find a general solution. Show the steps of derivation. Check
your answer by substitution.

2.y +(x+2n%2 =0

1

3. v =2sec2y

4y =@+ (r+9%=v
5. 9w +36x=0

6.y = (422 + y2)i(xy)

7. y' sin mx = y cos mx

8. xv' = 2+ y

9. y'e™ =32 4+ 1

[_lO—l‘)l INITIAL VALUE PROBLEMS

Find the particular solution. Show the steps of derivation.
beginning with the general solution. (L, R, b are constants.)

10. v¥' + 4x =0, y(0) =3

11. dridt = —2tr, r(0) = ry

12, 2xvy’ = 3v2 + 22 (1) =2

13. L dlidt + RI = 0, [(0) = I,

14. y' = vix + (2x31v) cos(x?), y(\/ﬁ) =Vax

15. €2%y' = 2(x + 2)v3, y(0) = 1/V5 =~ 0.45

16. xy' = y + 4x® cos®(v/x), v(2) = 0

17. ¥'xInx = v, ¥(3) = In 81

18. dr/d@ = b[(dr/d0) cos 8 + r sin 0], r(%’n') = g
0<b<l1

19. 3y = (x = De™¥, ¥(0) = |

20. (Particular solution) Introduce limits of integration in
(3) such that v obtained from (3) satisfies the initial
condition ¥(xp) = ¥g. Try the formula out on Prob. 19.

: 1-36| APPLICATIONS, MODELING

21. (Curves) Find all curves in the xy-plane whose
tangents all pass through a given point (a, b).

22. (Curves) Show that any (nonvertical) straight line
through the origin of the xy-plane intersects all solution
curves of y' = g(1/x) at the same angle.

23. (Exponential growth) If the growth rate of the amount
of yeast at any time ¢ is proportional to the amount
present at that time and doubles in 1 week, how much
yeast can be expected after 2 weeks? After 4 weeks?

24. (Population model) If in a population of bacteria the
birth rate and death rate are proportional to the number

25.

26.

27.

28

29.

30.

31.

32.

of individuals present, what is the population as a
function of time? Figure out the limiting situation for
increasing time and interpret it.

(Radiocarbon dating) If a fossilized tree is claimed to
be 4000 years old, what should be its ¢C'* content
expressed as a percent of the ratio of §C* to ¢C'2 in a
living organism?

(Gompertz growth in tumors) The Gompertz model
isy = —AvIny (A > 0), where W) is the mass of
tumor cells at time f. The model agrees well with
clinical observations. The declining growth rate with
increasing v > 1 corresponds to the fact that cells in
the interior of a tumor may die because of insufficient
oxygen and nutrients. Use the ODE to discuss the
growth and decline of solutions (tumors) and to find
constant solutions. Then solve the ODE.

(Dryer) If wet laundry loses half of its moisture
during the first 5 minutes of drying in a dryer and if
the rate of loss of moisture is proportional to the
moisture content, when will the laundry be practically
dry, say, when will it have lost 95% of its moisture?
First guess.

(Alibi?) Jack, arrested when leaving a bar, claims that
he has been inside for at least half an hour (which
would provide him with an alibi). The police check the
water temperature of his car (parked near the entrance
of the bar) at the instant of arrest and again 30 minutes
later, obtaining the values 190°F and 110°F,
respectively. Do these results give Jack an alibi? (Solve
by inspection. )

(Law of cooling) A thermometer, reading 10°C, is
brought into a room whose temperature is 23°C. Two
minutes later the thermometer reading is 18°C. How
long will it take until the reading is practically 23°C,
say, 22.8°C? First guess.

(Torricelli’s law) How does the answer in Example 5
(the time when the tank is empty) change if the
diameter of the hole is doubled? First guess.

(Torricelli’s law) Show that (7) looks reasonable
inasmuch as V2gh(r) is the speed a body gains if it
falls a distance / (and air resistance is neglected).

(Rope) To tie a boat in a harbor. how many times must
a rope be wound around a bollard (a vertical rough
cylindrical post fixed on the ground) so that a man
holding one end of the rope can resist a force exerted
by the boat one thousand times greater than the man
can exert? First guess. Experiments show that the
change AS of the force S in a small portion of the rope
is proportional to S and to the small angle A¢ in Fig.
13. Take the proportionality constant (.15.
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S~

~ Small
portion
& of rope

S+AS

Fig. 13. Problem 32

33. (Mixing) A tank contains 800 gal of water in which

200 Ib of salt is dissolved. Two gallons of fresh water
runs in per minute, and 2 gal of the mixture in the tank.
kept uniform by stirring, runs out per minute. How
much salt is left in the tank after 5 hours?

. WRITING PROJECT. Exponential Increase, Decay,
Approach. Collect. order, and present all the information
on the ODE y' = ky and its applications from the text
and the problems. Add examples of your own.

. CAS EXPERIMENT. Graphing Solutions. A CAS
can usually graph solutions even if they are given by
integrals that cannot be evaluated by the usual methods
of calculus. Show this as follows.

19

(A) Graph the curves for the seven initial value
problems y' = e_lez, wW0) =0, £1, +2, £3, common
axes. Are these curves congruent? Why?

(B) Experiment with approximate curves of nth partial
sums of the Maclaurin series obtained by termwise
integration of that of y in (A); graph them and describe
qualitatively the accuracy for a fixed interval
0 = x = b and increasing n, and then for fixed » and
increasing b.

(C) Experiment with y' = cos (x?) as in (B).
(D) Find an initial value problem with solution

y = & f et dr and experiment with it as in (B).
0

. TEAM PROJECT. Torricelli’s Law. Suppose that

the tank in Example 5 is hemispherical, of radius R,
initially full of water, and has an outlet of 5 cm? cross-
sectional area at the bottom. (Make a sketch.) Set up
the model for outflow. Indicate what portion of your
work in Example 5 you can use (so that it can become
part of the general method independent of the shape of
the tank). Find the time # to empty the tank (a) for any
R, (b) for R = | m. Plot r as function of R. Find the
time when 7 = R/2 (a) for any R, (b) for R = 1 m.

1.4 Exact ODEs. Integrating Factors

We remember from calculus that if a function u(x, y) has continuous partial derivatives,
its differential (also called its fotal differential) is

ox ay

From this it follows that if u(x, y) = ¢ = const, then du = 0.

For example, if u = x + x%® = ¢, then

du = (1 + 203 dx + 3x%%dy = 0
or
, dv 1+ 2xy®

VT T AR

an ODE that we can solve by going backward. This idea leads to a powerful solution
method as follows.
A first-order ODE M(x, y) + N(x, y)»' = 0, written as (use dy = y' dx as in Sec. 1.3)

00)] M, ¥) dx + N@x, y) dy = 0
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is called an exact differential equation if the differential form M(x, ¥} dx + N(x, y) dv
is exact, that is, this form is the differential

2 du=—dx + — d
@ " E)xx 6yy

of some function u(x, y). Then (1) can be written
du = 0.

By integration we immediately obtain the general solution of (1) in the form

&)} ux,y) = c.

This is called an implicit solution, in contrast with a solution y = h(x) as defined in Sec.
1.1, which is also called an explicit solution, for distinction. Sometimes an implicit solution
can be converted to explicit form. (Do this for x2 + y? = 1.) If this is not possible, your
CAS may graph a figure of the contour lines (3) of the function u(x, ¥) and help you in
understanding the solution.

Comparing (1) and (2), we see that (1) is an exact differential equation if there is some
function u(x, y) such that

ou ou
)] @ —— =M, (b)) — =N
0x oy

From this we can derive a formula for checking whether (1) is exact or not, as follows.

Let M and N be continuous and have continuous first partial derivatives in a region in
the xy-plane whose boundary is a closed curve without self-intersections. Then by partial
differentiation of (4) (see App. 3.2 for notation),

oM o%u
oy dy ox
oN 0%u
ox  ox dy

By the assumption of continuity the two second partial derivatives are equal. Thus

oM oN

)] oy o

This condition is not only necessary but also sufficient for (1) to be an exact differential
equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books (e.g.,
Ref. [GR11] also contain a proof.)

If (1) is exact, the function u(x, ¥) can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x
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EXAMPLE 1

(6) u =fM dx + k(y);

in this integration, y is to be regarded as a constant, and k(y) plays the role of a “constant”
of integration. To determine k(v), we derive du/dy from (6), use (4b) to get dk/dy, and
integrate dk/dy to get k.

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).
Then instead of (6) we first have by integration with respect to y

(6¥) u =de_v + I(x).

To determine I(x), we derive du/dx from (6%), use (4a) to get dl/dx, and integrate. We
illustrate all this by the following typical examples.

An Exact ODE
Solve

(@) cos (x + v)dx + (3y2 + 2y + cos(x + y))dy = 0.
Solution. Step 1. Test for exactness. Our equation is of the form (1) with
M = cos (x + y),

N= 3y2 + 2y + cos (x + y).

Thus
oM
- = —sm(x+y),
day
oN B R +
o sin (x + y).

From this and (5) we see that (7) is exact.

Step 2. Implicit general solution. From (6) we obtain by integration
8) u = jde + k(y) = jcos (x +y)dx + k(y) = sin (x + y) + k(»).
To find k(y), we differentiate this formula with respect to y and use formula (4b), obtaining

du dk 9
— =cos(xt+ty)+ — =N=3y"+ 2y + cos (x + y).
dy dy

Hence dk/dy = 3y2 + 2y. By integration. k = y3 + y2 + c*. Inserting this result into (8) and observing (3),

we obtain the answer
u(x.y) = sin (x + y) + ),3 + ),2 = c.

Step 3. Checking an implicit solution. We can check by differentiating the implicit solution u(x, ¥) = ¢ implicitly
and see whether this leads to the given ODE (7):

du du
) du = F. dx + g dy = cos (1 + ¥) dx + (cos (x + y) + 3y% + 2y) dy = 0.

This completes the check. |
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EXAMPLE 2

EXAMPLE 3

CHAP.1 First-Order ODEs

An Initial Value Problem

Solve the initial value problem

(10 (cos y sinhx + 1) dx — sin ¥y cosh v dv = 0. oD =2,
Solution. You may verify that the given ODE is exact. We find u. For a change. let us use (6%),
"= — f sin y cosh x dv + I(x) = cos ¥ cosh x + I(x).

From this, duw/ox = cosy sinhx + dlfdx = M = cosy sinhx + 1. Hence dlfdy = 1. By integration,
{(x) = x + c*. This gives the general solution #(x, ¥) = cosy coshx + x = ¢. From the initial condition,
cos 2 cosh 1 + 1 = 0.358 = ¢. Hence the answer is cos v cosh x + x = 0.358. Figure 14 shows the particular
solutions for ¢ = 0. 0.358 (thicker curve). 1. 2, 3. Check that the answer satisfies the ODE. (Proceed as in
Example 1.) Also check that the initial condition is satisfied. |

20
1.5f
10l
0.5[

L L L ! ! |
0 05 10 15 20 25 30 «x

Fig. 14. Particular solu.ions in Example 2

WARNING! Breakdown in the Case of Nonexactness
The equation —vdx + xdv = 0 is not exact because M = —y and N = x. so that in (5), dM/dy = —1 but

aN/ax = 1. Let us show that in such a case the present method does not work. From (6).

du dk
u= fMd.\‘ + k(y) = —xy + k(v), hence — = —x+ —
dy dy

Now, du/dy should equal N = x, by (4b). However, this is impossible because k(¥) can depend only on y. Try
(6¥); it will also fail. Solve the equation by another method that we have discussed. |

Reduction to Exact Form. Integrating Factors

The ODE in Example 3 is —y dx + x dv = 0. It is not exact. However, if we multiply it
by 1/x%, we get an exact equation [check exactness by (5)'],

—ydx + xdy ' 1 ;
an '—zuz—j—zdx+—;dy=d(i)=0.

X X

Integration of (11) then gives the general solution 3/ = ¢ = const.
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EXAMPLE 4

This example gives the idea. All we did was multiply a given nonexact equation, say,
(12) P(x, y) dx + Q(x, v) dy = 0

by a function F that, in general, will be a function of both x and y. The result was an equation
(13 FPdx + FQdy =0

that is exact, so we can solve it as just discussed. Such a function F(x, v) is then called
an integrating factor of (12).

Integrating Factor

The integrating factor in (11) is F = 1/x. Hence in this case the exact equation (13) is

—ydx + xdy y y
FPdx+ FQdv= ———F—— =d|{ =] =0. Solution x

X X

I
o

These ate straight lines y = cx through the origin.
It is remarkable that we can readily find other mtegrating factors for the equation —y dx + x dv = 0. namely,
142, 1/xy), and 1/(x% + y2), because

—ydx + xdy x —ydx + xdy x —ydx + xdy y
(4 ————=d|=-). ————=-d|{ln—|. —5 55— =d|arctan — . |
)y ay y x“+y X

How to Find Integrating Factors

In simpler cases we may find integrating factors by inspection or perhaps after some trials,
keeping (14) in mind. In the general case, the idea is the following.

For M dx + N dy = 0 the exactness condition (4) is dM/dy = dN/dx. Hence for (13),
FPdx + FQ dy = 0, the exactness condition is

] 0
(15) — (FP) = —— (FQ).
ady ox
By the product rule, with subscripts denoting partial derivatives, this gives
F,P+ FP, = F,Q + FQ,.

In the general case, this would be complicated and useless. So we follow the Golden Rule:
If you cannot solve your problem, try to solve a simpler one—the result may be useful
(and may also help you later on). Hence we look for an integrating factor depending only
on one variable; fortunately, in many practical cases, there are such factors, as we shall
see. Thus, let F = F(x). Then F,, = 0. and F,, = F' = dF/dx. so that (15) becomes

FP,=F'Q + FQ,.
Dividing by FQ and reshuffling terms, we have

1 dF

16 — = =
(16) F i R,

where R =

This proves the following theorem.
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THEOREM 1

THEOREM 2

EXAMPLE 5

CHAP.1 First-Order ODEs

Integrating Factor F{x)

If (12) is such that the right side R of (16), depends only on x. then (12) has an
integrating factor F = F(x), which is obtained by integrating (16) und taking
exponents on both sides,

a7 F(x) = exp f R(x) dx.

Similarly, if F* = F*(y). then instead of (16) we get

1 dFs 1 {eQ 9P
(18) — —— = R¥, where R* =
F* dy

and we have the companion

Integrating Factor F*{y)

If (12) is such that the right side R* of (18) depends only on 'y, then (12) has an
integrating factor F* = F*(y), which is obtained from (18) in the form

(19) FH(3) = exp [R5y dy.

Application of Theorems 1 and 2. Initial Value Problem

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem

(20) @Y+ veydr + (xe? — 1)dy =0, ¥0)= —1

Solution. Step 1. Nonexactness. The exactness check fails:

aP 3 o
= — (Y + ye¥) = 1Y + Y + yo¥ but a—Q
X

2
- = — (yp¥Y — 1) = !I_
ay oy ax ¥e T =€

Step 2. Integrating factor. General solution. Theorem 1 fails because R [the right side of (16)] depends on

both x and ¥,

1 oP 0 1
R=~(-,———,;Q = €Y + ¥ + ye¥ — oY)
Q dy dx xe¥ — 1

Try Theorem 2. The right side of (18) is

LKA N SR
P ox oy &Y ye¥ -

Hence (19) gives the integrating factor F*(¥) = ¢~ Y. From this result and (20) you get the exact equation
E+yde+(x—e¥dy=0.
Test for exactness; you will get 1 on both sides of the exactness condition. By integration, using (4a),

M=f(ez+y)dx=ex+xy+k(y).
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Differentiate this with respect to y and use (4b) to get

du dk dk
— =x+ —=N=x-¢9, — = —e Y, k=e ¥+ ¢*
dy dy

Hence the general solution is

ux,yy=e“+xy+e ¥=c

Step 3. Particular solution. The initial condition y(0) = 1 gives (0, —1) = 1 + 0 + e = 3.72. Hence the
answer is € + xy + ¢ ¥ = 1 + e = 3.72. Figure 15 shows several particular solutions obtained as level curves
of u(x, y) = ¢, obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a
solution into explicit form. Note the curve that (nearly) satisfies the initial condition.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the initial
condition. [

N\

Fig. 15. Particular solutions in Example 5

1-20| EXACT ODEs. INTEGRATING FACTORS 11, —ydx + xdy =10

Test for exactness. If exact, solve. If not, use an integrating 12. (¢°*Y — y) dx + (x€®Y + 1) dy = 0
factor as given or find it by inspection or from the theorems ’

- - e e .- . . . 1, —3v ,‘—l- X — . X. = 7"4
in the text. Also, if an initial condition is given, determine 3 3v dx 2x dy 0. Flx.y) yix

the corresponding particular solution. M (x* + 3y dx ~ xvdv =0, ¥2) =1

1. x3dx+y3dy =0 2. (x —y)dx —dv)y=0 15. e2*(2 cos y dx — siny dy) = 0, y(0) =0

3. —arsin 7rx sinh y dx + cos mx coshy dy = 0 16. —sinxy(ydx + xdy) =0, y(1) ==

4. (¥ — ye*Ydx + (xé¥ — e dy =0 17. (cos wx + w sin wx) dx + e dy = 0, y(0) = 1
5.9 dx + 4y dy = 0 18. (cosxy + x/y)ydx + (1 + (x/y) cosxy)dy = 0
6. e“(cosydx — siny dy) = 0 19. ¢ ¥dx+ e (—e ¥+ 1)dy=0, F=¢7Y
7. e 20dr — 2re™2% 46 =0 20. (sinycosy + xcos2y)ydx +xdy =0

8 2x+ Iy —y/x®)de+ 2y + Ux — x/y® dv =0 .

0. (—ui? 4 2 20 de + (1 5 sin 2 3 21. Under what conditions for the constants A, B. C, D is
- (ylx cos 2x) dx + (1/x — 2sin 2y) dy = 0 (Ax + By)dx + (Cx + Dy)dy = 0 exact? Solve

10. —2xy sin (x%) dx + cos (x%) dy = 0 the exact equation.
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CHAP.1 First-Order ODEs

CAS PROJECT. Graphing Particular Solutions
Graph particular solutions of the following ODE.
proceeding as explained.

1
2n veosxdy + —dv =0

¥
(a) Test for exactness. If necessary, find an integrating
factor. Find the general solution u(x. ¥} = c.
(by Solve (21) by separating variables. Is this simpler
than (a)?

(c) Graph contours u(x, ¥) = ¢ by your CAS. (Cf. Fig.
16.)

NN

TR B
2 4 6 B

il

st ——

Y

Fig. 16. Particular solutions in CAS Project 22

5 Linear ODEs.

23.

24.

(d) In another graph show the solution curves
satisfying v(0) = *1. =2, x3, *4. Compare the
quality of (c¢) and (d) and comment.

(e) Do the same steps for another nonexact ODE of
your choice.

WRITING PROJECT. Working Backward. Start
from solutions u(x, ¥) = ¢ of your choice, find a
corresponding exact ODE, destroy exactness by a
multiplication or division. This should give you a feel
for the form of ODEs you can reach by the method of
integrating factors. (Working backward is useful in
other areas, too; Euler and other great masters
frequently did it.)

TEAM PROJECT. Solution by Several Methods.
Show this as indicated. Compare the amount of work.
(A) e¥(sinh x dx + cosh x dy) = 0 as an exact ODE
and by separation.

(B) (1 + 2x) cos ¥ dx + dv/cos y = 0 by Theorem
2 and by separation.

(©) (x® + v%) dx — 2xy dv = 0 by Theorem 1 or 2
and by separation with v = v/x.

D) 3x% v dx + 4x® dy = 0 by Theorems | and 2
and by separation.

(E) Search the text and the problems for further ODEs
that can be solved by more than one of the methods
discussed so far. Make a list of these ODEs. Find
further cases of your own.

Bernoulli Equation.

Population Dynamics

Linear ODEs or ODEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we
shall see. A first-order ODE is said to be linear if it can be written

o)) ¥+ p(x)y = r(x).

The defining feature of this equation is that it is linear in both the unknown function v
and its derivative y' = dv/dx, whereas p and r may be any given functions of x. If in an
application the independent variable is time, we write ¢ instead of x.

If the first term is f(x)y’ (instead of ¥"), divide the equation by f(x) to get the “standard
form” (1), with ' as the first term. which is practical.

For instance. ¥’ cosx + y sinx = x is a linear ODE, and its standard form is
y' + ytanx = x sec x.

The function #(x) on the right may be a force, and the solution y(x) a displacement in
a motion or an electrical current or some other physical quantity. In engineering, r(x) is

frequently called the input, and y(x) is called the output or the response to the input (and,
if given, to the initial condition).
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Homogeneous Linear ODE. We want to solve (1) in some interval a < x < b, call it
J, and we begin with the simpler special case that r(x) is zero for all x in J. (This is
sometimes written #(x) = (.) Then the ODE (1) becomes

2 Y+ pyy =0

and is called homogeneous. By separating variables and integrating we then obtain

dy

— = —p) dx, thus Inly| = — J px) dx + c*.
Taking exponents on both sides, we obtain the general solution of the homogeneous
ODE (2),
3) Y(x) = ce /P (c = e when vy = 0)

here we may also choose ¢ = 0 and obtain the trivial solution v(x) = 0 for all x in that
interval.

Nonhomogeneous Linear ODE. We now solve (1) in the case that #(x) in (1) is not
everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous.
It turns out that in this case, (1) has a pleasant property; namely, it has an integrating
factor depending only on x. We can find this factor F(x) by Theorem 1 in the last section.
For this purpose we write (1) as

(py —Ndx +dy=0.

This is Pdx + Q dv = 0, where P = py — r and Q = 1. Hence the right side of (16) in
Sec. 1.4 is simply 1(p — 0) = p, so that (16) becomes

1 darF
e PY).
Separation and integration gives
dr¥
& =P dx and In|F| = Jp dx.

Taking exponents on both sides, we obtain the desired integrating factor F(x),
F(x) = /7 9%,
We now multiply (1) on both sides by this F. Then by the product rule,
ey + py) = (TP Fy)' = P
By integrating the second and third of these three expressions with respect to x we get
el? 9%y = Jefp 9y dy + .

Dividing this equation by ¢/? * and denoting the exponent [p dx by h, we obtain

@) yx) =e" ( J erdy + c) s h = J p(x) dx.



28

EXAMPLE 1

EXAMPLE 2

CHAP.1 First-Order ODEs

(The constant of integration in A does not matter; see Prob. 2.) Formula (4) is the general
solution of (1) in the form of an integral. Solving (1) is now reduced to the evaluation
of an integral. In cases in which this cannot be done by the usual methods of calculus,
one may have to use a numeric method for integrals (Sec. 19.5) or for the ODE itself
(Sec. 21.1).

The structure of (4) is interesting. The only quantity depending on a given initial
condition is ¢. Accordingly, writing (4) as a sum of two terms,

4%) yx) = e~ " J e dx + ce™™,
we see the following:

o) Total Output = Response to the Input » + Response to the Initial Data.

First-Order ODE, General Solution

Solve the linear ODE
2T

.‘” —y=e
Solution. Here,
p=-—1L r= e, h=fpdx=—x

and from (4) we obtain the general solution
yx) = €° (fe_xez"c dx + c‘) = e™e® + ¢) = ce® + &,

From (4*) and (5) we see that the response to the input is e2*.
In simpler cases, such as the present, we may not need the general formula (4), but may wish to proceed
directly. multiplying the given equation by e = ™= This gives

N —
x x) :eZIeI::C

O = e = (ye .
Integrating on both sides. we obtain the same result as before:
ve *=¢"+c, hence y == + ce . |
First-Order ODE, Initial Value Problem
Solve the initial value problem
y + ytanx = sin 2x, ROERS

Solution. Here p = tanx, r = sin 2x = 2 sin x cos x, and

fp dx = ftanx dx = In |sec x|
From this we see that in (4),
3

" = sec X, e "= cosx, r= (sec x)(2 sinx cos x) = 2 sin x,

and the general solution of our equation is
y(x) = cos x (2fsinx dx + c) = ccosx — 2 cos® x.

From this and the initial condition, 1 = ¢-1 — 2-1%; thus ¢ = 3 and the solution of our initial value problem

. _ 2 . P
isy= 3 cos x — 2 cos® x. Here 3 cos x is the response to the initial data, and ~2 cos? x is the response to the
input sin 2x. |
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EXAMPLE 3

Hormone Level

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate
of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous
removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its
general solution. Find the particular solution satisfying a suvitable initial condition.

Solution. Step 1. Setting up a model. Let v(1) be the hormone level at time . Then the removal rate is Kx(1).
The input rate is A + B cos (271/24). where A is the average input rate. and A 2 B to make the input nonnegative.
(The constants A. B. and K can be determined by measurements.) Hence the model is

y’(t) =1In— Out = A + B cos (ﬁm) — Kx(1) or _v' + Ky =A + Bcos (ﬁ'frt).

The initial condition for a particular solution ypg. is ¥pare(0) = ¥o with £ = 0 suitably chosen, e.g.. 6:00 A.M.

Step 2. General solution. In (4) we have p = K = const, h = Kt.and r = A + B cos (ﬁﬂt). Hence (4) gives
the general solution

rr
W) = e_theKt(A + Bcos %) dr + ce Kt

A 7t Tt
= ¢ Kt KL |:E + m (144Kcos T + 1247 sin l_Z)i' + ce Kt
A 7t .t _Kt
=?+m 144KcosE+l21rsmE +ce” .

The last term decreases to O as f increases, practically after a short time and regardless of ¢ (that is, of the initial
condition). The other part of y(z) is called the steady-state solution because it consists of constant and periodic
terms. The entire solution is called the transient-state solution because it models the transition from rest to the
steady state. These terms are used quite generally for physical and other systems whose behavior depends on time.

Step 3. Farticular solution. Setting t = 0 in ) (t) and choosing yg = 0, we have

v0) = 144K +c =0, thus c=—— — ———— - 144K.

A
AL °
K = 144K%2 + o2 K 144K% + 7

Inserting this result into y(f). we obtain the particular solution

art Tt A 144KB Kt
144K cos 1 + Rusin—— |- |+ ———]e

A
=+
Ypartl) = 7 12 K " 144K2 + 2

144K% + #*
with the steady-state part as before. To plot yp,,; We must specify values for the constants, say, A = B = 1 and

K = 0.05. Figure 17 shows this solution. Notice that the transition period is relatively short (although K is small),
and the curve soon looks sinusoidal; this is the response to the input A + B cos (&7 = 1 + cos 557t). W

A NAVWY

10+

0 1 1 ! 1 5
0 100

200 t
Fig. 17.  Particular solution in Example 3
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EXAMPLE 4

CHAP.1 First-Order ODEs

Reduction to Linear Form. Bernoulli Equation

Numerous applications can be modeled by ODEs that are nonlinear but can be transformed
to linear ODEs. One of the most useful ones of these is the Bernoulli equation®

6) ¥+ px)y = gx)y® (¢ any real number).

If a = 0 or a = 1, Equation (6) is linear. Otherwise it is nonlinear. Then we set
ux) = [_\'(x)]l_“.
We differentiate this and substitute 3" from (6). obtaining
W = —ay %" = (1 - ay %y — py).
Simplification gives
1-ay

u' = (1 —alg —py

where v17 = y on the right, so that we get the linear ODE
7 v+ A —apu=01— ag.

For further ODEs reducible to linear from, see Ince’s classic [A11] listed in App. 1.
See also Team Project 44 in Problem Set 1.5.

Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equationG):
8) vo= Ay — By?

Solution. Write (8) in the form (6). that is.

¥ = Av=-B?

1-a

tosee thala = 2, so that u = ¥ = _v—l. Differentiate this 1 and substitute y* from (8).

u = —_\'—2_\" = —_\'_Z(A_\' — B\'Z) =B — A_\'_l.

The last term is —A_\'_1 = —Au. Hence we have obtained the linear ODE

SJAKOB BERNOULLI (1654-1705), Swiss mathematician, professor al Basel. also known for his contribution
to elasticity theory and mathematical probability. The method for solving Bemoulli’s equation was discovered by
the Leibniz in 1696. Jakob Bernoulli’s students included his nephew NIKLAUS BERNOULLI (1687-1759). who
contributed to probability theory and infinite series. and his youngest brother JOHANN BERNOULLI (1667-1748).
who had profound influence on the development of calculus. became Jakob’s successor at Basel, and had among
his students GABRIEL. CRAMER (see Sec. 7.7) and LEONHARD EULER (see Sec. 2.5). His son DANIEL
BERNOULLT (1700-1782) is known for his basic work in fluid flow and the kinetic theory of gases.

6PIERRE—FRANCOIS VERHULST, Belgian statistician, who introduced Eq. (8) as a model for hunian
population growth in 1838.
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u' + Au=B.
The general solution is [by (4)]

u = ce 4 + BIA.

Since u = 1/y, this gives the general solution of (8).
9 ! 7] Fig. 18
= — — ig. 18).
©) YT U T e A i BiA (Fig. 18)
Directly from (8) we see that y = 0 (x(r) = 0 for all 1 is also a solution. |
Population y

o]

o
L}
IS
T
— /

[ f 1
2 3 4 Time ¢

0
Fig. 18. Logistic population model. Curves (9) in Example 4 with A/B = 4

Population Dynamics

The logistic equation (8) plays an important role in population dynamics, a field that
models the evolution of populations of plants. animals, or humans over time 1. If B = 0,
then (8) is v’ = dv/dt = Ay. In this case its solution (9) is y = (1/c)e®*® and gives exponential
growth, as for a small population in a large country (the United States in early times!).
This is called Malthus’s law. (See also Example 3 in Sec. 1.1.)

The term —By? in (8) is a “braking term™ that prevents the population from growing
without bound. Indeed, if we write ¥’ = Av[l — (B/A)y]. we see that if v < A/B, then
v’ > 0. so that an initially small population keeps growing as long as v < A/B. But if
v > A/B. then v' < 0 and the population is decreasing as long as v > A/B. The limit is
the same in both cases, namely, A/B. See Fig. 18.

We see that in the logistic equation (8) the independent variable ¢ does not occur
explicitly. An ODE v’ = f(r, v) in which r does not occur explicitly is of the form

(10) ¥ = f)

and is called an autonomous ODE. Thus the logistic equation (8) is autonomous.

Equation (10) has constant solutions, called equilibrium solutions or equilibrium
points. These are determined by the zeros of f(¥), because f(v) = 0 gives ¥y =0 by (10);
hence y = const. These zeros are known as critical points of (10). An equilibrium
solution is called stable if solutions close to it for some f remain close to it for all further
1. It is called unstable if solutions initially close to it do not remain close to it as t
increases. For instance, v = 0 in Fig. 18 is an unstable equilibrium solution, and y=4
is a stable one.
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EXAMPLE 5 Stable and Unstable Equilibrium Solutions. “Phase Line Plot”

The ODE y' = (y — 1)(y — 2) has the stable equilibrium solution y1 = 1 and the unstable y, = 2, as the
direction field in Fig. 19 suggests. The values ¥y, and yy are the zeros of the parabola f(yv) = (y — )y — 2)
in the figure. Now, since the ODE is autonomous, we can “condense” the direction field to a “phase line plot”
giving ¥ and ys, and the direction (upward or downward) of the arrows in the field, and thus giving information
about the stability or instability of the equilibrium solutions. ||
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Fig. 19. Example 5. (A) Direction field. {B) “Phase line”. {C) Parabola f{y)

A few further population models will be discussed in the problem set. For some more
details of population dynamics, see C. W. Clark, Mathematical Bioeconomics, New York,

Wiley, 1976.
Further important applications of linear ODEs follow in the next section.

e B &,

1. (CAUTION!) Show that ¢ ™% = 1/x (not —x) and 6. x2y' + 3xy = I/x, y(1) = —1

e—ln(sec x) — COS X. ,

’ 7.y + ky = &%=

2. (Integration constant) Give_ a reason vsfhy in (4) you 8.y + 2y = 4 cos 2x, yim) =2

may choose the constant of integration in [p dx to be ,

zero. 9.y = 6(y — 2.5) tanh 1.5x

10. y' + 4x%y = (4x2 - x)e_le2

3—:;7 EGENERAL SOLUTION. INITIAL VALUE 11 ¥ + 2y sin 2x = 2¢°5 2%, Q) = 0
PROBLEMS 12. ¥’ tanx = 2y — 8, )f(%w) =0
Find the general solution. If an initial condition is given, 1B,y +4 2 = 6 2 1.
find also the corresponding particular solution and graph or - , Yy cotZx = OOCIOS % Y(m) =2
sketch it. (Show the details of your work.) 4.y + ytanx = e """ cosx, wW0) =0
3.y +35y =28 15. y' + yix® = 2xe'™, y(1) = 13.86
4. y' =4y + x 16. y' cos?x + 3y = 1, ygm) =3

53 + 125y =5, y©0) = 6.6 17. x®' + 3x2%y = 5 sinh 10x
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NONLINEAR ODEs

Using a method of this section or separating variables, find
the general solution. If an initial condition is given, find
also the particular solution and sketch or graph it.

18.

"7, + y = yz, _)"(0) = —1

19. y' =57y — 6.5y2

20.
21.
22
23.
24.

25.

26.

27.

G2+ 1y = —tany, y(0) = 3w

Y o4 (x + Dy = 535, y(0) = 0.5
¥' sin 2y + x cos 2y = 2x

2vy" + yZsinx = sinx, y(0) = V2
y' + x%y = (e_x3 sinh x)/(3y?)

FURTHER APPLICATIONS

(Investment programs) Bill opens a retirement
savings account with an initial amount y, and then adds
$k to the account at the beginning of every year until
retirement at age 65. Assume that the interest is
compounded continuously at the same rate R over the
years. Set up a model for the balance in the account
and find the general solution as well as the particular
solution, letting ¢ = O be the instant when the account
is opened. How much money will Bill have in the
account at age 65 if he starts at 25 and invests $1000
initially as well as annually, and the interest rate R is
6%? How much should he invest initially and annually
(same amounts) to obtain the same final balance as
before if he starts at age 45? First, guess.

(Mixing problem) A tank (as in Fig. 9 in Sec. 1.3)
contains 1000 gal of water in which 200 Ib of salt is
dissolved. 50 gal of brine, each gallon containing
(1 + cos 1) Ib of dissolved salt, runs into the tank per
minute. The mixture, kept uniform by stirring, runs out
at the same rate. Find the amount of salt in the tank at
any time ¢ (Fig. 20).

y

1000

500

200

{
0 50

Fig. 20. Amount of salt y{t) in the tank in Problem 26

|
100 i

(Lake Erie) Lake Erie has a water volume of about
450 km® and a flow rate (in and out) of about 175 km?
per year. If at some instant the lake has pollution
concentration p = 0.04%, how long, approximately,
will it take to decrease it to p/2, assuming that the
inflow is much cleaner, say, it has pollution
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concentration p/4, and the mixwre is uniform (an
assumption that is only very imperfectly true)? First,
guess.

28. (Heating and cooling of a building) Heating and

29.

31.

32.

33.

34.

cooling of a building can be modeled by the ODE
T =k(T— T + ky(T — T,,) + P,

where T = T(1) is the temperature in the building at
time ¢, 7, the outside temperature, T, the temperature
wanted in the building, and P the rate of increase of T
due to machines and people in the building, and k; and
ky are (negative) constants. Solve this ODE, assuming
P = const, T, = const, and T, varying sinusoidally
over 24 hours, say, T,, = A — C cos (277/24)t. Discuss
the effect of each term of the equation on the solution.
(Drug injection) Find and solve the model for drug
injection into the bloodstream if, beginning at t = 0, a
constant amount A g/min is injected and the drug is
simultaneously removed at a rate proportional to the
amount of the drug present at time z.

. (Epidemics) A model for the spread of contagious

diseases is obtained by assuming that the rate of spread
is proportional to the number of contacts between
infected and noninfected persons, who are assumed to
move freely among each other. Set up the model. Find
the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the
proportion of infected persons as t — * and explain
what it means.

(Extinction vs. unlimited growth) If in a population
¥(2) the death rate is proportional to the population, and
the birth rate is proportional to the chance encounters
of meeting mates for reproduction, what will the model
be? Without solving, find out what will eventually
happen to a small initial population. To a large one.
Then solve the model.

(Harvesting renewable resources. Fishing) Suppose
that the population y(#) of a certain kind of fish is given
by the logistic equation (8), and fish are caught at a
rate Hy proportional to y. Solve this so-called Schaefer
model. Find the equilibrium solutions y; and y, (> 0)
when H < A. The expression ¥ = Hy, is called the
equilibrium harvest or sustainable yield corresponding
to H. Why?

(Harvesting) In Prob. 32 find and graph the solution
satisfying y(0) = 2 when (for simplicity) A = B = 1
and H = 0.2. What is the limit? What does it mean?
What if there were no fishing?

(Intermittent harvesting) In Prob. 32 assume that you
fish for 3 years, then fishing is banned for the next 3
years. Thereafter you start again. And so on. This is
called intermittent harvesting. Describe qualitatively
how the population will develop if intermitting is
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continued periodically. Find and graph the solution for
the first 9 years, assuming that A = B = [, H = (0.2,
and y(0) = 2.

y
2
1.8~
1.6
14
1.2

1

0.8 1 1 1 1

o 2 4 6 8 ¢
8 21.  Fish population in Problem 34

35. (Harvesting) If a population of mice (in multiples of
1000) follows the logistic law with A = 1 and B = 0.25.
and if owls catch at a time rate of 10% of the population
present, what is the model, its equilibrium harvest for
that catch, and its solution?

36. (Harvesting) Do you save work in Prob. 34 if you first
transform the ODE to a linear ODE? Do this
transformation. Solve the resulting ODE. Does the
resulting y(¢) agree with that in Prob. 34?

7-40] GENERAL PROPERTIES OF LINEAR ODEs

These properties are of practical and theoretical importance
because they enable us to obtain new solutions from given
ones. Thus in modeling, whenever possible, we prefer linear
ODEs over nonlinear ones, which have no similar
properties.

Show that nonhomogeneous linear ODEs (1) and
homogeneous linear ODEs (2) have the following
properties. Illustrate each property by a calculation for two
or three equations of your choice. Give proofs.

37. The sum y; + y, of two solutions y; and y, of the
homogeneous equation (2) is a solution of (2), and so
is a scalar nwltiple av, for any constant a. These
properties are not true for (1)!

38. y = 0 (that is, Wx) = 0 for all x. also written y(x) = 0)
is a solution of (2) [not of (1) it H{x) # 0!], called the
trivial solution.

39. The sum of a solution of (1) and a solution of (2) is a
solution of (1).

40. The difference of two solutions of (1) is a solution of (2).
41. If y, is a solution of (1), what can you say about cv?

42. If y; and y, are solutions of ¥; + pv, = r; and
Yo + PYs = ry, respectively (with the same p!), what
can you say about the sum y; + y,?

43. CAS EXPERIMENT. (a) Solve the ODE
vy — yix = —x"! cos (1/x). Find an initial condition
for which the arbitrary constant is zero. Graph the
resulting particular solution, experimenting to obtain
a good figure near x = 0.
(b) Generalizing (a) from n = 1 to arbitrary n, solve
the ODE v’ — my/x = —x™ 2 cos (1/x). Find an initial
condition as in (a). and experiment with the graph.
44. TEAM PROJECT. Riccati Equation, Clairaut
Equation. A Riccati equation is of the form

an v+ py = gy® + h(x).
A Clairaut equation is of the form
+g(y').

(a) Apply the transformation v = Y + /i to the
Riccati equation (11), where Y is a solution of (11), and
obrain for u the linear ODE v’ + (2Yg — pju = —g.
Explain the effect of the transformation by writing it
asy=Y+uv.v=lu

12) y=x'

(b) Show that y = Y = x is a solution of

y' — (223 + Dy = —xz_\'z -t —x+1

and solve this Riccati equation. showing the details.
(©) Solvey’ + (3 — 2x% sin x)y

= —y%sinx + 2x + 3x% — x*sinx, using (and
verifying) that y = x? is a solution.

(d) By working “backward” from the u-equation find
further Riccati equations that have relatively simple
solutions.

(e) Solve the Clairaut equation v = xy’ + 1/y’. Hint.
Differentiate this ODE with respect to x.

(f) Solve the Clairaut equation ¥'2 — xv' + y = 0
in Prob. 16 of Problem Set 1.1.

(g) Show that the Clairaut equation (12) has as
solutions a family of straight lines y = cx + g(c¢) and
a singular solution determined by g'(s) = —x, where
s =y, that forms the envelope of that family.

45. (Variation of parameter) Another method of
obtaining (4) results from the following idea. Write
(3) as coy*, where y* is the exponential function.
which is a solution of the homogeneous linear ODE
v 4 py* = 0. Replace the arbitrary constant ¢ in (3)
with a function u to be determined so that the resulting
function y = uy* is a solution of the nonhomogeneous
linear ODE y' + py = r.

46. TEAM PROJECT. Transformations of ODEs. We
have transformed ODEs to separable form, to exact
form, and to linear form. The purpose of such
transformations is an extension of solution methods to
larger classes of ODEs. Describe the key idea of each
of these transformations and give three typical
examples of your choice for each transformation,
showing each step (not just the transformed ODE).
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1.6 Orthogonal Trajectories. Optional

An important type of problem in physics or geometry is to find a family of curves that
intersect a given family of curves at right angles. The new curves are called orthogonal
trajectories of the given curves (and conversely). Examples are curves of equal
temperature (isotherms) and curves of heat flow, curves of equal altitude (contour lines)
on a map and curves of steepest descent on that map, curves of equal potential
(equipotential curves, curves of equal voltage—the concentric circles in Fig. 22). and
curves of electric force (the straight radial segments in Fig. 22).

Fig. 22. Equipotential lines and curves of electric force (dashed)
between two concentric (black) circles {cylinders in space)

Here the angle of intersection between two curves is defined to be the angle between
the tangents of the curves at the intersection point. Orthogonal is another word for
perpendicular.

In many cases orthogonal trajectories can be found by using ODEs. as follows. Let

ey G, y,00=0

be a given family of curves in the xy-plane, where each curve is specitied by some value
of c¢. This is called a one-parameter family of curves, and c is called the parameter
of the family. For instance, a one-parameter family of quadratic parabolas is given by
(Fig. 23)

y = cx? or, wriften as in (1), G, v,c) =y —cex2=0.

Step 1. Find an ODE for which the given family is a general solution. Of course, this
ODE must no longer contain the parameter c. In our example we solve algebraically for
¢ and then differentiate and simplify; thus,

hence
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The last of these equations is the ODE of the given family of curves. It is of the form
) ¥ = fx, ).

Step 2. Write down the ODE of the orthogonal trajectories. that is. the ODE whose general
solution gives the orthogonal trajectories of the given curves. This ODE is

1

3 y = -
@ Y £ )

with the same f as in (2). Why? Well, a given curve passing through a point (xg, yo) has
slope f(xo. yo) at that point, by (2). The trajectory through (xq, yo) has slope —1/f(xq, yo)
by (3). The product of these slopes is —1, as we see. From calculus it is known that this
is the condition for orthogonality (perpendicularity) of two straight lines (the tangents at
(x0» Y0)), hence of the curve and its orthogonal trajectory at (xg, ¥g)-

Step 3. Solve (3).
For our parabolas y = ¢x? we have y' = 2y/x. Hence their orthogonal trajectories are
obtained from ¥ = —x/2% or 2§y + x = 0. By integration, y2 + 2x2 = ¢*. These are

the ellipses in Fig. 23 with semi-axes V 2c* and V ¢*. Here, c¢* > 0 because c* = 0 gives
just the origin, and ¢ * < 0 gives no real solution at all.

Fig. 23. Parabolas and orthogonal trajectories (ellipses) in the text

"PlwshiE IJVEE™ .

1-12| ORTHOGONAL TRAJECTORIES 7.y = ce™ 2 8. x2 —yZ=¢

Sketch or graph some of the given curves. Guess what their 9. 4x2 + y2 = ¢ 10. x = c\/;
orthogonal trajectories may look like. Find these 1. x = ce¥’® 12222+ (y — )2 = ¢2

trajectories.

R

(Show the details of your work.) OTHER FORMS OF THE ODEs (2) AND (3)

Ly=4x+c¢
3. y=cx
5 x%y =¢

2. y=clx

4. y2 =2x% + ¢
3z

13. (y as independent variable) Show that (3) may be
written dx/dy = —f(x, ¥). Use this form to find the

6. y = ce” orthogonal trajectories of y = 2x + ce™=.
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14.

15.

(Family g(x, y) = ¢) Show that if a family is given as
g(x, ¥) = ¢, then the orthogonal (rajectories can be
obtained from the following ODE, and use the latter to
solve Prob. 6 written in the form g(x, y) = c.

dy  0dgléy

dx dgldx
(Cauchy-Riemann equations) Show that for a family
u(x, y) = c¢ = const the orthogonal trajectories

u(x, ¥) = ¢* = const can be obtained from the following
Cauchy-Riemann equations (which are basic in
complex analysis in Chap. 13) and use them to find the
orthogonal trajectories of e¥siny = const. (Here,
subscripts denote partial derivatives.)

Uy = Uy, Uy = —Uy

APPLICATIONS

16.

17.

(Fluid flow) Suppose that the streamlines of the flow
(paths of the particles of the fluid) in Fig. 24 are
W(x, ¥) = xv = const. Find their orthogonal trajectories
(called equipotential lines, for reasons given in Sec.
18.4).

Fig. 24. Flow in a channel in Problem 16

(Electric field) Let the electric equipotential lines
(curves of constant potential) between two concentric
cylinders (Fig. 22) be given by u(x, y) = x% + y? = ¢.
Use the method in the text to find their orthogonal
trajectories (the curves of electric force).

18.

19.

20.
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(Electric field) The lines of electric force of two
opposite charges of the same strength at (—1. 0) and
(1. 0) are the circles through (—1, ) and (1, 0). Show
that these circles are givenby xZ + (v — ¢ = 1 + ¢2
Show that the equipotential lines (orthogonal
trajectories of those circles) are the circles given by
(x + c®)? + 72 = ¢*2 — 1 (dashed in Fig. 25).

Fig. 25.  Electric field in Problem 18

(Temperature field) Let the isotherms (curves of
constant temperature) in a body in the upper half-plane
y > 0 be given by 4x? + 9v2 = ¢. Find the orthogonal
trajectories (the curves along which heat will flow in
regions filled with heat-conducting material and free
of heat sources or heat sinks).

TEAM PROJECT. Conic Sections. (A) State the
main steps of the present method of obtaining orthogonal
trajectorics.

(B) Find conditions under which the orthogonal
trajectories of families of ellipses x%a? + v*/b? = ¢ are
again conic sections. Illustrate your result graphically
by sketches or by using your CAS. What happens if
a— 071 b— (0?

(C) Investigate families of hyperbolas

x¥a® — y?/b? = ¢ in a similar fashion.

(D) Can you find more complicated curves for which
you get ODEs that you can solve? Give it a try.

1.7 Existence and Uniqueness of Solutions

The initial value problem

1+ bl =0,

y0) =1

has no solution because y = 0 (that is, y(x) = 0 for all x) is the only solution of the ODE.

The initial value problem

Vv

P

2x,

¥0) =1
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has precisely one solution, namely, y = x® + 1. The initial value problem
xy' =y-—1, v0) =1
has infinitely many solutions, namely, y = 1 + cx, where c is an arbitrary constant because

¥0) = 1 for all c.
From these examples we see that an initial value problem

) v = f(x, y), ¥(xo) = ¥o

may have no solution, precisely one solution, or more than one solation. This fact leads
to the following two fundamental questions.

Problem of Existence

Under what conditions does an initial value problem of the form (1) have at least
one solution (hence one or several solutions)?

Problem of Uniqueness

Under what conditions does that problem have at most one solution (hence excluding
the case that is has more than one solution)?

Theorems that state such conditions are called existence theorems and uniqueness
theorems, respectively.

Of course, for our simple examples we need no theorems because we can solve these
examples by inspection; however, for complicated ODEs such theorems may be of
considerable practical importance. Even when you are sure that your physical or other
system behaves uniquely, occasionally your model may be oversimplified and may not
give a faithful picture of the reality.

Existence Theorem

Let the right side f(x, y) of the ODE in the initial value problem
€)) ¥ = fu ) ¥%e) = Yo
be continuous at all points (x, v) in some rectangle
R:|x — x| < a. y — vol < b (Fig. 26)

and bounded in R; that is, there is a number K such that

(2) lfe. )| = K for all (x, ¥) in R.

Then the initial value problem (1) has at least one solution y(x). This solution exists
at least for all x in the subinterval |x — xo| < a of the interval x — xo| < a; here,
a is the smaller of the two numbers a and b/K.
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THEOREM 2

¥y
Yorb | ———-
Yo ™77~~~ -9
I
|
Yo=br———- i
| [ I
| 1 |
& ! ! L
x,—a Xy x+a ¥

Fig. 26. Rectangle R in the existence and uniqueness theorems

(Example of Boundedness. The function f(x, v) = x2 + y2 is bounded (with K = 2) in the
square |x| < 1, |y} < 1. The function f(x, ¥) = tan (x + y) is not bounded for |x + y| < /2.
Explain!)

Uniqueness Theorem

Let f and its partial derivative f, = 3f/dy be continuous for all (x, y) in the
rectangle R (Fig. 26) and bounded, say,

3 (@ |fx, V=K, ® |f .V =M forall(x,¥)inR.

Then the initial value problem (1) has ar most one solution v(x). Thus, by Theorem 1,
the problem has precisely one solution. This solution exists at least for all x in that
subinterval [x — x| < c.

Understanding These Theorems

These two theorems take care of almost all practical cases. Theorem 1 says that if f(x, v)
is continuous in some region in the xv-plane containing the point (xg. ¥o). then the initial
value problem (1) has at least one solution.

Theorem 2 says that if, moreover, the partial derivative df/dy of f with respect to y
exists and is continuous in that region, then (1) can have at most one solution; hence, by
Theorem 1, it has precisely one solution.

Read again what you have just read—these are entirely new ideas in our discussion.

Proofs of these theorems are beyond the level of this book (see Ref. [A11] in App. 1);
however, the following remarks and examples may help you to a good understanding of
the theorems.

Since ¥’ = f(x, ¥), the condition (2) implies that |y’'| = K; that is, the slope of any
solution curve ¥(x) in R is at least —K and at most K. Hence a solution curve that passes
through the point (xg, y¢) must lie in the colored region in Fig. 27 on the next page bounded
by the lines /; and I, whose slopes are —K and K, respectively. Depending on the form
of R, two different cases may arise. In the first case, shown in Fig. 27a, we have b/K =
a and therefore @ = a in the existence theorem, which then asserts that the solution exists
for all x between xo — a and xp + a. In the second case, shown in Fig. 27b, we have
bIK < a. Therefore, « = bIK < a, and all we can conclude from the theorems is that the
solution exists for all x between x, — b/K and x, + b/K. For larger or smaller x’s the
solution curve may leave the rectangle R, and since nothing is assumed about f outside
R, nothing can be concluded about the solution for those larger or smaller x’s: that is, for
such x’s the solution may or may not exist—we don’t know.
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yo+b — \
~~
Yo~ b [ <
L 9F\\
o<

Yo~ b I
I@a=a$<—a=09| < a a

Yo

(a) (b)

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case

Let us illustrate our discussion with a simple example. We shall see that our choice of
a rectangle R with a large base (a long x-interval) will lead to the case in Fig. 27b.

Choice of a Rectangle

Consider the initial value problem
Y =144 o =0
and take the rectangle R; |x| < 5, |y < 3. Thena = 5, b = 3. and

lfe wl =1 +y =K =10,

o

=2hl=mM=o6.
™ bl

—3—0’4<
a—K— 3 <a

Indeed, the solution of the problem is y = tan x (see Sec. 1.3, Example 1). This solution is discontinuous at
*+ /2, and there is no conrinuous solution valid in the entire interval |x] < 5 from which we starred. |

The conditions in the two theorems are sufficient conditions rather than necessary ones, and
can be lessened. In particular, by the mean value theorem of differential calculus we have

¥=y

of
flxy2) = fOu y1) = Oz = >1) 5~

where (x, v,) and (x, yp) are assumed to be in R, and ¥ is a suitable value between y; and
vg. From this and (3b) it follows that

4 [f(x, y2) = fOx, y)| = Mly, — w4

It can be shown that (3b) may be replaced by the weaker condition (4), which is known
as a Lipschitz condition.” However, continuity of f(x, v} is not enough to guarantee the
uniqueness of the solution. This may be illustrated by the following example.
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EXAMPLE 2 Nonuniqueness
The initial value problem
y' =V »0) =0
has the two solutions
O xz0
y=0 and yt =
=4 if x<0
although f(x, y) = \/M is continuous for all ¥. The Lipschitz condition (4} is violated in any region that includes
the line y = 0, because for ¥; = 0 and positive y5 we have
X.¥9) — f(x, y Vv 1
) [Fex. ¥2) — fCx y1)| _ 2 _ . (\/_g>0)
lye — »l Yz Vs
and this can be made as large as we please by choosing yg sutficiently small. whereas (4) requires that the
quotient on the left side of (5) should not exceed a fixed constant M. [ |
B Bro AN IR e g
1 I N L V] [
1. (Vertical strip) If the assumptions of Theorems 1 and 2 8. PROJECT. Lipschitz Condition. (A) State the

n

&

are satisfied not merely in a rectangle but in a vertical
infinite strip |x — xo| < @, in what interval will the
solution of (1) exist?

(Existence?) Does the initial value problem
(x — 1)y’ = 2¥, ¥(1) = 1 have a solution? Does your
result contradict our present theorems?

(Common points) Can two solution curves of the same
ODE have a common point in a rectangle in which the
assumptions of the present theorems are satisfied?

(Change of initial condition) What happens in Prob. 2
if you replace y(1) = 1 with y(1) = k?

(Linear ODE) If p and r in ¥/ + p(x)y = r(x) are
continuous for all x in an interval [x — x| =< @, show
that f(x, y) in this ODE satisfies the conditions of our
present theorems, so that a corresponding initial value
problem has a unique solution. Do you actually need
these theorems for this ODE?

(Three possible cases) Find all initial conditions such
that (x2 — 4x)y’ = (2x — 4)y has no solution, precisely
one solution, and more than one solution.

(Length of x-interval) In most cases the solution of an
initial value problem (1) exists in an x-interval larger
than that guaranteed by the present theorems. Show this
fact for y' = 2y2, y(1) = 1 by finding the best possible
« (choosing b optimally) and comparing the result with
the actual solution.

10

defimtion of a Lipschitz condition. Explain its relation
to the existence of a partial derivative. Explain its
significance in our present context. Ilustrate your
statements by examples of your own.

(B) Show that for a linear ODE y' + p(x)y = r(x) with
continuous p and 7 in |x — xg| = a a Lipschitz condition
holds. This is remarkable because it means that for a
linear ODE the continuity of f(x, y) guarantees not only
the existence but also the uniqueness of the solution of
an initial value problem. (Of course, this also follows
directly from (4) in Sec. 1.5.)

(C) Discuss the uniqueness of solution for a few simple
ODEs that you can solve by one of the methods
considered, and find whether a Lipschitz condition is
satisfied.

(Maximum «) What is the largest possible « in
Example 1 in the text?

CAS PROJECT. Picard Iteration. (A) Show that by
integrating the ODE in (1) and observing the initial
condition you obtain

(6) ¥x) =y + f fG. (D) dr.

7 . .
RUDOLF LIPSCHITZ (1832-1903), German mathematician. Lipschitz and similar conditions are important
in modern theories, for instance, in partial differential equations.
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This form (6) of (1) suggests Picard’s iteration
method®, which is defined by

(7Y yvp(x) =yo + f ftyy N dt. n=12---.
Ty

It gives approximations v;, ¥s, ¥3, - - - of the unknown
solution y of (1). Indeed, you obtain v, by substituting
v = yo on the right and integrating—this is the first
step—, then v, by substituting v = y; on the right and
integrating—this is the second step—. and so on. Write
a program of the iteration that gives a printout of the
first approximations vq. ¥3.---. ¥y as well as their
eraphs on common axes. Try your program on two
initial value problems of your own choice.

1. Explain the terms ordinary differential equation (ODE),
partial differential equation (PDE), order, general
solution, and particular solution. Give examples. Why
are these concepts of importance?

2. What is an initial condition? How is this condition used
in an initial value problem?

3. Whatis a homogeneous linear ODE? A nonhomogeneous
linear ODE? Why are these equations simpler than
nonlinear ODEs?

4. What do you know about direction fields and their
practical importance?

5. Give examples of mechanical problems that lead to ODEs.

6. Why do electric circnits lead 1o ODEs?

7. Make a list of the solution methods considered. Explain
each method with a few short sentences and illustrate
it by a typical example.

8. Can certain ODEs be solved by more than one method?
Give three examples.

9. What are integrating factors? Explain the idea. Give
examples.

10. Does every first-order ODE have a solution? A general
solution? What do you know about uniqueness of
solutions?

DIRECTION FIELDS

Graph a direction field (by a CAS or by hand) and sketch
some of the solution curves. Solve the ODE exactly and
compare.

1L v =1 + 452

12. v/ = 3y — 2¢

(B) Apply the iteration to v’ = x + y, y(0) = 0. Also
solve the problem exactly.

(C) Apply the iteration to Vo=
solve the problem exactly.

(D) Find all solutions of ¥' = 2V, ¥(1) = 0. Which
of them does Picard’s iteration approximate?

2y% v(0) = 1. Also

(E) Experiment with the conjecture that Picard’s
iteration converges to the solution of the problem for
any initial choice of y in the integrand in (7) (leaving
¥ outside the integral as it is). Begin with a simple
ODE and see what happens. When you are reasonably
sure. take a slightly more complicated ODE and give
it a try.

EW_QUESTIONS AND PROBLEMS

14. v' = 16x/y

' 15-26] GENERAL SOLUTION

Find the general solution. Indicate which method in this
chapter you are using. Show the details of your work.

13. _\" =4y — _\'2

15 v = 21 +y®)

16. y' =x(y —x2 + 1)

17. v/ + x32 =x

18. — a7 sin 77x cosh 3y dx + 3 cos mx sinh 3y dv = 0
19. ' + ysinx = sinx 20. ¥y — v =1y

21. 3sin2ydx + 2xcos2ydy = 0

22. xy' = xtan (y/x) + vy

23. (ycosxy — 2x) dx + (xcosxy + 2y} dy = 0
(r— 202+ (Sety —2x=12z)

25. sin(y — ) dx + [cos(y —x) —sin(y — )] dy =0
26. xv' = (302 + y

INITIAL VALUE PROBLEMS

Solve the following initial value problems. Indicate the
method used. Show the details of your work.

4. xy' =

275 +x=0, y3) =4

28. vy — 3y = —12x% v(0) =2
29. ¥ =1 +3% yGm=0

30. y' + my = 2bcos mx, y(0) =0

31, (2xy% — sinx) dx + (2 + 2x%y) dy = 0, w(0) = |
32, [2y + V¥x 4+ (1 + Ux)] dx + (x + 2y) dv = 0,
¥y =1

S8EMILE PICARD (1856-1941). French mathematician. also known for his important contributions to complex
analysis (see Sec. 16.2 for his famous theorem). Picard used his method to prove Theorems | and 2 as well as
the convergence of the sequence (7) to the solution of (1). In precomputer times the iteration was of little practical

value because of the integrations.
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Surnmary of Chapter 1

APPLICATIONS, MODELING

33. (Heat flow) If the isotherms in a region are x

2_ 2=

what are the curves of heat flow (assuming orthogonality)?
(Law of cooling) A thermometer showing 10°C is
brought into a2 room whose temperature is 25°C. After
5 minutes it shows 20°C. When will the thermometer
practically reach the room temperature. say. 24.9°C?

. (Half-life) If 10% of a radicactive substance disintegrates
in 4 days, what is its half-life?

(Half-life) What is the half-life of a substance if after
5 days, 0.020 g is present and after 10 days, 0.015 g?
. (Half-life) When will 99% of the substance in Prob. 35
have disintegrated?

. (Air circulation)} In a room containing 20 000 ft® of
air, 600 ft3 of fresh air flows in per minute, and the
mixture (made practically uniform by circulating fans)
is exhausted at a rate of 600 cubic feet per minute
(cfm). What is the amount of fresh air y(r) at any time
if ¥(0) = 0?7 After what time will 90% of the air be
fresh?

(Electric field) If the equipotential lines in a region of
the xy-plane are 412 + y2 = ¢, what are the curves of
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40. (Chemistry) In a bimolecular reaction A + B — M,

a moles per liter of a substance A and b moles per liter
of a substance B are combined. Under constant
temperature the rate of reaction is

v =ka— v)b ~¥) (Law of mass action);
that is, v’ is proportional to the product of the
concentrations of the substances that are reacting. where
¥(1) is the number of moles per liter which have reacted
after time 7. Solve this ODE, assuming that a # b.

. (Population) Find the population y(7) if the birth rate is

proportional to y(r) and the death rate is proportional to
the square of v(1).

. (Curves) Find all curves in the first quadrant of the xv-

plane such that for every tangent, the segment between
the coordinate axes is bisected by the point of tangency.
(Make a sketch.)

. (Optics) Lambert’s law of absorption® states that the

absorption of light in a thin transparent layer is
proportional to the thickness of the layer and to the
amount of light incident on that layer. Formulate this
law as an ODE and solve it.

the electrical force? Sketch both families of curves.

This chapter concerns ordinary differential equations (ODEs) of first order and
their applications. These are equations of the form

(1 Fx,y,v')=0 or in explicit form v o= fx, v

involving the derivative v’ = dv/dx of an unknown function y, given functions of
x, and, perhaps, v itself. If the independent variable x is time, we denote it by .

In Sec. 1.1 we explained the basic concepts and the process of modeling, that is,
of expressing a physical or other problem in some mathematical form and solving
it. Then we discussed the method of direction fields (Sec. 1.2), solution methods
and models (Secs. 1.3-1.6), and, finally, ideas on existence and uniqueness of
solutions (Sec. 1.7).

SJOHANN HEINRICH LAMBERT (1728-1777), German physicist and mathematician.
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A first-order ODE usually has a general solution, that is. a solution involving an
arbitrary constant, which we denote by c. In applications we usually have to find a
unique solution by determining a value of ¢ from an initial condition y(xg) = y,.
Together with the ODE this is called an initial value problem

(2) y' = fexy), y(x0,) = Yo (%o Vo given numbers)

and its solution is a particular solution of the ODE. Geometrically, a general

solution represents a family of curves, which can be graphed by using direction

fields (Sec. 1.2). And each particular sulution corresponds to one of these curves.
A separable ODE is one that we can put into the form

3) g(y) dy = f(x) dx (Sec. 1.3)

by algebraic manipulations (possibly combined with transformations, such as y/x = u)
and solve by integrating on both sides.
An exact ODE is of the form

(D) M(x, v)dx + N(x. v dy = 0 (Sec. 1.4)
where M dx + N dy is the differential
du = u, dx + u, dy

of a function u(x, y), so that from du = 0 we immediately get the implicit general

solution u(x, y) = ¢. This method extends to nonexact ODEs that can be made exact

by multiplying them by some function F(x, y), called an integrating factor (Sec. 1.4).
Linear ODEs

(5) v+ )y = r(x)

are very important. Their solutions are given by the integral formula (4), Sec. 1.5.
Certain nonlinear ODEs can be transformed to linear form in terms of new variables.
This holds for the Bernoulli equation

y' 4 ploy = go)y® (Sec. 1.5).

Applications and modeling are discussed throughout the chapter, in particular in
Secs. 1.1, 1.3, 1.5 (population dynamics, etc.). and 1.6 (trajectories).

Picard’s existence and uniqueness theorems are explained in Sec. 1.7 (and
Picard’s iteration in Problem Set 1.7).

Numeric methods for first-order ODEs can be studied in Secs. 21.1 and 21.2
immediately after this chapter, as indicated in the chapter opening.
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CHAPTER 2

Second-Order Linear ODEs

Ordinary differential equations (ODEs) may be divided into two large classes, linear
ODEs and nonlinear ODEs. Whereas nonlinear ODEs of second (and higher) order
generally are difficult to solve, linear ODEs are much simpler because various properties
of their solutions can be characterized in a general way, and there are standard methods
for solving many of these equations.

Linear ODEs of the second order are the most important ones because of their
applications in mechanical and electrical engineering (Secs. 2.4, 2.8, 2.9). And their theory
is typical of that of all linear ODEs, but the formulas are simpler than for higher order
equations. Also the transition to higher order (in Chap. 3) will be almost immediate.

This chapter includes the derivation of general and particular solutions, the latter in
connection with initial value problems.

(Boundary value problems follow in Chap. 5, which also contains solution methods for
Legendre’s, Bessel’s, and the hypergeometric equations.)

COMMENT. Numerics for second-order ODEs can be studied immediately after this
chapter. See Sec. 21.3, which is independent of other sections in Chaps. 19-21.

Prerequisite: Chap. 1, in particular. Sec. 1.5.
Sections that may be ominted in a shorter course: 2.3. 2.9, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

2.1 Homogeneous Linear ODEs of Second Order

We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and
discuss linear ODEs of second order. These equations have important engineering
applications, especially in connection with mechanical and electrical vibrations (Secs. 2.4,
2.8, 2.9) as well as in wave motion, heat conduction, and other parts of physics, as we
shall see in Chap. 12.

A second-order ODE is called linear if it can be writien

(0)) '+ py” + glx)y = r(x)

and nonlinear if it cannot be written in this form.
The distinctive feature of this equation is that it is linear in y and its derivatives, whereas
the functions p, g, and r on the right may be any given functions of x. If the equation

begins with, say, f(x)y", then divide by f(x) to have the standard form (1) with y" as
the first term, which is practical.

45
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EXAMPLE 1

CHAP. 2 Second-Order Linear ODEs

If r(x) = 0 (that is, #(x) = 0 for all x considered; read “r(x) is identically zero™), then
(1) reduces to

2) ¥+ py” + gy =0

and is called homogeneous. If r(x) # 0, then (1) is called nonhomogeneous. This is
similar to Sec. 1.5.
For instance, a nonhomogeneous linear ODE is

y" + 25y = ¢7% cos x,
and a homogeneous linear ODE is
’ - " l 4
¥y +y +xy=0, in standard form y + —y +v=0.
x

An example of a nonlinear ODE is

Yy +y"%=0.

The functions p and ¢ in (1) and (2) are called the coefficients of the ODEs.
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function

y = h(x)

is called a solution of a (linear or nonlinear) second-order ODE on some open interval 1
if & 1s defined and twice differentiable throughout that interval and is such that the ODE
becomes an identity if we replace the unknown y by #, the derivative v’ by &', and the
second derivative y” by /”. Examples are given below.

Homogeneous Linear ODEs: Superposition Principle

Sections 2.1-2.6 will be devoted to homogeneous linear ODEs (2) and the remaining
sections of the chapter to nonhomogeneous linecar ODEs.

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone
of this structure is the superposition principle or linearity principle, which says that we
can obtain further solutions from given ones by adding them or by multiplying them with
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us
first discuss an example.

Homogeneous Linear ODEs: Superposition of Solutions

The functions ¥ = cos.x and y = sin x are solutions of the homogeneous linear ODE

yHy=0
for all x. We verify this by differentiation and substitution. We obtain (cos v)" = —cos x: hence
n U4
vy +y=(cosx) + cosx = —cosx + cosx = 0.

Similarly for ¥ = sin x (verify!). We can go an important step further. We multiply cos x by any constant, for
instance. 4.7. and sinx by. say. —2. and take the sum of the results. claiming that it is a solution. Indeed.
differentiation and substitution gives

(4.7 cosx — Zsin v)" + (4.7 cos.x — 2 sinx) = —4.7 cosx + 2 sinx + 47 cos v — 2sinx = 0.
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THEOREM 1

PROOF

EXAMPLE 2

EXAMPLE 3

In this example we have obtained from y; (= cos x) and ¥, (= sin x) a function of the form
3 v=c1y; + s (c1, co arbitrary constants).

This is called a linear combination of y, and v. In terms of this concept we can now
formulate the result suggested by our example, often called the superposition principle
or linearity principle.

Fundamental Theorem for the Homogeneous Linear ODE (2}

For a homogeneous linear ODE (2), any linear combination of vvo solutions on an
open interval I is again a solution of (2) on 1. In particular, for such an equation.
sums and constant multiples of solutions are again solutions.

Let y; and v, be solutions of (2) on I. Then by substituting y = ¢;v; + c3¥9 and its
derivatives into (2), and using the familiar rule (c;y; + ¢2¥9)’ = ¢;¥1 + Coyq, clc., We
get
_"” +p’ + gy =(on + ca¥) + pleryy + cax9)" + glegyy + coxy)
n " ! !

=¥yt cpye + pleyr + Gexp) + gleryy + cay9)

— ” ’ " ’ _

=alyr +pyi+ gy + calyzs + pyz + gyp) =0,

since in the last line, (- - -) = 0 because v, and y, are solutions, by assumption. This shows
that y is a solution of (2) on 1. |

CAUTION! Don’t forget that this highly important theorem holds for homogeneous
linear ODEs only but does not hold for nonhomogeneous linear or nonlinear ODEs, as
the following two examples illustrate.

A Nonhomogeneous Linear ODE

Verify by substitution that the functions v = 1 + cos vand y = 1 + sin v are solutions of the nonhomogeneous
linear ODE

_v" +y=1,
but their sum is not a solution. Neither is, for instance, 2(1 + cos x) or 5(1 + sin x). |
A Nonlinear ODE
Verify by substitution that the functions ¥ = x% and » = 1 are solutions of the nonlinear ODE
¥y —x' =0

but their sum is not a solution. Neither is —x2, so you cannot even multiply by —1! |

Initial Value Problem. Basis. General Solution

Recall from Chap. 1 that for a first-order ODE, an initial value problem consists of the
ODE and one initial condition y(xo) = vq. The initial condition is used to determine the
arbitrary constant ¢ in the general solution of the ODE. This results in a unique solution,
as we need it in most applications. That solution is called a particular solution of the
ODE. These ideas extend to second-order equations as follows.



48

EXAMPLE 4

CHAP. 2 Second-Order Linear ODEs

For a second-order homogeneous linear ODE (2) an initial value problem consists of
(2) and two initial conditions

@ ¥(xo) = Ko, y'(x0) = K.

These conditions prescribe given values K, and K, of the solution and its first derivative
(the slope of its curve) at the same given x = x, in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants ¢; and ¢, in a
general solution

3 ¥y=o0% + eye

of the ODE; here, y; and vy, are snitable solutions of the ODE, with “suitable™ to be
explained after the next example. This results in a unique solution, passing through the
point (xg, Kg) with K as the tangent direction (the slope) at that point. That solution is
called a particular solution of the ODE (2).

Initial Value Problem
Solve the initial value problem
y+y=0, v0) = 3.0, ¥(0) = -

Solution. Step 1. General solution. The functions cos x and sin x are solutions of the ODE (by Example
1), and we take

y = €1 cosx + ¢y sinx.

This will turn out to be a general solution as defined below.

Step 2. Particular solution. We need the derivative y' = —¢; sinx + ¢ cos x. From this and the initial values
we obtain, since cos 0 = 1 and sin 0 = 0.

W0) = ¢, = 30 and ¥ (0) = ¢y = —05.
This gives as the solution of our initial value problem the particular solution
y = 3.0cosx — 0.5 sin x.

Figure 28 shows that at x = 0 it has the value 3.0 and the slope —0.5, so that its tangent intersects the x-axis
at x = 3.0/0.5 = 6.0. (The scales on the axes differ!) |

VAN
21U

Fig. 28. Particular solution and initial tangent in Example 4

o»—-mw‘e

Observation. Our choice of y; and y, was general enough to satisfy both initial
conditions. Now let us take instead two proportional solutions y; = cosx and
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DEFINITION

DEFINITION

ve = k cos x, so that yi/v, = 1/k = const. Then we can write ¥y = cyy; + ¢2¥s in the
form

y=cpcosx + cykcosx) = Ccosx where C = + ok

Hence we are no longer able to satisfy two initial conditions with only one arbitrary
constant C. Consequently, in defining the concept of a general solution, we must exclude
proportionality. And we see at the same time why the concept of a general solution is of
1mportance in connection with initial value problems.

General Solution, Basis, Particular Solution

A general solution of an ODE (2) on an open interval [ is a solution (5) in which
¥; and y, are solutions of (2) on / that are not proportional, and ¢, and ¢ are arbitrary
constants. These y,, yo are called a basis (or a fundamental system) of solutions
of (2) on L

A particular solution of (2) on 7 is obtained if we assign specific values to ¢;
and ¢4 in (5).

For the definition of an interval see Sec. 1.1. Also, ¢; and ¢, must sometimes be restricted
to some interval in order to avoid complex expressions in the solution. Furthermore, as
usual, y; and vy, are called proportional on I if for all x on I,

(6) (@) y1 = kv or () yp =1y

where k and / are numbers, zero or not. (Note that (a) implies (b) if and only if £ # 0).

Actually, we can reformulate our definition of a basis by using a concept of general
importance. Namely, two functions y; and y, are called linearly independent on an
interval I where they are defined if

(7 kvi(x) + kove(x) = 0 everywhere on I implies ky, =0and k; = 0.
And y; and y, are called linearly dependent on 7 if (7) also holds for some constants

ky, ko not both zero. Then if k; # 0 or k; # 0, we can divide and see that y, and y, are
proportional,

In contrast, in the case of linear independence these functions are not proportional because
then we cannot divide in (7). This gives the following

l 1

Basis (Reformulated)

A basis of solutions of (2) on an open interval [ is a pair of linearly independent
solutions of (2) on I.

If the coefficients p and g of (2) are continuous on some open interval I, then (2) has a
general solution. It yields the unique solution of any initial value problem (2), (4). It
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EXAMPLE 6
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CHAP. 2 Second-Order Linear ODEs

includes all solutions of (2) on I; hence (2) has no singular solutions (solutions not
obtainable from of a general solution; see also Problem Set 1.1). All this will be shown
in Sec. 2.6.

Basis, General Solution, Particular Solution

cos v and sin x in Example 4 form a basis of solutions of the ODE y” + y = 0 for all ¥ because their quotient
is cotx ¥ const (or tanx # const). Hence ¥y = ¢; cosx + ¢5 sinx is a general solution. The solution
¥ = 3.0 cos x — 0.5 sin.x of the initial value problem is a particular solution. ]

Basis, General Solution, Particular Solution

Verify by substitution that ¥; = ¢* and v, = ¢ are solutions of the ODE v” — y = 0. Then solve the initial
value problem

"

y —y=0, ¥0) = 6, y'(0) = —2.

Solution. (¢%)" — ¢ = 0 and (¢™)" — ¢ = 0 shows that e* and ¢~ are solutions. They are not
proportional. e%/e™® = ¢>* # const. Hence ¢, ¢~ form a basis for all x. We now write down the corresponding
general solution and its derivative and equate their values at 0 to the given initial conditions,

X

—_ ' -
v =" + cpe” v =" — g™, W0) = ¢ + ¢y = 6. YO =1 —cp = —2.

By addition and subtraction. ¢; = 2. ¢ = 4, so that the answeris vy = 2¢* + 4¢ . This is the particular solution
satisfying the two initial conditions. [ |

Find a Basis if One Solution Is Known.
Reduction of Order

It happens quite often that one solution can be found by inspection or in some other way.
Then a second linearly independent solution can be obtained by solving a first-order ODE.
This is called the method of reduction of order.! We first show this method for an example
and then in general.

Reduction of Order if a Solution Is Known. Basis

Find a basis of solutions of the ODE

(% - o' —xy +y=0.

Solution. Inspection shows that y; = x is a solution because y; = 1 and ¥ = 0, so that the first term
vanishes identically and the second and third terms cancel. The idea of the method is to substitute

1 ’ n " ’
Y = uyy = ux, ¥y =urxv+u v =ux+2u

into the ODE. This gives

(,\’2 — "+ 2u") — 'y + u) + ux = 0.
1x and —xu cancel and we are left with the following ODE. which we divide by .x. order, and simplify,

(_\c2 — 0" + 24"y - Zu' = 0. (x2 -+ @—2u =0

1Credited to the great mathematician JOSEPH LOUIS LAGRANGE (1736-1813), who was born in Turin.
of French extraction, got his first professorship when he was 19 (at the Military Academy of Turin). became
director of the mathematical section of the Berlin Academy in 1766. and moved to Paris in 1787. His important
major work was in the calculus of variations. celestial mechanics, general mechanics (Mécanique analytigue,
Paris, 1788), differential equations, approximation theory, algebra, and number theory.
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This ODE is of first order in v = ', namely, (Jc2 —xv Fx—2v=0. Separation of variables and integration
gives

o 272 (] ) e Inlo| =1 =2 =1 b 1]
v* .‘_2‘x X = T —1 X y n|U|—n|x I nixf = In 'rz

We need no constant of integration because we want to obtain a particular solution: similarly in the next
integration. Taking exponents and integrating again, we obtain

) 1 1 1
i u:fvd_\'zln|x|+;. hence yo=ux=xInlx + 1.

Since y; = x and yo = x In [+] + 1 are linearly independent (their quotient is not constant), we have obtained
a basis of solutions, valid for all positive x. |

In this example we applied reduction of order to a homogeneous linear ODE [see (2)]
.\'" + p(x)y' + g(x)y = 0.

Note that we now take the ODE in standard form, with y”, not f(x)y"—this is essential
in applying our subsequent formulas. We assume a solution y, of (2) on an open interval
I to be known and want to find a basis. For this we need a second linearly independent
solution y, of (2) on I. To get yy, we substitute

Yy = Y2 = Uy, .\" = ."é = ”I."l + u)‘{, )’" = yé’ = u")’l + 2“’.V{ + u)’lll
into (2). This gives
” ' 7 n ! ! —
8 wyy + 2wy +uyy + pluy; + uvq) + quy, = 0.
Collecting terms in u”, u’, and u, we have
W'yy + u' 2y + pyp) + u(y] + py1 + gy = 0.
Now comes the main point. Since y; is a solution of (2), the expression in the last
P y1 P

parentheses is zero. Hence u is gone, and we are left with an ODE in u' and i”. We divide
this remaining ODE by v, and set u’ = U, " = U,

g 2t n

2"
u’ 41 =0, thus U'+( Y1 +p)U=O.
N

N1

This is the desired first-order ODE, the reduced ODE. Separation of variables and
integration gives

du 2y,

— = —(— +p) dx and In|U| = =2 In|y,| _jl)dx-
U g1

By taking exponents we finally obtain

©) U= —5 e P®&
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Here U = u', so that u = [U dx. Hence the desired second solution is

Yo = Vit = le U dx.

The quotient y5/v; = u = [U dx cannot be constant (since U > 0), so that v, and y5 form

a basis of solutions.

-
-
|

GENERAL SOLUTION. INITIAL VALUE
PROBLEM
(More in the next problem set.) Verify by substitution that
the given functions form a basis. Solve the given initial
value problem. (Show the details of your work.)
L v" — 16y =0, ¢* 7% v(0)=3.y(0) =8
2. ¥" + 25v = 0. cos 5x, sin 5x. v(0) = 0.8,
y'(0) = —6.5

nm r —_ —_ .
3.y +2y +2vy=0, e “cosx, e Fsinux,

¥O0) = [y = —1

4. v" — 6y’ + 9y = 0, 3, xe®F, v (0) = — 1.4,
¥'(0) = 4.6

5 x%y" + xv' — 4y = 0, x2, x72, y(1) = 11,
y'i) = -6

6. x5" — T’ + 15y = 0, x5, x5, v(1) = 0.4,
Y(h)=10
[7—14 LINEAR INDEPENDENCE AND DEPENDENCE
Are the following functions linearly independent on the
given interval?
7. x, xInx (0 < x < 10)
8 3x%, 2" (0 <x < 1)
9. ¢%*, e~ (any interval)
10. cos? x, sin? v (any interval)
11 Inx, In x% (x > 0)
12. x — 2, x + 2 (-2 <x<2)
13. 5 sinx cos x, 3 sin2x (x > O)
14. O, sinh 7x (x > 0)

REDUCTION OF ORDER is important because it gives a

simpler ODE. A second-order ODE F{(x, v, _\7', y") = (), linear

or not, can be reduced to first order if y does not occur
explicitly (Prob. 15) or if » does not occur explicitly (Prob.

16) or if the ODE is homogeneous linear and we know a

solution (see the text).

15. (Reduction) Show that F(x, v’, _\7") = 0 can be reduced
to first order in £ = ¥’ «from which y follows by
integration). Give two examples of your own.

16. (Reduction) Show that F(y, y".¥") = 0 can be reduced
to a first-order ODE with v as the independent variable
and v" = (dz/dv)z. where z = ¥'; derive this by the
chain rule. Give two examples.

[@ Reduce to first order and solve (showing each
step in detail).

17. " = ky'

18. " =1 +3'2

19. yv" = 4y'2

20 xv" + 2" + xv =0,
2L v + '3 siny =0
22. (1 — x2)y" — 2xy" + 2y = 0,

vy, =xLlcosx

yi=x

23. (Meotion) A small body moves on a straight line. Its
velocity equals twice the reciprocal of its acceleration.
If at ¢+ = O the body has distance 1 m from the origin
and velocity 2 m/sec, what are its distance and velocity
after 3 sec?

24. (Hanging cable) It can be shown that the curve yv(x)
of an inextensible flexible homogenecus cable
hanging between two fixed points is obtained by

solving y" = KV 1 + y'2, where the constant k depends

on the weight. This curve is called a carenary (from
Latin catena = the chain). Find and graph y(x).
assuming k = 1 and those fixed points are (—1, 0) and
(1, 0) in a vertical xy-plane.

25, (Curves) Find and sketch or graph the curves passing
through the origin with slope 1 for which the second
derivative is proportional to the first.

26. WRITING PROJECT. General Properties of
Solutions of Linear ODEs. Write a short essay (with
proofs and simple examples of your own) that includes
the following.

(a) The superposition principle.

(b) y = 0 is a solution of the homogeneous equation
(2) (called the trivial solution).

(¢) The sum y = y; + 5 of a solution ¥, of (1) and
v of (2) 1s a solution of (1).

(d) Explore possibilities of making further general
statements on solutions of (1) and (2) (sums.
differences, multiples).

27. CAS PROJECT. Linear Independence. Write a
program for testing linear independence and
dependence. Try it out on some of the problems in this
problem set and on examples of your own.
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2.2 Homogeneous Linear ODEs
with Constant Coefficients

We shall now consider second-order homogeneous linear ODEs whose coetficients a and
b are constant,

) y' + av' + by = 0.

These equations have important applications, especially in connection with mechanical
and electrical vibrations, as we shall see in Secs. 2.4, 2.8, and 2.9.

How to solve (1)? We remember from Sec. 1.5 that the solution of the first-order linear
ODE with a constant coefficient k

y +kv=0

is an exponential function y = ce™"*. This gives us the idea to try as a solution of (1) the
function

()] y=éeM.
Substituting (2) and its derivatives
v = Ae?* and v’ = A2

into our equation (1), we obtain
(A2 + aA + h)e** = 0.

Hence if A is a solution of the important characteristic equation (or auxiliary equation)

A3 Mtar+b=0

then the exponential function (2) is a solution of the ODE (1). Now from elementary
algebra we recall that the roots of this quadratic equation (3) are

@ A = 3(—a+ Va® - 4b), Ay = 3(—a — Va® — 4b).

(3) and (4) will be basic because our derivation shows that the functions

) y1 = eM® and vy = eh2®
21 Y2

are solutions of (1). Verify this by substituting (5) into (1).
From algebra we further know that the quadratic equation (3) may have three kinds of
roots, depending on the sign of the discriminant a® — 4b, namely,

(Case I) Two real roots if a® — 4b > 0,
(Case I) A real double roor ifa® — 4b = 0,
(Case IID)  Complex conjugate roots if a® — 4b < 0.
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EXAMPLE 1

EXAMPLE 2
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Case |. Two Distinct Real Roots A, and A,

In this case, a basis of solutions of (1) on any interval is

¥y = eMT and vy = P

because y; and y, are defined (and real) for all x and their quotient is not constant. The
corresponding general solution is

(6) ¥ = 1M + cpe™.

General Solution in the Case of Distinct Real Roots

We can now solve ¥ — v = 0 in Example 6 of Sec. 2.1 systematically. The characteristic equation is
A2 — 1 = 0. Its roots are AL = 1 and Ay = —1. Hence a basis of solutions is e* and ¢~ and gives the same
general solution as before,

¥y =6+ cge " |
Initial Value Problem in the Case of Distinct Real Roots

Solve the initial value problem

"

Yy -2y =0, ¥0) = 4, ¥y'(0) = -5.

Solution. Step 1. General solution. The characteristic equation is

P+r-2=0
1ts roots are
M=+ Ve =1 and Ay =1(-1-V9) =-2
so that we obtain the general solution
v =16 + cpe 2,

Step 2. Particular solution, Since ¥'(x) = ¢16® — Zcze_zr. we obtain from the general solution and the initial
conditions

YO)=c1 tecp=4,
V) =c¢; 2c5= -5
Hence ¢; = 1 and cp = 3. This gives the answer v = ¢® + 3¢~ 2%, Figure 29 shows that the curve begins at

y = 4 with a negative slope (—5, but note that the axes have different scales!), in agreement with the initial
conditions. [}

O N~ O %

0 0.5 1 1.5 2 =z
Fig. 29. Solution in Example 2
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EXAMPLE 3

EXAMPLE 4

Case Il. Real Double Root A = —a/2

If the discriminant a® — 4b is zero, we see directly from (4) that we get only one root,
A = Ay = Ay = —a/2, hence only one solution,

v = e—(a/Z).’v'

To obtain a second independent solution y, (needed for a basis), we use the method of

reduction of order discussed in the last section, setting y, = wuy;. Substituting this and its
. - ! ! 14 n - -

derivatives y5 = 1 y; + uv; and y, into (1), we first have

G'vy + 2y + wv)) + a@'y, + wyy) + buy, = 0.
Collecting terms in u”", 1, and u, as in the last section, we obtain
W'yy + ' 2y + ay) + u] + ayg + byy) = 0.
The expression in the last parentheses is zero, since y; is a solution of (1). The expression

in the first parentheses is zero, too, since

—ax/2 _

14
2y, = —ae —ayy.

We are thus left with "y, = 0. Hence «” = 0. By two integrations, u = ¢1x + ¢,. To
get a second independent solution y, = uy;, we can simply choose ¢; = 1, ¢z = 0 and
take # = x. Then y, = xy;. Since these solutions are not proportional, they form a basis.
Hence in the case of a double root of (3) a basis of solutions of (1) on any interval is

e—a:clz’ xe—a:c/Z.

The corresponding general solution is
D ¥ = (01 + cpn)e 2,

Warning. If A is a simple root of (4), then (¢; + ¢3x)e™® with ¢y # 0 is not a solution
of (1).

General Solution in the Case of a Double Root

The characteristic equation of the ODE v” + 6y’ + 9y = 0is AZ + 6A + 9 = (A + 3)2 = 0. It has the double
root A = —3. Hence a basis is ¢ °° and xe~5%. The corresponding general solution is y = (¢; + cex)e %, W
Initial Value Problem in the Case of a Double Root

Solve the initial value problem

My 